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Abstract

As High-Performance Computing (HPC) systems strive towards the
exascale goal, failure rates both at the hardware and software levels will
increase significantly. Thus, detecting and classifying faults in HPC sys-
tems as they occur and initiating corrective actions before they can trans-
form into failures becomes essential for continued operation. Central to
this objective is fault injection, which is the deliberate triggering of faults
in a system so as to observe their behavior in a controlled environment.
In this paper, we propose a fault classification method for HPC systems
based on machine learning. The novelty of our approach rests with the
fact that it can be operated on streamed data in an online manner, thus
opening the possibility to devise and enact control actions on the target
system in real-time. We introduce a high-level, easy-to-use fault injection
tool called FINJ, with a focus on the management of complex experiments.
In order to train and evaluate our machine learning classifiers, we inject
faults to an in-house experimental HPC system using FINJ, and generate
a fault dataset which we describe extensively. Both FINJ and the dataset
are publicly available to facilitate resiliency research in the HPC systems
field. Experimental results demonstrate that our approach allows almost
perfect classification accuracy to be reached for different fault types with
low computational overhead and minimal delay.
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1 Introduction

Motivation Modern scientific discovery is increasingly being driven by com-
putation [36]. In a growing number of areas where experimentation is either
impossible, dangerous or costly, computing is often the only viable alternative
towards confirming existing theories or devising new ones. As such, High-
Performance Computing (HPC) systems have become fundamental “instru-
ments” for driving scientific discovery and industrial competitiveness. Exas-
cale (1018 operations per second) is the moonshot for HPC systems. Reaching
this goal is bound to produce significant advances in science and technology
through higher-fidelity simulations, better predictive models and analysis of
greater quantities of data, leading to vastly-improved manufacturing processes
and breakthroughs in fundamental sciences ranging from particle physics to
cosmology. Future HPC systems will achieve exascale performance through a
combination of faster processors and massive parallelism [2].

With Moore’s Law having reached its limit, the only viable path towards
higher performance has to consider switching from increased transistor den-
sity towards increased core count, thus increased sockets count. This, however,
presents major obstacles. With everything else being equal, the fault rate of
a system is directly proportional to the number of sockets used in its con-
struction [9]. But everything else is not equal: exascale HPC systems will
also use advanced low-voltage technologies that are much more prone to ag-
ing effects [5] together with system-level performance and power modulation
techniques, such as dynamic voltage frequency scaling, all of which tend to in-
crease fault rates [16]. Economic forces that push for building HPC systems
out of commodity components aimed at mass markets only add to the like-
lihood of more frequent unmasked hardware faults. Finally, complex system
software, often built using open-source components, to deal with more complex
and heterogeneous hardware, fault masking and energy management, coupled
with legacy applications will significantly increase the potential for faults [23].
It is estimated that large parallel jobs will encounter a wide range of failures as
frequently as once every 30 minutes on exascale platforms [33]. At these rates,
failures will prevent applications from making progress. Consequently, exascale
performance, even if achieved nominally, cannot be sustained for the duration
of most applications that often run for long periods.

To be usable in production environments with acceptable quality of service
levels, exascale systems need to improve their resiliency by several orders of
magnitude. Therefore, future exascale HPC systems must include automated
mechanisms for masking faults, or recovering from them, so that computations
can continue with minimal disruptions. In our terminology, a fault is defined
as an anomalous behavior at the software or hardware level that can lead to
illegal system states (errors) and, in the worst case, to service interruptions
(failures) [18]. In this paper, we limit our attention to improving the resiliency
of HPC systems through the use of mechanisms for detecting and classifying
faults as soon as possible since they are the root causes of errors and failures. An
important technique for this objective is fault injection: the deliberate triggering
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of faults in a system so as to observe their behavior in a controlled environment,
enable development of new prediction and response techniques as well as testing
of existing ones [22]. For fault injection to be effective, dedicated tools are
necessary, allowing users to trigger complex and realistic fault scenarios in a
reproducible manner.

Contributions The contributions of our work are several fold. First, we pro-
pose and evaluate a fault classification method based on supervised Machine
Learning (ML) suitable for online deployment in HPC systems as part of an in-
frastructure for building mechanisms to increase their resiliency. Our approach
relies on a collection of performance metrics that are readily available in most
HPC systems. A novel aspect of our proposal is its ability to work online with
live streamed data as opposed to traditional offline techniques that work with
archived data. Our experimental results show that the method we propose can
classify almost perfectly several types of faults, ranging from hardware malfunc-
tions to software issues and bugs. In our method, classification can be achieved
with little computational overhead and with minimal delay, making it suitable
for online use. We characterize the performance of our proposed solution in a
realistic online use scenario where live streamed data is fed to fault classifiers
both for training and for detection, dealing with issues such as class imbalance
and ambiguous system states. Most existing studies, on the contrary, consider
offline scenarios and rely on extensive manipulation of archived data, which is
not feasible in online scenarios. Furthermore, switching from an offline to an
online approach based on streamed data opens up the possibility for devising
and enacting control actions in real-time.

Second, we introduce an easy-to-use open-source Python fault injection tool
called FINJ. A relevant feature of FINJ is the possibility of seamless integration
with other injection tools targeted at specific fault types, thus enabling users
to coordinate faults from different sources and different system levels. By us-
ing FINJ’s workload feature, users can also specify lists of applications to be
executed and faults to be triggered on multiple nodes at specific times, with
specific durations. FINJ thus represents a high-level, flexible tool, enabling
users to perform complex and reproducible experiments, aimed at revealing the
complex relations that may exist between faults, application behavior and the
system itself. FINJ is also extremely easy to use: it can be set up and executed
in a matter of minutes, and does not require the writing of additional code in
most of its usage scenarios. To the best of our knowledge, FINJ is the first
portable, open-source tool that allows users to perform and control complex in-
jection experiments, that can be integrated with heterogeneous fault types and
that includes workload support, while retaining ease of use and a quick setup
time.

As a third and final contribution, our evaluation is based on a dataset con-
sisting of monitoring data that we acquired from an experimental HPC system
(called Antarex) by injecting faults using FINJ. We make the Antarex dataset
publicly available and describe it extensively for use in the community. This
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is an important contribution to the HPC field, since commercial operators are
very reluctant to share trace data containing information about faults in their
HPC systems [25].

Organization The rest of the paper is organized as follows. In the next
section we put our work in context with respect to related work. In Section 3,
we introduce the FINJ tool and present a simple use case in Section 4 to show
how it can be deployed. In Section 5, we describe the Antarex dataset that will
be used for evaluating our supervised ML classification models. In Section 6, we
discuss the features extracted from the Antarex dataset to train the classifiers
and in Section 7, we present our experimental results. We conclude in Section 8.

2 Related Work

Fault injection for prediction and detection purposes is a recent topic of intense
activity, and several studies have proposed tools with varying levels of abstrac-
tion. Calhoun et al. [8] devised a compiler-level fault injection tool focused on
memory bit-flip errors, targeting HPC applications. De Bardeleben et al. [13]
proposed a logic error-oriented fault injection tool. This tool is designed to inject
faults in virtual machines, by exploiting emulated machine instructions through
the open-source virtual machine and processor emulator (QEMU). Both works
focus on low-level fault-specific tools and do not provide functionality for the
injection of complex workloads, and for the collection of produced data, if any.

Stott et al. [34] proposed NFTAPE, a high-level and generic tool for fault
injection. This tool is designed to be integrated with other fault injection tools
and triggers at various levels, allowing for the automation of long and complex
experiments. The tool, however, has aged considerably, and is not publicly
available. A similar fault injection tool was proposed by Naughton et al. [31],
which has never evolved beyond the prototype stage and is also not publicly
available, to the best of our knowledge. Moreover, both tools require users to
write a fair amount of wrapper and configuration code, resulting in a complex
setup process. The Gremlins Python package1 also supplies a high-level fault in-
jector. However, it does not support workload or data collection functionalities,
and experiments on multiple nodes cannot be performed.

Joshi et al. [24] introduced the PREFAIL tool, which allows for the injection
of failures at any code entry point in the underlying operating system. This
tool, like NFTAPE, employs a coordinator process for the execution of com-
plex experiments. It is targeted at a specific fault type (code-level errors) and
does not permit performing experiments focused on performance degradation
and interference. Similarly, the tool proposed by Gunawi et al. [21], named
FATE, allows the execution of long experiments; furthermore, it is focused on
reproducing specific fault sequences, simulating real scenarios. Like PREFAIL,
it is limited to a specific fault type, namely I/O errors, thus greatly limiting its
scope.

1https://github.com/toddlipcon/gremlins
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Automated fault detection and characterization through system performance
metrics is a common application for fault injection, and for most of the tools
discussed above. However, machine learning-based methods using fine-grained
monitored data (i.e., sampling once per second) are more recent. Tuncer et
al. [35] proposed a framework for the diagnosis of performance anomalies in
HPC systems. Since they deal only with performance anomalies that result
in longer runtimes for applications, they do not consider faults that lead to
errors and failures, which cause a disruption in the computation. Moreover, the
data used to build the test dataset was not acquired continuously, but rather
in small chunks related to single application runs. Thus, it is not possible to
determine the feasibility of this method when dealing with streamed, continuous
data from an online HPC system. A similar work was proposed by Baseman et
al. [3], which focuses on identifying faults in HPC systems through temperature
sensors. Ferreira et al. [17] analyzed the impact of CPU interference on HPC
applications by using a kernel-level noise injection framework. Both approaches
deal with specific fault types, and are therefore limited in scope.

Other researchers have focused on using coarser-grained data (i.e., sampling
once per minute) or on reducing the dimension of collected data, while re-
taining good detection accuracy. Bodik et al. [6] aggregated monitored data
by using fingerprints, which are built from quantiles corresponding to different
time epochs. Lan et al. [28] discussed an outlier detection framework based on
principal component analysis. Guan et al. [19, 20] proposed works focused on
finding the correlations between performance metrics and fault types through a
most relevant principal components method. Wang et al. [37] proposed a simi-
lar entropy-based outlier detection framework suitable for use in online systems.
These frameworks, which are very similar to threshold-based methods, are not
suitable for detecting the complex relationships that may exist between different
performance metrics under certain faults. One notable work in threshold-based
fault detection is the one proposed by Cohen et al. [11], in which probabilis-
tic models are used to estimate threshold values for performance metrics and
detect outliers. This approach requires constant human intervention to tune
thresholds, and lacks flexibility.

3 The FINJ Tool

In this section, we first discuss how fault injection is achieved in FINJ. We then
present the architecture of FINJ and discuss its implementation. Customizing
FINJ for different purposes is easy, thanks to its portable and modular nature.

3.1 Task-based Fault Injection

Fault injection is achieved through tasks that are executed on target nodes. Each
task corresponds to either an HPC application or a fault-triggering program,
and has a specification for its execution. As demonstrated by Stott et al. [34],
this approach allows for the integration in FINJ of any third-party fault injection
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framework that can be triggered externally. In any case, many fault-triggering
programs are supplied with FINJ (see Section 5.2), allowing users to experiment
with anomalies out-of-the-box.

A sequence of tasks defines a workload, which is a succession of scheduled
application and fault executions at specific times, reproducing a realistic working
environment for the fault injection process. A task is specified by the following
attributes:

• args: the full shell command required to run the selected task. The com-
mand must refer to an executable file that can be accessed from the target
hosts;

• timestamp: the time in seconds at which the task must be started, ex-
pressed as a relative offset;

• duration: the task’s maximum allowed duration, expressed in seconds,
after which it will be abruptly terminated. This duration can serve as an
exact duration as well, with FINJ restarting the task if it finishes earlier,
and terminating it if it lasts more. This behavior depends on the FINJ
configuration (see Section 3.3);

• isFault : defines whether the task corresponds to a fault-triggering pro-
gram, or to an application;

• seqNum: a sequence number used to uniquely identify the task inside a
workload;

• cores: an optional attribute which is the list of CPU cores that the task is
allowed to use on target nodes, enforced through a NUMA Control policy
[27].

A workload is stored in a workload file, which contains the specifications
of all the tasks of a workload in CSV format. The starting time of each task
is expressed as a relative offset, in seconds, with respect to the first task in
the workload. A particular execution of a given workload then constitutes an
injection session.

In our approach, the responsibility of each entity involved in the fault injec-
tion process is isolated, as depicted in Figure 1. The fault injection engine of
FINJ manages the execution of tasks on target nodes and the collection of their
output. Tasks contain all the necessary logic to run applications or to trigger
any other low-level fault injection framework (e.g., by means of a writable file
or system call). At the last level, the activated low-level fault injector handles
the actual triggering of faults, which can be at the software, kernel, or even
hardware level.

6



Fault Injection Engine
Workload

coordination
Task 

scheduling
Process

management
Output 

collection

Task

Application-level
anomalies

Kernel-level
fault injection

Hardware-level
fault injection

HPC 
applications

Fault 
triggering

Restore healthy
system state

Figure 1: A diagram representing the responsibility of each entity involved in
the fault injection process.

3.2 FINJ Architecture

FINJ consists of a fault injection controller and a fault injection engine, which
are designed to run on separate machines. The high-level structure of the FINJ
architecture is illustrated in Figure 2.

The controller orchestrates the injection process, and should be run on an
external node that is not affected by the faults. The controller maintains con-
nections to all nodes involved in the injection session, which run fault injection
engine instances and whose addresses are specified by users. Therefore, injection
sessions can be performed on multiple nodes at the same time. The controller
reads the task entries from the selected workload file. For each task the con-
troller sends a command to all target hosts, instructing them to start the new
task at the specified time. Finally, the controller collects and stores all status
messages (e.g., task start and termination, status changes) produced by the
target hosts.

The engine is a daemon running on nodes where faults are to be injected.
The engine waits for task commands to be received from remote controller in-
stances. Engines can be connected to multiple controllers at the same time,
however task commands are accepted from one controller at a time, the master
of the injection session. The engine manages received task commands by as-
signing them to a dedicated thread from a pool. The thread manages all aspects
related to the execution of the task, such as spawning the necessary subpro-
cesses and sending status messages to controllers. Whenever a fault causes a
target node to crash and reboot, controllers are able to re-establish and recover
the previous injection session, given that the engine is set up to be executed at
boot time on the target node.

3.3 Architecture Components

FINJ is based on a highly modular architecture, and therefore it is very easy to
customize its single components in order to add or tune features.
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Figure 2: Architecture of the FINJ tool showing the division between a controller
node (top) and a target node (bottom).

Network Engine and controller instances communicate through a network
layer, and communication is achieved through a simple message-based protocol.
Specifically, we implemented client and server software components for the
exchange of messages. Fault injection controllers use a client instance in order
to connect to fault injection engines, which in turn run a server instance which
listens for incoming connections. A message can be either a command sent by a
controller, related to a single task, or a status message, sent by an engine, related
to status changes in its machine. All messages are in the form of dictionaries.
This component also handles resiliency features such as automatic re-connection
from clients to servers, since temporary connection losses are to be expected in
a fault injection context.

Thread Pool Task commands in the engines are assigned to a thread in a
pool as they are received. Each thread manages all aspects of a task assigned
to it. Specifically, the thread sleeps until the scheduled starting time of the
task (according to its time-stamp); then, it spawns a subprocess running the
specified task, and sends a message to all connected controllers to inform them of
the event. At this point, the thread waits for the task’s termination, depending
on its duration and on the current configuration. Finally, the thread sends a new
status message to all connected hosts informing them of the task’s termination,
and returns to sleep. The amount of threads in the pool, which is a configurable
parameter, determines the maximum number of tasks that can be executed
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Figure 3: A representation of the life cycle of a task, as managed by the thread
pool of the fault injection engine.

concurrently. Since threads in the pool are started only once during the engine’s
initialization, and wake up for minimal amounts of time when a task needs
to be started or terminated, we expect their impact on the performance to be
negligible. The life cycle of a task, as managed by a worker thread, is represented
in Figure 3.

Input and Output The input and output of all data related to injection
sessions are performed by controller instances, and are handled by reader and
writer entities. By default, the input/output format is CSV, which was chosen
due to its extreme simplicity and generality. Input is constituted by workload
files, that include one entry for each injection task, as described in Section 3.1.
Output, instead, is made up of two parts: I) the execution log, which contains
entries corresponding to status changes in the target nodes (e.g., start and
termination, encountered errors and connection loss or recovery events); II)
output produced by single tasks.

Configuration FINJ’s runtime behavior can be customized by means of a
configuration file. This file includes several options that alter the behavior of
either the controller or engine instances. Among the basic options, it is possible
to specify the listening TCP port for engine instances, and the list of addresses
of target hosts, to which controller instances should connect at launch time. The
latter is useful when injection sessions must be performed on large sets of nodes,
whose addresses can be conveniently stored in a file. More complex options
are also available. For instance, it is possible to define a series of commands
corresponding to tasks that must be launched together with FINJ, and must
be terminated with it. This option proves especially useful when users wish
to set up monitoring frameworks, such as the Lightweight Distributed Metric
Service (LDMS) [1], to be launched together with FINJ in order to collect
system performance metrics during injection sessions.
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Workload Generation While writing workload files manually is possible,
this is time-consuming and not desirable for long injection sessions. Therefore,
we implemented in FINJ a workload generation tool, which can be used to au-
tomatically generate workload files with certain statistical features, while trying
to combine flexibility and ease of use. The workload generation process is con-
trolled by three parameters: a maximum time span for the total duration of
the workload expressed in seconds, a statistical distribution for the duration of
tasks, and another one for their inter-arrival times. We define the inter-arrival
time as the interval between the start of two consecutive tasks. These distribu-
tions are separated in two sets, for fault and application tasks, thus amounting
to a total of four. They can be either specified analytically by the user or can
be fitted from real data, thus reproducing realistic behavior.

A workload is composed as a series of fault and application tasks that are
selected from a list of possible shell commands. To control the composition
of workloads, users can optionally associate to each command a probability
for its selection during the generation process, and a list of CPU cores for
its execution, as explained in Section 3.1. By default, commands are picked
uniformly. Having defined its parameters, the workload generation process is
then fairly simple. Tasks are randomly generated in order to achieve statistical
features close to those specified as input, and are written to an output CSV file,
until the maximum imposed time span is reached. Alongside the full workload, a
probe file is also produced, which contains one entry for each task type, all with
a short fixed duration, representing a lightweight workload version. This file can
be used during the setup phase to test the correct configuration of the system,
making sure that all tasks are correctly found and executed on the target hosts,
without having to run the entire heavy workload.

3.4 Implementation

FINJ is implemented in Python, an object-oriented, high-level interpreted pro-
gramming language2, and can be used on all major operating systems. All
dependencies are included in the Python distribution, and the only optional
external dependency is the scipy package, which is needed for the workload gen-
eration functionality. The source code is publicly available on GitHub3 under
the MIT license, together with its documentation, usage examples and several
fault-triggering programs. FINJ works on Python versions 3.4 and above.

In Figure 4, we illustrate the class diagram of FINJ. The fault injection
engine and the fault injection controller are represented by the InjectorEngine
and InjectorController classes. Users can instantiate these classes and start
injection sessions directly, by using the listen injection method to put the engine
in listening mode, and the inject method of the controller, which allows to start
the injection session itself. Scripts are supplied with FINJ to create controller
and engine instances from a command-line interface, simplifying the process.

2https://www.python.org/events/python-events/
3https://github.com/AlessioNetti/fault_injector
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Figure 4: The class diagram of FINJ.

The InjectionThreadPool class, instead, supplies the thread pool implementation
used to execute and manage the tasks.

The network layer of the tool is represented by the MsgClient and MsgServer
classes, which implement the message and queue-based client and server used
for communication. Both classes are implementations of the MsgEntity abstract
class, which provides the interface for sending and receiving messages, and im-
plements the basic mechanisms that regulate the access to the underlying queue.

Input and output are instead handled by the Reader and Writer abstract
classes and their implementations: CSVReader and CSVWriter handle the read-
ing and writing of workload files, while ExecutionLogReader and ExecutionLog-
Writer handle the execution logs generated by injection sessions. Since these
classes are all implementations of abstract interfaces, it is easy for users to cus-
tomize them for different formats. Tasks are modeled by the Task class that
contains all attributes specified in Section 3.1.

Lastly, access to the workload generator is provided through the Workload-
Generator class, which is the interface used to set up and start the generation
process. This class is backed by the ElementGenerator class, which offers basic
functionality for fitting data and generating random values. This class acts as
a wrapper on scipy’s rv continuous class, which generates random variables.

4 Using FINJ

In this section we demonstrate the flow of execution of FINJ through a concrete
example carried out on a real HPC node, and provide insight on its overhead.
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timestamp ; durat ion ; seqNum ; i s F a u l t ; c o r e s ; a rgs
0 ; 1 7 2 3 ; 1 ; Fa l se ;0 −7 ; ./ hpl l i n i n p u t
3 5 5 ; 2 4 4 ; 2 ; True ; 6 ; sudo . / cpuf req 258
9 1 4 ; 2 9 1 ; 3 ; True ; 4 ; . / l eak 316

Figure 5: A sample FINJ workload file.

4.1 Sample Execution

Here we consider a sample fault injection session. The employed CSV workload
file is illustrated in Figure 5. The experimental setup for this test, both for fault
injection and monitoring, is the same as that for the acquisition of the Antarex
dataset, which we present in Section 5. Python scripts are supplied with FINJ
to start and configure engine and controller instances: their usage is explained
on the GitHub repository of the tool, together with all configuration options.

In this workload, the first task corresponds to an HPC application and is the
Intel Distribution for the well-known High-Performance Linpack (HPL) bench-
mark, optimized for Intel Xeon CPUs. This task starts at time 0 in the work-
load, and has a maximum allowed duration of roughly 30 minutes. The following
two tasks are fault-triggering programs: cpufreq which dynamically reduces the
maximum allowed CPU frequency, emulating performance degradation, and leak
which creates a memory leak in the system, eventually using all available RAM.
The cpufreq program requires appropriate permissions, so that users can access
the files controlling Linux CPU governors. Both fault programs are discussed
in detail in Section 5. The HPL benchmark is run with 8 threads, pinned on
the first 8 cores of the machine, while the cpufreq and leak tasks are forced to
run on cores 6 and 4, respectively. Note also that the tasks must be available
at the specified path on the systems running the engine, which in this case is
relative to the location of the FINJ launching script.

Having defined the workload, the injection engine and controller must be
started. For this experiment, we run both on the same machine. The controller
instance will then connect to the engine and start executing the workload, stor-
ing all output in a CSV file which is unique for each target host. Each entry
in this file represents a status change event, which in this case is the start or
termination of tasks, and is flagged with its absolute time-stamp on the target
host. In addition, any errors that were encountered are also reported. When the
workload is finished, the controller terminates. It can be clearly seen from this
example how easily a FINJ experiment can be configured and run on multiple
CPU cores.

At this point, the data generated by FINJ can be easily compared with
other data, for example performance metrics collected through a monitoring
framework, in order to better understand the system’s behavior under faults.
In Figure 6 we show the total RAM usage and the CPU frequency of core 0, as
monitored by the LDMS framework. The benchmark’s profile is simple, showing
a constant CPU frequency while RAM usage slowly increases as the application
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Figure 6: CPU Frequency and RAM Usage, as monitored on the target system
during a sample FINJ injection session.

performs tests on increasing matrix sizes. The effect of our fault programs,
marked in gray, can be clearly observed in the system. The cpufreq fault causes
a sudden drop in CPU frequency, resulting in reduced performance and longer
computation times, while the leak fault causes a steady, linear increase in RAM
usage. Even though saturation of the available RAM is not reached, this peculiar
behavior can be used for prediction purposes.

4.2 Overhead of FINJ

We performed tests in order to evaluate the overhead that FINJ may introduce.
To do so, we employed the same machine used in Section 5 together with the
HPL benchmark, this time configured to use all 16 cores of the machine. We
executed the HPL benchmark 20 times directly on the machine by using a shell
script, and then repeated the same process by embedding the benchmark in 20
tasks of a FINJ workload file. FINJ was once again instantiated locally. In both
conditions the HPL benchmark scored an average running time of roughly 320
seconds, therefore leading us to conclude that the impact of FINJ on running
applications is negligible. This was expected, since FINJ is designed to perform
only the bare minimum amount of operations in order to start and manage
tasks, without affecting their execution.

5 The Antarex Dataset

The dataset contains trace data that we collected from an HPC system (called
Antarex) located at ETH Zurich while we injected faults using FINJ. The
dataset is publicly available for use by the community and all the details re-
garding the test environment, as well as the employed applications and faults
are extensively documented.4 In this section, we give a comprehensive overview
of the dataset.

4https://zenodo.org/record/2553224
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Table 1: A summary of the structure for the Antarex dataset.
Block

I
Block
III

Block
II

Block
IV

Type CPU-Mem HDD

Parallel No Yes No Yes

Duration 12 days 4 days

Applications
DGEMM [14], HPCC [29],
STREAM [30], HPL [15]

IOZone [10],
Bonnie++ [12]

Faults
leak, memeater, ddot,
dial, cpufreq, pagefail

ioerr, copy

5.1 Dataset Acquisition and Experimental Setup

To acquire data, we executed some HPC applications and at the same time
injected faults using FINJ in a single compute node of Antarex. We acquired
the data in four steps by using four different FINJ workload files. Each data
acquisition step consists of application and fault program runs related to either
the CPU and memory components, or the hard drive, either in single-core or
multi-core mode. This resulted in 4 blocks of nearly 20GB and 32 days of data
in total, whose structure is summarized in Table 1. We acquired the data by
continuous streaming, thus any study based on it will easily be reproducible on
a real HPC system, in an online way.

We acquired data from a single HPC compute node for several reasons.
First, we focus on fault detection models that operate on a per-node basis and
that do not require knowledge about the behavior of other nodes. Second, we
assume that the behavior of different compute nodes under the same faults will
be comparable, thus a model generated for one node will be usable for other
nodes as well. Third, our fault injection experiments required alterations to the
Linux kernel of the compute node or special permissions. These are possible in
a test environment, but not in a production one, rendering the acquisition of a
large-scale dataset on multiple nodes impractical.

The Antarex compute node is equipped with two Intel Xeon E5-2630 v3
CPUs, 128GB of RAM, a Seagate ST1000NM0055-1V4 1TB hard drive and runs
the CentOS 7.3 operating system. The node has a default Tier-1 computing
system configuration. We used FINJ in a Python 3.4 environment. We also
used the LDMS monitoring framework to collect performance metrics, so as to
create features for fault classification purposes, as described in Section 6. We
configured LDMS to sample several metrics at each second, which come from
the following seven different plug-ins:

1. meminfo collects general information on RAM usage;

2. perfevent collects CPU performance counters;

3. procinterrupts collects information on hardware and software interrupts;
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Figure 7: Histograms for fault durations (a) and fault inter-arrival times (b) in
the Antarex dataset compared to the PDFs of the Grid5000 data, as fitted on
a Johnson SU and Exponentiated Weibull distribution respectively.

4. procdiskstats collects statistics on hard drive usage;

5. procsensors collects sensor data related to CPU temperature and fre-
quency;

6. procstat collects general metrics about CPU usage;

7. vmstat collects information on virtual memory usage.

This configuration resulted in a total of 2094 metrics to be collected each
second. Some of the metrics are node-level, and describe the status of the
compute node as a whole, others instead are core-specific and describe the status
of one of the 16 available CPU cores. In order to minimize noise and bias in the
sampled data, we chose to analyze, execute applications and inject faults into
only 8 of the 16 cores available in the system, and therefore used only one CPU.
On the other CPU of the system, instead, we executed the FINJ and LDMS
tools, which rendered their CPU overhead negligible.

5.2 FINJ Workload

FINJ orchestrates the execution of applications and the injection of faults by
means of a workload file, as explained in Section 3.1. For this purpose, we used
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several FINJ-generated workload files, one for each block of the dataset.

Workload Files We used two different statistical distributions in the FINJ
workload generator to create the durations and inter-arrival times of the tasks
corresponding to the applications and fault-triggering programs. The applica-
tion tasks are characterized by duration and inter-arrival times following normal
distributions, and they occupy the 75% of the dataset’s entire duration. This
resulted in tasks having an average duration of 30 minutes, and average inter-
arrival times of nearly 40 minutes, both exhibiting relatively low variance and
spread.

Fault-triggering tasks, on the other hand, are modeled using distributions
fitted on the data from the failure trace associated to the Grid5000 cluster [7],
available on the Failure Trace Archive5. We extracted from this trace the inter-
arrival times of the host failures. Such data was then scaled and shifted to obtain
an average of 10 minutes, while retaining the shape of the distribution. We then
fitted the data using an exponentiated Weibull distribution, which is commonly
used to characterize failure inter-arrival times [18]. To model durations, we
extracted for all hosts the time intervals between successive absent and alive
records, which respectively describe connectivity loss and recovery events from
the HPC system’s resource manager to the host. We then fitted a Johnson SU
distribution over a cluster of the data present at the 5 minutes point, which
required no alteration in the original data. This particular distribution was
chosen because of the quality of the fitting. In Figure 7, we show the histograms
for the durations (a) and inter-arrival times (b) of the fault tasks in the workload
files, together with the original distributions fitted from the Grid5000 data.

Unless configured to use specific probabilities, FINJ generates each task in
the workload by randomly picking the respective application or fault program
to be executed, from those that are available, with uniform probability. This
implies that, statistically, all of the applications we selected will be subject to
all of the available fault-triggering programs, given a sufficiently-long workload,
with different execution overlaps depending on the starting times and durations
of the specific tasks. Such a task distribution greatly mitigates overfitting issues.
Finally, we do not allow fault-triggering program executions to overlap.

HPC Applications We used a series of well-known benchmark applications,
each of which stresses a different part of the node and measures the correspond-
ing performance.

1. DGEMM [14]: performs CPU-heavy matrix-to-matrix multiplication;

2. HPC Challenge (HPCC) [29]: a collection of applications that stress both
the CPU and memory bandwidth of an HPC system;

3. Intel distribution for High-Performance Linpack (HPL) [15]: solves a sys-
tem of linear equations;

5http://fta.scem.uws.edu.au/
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4. STREAM [30]: stresses the system’s memory and measures its bandwidth;

5. Bonnie++ [12]: performs HDD read-write operations;

6. IOZone [10]: performs HDD read-write operations.

The different applications provide a diverse environment for fault injection.
Since we limit our analysis to a single machine, we use versions of the applica-
tions that rely on shared-memory parallelism, for example through the OpenMP
library.

Fault Programs All the fault programs used to reproduce anomalous con-
ditions on Antarex are available at the FINJ Github repository. As described
by Tuncer et al. [35], each program can also operate in a low-intensity mode,
thus doubling the number of possible faults. While we do not physically damage
hardware, we closely reproduce several reversible hardware issues, such as I/O
and memory allocation errors. Some of the fault programs (ddot and dial) only
affect the performance of the CPU core they run on, whereas the others affect
the entire compute node. The programs and the generated faults are as follows.

1. leak periodically allocates 16MB arrays that are never released [35] cre-
ating a memory leak, causing memory fragmentation and severe system
slowdown;

2. memeater allocates, writes into and expands a 36MB array [35], decreasing
performance through a memory interference fault and saturating band-
width;

3. ddot repeatedly calculates the dot product between two equal-size matri-
ces. The sizes of the matrices change periodically between 0.9, 5 and 10
times the CPU cache’s size [35]. This produces a CPU and cache inter-
ference fault, resulting in degraded performance of the affected CPU;

4. dial repeatedly performs floating-point operations over random numbers [35],
producing an ALU interference fault, resulting in degraded performance
for applications running on the same core as the program;

5. cpufreq decreases the maximum allowed CPU frequency by 50% through
the Linux Intel P-State driver.6 This simulates a system misconfiguration
or failing CPU fault, resulting in degraded performance;

6. pagefail makes any page allocation request fail with 50% probability.7

This simulates a system misconfiguration or failing memory fault, causing
performance degradation and stalling of running applications;

6https://kernel.org/doc/Documentation/cpu-freq
7https://kernel.org/doc/Documentation/fault-injection
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7. ioerr fails one out of 500 hard-drive I/O operations with 20% probability,
simulating a failing hard drive fault, and causing degraded performance
for I/O-bound applications, as well as potential errors;

8. copy repeatedly writes and then reads back a 400MB file from a hard drive.
After such a cycle, the program sleeps for 2 seconds [20]. This simulates an
I/O interference or failing hard drive fault by saturating I/O bandwidth,
and results in degraded performance for I/O-bound applications.

The faults triggered by these programs can be grouped in three categories
according to their nature. The interference faults (i.e., leak, memeater, ddot,
dial and copy) usually occur when orphan processes are left running in the
system, saturating resources and slowing down the other processes. Misconfig-
uration faults occur when a component’s behavior is outside of its specification,
due to a misconfiguration by the users or administrators (i.e., cpufreq). Finally,
the hardware faults are related to physical components in the system that are
about to fail, and trigger various kinds of errors (i.e., pagefail or ioerr). We note
that some faults may belong to multiple categories, as they can be triggered by
different factors in the system.

6 Creation of Features

In this section, we describe the process of parsing the metrics collected by LDMS
to obtain a set of features capable of describing the state of the system, in
particular for classification tasks.

Post-Processing of Data Firstly, we removed all constant metrics (e.g., the
amount of total memory in the node), which were redundant, and replaced the
raw monotonic counters captured by the perfevent and procinterrupts plug-ins
with their first-order derivatives. Moreover, we created an allocated metric,
both at the CPU core and node level, and integrated it in the original set.
This metric can assume only binary values, and it encapsulates the information
about the hardware component occupation, namely defining whether there is an
application allocated on the node or not. This information would be available
also in a real setting, since resource managers in HPC systems always keep
track of the running jobs and their allocated computational resources. Lastly,
for each above-mentioned metric and for each time point, we computed its first-
order derivative and added it to the dataset, as proposed by Guan et al. [19].

After having post-processed the LDMS metrics, we created the feature sets
via aggregation. Each feature set corresponds to a 60-second aggregation win-
dow and is related to a specific CPU core. The time step between consecutive
feature sets is 10 seconds; this fine granularity allows for quick response times
in fault detection. For each metric, we computed several statistical measures
over the distribution of the values measured within the aggregation window [35].
These measures are the average, standard deviation, median, minimum, maxi-
mum, skewness, kurtosis, and the 5th, 25th, 75th and 95th percentiles. Overall,
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Figure 8: Architecture of the proposed machine learning-based fault detection
system.

there are 22 statistical features for each metric in the dataset (including also
the first-order derivatives). Hence, starting from the initial set of 2094 LDMS
metrics including node-level data as well as from all CPU cores, the final feature
sets contain 3168 elements for each separate CPU core. We note that we did
not include the metrics collected by the procinterrupts plugin, as a preliminary
analysis revealed them to be irrelevant for fault classification. All the scripts
used to process the data are available on the FINJ Github repository.

Labeling To train classifiers to distinguish between faulty and normal states,
we labeled the feature sets either according to the fault program (i.e., one of
the 8 programs presented in Section 5.2) running within the corresponding ag-
gregation window, or “healthy” if no fault was running. The logs produced by
FINJ (included in the Antarex dataset) provide the details about the fault pro-
grams running at each time-stamp. In a realistic deployment scenario, the fault
detection model can also be trained using data from spontaneous, real faults.
In that case, administrators should provide explicit labels instead of relying on
fault injection experiments.

A single aggregation window may capture multiple system states, making la-
beling not trivial. For example, a feature set may contain “healthy” time points
before and after the start of a fault, or even include two different fault types.
We define these feature sets as ambiguous. One of the reasons behind the use of
a short aggregation window (60 seconds) is to minimize the impact of such am-
biguous system states on fault detection. However, since these situations cannot
be avoided, we propose two labelling methods. The first method is mode, where
all the labels appearing in the time window are considered. Their distribution
is examined and the label with the majority of occurrences is assigned to the
feature set. This leads to robust feature sets, whose labels are always represen-
tative of the aggregated data. The second method is recent, where the label is
obtained by observing the state of the system at the most recent time point in
the time window (the last time point). This could correspond to a certain fault
type or could be “healthy”. This approach could be less robust, for instance
when a feature set that is mostly “healthy” is labelled as faulty, but has the
advantage of leading to a more responsive fault detection, as faults are detected
as soon as they are encountered, without having to look at the state over the
last 60 seconds.
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Detection System Architecture The fault detection system we propose
in this paper is based on an architecture containing an array of classifiers, as
shown in Figure 8. A classifier handles a specific computing resource type in
the node, such as a CPU core, GPU or MIC. Each classifier is trained with
the feature sets of all the resource units of the corresponding type, and is able
to perform fault diagnoses for all of them, thus detecting faults both at node
level and resource level (e.g., dial and ddot). This is possible as the feature
sets of each classifier contain all node-level metrics for the system as well as
the resource-specific metrics for the resource unit. Since a feature set contains
data from only one resource type, the proposed approach allows us to limit
their size, which in turn improves performance and detection accuracy. The key
assumption of this approach is that the resource units of the same type behave
similarly and that the respective feature sets can be combined in a coherent set.
It is anyway possible to use a separate classifier for each resource unit of the
same type without altering the feature sets themselves, should this assumption
prove to be too strong. In our case, the computing nodes have only CPU cores.
Therefore, we train one classifier with feature sets that contain both node-level
and core-level data, for one core at a time.

The classifiers’ training can be performed offline, using labeled data resulting
from normal system operation or from fault injection, as we do in this paper.
The trained classifiers can then be deployed to detect faults on new, streaming
data. By design, our architecture can detect only one fault at any time. If
two faults happen simultaneously, the classifier would detect the fault whose
effects on the system are deemed more disruptive for the normal, “healthy”
state. In this preliminary study, this design choice is reasonable, as our purpose
is to automatically distinguish between different fault conditions. Although
unlikely, multiple faults could affect the same compute node of an HPC system
at the same time. Our approach could be extended to deal with this situation by
devising a classifier that does not produce a single output but rather a composite
output, for instance a distribution or a set of probabilities, one for each possible
fault type.

7 Experimental Results

In this section we present the results of our experiments, whose purpose was to
correctly detect which of the 8 faults (as described in Section 5.2) were injected
in the Antarex HPC node at any point in time in the Antarex dataset. Along
the way, we compared a variety of classification models and the two labeling
methods discussed in Section 6, assessed the impact of ambiguous feature sets,
estimated the most important metrics for fault detection, and finally evaluated
the overhead of our detection method. For each classifier, both the training and
test sets are built from the feature set of one randomly-selected core for each
time point. We evaluated the classifiers using 5-fold cross-validation, with the
average F-score as the performance metric.8 The software environment we used

8The F-score is the harmonic mean between precision and recall.
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(a) Time-stamp order.

Fold I Fold II Fold III Fold IV Fold V

(b) Shuffled order.

Figure 9: The effect of using time-stamp (a) or shuffled (b) ordering to create
the data folds for cross-validation. Blocks with similar color represent feature
sets from the same time frame.

is Python 3.4 with the Scikit-learn package [32].
Although data shuffling is a standard technique with proven advantages

in machine learning, it is not well suited to the fault detection method we
propose in this paper. This is because our design is tailored for online systems,
where classifiers are trained using only continuous, streamed, and potentially
unbalanced data as it is acquired, while ensuring robustness in training so as
to detect faults in the near future. Hence, it is very important to assess the
detection accuracy without data shuffling. We reproduced this realistic, online
scenario by performing cross-validation on the Antarex dataset using feature sets
in time-stamp order. Time-stamp ordering produces cross-validation folds that
contain data from specific time intervals. We depict this effect in Figure 9. In
any case, we used shuffling in a small subset of the experiments for comparative
purposes.

7.1 Comparison of Classification Models

We first present results associated with different classifiers using feature sets
in time-stamp order and the mode labeling method. As classification models,
we opted for a Random Forest (RF), Decision Tree (DT), Linear Support Vec-
tor Classifier (SVC) and Neural Network (NN) with two hidden layers, each
having 1000 neurons. A preliminary empirical evaluation revealed that this
neural network architecture, as well as the other models, are well-suited for our
purposes and thus provide good results. Even though we also considered us-
ing more complex models, such as Long Short Term Memory (LSTM) neural
networks, we ultimately decided to employ comparable, general-purpose mod-
els. This allows us to broaden the scope of our study, evaluating the impact of
factors such as data normalization, shuffling and ambiguous system states on
fault classification. On the other hand, LSTM-like models have more restrictive
training requirements and are more tailored for regression tasks. Finally, since
the Antarex dataset was acquired by injecting faults lasting a few minutes each,
such a model would not benefit from the long-term correlations in system states,
where models like RF are capable of near-optimal performance.

The results of each classifier and each fault type are shown in Figure 10,
with the overall F-score highlighted. We notice that all classifiers have very
good performance, with the overall F-scores well above 0.9. RF is the best
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(b) Decision Tree.
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(c) Neural Network.
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(d) Support Vector Classifier.

Figure 10: Classification results on the Antarex dataset, using all feature sets in
time-stamp order, the mode labeling method, and different classification models.

classifier, with an overall F-score of 0.98, followed by NN and SVC scoring 0.93.
The most difficult fault types to detect for all classifiers are pagefail and ioerr
faults, which have substantially worse scores than the others.

We infer from the results that an RF would be the ideal classifier for an
online fault detection system, due to its detection accuracy which is at least 5%
higher than the other classifiers, in terms of the overall F-score. Additionally,
random forests are computationally efficient [26], and therefore would be suit-
able for use in online environments with strict overhead requirements. As an
additional advantage, unlike the NN and SVC classifiers, RF and DT do not
require data normalization. Normalization in an online environment is hard to
achieve, as many metrics do not have well-defined upper bounds. Although a
rolling window-based dynamic normalization approach can be used [20] to solve
the problem, this method is unfeasible for ML-based classification, as it can
lead to quickly-degrading detection accuracy and to the necessity of frequent
training. For all these reasons, we will show only the results of an RF classifier
in the following.
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(a) Mode labeling.
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(b) Recent labeling.
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(c) Mode labeling with shuffling.
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(d) Recent labeling with shuffling.

Figure 11: RF classification results, using all feature sets in time-stamp or
shuffled order, with the mode and recent labeling methods.

7.2 Comparison of Labeling Methods and Shuffling

Next we present the results of the two labeling methods described in Section 5.2.
Figures 11a and 11b report the classification results without data shuffling for,
respectively, the mode and the recent labeling. The overall F-scores are 0.98
and 0.96, close to the optimal values. Once again, in both cases the ioerr and
pagefail faults are substantially more difficult to detect than the others. This
is probably due to the intermittent nature of both of these faults, whose effects
depend on the hard drive I/O (ioerr) and memory allocation (pagefail) patterns
of the underlying applications.

We observe an interesting behavior with the copy fault program, which gives
a worse F-score when using the recent method in 11b. As shown in Section 7.4,
a metric related to the read rate of the hard drive used in our experiments
(time read rate der perc95 ) is defined as important by the DT model for dis-
tinguishing faults, and we assume it is useful for detecting hard drive faults in
particular, since it has no use for CPU-related faults. However, this is a com-
paratively slowly-changing metric. For this reason, a feature set may be labeled
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(a) Non-ambiguous dataset.
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(b) Non-ambiguous dataset with shuffling.

Figure 12: RF classification results on the Antarex dataset, using only non-
ambiguous feature sets in time-stamp (a) and shuffled (b) order.

as copy as soon as the program is started, before the metric has been updated
to reflect the new system status. This in turn makes classification more difficult
and leads to degraded accuracy. This leads us to conclude that recent may not
be well suited for the faults whose effects cannot be detected immediately.

Figures 11c and 11d report the detection accuracy for the mode and recent
methods, this time obtained after having shuffled the data for the classifier
training phase. As expected, data shuffling markedly increases the detection
accuracy for both labeling methods, reaching an almost optimal F-score with all
fault types – and overall F-score of 0.99. A similar performance boost with data
shuffling was obtained also with the remaining classification models introduced
in Section 7.1 (the results are not reported here since they would not add any
insight to the experimental analysis). We notice that the recent labeling has a
slightly higher detection rate, especially for some fault types. The reason for
this improvement most likely lies in the highly reactive nature of this labeling
method, as it can capture status changes faster than mode. Another interesting
observation is that adding data shuffling grants a larger performance boost to
the recent labeling compared to the mode labeling. This happens because the
recent method is more sensible to temporal correlations in the data, which in
turn may lead to classification errors. Data shuffling destroys the temporal
correlations in the training set and thus improves detection accuracy.

7.3 Impact of Ambiguous Feature Sets

Here we give insights on the impact of ambiguous feature sets in the dataset on
the classification process by excluding them from the training and test sets. As
shown in Figure 12, the overall F-scores are above 0.99 both without (Figure 12a)
and with shuffling (Figure 12b), leading to a slightly better classification perfor-
mance compared to having the ambiguous feature sets in the dataset. Around
20% of the feature sets of the Antarex dataset is ambiguous. With respect to
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(a) ddot. (b) cpufreq. (c) memeater.

Figure 13: The scatter plots of two important metrics, as quantified by a DT
classifier, for three fault types. The “healthy” points are marked in blue, while
fault-affected points in orange, and the points related to ambiguous feature sets
in green.

this relatively large proportion, the performance gap described above is small,
which proves the robustness of our detection method. In general, the proportion
of ambiguous feature sets in a dataset depends primarily on the length of the
aggregation window, and on the frequency of state changes in the HPC system.
More feature sets will be ambiguous as the length of the aggregation window
increases, leading to more pronounced adverse effects on the classification ac-
curacy. Thus, as a practical guideline, we advise to use a short aggregation
window, such as the 60-second window we employed here, to perform online
fault detection.

A more concrete example of the behavior of ambiguous feature sets can be
seen in Figure 13, where we show the scatter plots of two important metrics (as
we will discuss in Section 7.4) for the feature sets related to the ddot, cpufreq
and memeater fault programs, respectively. The “healthy” points, marked in
blue, and the fault-affected points, marked in orange, are distinctly clustered
in all cases. On the other hand, the points representing the ambiguous feature
sets, marked in green, are sparse, and often fall right between the “healthy” and
faulty clusters. This is particularly evident with the cpufreq fault program in
Figure 13b.

7.4 Estimation of the Most Important Metrics

A crucial aspect in fault detection is understanding the most important metrics
for the detection accuracy. Identifying them can help reducing the amount of
collected data, thus reducing the number of hardware measuring components or
software tools which could create additional overhead. Tuncer et al. [35] showed
that using methods such as principal component analysis (and other methods
that rely exclusively on the variance in the data) may discard certain important
metrics. On the other hand, a RF classifier tends to report as relevant the same
metric many times, with different statistical indicators. This is caused by its
ensemble nature (a random forest is comprised of a collection of decision trees)
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Table 2: The most important metrics for fault detection, obtained via a DT
classifier.

Source Name
procsensors 1. cpu freq perc50
meminfo 2. active der perc5
perfevent 3. hw cache misses perc50
vmstat 4. thp split std
vmstat 5. nr active file der perc25
perfevent 6. hw branch instructions perc95
meminfo 7. mapped der avg
meminfo 8. nr anon pages der perc95
procstat 9. sys der min
vmstat 10. nr dirtied der std
meminfo 11. kernelstack perc50
vmstat 12. numa hit perc5
procstat 13. processes der std
procstat 14. context switches der perc25
procstat 15. procs running perc5
finj 16. allocated perc50
vmstat 17. nr free pages der min
diskstats 18. time read rate der perc95
vmstat 19. nr kernel stack der max
perfevent 20. hw instructions perc5

and the subtle differences in the estimators that compose it. Instead, a DT
classifier naturally provides this information, as the most relevant metrics will
be those in the top layer of the decision tree.9 Thus, we trained a DT classifier
on the Antarex dataset.

The results are listed in Table 2, along with their source LDMS plug-ins.
While the metrics marked in bold are per-core, the others are system-wide. We
notice that metrics from most of the available plug-ins are used, and some of
these metrics can be directly associated to the behaviour of the faults. For
instance, the metric related to context switches (context switches der perc25 ) is
tied to the dial and ddot programs, as CPU interference generates an anomalous
number of context switches. In general, first-order derivatives (marked with the
“der” suffix) are widely used by the classifier, which suggests that computing
them is actually useful for fault detection. On the contrary, more complex
statistical indicators such as the skewness and kurtosis do not appear among
the most relevant. This suggests that simple features are sufficient for machine
learning-driven fault detection on HPC nodes.

7.5 Remarks on Overhead

Finally, a critical consideration for understanding the feasibility of a fault de-
tection approach is its overhead, especially if the final target is its deployment

9Decision trees are built by splitting the data in subsets. The splitting choice is based on
the value of the metrics, or attribute in the DT terminology. The attributes providing the
highest information gain (i.e., the most relevant one) are selected first by the standard DT
training algorithms.
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in a real HPC system. LDMS is proven to have a low overhead at high sampling
rates [1]. We also assume that the generation of feature sets and the classifica-
tion are performed locally in each node (on-edge computation), and that only
the resulting fault diagnoses are sent externally, which greatly decreases the net-
work communication requirements and overhead. Following these assumptions,
the hundreds of performance metrics used to train the classification models do
not need to be sampled and streamed at a fine granularity. Generating a set
of feature sets, one for each core in the test node, at a given time point for an
aggregation window of 60 seconds requires, on average, 340 ms by employing a
single thread. This time includes the I/O overhead due to reading and parsing
the LDMS CSV files, and writing the output feature sets. RF classifiers are
very efficient: classifying a single feature set as faulty or not requires 2ms, on
average. This means that in total 342 ms are needed to generate and classify a
feature set, using a single thread and a 60-seconds aggregation window. This is
more than acceptable for online use and practically negligible. Furthermore, the
overhead should be much lower in a real HPC system, with direct in-memory ac-
cess to streamed data, as a significant fraction of the overhead in our simulation
is due to file system I/O operations to access the CSV files with the data. Ad-
ditionally, the single statistical features are independent from each other. This
means that the data can be processed in parallel fashion, using multiple threads
to further reduce latency and ensure load balancing across CPU cores, which is
a critical aspect to prevent application slowdown induced by fault detection.

8 Conclusions

We studied a ML approach to online fault classification in HPC systems. Our
study provided three contributions to the state-of-the-art in resiliency research
in the HPC systems field. The first is FINJ, a fault injection tool, which allows
for the automation of complex experiments, and for reproducing anomalous
behaviors in a deterministic, simple way. FINJ is implemented in Python and
has no dependencies for its core operation. This, together with the simplicity
of its command-line interface, makes the deployment of FINJ on large-scale
systems trivial. Since FINJ is based on the use of tasks, which are external
executable programs, users can integrate the tool with any existing lower-level
fault injection framework that can be triggered in such way, and ranging from the
application level to the kernel, or even hardware level. The use of workloads in
FINJ also allows to reproduce complex, specific fault conditions, and to reliably
perform experiments involving multiple nodes at the same time.

The second contribution is the Antarex fault dataset, which we generated
using FINJ, to enable training and evaluation of our supervised ML classifica-
tion models, and which we extensively described. Both FINJ and the Antarex
dataset are publicly available to facilitate resiliency research in the HPC systems
field. The third contribution is a classification method intended for streamed,
online data obtained from a monitoring framework, which is then processed
and fed to classifiers. The experimental results of our study show almost per-
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fect classification accuracy for all fault types injected by FINJ, with negligible
computational overhead for HPC nodes. Moreover, our study reproduces the
operating conditions that could be found in a real online system, in particular
those related to ambiguous system states and data imbalance in the training
and test sets.

As future work, we plan to deploy our fault detection method in a large-
scale real HPC system. This will involve facing a number of new challenges.
We need to develop tools to aid online training of machine learning models, as
well as integrate our method in a monitoring framework such as Examon [4].
We also expect to study our approach in online scenarios and adapt it where
necessary. For instance, we need to characterize the scalability of FINJ, and
extend it to include the ability to build workloads where the order of tasks is
defined by causal relationships rather than time-stamps, which might simplify
the triggering of extremely specific anomalous states in a given system. Since
training is performed before HPC nodes move into production (e.g., in a test
environment), we also need to characterize how often re-training is needed, and
devise a procedure to perform this. Finally, we plan to make our detection
method robust against the occurrence of faults that were unknown during the
training phase, preventing their misclassification, as well as expect to evaluate
some specialized models such as LSTM neural networks, in the light of the
general results obtained with this study.
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