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Adaptive Output Regulation for Linear Systems

via Discrete-Time Identifiers

Michelangelo Bin a, Lorenzo Marconi a, Andrew R. Teel b
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bDepartment of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA

Abstract

The problem of output regulation for general multivariable linear systems has been solved in the 70s, in the seminal works of
Francis, Wonham and Davison, under the assumption that the reference signals and the disturbances acting on the system are
generated by a known exogenous linear system (the exosystem). The regulator is designed to embed an internal model of the
exosystem, which ensures that asymptotic regulation is maintained under arbitrary plant perturbations that do not destroy
linearity and closed-loop stability. This robustness property, however, is inexorably lost whenever the internal model does not
match exactly the exosystem. In this paper we endow the linear regulator with a discrete-time adaptive unit that adapts the
regulator’s internal model on the basis of the closed-loop evolution. Compared to existing approaches, adaptation here is cast
as an identification problem, and the corresponding optimal predictor is designed independently from the underlying control
system. This permits to separate stabilization and adaptation, thus naturally handling general non-square multivariable non
minimum-phase plants. Closed-loop stability is guaranteed and, if the dimension of the internal model is large enough and a
persistency of excitation condition is fulfilled, asymptotic regulation is achieved for references and disturbances generated by an
unknown exosystem. Robustness to parametric uncertainties is inherited by the linear regulator and robustness to additional
unmodeled disturbances is proved to hold.

Key words: Output Regulation; Linear Systems; Adaptive Systems; Internal Model; Identification for Control.

1 Introduction

The multivariable linear regulator, introduced by Fran-
cis, Wonham and Davison in [1,2,3], boasts a very impor-
tant robustness property relative to uncertainties in the
plant: the regulation errors are ensured to vanish despite
arbitrarily large perturbations in the plant dynamics as
far as they do not destroy linearity and closed-loop sta-
bility. Roughly speaking, this robustness property is a
consequence of the fact that if the closed-loop system is
linear, and its origin is exponentially stable whenever the
input is not present, its steady state is completely gov-
erned by the exosystem (interestingly, this is also true
in infinite dimension [4]). As far as linearity and expo-
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nential stability hold, the internal model embedded in
the regulator is still able to generate the ideal “feedfor-
ward” control law that is needed to keep the regulation
errors to zero at the steady state, and uncertainties in
the plant just reflect into the right initialization of the
internal model, which would be anyway unknown. As
this intrinsic robustness is a consequence of the presence
of an internal model of the exosystem, not surprisingly
the linear regulator fails to guarantee asymptotic regu-
lation as soon as the exosystem is not perfectly known.
In other words, the linear regulator provides no robust-
ness relative to arbitrarily small perturbations on the
exosystem (for a more general treatise about robustness
of regulation schemes the reader is referred to [5]).

The general problem of designing a regulator that en-
sures asymptotic regulation for linear systems in the
presence of uncertainties in the exosystem is still open,
and the existing results cover only limited classes of
plants or exosystems. Single-input single-output (SISO)
linear systems have been considered in [6,7] using adap-
tive observers. In the first work the order of the ex-
osystem is known; in the second the knowledge of its
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upper bound is sufficient. In both the papers, though,
the plant’s matrices are assumed to be perfectly known,
so as robustness relative to exosystems perturbations
is traded for those relative to the plant. For what con-
cerns adaptive designs for multivariable linear systems,
strongly minimum-phase normal forms have been con-
sidered in [8], state-feedback tracking for more general
linear systems has been studied in [9], and both con-
tinuous and discrete-time transfer functions have been
considered in [10] and [11], in a more practice-oriented
setting. Other approaches have been developed in the
context of nonlinear systems. Nonlinear systems in out-
put feedback form driven by uncertain linear exosys-
tems have been considered for instance in [12,13], where
adaptive backstepping techniques are used. Nonlinear
minimum-phase SISO normal forms have been consid-
ered in many papers. For example, in [14] an ad hoc
adaptation algorithm is constructed based on Lyapunov
arguments, in [15] adaptation is carried out by using the
theory of adaptive observers, in [16] unknown linear ex-
osystems are immersed into larger parameterless nonlin-
ear exosystem whose dynamic is known and that can be
dealt with in a nonlinear regulation setting. The same
idea was applied to a class of uncertain nonlinear exosys-
tems in [17,18]. Finally, in [19,20,21] adaptation is cast
as a system identification problem, and parameter esti-
mation is performed by any continuous- or discrete-time
algorithm satisfying some strong stability properties.

In this paper we consider the output regulation problem
for general multivariable linear systems, with the ref-
erence signals and the disturbances that are generated
by an unknown exosystem. We endow the linear regula-
tor of [3] with a discrete-time identification unit which
adapts the internal model on the basis of the closed-
loop measurable states. The identification algorithm im-
plements a recursive least-squares scheme that enjoys
strong stability properties with respect to an “optimal
steady state” defined by the measured data. The regula-
tor is designed to ensure the existence of a “temporary”
steady state between two successive updates of the iden-
tifier, despite the possible wrong value of the estimated
parameters. Even if the regulator errors do not vanish
in this temporary steady state, the controlled plant still
oscillates with the same modes of the exosystem, thus
unveiling to the identifier the unknown frequency con-
tent of the external excitation. This, in turn, allows the
identifier to eventually estimate the “right” parameters,
no matter how “wrong” are the temporary steady states,
as long as the dimension of the internal model is suffi-
ciently large and a persistency of excitation condition is
fulfilled. Moreover, the regulator corresponding to the
“right” parameter has the internal model property, and
it thus guarantees asymptotic regulation. In this respect,
we observe that the proposed approach can be framed in
a “dual control” perspective (see e.g. [22,23]), where the
regulator plays the double role of inducing the right dy-
namics making the identification of the unknown param-
eters possible, and then stabilizing the “right” steady

state when the parameter is correctly estimated. In Sec-
tion 2 we present the problem formulation and the main
standing assumptions. In Section 3 the proposed regula-
tor is constructed and in Section 4 the main result on the
closed-loop properties is given. The proof of the main
result is presented in Section 5, while the proof of all the
other auxiliary results is postponed to the appendix.

Notation:R,C andN denote the sets of real, complex and
natural numbers (0 included) and we let R≥0 := [0,∞)
and R>0 := (0,∞). We denote by |·| the vector or matrix
2-norm. With X an Euclidean space we denote by Br the
open ball of radius r ≥ 0 on X . If X ⊂ X we let |X| :=
supx∈X |x| and, for z ∈ X , we let |z|X := infx∈X |z − x|
be the usual point-set distance. With A,B ⊂ Rn, n ∈ N,
we let A \ B := {a ∈ A : a /∈ B} and A + B :=
{a + b ∈ Rn : a ∈ A, b ∈ B}. If X ⊂ X is a vector
subspace, X⊥ denotes its orthogonal complement. For
a square matrix A, σ(A) denotes the set of eigenvalues
of A and ϕA(s) its characteristic polynomial. ⊗ denotes
the Kronecker product of matrices. ImM denotes the
column space of a matrix M . If A1, . . . , An are matrices
with the same number of columns we let col(A1, . . . , An)
be their vertical concatenation. For a function f : Rn →
R and a vector field g : Rn → Rn, Lgf(x) denotes the
Lie derivative of f(·) along g(·) computed at x ∈ Rn. In
this paper we consider hybrid systems of the form

H :

{
ẋ = F (x, u) (x, u) ∈ C
x+ = G(x, u) (x, u) ∈ D

(1)

with state x and input u taking values in the Euclidean
spaces X and U , and where F,G : X × U → X de-
note the flow and jump maps and C,D ⊆ X × U the
sets in which flows and jumps are allowed. We recall
hereafter the main concepts and notations used in the
paper to deal with systems of the kind (1) in the for-
malism of [24]; for further details the reader is referred
to [24,25]. A compact hybrid time domain is a subset

of R≥0 × N of the form T = ∪J−1
j=0 [tj , tj+1] × {j} for

some finite J ∈ N and 0 = t0 ≤ t1 ≤ · · · ≤ tJ ∈ R≥0.
A set T ⊂ R≥0 × N is called a hybrid time domain if
for each (T, J) ∈ R≥0 × N T ∩ [0, T ] × {1, . . . , J} is a
compact hybrid time domain. If (t, j), (s, i) ∈ T , we
write (t, j) � (s, i) if t+ j ≤ s+ i. For any (t, j) ∈ T , we
let tj = inft∈R(t, j) ∈ T and tj = supt∈R(t, j) ∈ T . For
brevity, we also let Γ(T ) := {(t, j) ∈ T : (t, j+ 1) ∈ T }
and, for s ∈ R≥0, T |≥s := {(t, j) ∈ T : t + j ≥ s}.
If ϕ is a hybrid arc, then we write ϕ(t, j)+ as a short-
cut for ϕ(t, j + 1), whenever (t, j) ∈ Γ(ϕ). A function
x : T → X defined on a hybrid time domain T is called
a hybrid arc if x(·, j) is locally absolutely continuous
for each j. By borrowing the notation used in [25], a
hybrid input is a hybrid arc that is locally essentially
bounded and Lebesgue measurable. A solution pair
[25] to (1) is a pair (x, u), with x a hybrid arc and u
a hybrid input, that satisfies such equations. We call
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a solution pair maximal if it cannot be extended fur-
ther and complete if its time domain is unbounded. If
x : domx → X is a hybrid arc, we let limsupx :=
lim sup(t,j)∈dom x,t+j→∞ x(t, j). If u : domu → U is a

hybrid input, for any (t, j) ∈ domu we let |u|(t,j) :=
max{ess. sup(s,i)∈domu/Γ(domu),(0,0)�(s,i)�(t,j) |u(s, i)|,
sup(t,j)∈Γ(domu), (0,0)�(s,i)�(t,j) |u(s, i)|}. We also let

|u|∞ := lim sup |u|(t,j). When the flow and jump sets
are omitted in the definition of a hybrid system they
are intended to be the whole state space. If jumps of
a variable are not specified in the equations then they
are assumed to be jumps that do not change the state.
Similarly, if flows of a variables are not specified, then
they are assumed to be constant flows.

2 Problem Formulation

We consider linear systems of the form

ẋ = Ax+Bu+ Pw +Mν

y = Cx+Qw +Nν
(2)

where x ∈ Rn is the state, u ∈ Rm the control input,
y ∈ Rny the measured outputs and (w, ν) ∈ Rnw × Rnν
represent exogenous signals acting on the system, such as
references to be tracked and disturbances to be rejected.
In particular, w(t) represents the “modeled” part of the
exogenous signals, and we suppose that it belongs to the
family of solutions of an exosystem of the form

ẇ = Sw, (3)

with unknown system matrix S and with a dimension
nw ∈ N that is upperbounded by a known integer d ∈ N.
The signal ν(t), instead, is a bounded hybrid input rep-
resenting unknown unmodeled disturbances, i.e. distur-
bances acting on the plant whose nature is not known
and that are not supposed to be generated by any exter-
nal process. We associate to (2) a further set of outputs
e ∈ Rne , ne ∈ N, defined as

e = Cex+Qew +Neν. (4)

We refer to the quantity e as the regulation errors. They
represent those outputs on which the effect of the ex-
osystem must be ideally removed such as, for instance,
tracking errors. More precisely, we seek an output feed-
back regulator of the form

ẋc ∈ Fc(xc, y) (xc, y) ∈ Cc
x+
c ∈ Gc(xc, y) (xc, y) ∈ Dc

u = γ(xc, y) ,

(5)

with state xc taking values in an Euclidean space Xc,
and where Cc, Dc ⊂ X , such that all the solutions to

the closed-loop system (2), (5) are bounded and it has
the ε-approximate regulation property for some ε > 0,
i.e. any solution also satisfies

limsup |e| ≤ ε.

We say that (2), (3), (5) has the asymptotic regulation
property if it has the 0-approximate regulation property.
On the system (2), (3), (4) we make the following as-
sumptions:

A1) The regulation errors are included in the measured
output, i.e. y = col(e, ym) for some ym ∈ Rnm , nm :=
ny − ne.

A2) (A,B) is stabilizable, (C,A) is detectable, rankB =
m ≥ rankCe = ne.

A3) The solutions of (3) range in a compact set W ⊂
Rnw and |W | is known.

A1 and A2 are close to being necessary if a robust asymp-
totic regulation result is sought. As a matter of fact,
readability in the sense of [1] of e from y is proved in [1]
to be necessary to obtain a structurally stable solution
in the case in which (3) is known. If readability holds,
on the other hand, we can always change coordinates to
have A1 fulfilled. Furthermore, as in the classical solu-
tion of [3], we will augment the plant (2) with an inter-
nal model unit that is driven by the regulation errors.
Then A2 turns out to be necessary to have stabilizabil-
ity and detectability of the resulting cascade. Regarding
A3, this assumption limits the size of the initial condi-
tions of w and requires S to be stable though not typi-
cally Hurwitz. The setW can be arbitrarily large as soon
as |W | is known. This latter quantity represents a con-
stant that must be dominated by some control param-
eters. Thus, in this sense, the forthcoming result could
also be rephrased by fixing the control parameters and
adjusting the “admissible” W accordingly.

3 The Regulator Structure

In this section we construct a regulator of the form
(5) that guarantees closed-loop stability and, under
suitable persistency of excitation conditions, has the
ε-approximate regulation property with ε that is pro-
portional to limsup |ν|. The regulator consists of two
main blocks: the internal model block and the stabilizer
(see Figure 1). The internal model block is itself com-
posed of two subsystems: the internal model and the
identifier. The internal model is a system driven by the
regulation errors and it replicates the structure pro-
posed by Davison in [3]. The spectrum of the internal
model’s system matrix is adapted by the identifier to
match the modes of the unknown exosystem (3). The
identifier is a discrete-time system built to solve asymp-
totically an optimization problem defined on the time
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plant

ẇ = Sw

Int. Model Unit

identifier

Int. Model Block

Stabilizer

e
w θ (η, e)

ym

(η, θ)
u

Figure 1. Block-diagram of the closed-loop system.

evolution of the state of the internal model and the reg-
ulation errors. Under suitable persistency of excitation
conditions and if ν = 0, it turns out that the identifier
optimal trajectory is uniquely determined and the cor-
responding internal model includes all the exosystem’s
modes, as long as asymptotic regulation is achievable.
The stabilizer is a subsystem that processes all the mea-
sured signals and robustly stabilizes the cascade of the
plant and the internal model block. In the rest of the
section we detail all these three components.

3.1 The Internal Model Unit

With d any known upper bound on nw, the internal
model unit is a system with state η ∈ Rned satisfying
the following equation

η̇ = Φ(θ)η +Ge (6)

where

Φ(θ) :=

0ne(d−1)×ne Ine(d−1)

θT ⊗ Ine

 G :=

(
0ne(d−1)×ne

Ine

)

and with θ ∈ Rd that is a parameter adapted by the
identifier. The characteristic polynomial of Φ(θ) reads as

ϕΦ(θ)(λ) =
(
λd − θdλd−1 − · · · − θ2λ− θ1

)ne
, (7)

so as, if S were known, the internal model of [3] could
be obtained by letting the components of θ be the coef-
ficients of any polynomial that has the eigenvalues of S
as roots. We then let Q be the set

Q :=

{
θ ∈ Rd : rank

(
A− λI B
Ce 0

)
< n+ ne,

λ ∈ σ(Φ(θ))

}
,

and we pick a compact set satisfying

E ⊂ Rd \ Q.

The existence of a non-empty set E satisfying the above
property, which in general has to be assumed, is in turn
necessary for the solvability of the problem. As a matter
of fact, as shown for instance in [26, Lem. 4.1], for the
regulation problem to have a solution for a given exosys-
tem (3), Rn \ Q must contain at least one θ ∈ Rd such
that σ(S) = σ(Φ(θ)). Moreover, we have the following
sufficient condition.

Lemma 1 Assume A1-A2 and suppose that the set of
λ ∈ C for which the transfer function Ce(A − λI)−1B
loses rank is finite. Then for each r ≥ 0, Rd \ (Q + Br)
is closed and not empty.

Lemma 1, whose proof is reported in Appendix A.1, im-
plies that for any r > 0 and any sufficiently large com-
pact set Θ ⊂ Rd, the set

{
θ ∈ Rd : |θ|Q ≥ r

}
∩Θ is com-

pact and not empty, thus qualifying as a possible choice
of E . The definition of E is justified by the following fact:

Lemma 2 Let rankB ≥ rankCe = ne. Then the pair((
A 0

GCe Φ(θ)

)
,

(
B

0

))
(8)

is stabilizable/controllable for all θ ∈ E if and only if
(A,B) is stabilizable/controllable. Moreover, the pair((

C 0

0 I

)
,

(
A 0

GCe Φ(θ)

))

is detectable/observable for all θ ∈ Rd if and only if (C,A)
is detectable/observable.

Lemma 2 is based on the PBH test [26], and its proof is
a straightforward consequence of the definition ofQ and
it is thus omitted. In the forthcoming sections we will
force θ to range in the set E . Although this limits the
number of internal models that can be eventually imple-
mented, it also guarantees that the cascade of the plant
and the internal model is stabilizable independently of
the identifier trajectories.

3.2 The Identifier

The identifier subsystem is introduced in this section as
a system built to solve a dynamic optimization prob-
lem defined on its inputs. Its definition is stated without
any apparent link to the rest of the regulator, to which
it will be interconnected only at the end of the section.
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The identifier measures two inputs at the jump times
and it tries to infer a model relating the two inputs on
the basis of the observed samples. The model is a lin-
ear regression of order d and the parameter is chosen to
minimize a cost function that weights a sum of histori-
cal prediction errors produced by the candidate model.
For simplicity, in this paper we let the identifier to im-
plement a recursive least squares identifier, nevertheless
we remark that any other identification algorithm that
enjoy similar properties of those stated in the following
Proposition 1 and Lemma 4 can be used as well. At the
end of the section we will interconnect the identifier with
the internal model, obtaining a hybrid system that acts
as a feedforward generator during flows and optimizes
its internal model during jumps.

In the following we identify (Rne)d with Rned and, for
each of its elements p, we let p1, . . . , pd denote the el-
ements of Rne such that p = col(p1, . . . , pd). Then we
define the matrix

γ(p) :=
(
p1 p2 · · · pd

)T ∈ Rd×ne .

Let α and β be hybrid inputs (see the notations para-
graph) taking values in Rned and Rne respectively. We
define the identifier subsystem as a discrete-time system
defined on the state spaceZ×Rd, whereZ := Rd×d×Rd,
and with state z := (R, v) ∈ Z and θ ∈ Rd satisfying
the following equations

R+ = µR+ γ(α)γ(α)T

v+ = µv + γ(α)β

θ+ ∈ pE(R
†v),

(9)

with output θ, where ·† denotes the Moore-Penrose pseu-
doinverse, µ ∈ (0, 1) is a design parameter and pE(·) is
the projection map θ 7→ pE(θ) := arg infθE∈E |θ − θE |.
We endow Z with the norm |(R, v)| :=

√
|R|2 + |v|2.

The identifier (9) is constructed to asymptotically find
the “best” linear model relating the regressor input α
and the input β. More precisely, we associate to (9) the

prediction model β̂ : E × Rned → Rne given by

β̂(θ, α) := (θT ⊗ Ine)α =

d∑
i=1

θiαi (10)

and the corresponding prediction error ε : E × Rned ×
Rne → Rne given by

ε(θ, α, β) := β − β̂(θ, α) = β − (θT ⊗ Ine)α.

For fixed θ, the prediction model β̂(θ, α) represents the
identifier’s guess of β given α. The identifier is con-

structed to choose θ so that the guess β̂(θ, α) is the best

possible among all those producible by d-dimensional
linear models of the form (10). Here “best” is defined rel-
ative to a cost function that weights the prediction per-
formance of the candidate models on all the historical
data. More precisely, with A(Rd,R≥0) the set of func-
tions Rd → R≥0, we associate to each input (α, β) a
function Jα,β : dom(α, β)→ A(Rd,R≥0) defined by

Jα,β(t, j)(θ) :=

j−1∑
i=0

µj−i−1
∣∣ε(θ, α(ti, i), β(ti, i)

)∣∣2 .
(11)

At each (t, j) ∈ dom(α, β), and for fixed θ ∈ Rd, the
function (11) is a weighted sum of the squares 1 of the
prediction errors of the model (10) corresponding to θ
evaluated during the jump times. The control parame-
ter µ ∈ (0, 1) plays the role of a forgetting factor, mak-
ing past samples less important in the sum. At a given
(t, j) ∈ dom(α, β), the best linear model is the one given
by (10) with θ minimizing Jα,β(t, j). We associate to
(11) the following (set-valued) map

θ◦α,β(t, j) := arg min
θ∈Rd

Jα,β(t, j)(θ) , (12)

whose value at each (t, j), contains the “optimal” pa-
rameters θ that minimize (11).

The intuition behind the definition of the identifier (9),
in relation to the minimization problem (11), resides in
the fact that the optimal trajectory (12) can be proved
to satisfy

θ◦α,β(t, j) =
{
θ ∈ Rd : R?(t, j)θ = v?(t, j)

}
, (13)

where we defined

R?(t, j) :=

j−1∑
i=0

µj−i−1γ(α(ti, i))γ(α(ti, i))T

v?(t, j) :=

j−1∑
i=0

µj−i−1γ(α(ti, i))β(ti, i) .

(14)

As stated in more general terms in the forthcoming
proposition, it can be shown that z? := (R?, v?) is a so-
lution to the subsystem z of (9) which is also (robustly)
asymptotically stable. It is worth noting, moreover,
that while the definition of (11) requires in principle the
knowledge of an unbounded number of samples, in view
of (14), the information that is necessary to define (13)
can be encoded in the finite dimensional quantities R?

and v?, and this permits to track the optimal trajectory
(12) with a finite-dimensional system (as it is (9)).

1 For this reason we call the identifier (9) a (weighted) least-
squares identifier.
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When we will interconnect the identifier and the inter-
nal model, the inputs (α, β) will be set to some func-
tions of the state η and the regulation errors e. These
signals, in turn, carry some “ideal” information about
w(t), that is useful to infer the right model, corrupted by
some additional disturbances given by transitory arti-
facts and residual noise dependent on ν. To take into ac-
count this situation in the characterization of the prop-
erties of the identifier (9), we consider inputs (α, β) given
by α = α?+δα, β = β?+δβ , with (α?, β?) an ideal input
and δ = (δα, δβ) an additive disturbance. The following
proposition expresses the optimality of the identifier (9)
with respect to the cost function Jα?,β? when δ = 0 and
the robust stability properties of the optimal trajectory
in case of δ 6= 0.

Proposition 1 The following hold:

(1) For each z1 := (R1, v1), z2 := (R2, v2) ∈ Z and each
(α1, β1), (α2, β2) ∈ Rdne × Rne there exists ρ > 0
such that, with (δα, δβ) := (α1, β1) − (α2, β2), it
holds that

|z+
1 − z

+
2 |2 ≤ µ2|z1 − z2|2 + ρ|(δα, δβ)|2,

where, for i = 1, 2, we let z+
i := (µRi +

γ(αi)γ(αi)
T , µvi + γ(αi)βi).

(2) For each hybrid input (α?, β?) : dom(α?, β?) →
Rdne×Rne there exists z? := (R?, v?) : dom(α?, β?)
→ Z such that (z?, (α?, β?)) is a solution pair to the
subsystem z of (9) and the corresponding “uncon-
strained output” θ?un := (R?)†v? satisfies

θ?un(t, j) ∈ θ◦α?,β?(t, j).

Although Proposition 1 guarantees that for every in-
put (α, β) = (α?, β?) + (δα, δβ) there exists a “optimal
trajectory” (z?, θ?un) such that, for any selection θ? of
pE(θ

?
un), ((z?, θ?), (α?, β?)) solves (9) and is asymptotic

stable (with δ = 0), it is not in general true that z → z?

implies θ → θ?, due to the pseudoinverse operator that is
not, in general, continuous. To recover this “detectabil-
ity” property, as well as to ensure single-valuedness of
(12), we associate to the input α the following persis-
tency of excitation condition.

Definition 1 With J ∈ N and ε > 0, a complete hybrid
input α : domα → Rned is said to be (J, ε)-persistently
exciting if, for all integers j ≥ J

minσ

(
j−1∑
i=0

µj−i−1γ(α(ti, i))γ(α(ti, i))T

)
≥ ε . (15)

In the following we will often abbreviate “(J, ε)-
persistently exciting” with “(J, ε)-PE”. Lemma 3 relates
persistency of excitation of α with that of α? and, thus,

with single-valuedness of the map θ◦α?,β?(t, j), when
the disturbance δα is small enough at the jump times.
Lemma 4, instead, links persistency of excitation and
“detectability” from the output θ.

Lemma 3 Let α, α? and δα be bounded hybrid inputs
defined over the same time domain and such that α =
α? + δα. Then for any ε > 0 there exists δ̄ > 0 such that,
if α is (J, ε)-PE for some J ∈ N and |δα(tj , j)| ≤ δ̄ for
all j ≥ J , then there exists (J ′, ε′) ∈ N × R>0 such that
α? is (J ′, ε′)-PE. Moreover, θ◦α?,β?(t, j) is a singleton for

all (t, j) ∈ domα? such that j ≥ J ′.

Lemma 4 Let ((z1, θ1), (α1, β1)) and ((z2, θ2), (α2, β2))
be solution pairs to (9) with the same time domain. Sup-
pose that, for i = 1, 2,αi is (Ji, εi)-PE, for some (Ji, εi) ∈
N× R>0. Then there exist J ∈ N and a ≥ 0 such that

|θ1(t, j)− θ2(t, j)|2 ≤ a|z1(t, j)− z2(t, j)|2, (16)

for all (t, j) ∈ dom z satisfying j ≥ J .

With the above definitions in mind, we interconnect the
identifier (9) and the internal model (6) by letting θ in
(6) be the same state variable of (9) and by letting in
(9) α = η and β = GT η̇ = η̇d = (θT ⊗ Ine)η + e, i.e.

R+ = µR+ γ(η)γ(η)T

v+ = µv + γ(η)
(
(θT ⊗ Ine)η + e

)
θ+ ∈ pE(R

†v).

(17)

3.3 The Stabilizer

The stabilizer is defined as the composition of a
continuous-time output feedback controller for the cas-
cade (x, η, z) and a clock subsystem that activates the
update law of the identifier. It reads as follows:{

τ̇ = 1

ξ̇ = Hξ(θ)ξ +Hy(θ)y +Hη(θ)η

(τ, ξ, y, η) ∈ [0,T]× Rnξ+ny+ned{
τ+ = 0

ξ+ = ξ

(τ, ξ, y, η, θ) ∈ [T,T]× Rnξ+ny+(ne+1)d

(18)

with state (τ, ξ) ∈ R× Rnξ , nξ ∈ N, and output

u = Dξ(θ)ξ +Dy(θ)y +Dη(θ)η . (19)

The parameters T,T > 0 constrain the jump times.
While T must be taken sufficiently large to achieve
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closed-loop stability (see Theorem 1), T is only con-
strained to be larger or equal to T. In this way the
update law can be triggered with non-periodic timing
strategies in the limits of the stability constraints. The
subsystem ξ is instead a continuous-time system that is
designed to stabilize the closed-loop system during flows
and with w = 0. More precisely, (18)-(19) is designed so
that:

P1. Hξ, Hy, Hη, Dξ, Dy and Dη are locally Lipschitz
functions of θ.

P2. The matrix

F (θ) =


A+BDy(θ)C BDη(θ) BDξ(θ)

GCe Φ(θ) 0

Hy(θ)C Hη(θ) Hξ(θ)

 (20)

is Hurwitz for all θ ∈ E .

We remark that, in view of Lemma 2, P1 and P2 always
can be achieved. As a matter of fact, θ is available for
feedback and the only matrix in the equations of (x, η)
that depends on θ is Φ(θ), whose dependency is smooth.

3.4 The Overall Regulator

The overall regulator, obtained by interconnecting the
subsystems (6), (17), (18), (19), is thus a hybrid system
described by the following equations

τ̇ = 1

η̇ = Φ(θ)η +Ge

Ṙ = 0, v̇ = 0, θ̇ = 0

ξ̇ = Hξ(θ)ξ +Hy(θ)y +Hη(θ)η

(τ, η, R, v, θ, ξ, y) ∈ [0,T]× Rned ×Z × Rd+nξ+ny

τ+ = 0

η+ = η

R+ = µR+ γ(η)γ(η)T

v+ = µv + γ(η)
(
(θT ⊗ Ine)η + e

)
θ+ ∈ pE(R

†v)

ξ+ = ξ

(τ, η, R, v, θ, ξ, y) ∈ [T,T]× Rned ×Z × Rd+nξ+ny

(21)
with input y and with output

u = Dξ(θ)ξ +Dy(θ)y +Dη(θ)η . (22)

4 Main Result

We let for convenience w := (w, τ), χ := (x, η, ξ) and

sw(w) := col(Sw, 1), gw(w) := col(w, 0)

Gz(z, χ) := {µR+ γ(η)γ(η)T }
× {µv + γ(η)((θT ⊗ Ine)η + e)}

E(θ) := col(P +BDy(θ)Q,GQe, Hy(θ)Q)

L(θ) := col(M +BDy(θ)R,GNe, Hy(θ)N).

Then, the closed loop system given by (2), (21), (22)
reads as follows

ẇ = sw(w)

χ̇ = F (θ)χ+ E(θ)w + L(θ)ν

ż = 0

θ̇ = 0


w+ = gw(w)

χ+ = χ

z+ = Gz(z, χ)

θ+ ∈ pE(R
†v)

(23)
with flow and jump sets given by C := W × [0,T] ×
Rnχ × Z × Rd ×N and D := W × [T,T] × Rnχ × Z ×
Rd × N , being nχ := nx + ned + nξ and N ⊂ Rnν
an arbitrarily large compact set. In the definition of C
and D we restricted the flow and jump sets of (w, ν) to
the compact set W × N . In this way we consider only
solutions for which w(t) ∈W and ν(t) ∈ N . Since W is
assumed to be forward invariant for the exosystem (3),
we maintain completeness of the solutions for all inputs
ν satisfying ν(t, j) ∈ N .

As long as nw ≤ d, the Cayley-Hamilton Theorem guar-
antees the existence of ω ∈ Rd such that the exosystem’s
system matrix S satisfies

Sd − ωdSd−1 − · · · − ω2S − ω1I = 0 . (24)

As mentioned in Section 3.1, if the internal model unit
(6) is implemented with θ = ω, for any ω for which
(24) holds, then asymptotic regulation is achieved. As
we constrained θ to range in E , we will eventually rely
on the following assumption:

A4) There exists ω ∈ E such that (24) holds.

The following theorem, which is the main result of the
paper, states the main asymptotic properties of the pro-
posed regulator.

Theorem 1 Assume A1-A3 and let (18) be chosen such
that P1 and P2 hold. Then there exists T?1, such that
if T ≥ T?1, all the solutions of (23) are bounded. If in
addition A4 holds, for any ε > 0 there exist T?2 ≥ T?1 and
ν, c ≥ 0 such that, if T ≥ T?2, for each complete solution
pair to (23) for which η is (J, ε)-PE, for some J ∈ N,
and |ν|∞ ≤ ν̄ the following holds

limsup |e| ≤ c limsup |ν| . (25)

With reference to the proof of Theorem 1, we note that
boundedness of the trajectories is obtained if T is larger
than a quantity that depends only on the closed-loop

7



system’s data and that can be fixed after the regulator is
designed. The bound (25) is instead more complex. It is
in fact a property guaranteed just along the trajectories
for which η is (J, ε)-PE, for some (J, ε) ∈ N× R>0, and
only if T is larger and limsup |ν| is smaller than constants
that, in general, depend on ε. Therefore the bound (25)
is local in ν, with the same constants, though, that work
for any trajectory for which η is (J ′, ε′)-PE with J ′ ∈ N
and ε′ ≥ ε. We also remark that there is no uniformity in
the convergence (25), as the convergence rate strongly
depends on the particular J for which the (J, ε)-PE con-
dition holds. This, however, matches with the intuition
that the correct adaptation can take place only after the
input signal to the identifier becomes sufficiently infor-
mative. Therefore, uniformity in the choice of T?2 and
in the convergence (25) is possible only inside the class
of solutions to the closed-loop system that are (J, ε)-PE
with the same J and ε. Finally we note that if ν = 0,
i.e. if no unmodeled disturbances are present, then (25)
implies asymptotic regulation, i.e. e(t, j)→ 0.

5 Proof of Theorem 1

The existence of T?1 such that for T ≥ T?1 the maximal
trajectories of (23) are complete and bounded follows
from standard “slow-switching” arguments (see for in-
stance [27]) once noted that F (θ) and E(θ) are bounded
uniformly in θ and boundedness of η implies those of z.
In proving the second claim, we articulate the discussion
in the following 4 points.

1) Quasi steady state of the stabilized cascade χ

We prove now that during the flow intervals the system
χ evolves towards a “quasi” steady state determined by
w and parametrized by θ. As F (θ) is Hurwitz for each
θ ∈ E , there exist Lipschitz maps P : E → Rnχ×nχ
and Π : E → Rnχ×nw , with P (·) having symmetric and
positive definite values, that are point-wise solutions to

F (θ)TP (θ) + P (θ)F (θ) = −Inχ (26a)

Π(θ)S = F (θ)Π(θ) + E(θ) . (26b)

Define the function

V (w,χ, z, θ) :=
(
χ−Π(θ)w

)T
P (θ)

(
χ−Π(θ)w

)
.

Then, by letting σ := min{λ ∈ R : λ ∈ σ(P (θ)), θ ∈ E}
and σ̄ := max{λ ∈ R : λ ∈ σ(P (θ)), θ ∈ E}, sim-
ple computations show that V fulfills σ|χ − Π(θ)w|2 ≤
V (w,χ, z) ≤ σ̄|χ−Π(θ)w|2 in the whole state space and

LFV (w,χ, z, θ) ≤ −λV (w,χ, z, θ) + r0|ν|2 (27)

for all (w,χ, z, θ) such that (w, χ, z, θ) ∈ C, with F :=
(Sw,F (θ)χ+E(θ)w+L(θ)ν, 0) and with λ > 0. On the

other hand, for all (w, χ, z, θ) ∈ D, we obtain

V (w+, χ+, z+, θ+) ≤ σ̄|χ−Π(θ+)|2

≤ σ̄
(
|χ−Π(θ)w|2 + |Π(θ)w −Π(θ+)w|2

)
≤ r1V (w,χ, z, θ) + r2|θ − θ+|2

(28)
with r1 = σ̄/σ and with r2 > 0 properly chosen by using
the fact that w ∈W , θ+ ∈ E and Π(·) is Lipschitz on E .

2) Properties of the identifier

We show now that if the flow is long enough the dis-
tance of χ to its quasi steady state at jump times, where
adaptation takes place, is sufficiently small to conclude
that if η is persistently exciting, then the identifica-
tion problem associated to the steady-state signals has
an unique optimum. Let Πx(θ) ∈ Rnx×nw , Πη(θ) ∈
Rnη×nw and Πξ(θ) ∈ Rnξ×nw be such that Π(θ) =
col(Πx(θ),Πη(θ),Πξ(θ)) and, for i = 1, . . . , d, let Πηi(θ)
be such that Πη(θ) = col(Πη1(θ), . . . ,Πηd(θ)). As a con-
sequence of the structure of the matrix Φ(θ), we have{

Πηi(θ)S = Πηi+1
(θ), i = 1, . . . , d− 1

Πηd(θ)S = (θT ⊗ Ine)Πη(θ) + Πe(θ)
(29)

with Πe(θ) := CeΠx(θ) +Qe. Equation (29) also yields

η = Πη(θ)w + δα

(θT ⊗ Ine)η + e = Πηd(θ)Sw + δβ

where δα := η − Πη(θ)w and δβ := (θT ⊗ Ine)(η −
Πη(θ)w) + (e−Πe(θ)w) that satisfy

|(δα, δβ)|2 ≤ r3V (w,χ, z, θ) + r4|ν|2, (30)

with r3 := (1 + |Ce|2 + |E|2ne)/σ and r4 := |Ne|2.
The identifier subsystem can be thus seen as a sys-
tem with input (α, β) = (α? + δα, β

? + δβ), where
(α?, β?) = (Πη(θ)w,Πηd(θ)Sw) and (δα, δβ) defined as
before. This yields two consequences:

1) Single-valued Optimum: As ν(t, j) ∈ N for each
solution pair to (23), and λ and r1 in (27)-(28) are
constants, we can assume without loss of generality
that T?1 is chosen large enough so that (27)-(28) can
be turned, by using standard average dwell-time condi-
tions [28,29], to a ISS-Lyapunov function [30]. This in
turn implies the existence of a ∆0 > 0, depending on E
and N , such that, for each solution pair ((w, χ, z, θ), ν)
to (23) there exists s̄1 > 0 such that |χ(t, j)| ≤ ∆0

for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄1 . Thus, in particu-
lar there exists ∆1 > 0 such that |(α(t, j), β(t, j))| =
|(η(t, j), (θ(t, j)T ⊗ Ine)η(t, j) + e(t, j))| ≤ ∆1 for all
(t, j) ∈ dom(w, χ, z, θ)|≥s̄1 . Also, as W and E are com-
pact, there exists ∆2 > 0 such that |(α?(t, j), β?(t, j))| =
|(Πη(θ(t, j))w(t, j),Πηd(θ(t, j))Sw(t, j))| ≤ ∆2 for all
(t, j) ∈ dom(w, χ, z, θ). Suppose that α = η is (J, ε)-PE,
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for some (J, ε) ∈ N × R≥0. Then, in view of Lemma 3,
there exist (J ′, ε′) ∈ N × R>0 and δ̄ > 0, depending on
E , N and ε, such that |(δα(tj , j), δβ(tj , j))| ≤ δ̄ for all
j ≥ J implies that α? is (J ′, ε′)-PE. Equation (27) gives

V (w(tj , j), χ(tj , j), z(tj , j), θ(tj , j)) ≤ V̄ e−λT+r0|ν|2∞/λ

for all j ∈ N such that tj + j ≥ s̄1 and with V̄ :=
σ̄(∆2

0 + |Π(E)|2|W |2). Therefore, as long as

|ν|∞ ≤ ν̄ := δ̄

√
1

3
max

{
λ

r0r3
,

1

r4

}
T ≥ T?ε := max

{
T?1, (1/λ) log

(
3V̄ r3/δ̄

2
)}

then (30) implies that every solution pair ((w, χ, z, θ), ν)
to (23) with T ≥ T?ε for which η is (J, ε)-PE ful-
fills |(δα(tj , j), δβ(tj , j))| ≤ δ̄ for all j ≥ J such that
tj + j ≥ s̄1. Noting that (J, ε)-PE implies (j, ε)-
PE for all j ≥ J , we thus conclude that there ex-
ists a J2 ≥ max{J, J ′, infj∈N t

j + j ≥ s̄1} such that
α? = Πη(θ)w is (J2, ε

′)-PE, and the map θ◦α?,β?(t, j) is

a singleton for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄2 , having
denoted s̄2 := tJ2 + J2.

2) Stability: In view of the aforementioned bounds
∆1 and ∆2 on (α, β) and (α?, β?), Proposition 1 im-
plies that, with the same ρ > 0, for each solution pair
((w, χ, z, θ), ν) to (23) there exist z? : dom(w, χ, z, θ)→
Z such that, for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄2) and
with z̃ := z − z?, we have

|z̃+|2 ≤ µ2|z̃|2 + ρr3V (w,χ, z, θ) + ρr4|ν|2, (31)

where we omitted the argument (t, j) and we let z̃+ :=
z̃(t, j + 1). In the following, for an arbitrary ε > 0, we
let Sε be the class of the solution pairs ((w, χ, z, θ), ν)
to the closed-loop system with T ≥ T?ε and such that α
is (J, ε)-PE for some J ∈ N. We stress that the above
discussion, and thus in particular, that α? = Πη(θ)w is
(J2, ε

′)-PE and θ◦α?,β?(t, j) is a singleton for t + j ≥ s̄2,
holds for all such solutions, with only J2 and s̄2 that
possibly depend on the particular solution. In the fol-
lowing we will make reference to the solution-dependent
quantities introduced above (such as J2 and s̄2) with the
remark that they are meant to be defined in the same
way as before and they refer to the particular solution
considered.

3) (J, ε)-PE and A4 yield the internal model property

We show now that the single-valued solution to the iden-
tification problem associated to the quasi steady-state
inputs is independent on θ and coincides with ω of (24).
In view of A4, there exists ω ∈ E such that (24) holds.
As a consequence, (29) yields

Πηd(θ)S = Πη1(θ)Sd

= Πη1(θ)
(
ωdS

d−1 + · · ·+ ω2S + ω1I
) (32)

Then, for any solution pair ((w, χ, z), ν) to the closed-
loop system, (29) and (32) yield

|β?(tj , j)− (ωT ⊗ Ine)α?(tj , j)|

=
∣∣∣(Πηd(θ(tj , j))S

−Πη1(θ(tj , j))(ωdS
d−1 + · · ·+ ω1I)

)
w(tj , j)

∣∣∣ = 0

for all (tj , j) ∈ dom(w, χ, z, θ). By definition of Jα?,β? in
(11), this also implies that Jα?,β?(t, j)(ω) = 0, and thus
that ω ∈ θ◦α?,β?(t, j), for all (t, j) ∈ dom(w, χ, z, θ). Pick

((w, χ, z, θ), ν) ∈ Sε, as α? is (J2, ε
′)-PE and θ◦α?,β?(t, j)

is single valued for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄2 , then
necessarily

θ◦α?,β?(t, j) = {ω} ⊂ E , ∀(t, j) ∈ dom(w, χ, z, θ)|≥s̄2 .
(33)

A further consequence of (29) is that

Πe(ω) = Πηd(ω)S − (ωT ⊗ Ine)Πη(ω)

= Πη1(ω)
(
Sd − ωdSd−1 − · · · − ω1I

)
= 0.

(34)

so as if limsup |χ−Π(ω)w| is proportional to limsup |ν|,
then (25) is proved. In the next paragraph we show that
this is the case whenever T is sufficiently large.

4) Large T yields small gain

Finally, we show here that if the jump times are distant
enough, a small-gain like condition holds, and “modulo
ν”, θ tends to the optimum ω and χ to the error-zeroing
steady state Π(ω)w. Thus the claim of the theorem fol-
lows. Pick ((w, χ, z, θ), ν) ∈ Sε. As ω ∈ E , in view of (33)
and of Proposition 1, for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄2
we have ω = θ?(t, j), with θ?(t, j) the unique element of
pE(R

?(t, j)†v?(t, j)). Then Lemma 4 can be invoked to
claim the existence of J3 ≥ J2 and r5 ≥ 0, depending on
ε, such that, with s̄3 := tJ3 + J3, the following holds

|θ(t, j)− ω|2 ≤ r5|z̃(t, j)|2 (35)

for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄3 . As a consequence of
(35) and (31), for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3), we
obtain

|θ − θ+|2 = |θ − ω + ω − θ+|2 ≤ |θ − ω|2 + |θ+ − ω|2

≤ r5

(
|z̃|2 + |z̃+|2

)
≤ r6|z̃|2 + r7V (w,χ, z, θ) + r8|ν|2,

with r6 := r5(1 + µ2), r7 := r5ρr3, r8 := r5ρr4 and
where again we omitted the argument (t, j) and we let
θ+ := θ(t, j+1) and z̃+ := z̃(t, j+1). We further develop
(28) to obtain, for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3)

V (w+, χ+, z+, θ+) ≤ r9V (w,χ, z, θ) + r10|z̃|2 + r11|ν|2,
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being r9 := r1 + r2r7, r10 := r2r6 and r11 := r2r8. In
summary, for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄3 such that
t ∈ (tj , tj+1) we have:

V̇ (w,χ, z, θ) ≤ −λV (w,χ, z, θ) + r0|ν|2,
d|z̃|2

dt
= 0

(36)
and for all (t, j) ∈ Γ(dom(w, χ, z)|≥s̄3)

V (w+, χ+, z+, θ+) ≤ r9V (w,χ, z, θ) + r10|z̃|2 + r11|ν|2

|z̃+|2 ≤ µ2|z̃|2 + ρr3V (w,χ, z, θ) + ρr4|ν|2,
(37)

where we omitted the argument (t, j) and we let
(w+, χ+, z+, θ+, z̃+) := (w(t, j + 1), χ(t, j + 1), z(t, j +
1), θ(t, j + 1), z̃(t, j + 1)). We then have the following:

Lemma 5 There exist c0 ≥ 0 and T?2 ≥ T?ε , independent
on J3, such that for any solution pair in Sε with T ≥ T?2

limsup(V (w,χ, z, θ) + |z̃|2) ≤ c0 limsup |ν|2.

Lemma 5 implies in particular

limsup |χ−Π(θ)w| ≤ c1 limsup |ν|
limsup |θ − ω| ≤ c2 limsup |ν|

for c1 :=
√
c0/σ and c2 :=

√
r5c0. In view of (34),

Πe(ω) = 0, so that

|e| = |e−Πe(ω)w|
≤ |Ce||χ−Π(ω)|+ |Ce||w||Π(θ)−Π(ω)|+ |Ne||ν|.

As Π(·) is Lipschitz on E , this suffices to conclude (25),
with c := |Ce|c1 + |Ce||W |LΠc2 + |Ne|, where LΠ is the
Lipschitz constant of Π on E . The result of the theorem
follows then from the arbitrariness of ε. �

6 A Numerical Example

We consider here a plant of the form (2) with

A =


1 1 1

−1 0 1

1 1 0

 , B =


0 0

0 1

1 2

 .

The control goal is to drive y1 := x2 to a desired set
point y?1 chosen by the user and to make y2 := x3 follow
a sinusoid y?2(t) at any desired frequency, despite the dis-
turbances Pw(t) acting on the system. We suppose that
w(t) is a combination of a constant term, a harmonic at
the same frequency of y?2(t) and a third unknown har-
monic. The disturbance Pw(t) and the references y?1 and
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Figure 2. Simulation results: The first plot shows the time
evolution of the state x, the second plot the regulation errors
e(t), the third plot is a zoom on the regulation errors and
the last plot shows the evolution of the parameters θ.

y?2(t) can be thus modeled as outputs of an exosystem
of the form (3) with S := blkdiag(S1, S2, S3), where

S1 = γ1

(
0 1

−1 0

)
, S2 = γ2

(
0 1

−1 0

)
, S3 = 0

and with γ1, γ2 ∈ R>0 unknown parameters. We define
the regulator errors as e1 := y1 − y?1 and e2 := y2 − y?2 ,
that are obtained as in (4) with the choice

Ce =

(
0 1 0

0 0 1

)
Qe :=

(
0 0 0 0 −1

−1 0 0 0 0

)

and noting that different set-points y?1 , as well as dif-
ferent amplitudes and phases for y?2(t) can be obtained
by changing the initial conditions of w and need not be
known at the design stage. The amplitude and the phase
of the disturbance Pw depends, in addition to depending
on w(0), depends on the matrix P which is not known by
the designer. It is worth noting that if we let x∗ := Πw
and u∗ := Γw be the corresponding steady state func-
tions such that e∗ := Cex

∗ +Qew = 0, then, by letting
x̃ := x− x∗, we obtain that e = 0 and u = u? imply 2

˙̃x1 = x̃1 ,

2 This can be verified by noting that Π and Γ fulfill the
regulator equations ΠS = AΠ +BΓ + P and 0 = CeΠ +Qe,
and that e = 0 implies x̃2 = x̃3 = 0.

10



so that the plant considered is not minimum phase rel-
ative to the ideal “steady state locus” given by the set
graph Π := {(w, x) ∈ R5 × R3 : x = Πw} and, as
a consequence, this example does not fit in the frame-
works addressed in the existing literature. In the sim-
ulation, for simplicity, we used a state-feedback stabi-
lizer, i.e. we assumed y = col(e, x1) and u = K(θ)y
with K(θ) properly designed. Figure 2 shows the re-
sult of a simulation of the proposed control system im-
plemented with d = 5, µ = 0.9 and with T = 30s.
In the simulation we let y∗2 = 5, γ1 = 1, γ2 = 2,
w(0) = col(1,−1, 0, 1, y∗2), x(0) = col(5,−10, 10) and

P = col((1 0 1 0 1), (1 0 1 0 1), (1 0 1 0 1)).

7 Conclusions and Future Work

In this paper we proposed a control design to address a
class of output regulation problems for linear systems in
the presence of uncertainties in the exosystem. The pro-
posed regulator combines a canonical continuous-time
internal model and a discrete-time identifier that adapts
the internal model parameters. We have shown that if
the identifier is slow enough the regulator ensures bound-
edness of the closed-loop trajectories and, if an upper
bound on the order of the exosystem is known, then along
the solutions that satisfy a persistency of excitation con-
dition asymptotic regulation is achieved. We also showed
robustness of the proposed scheme to sufficiently small
unmodeled disturbances. The main interest for future
developments concerns the synergy between identifica-
tion and control and the relation between the prediction
performances of the identifier and the regulation perfor-
mance of the control scheme. As in [19,21], indeed, the
asymptotic “optimality” of the identifier turned out here
to be the key to obtain asymptotic regulation. Future
researches will mainly focus on the extension of the con-
trol paradigm to more general plants modeled by non-
linear differential inclusions and the integration into the
framework of more general identifiers, by eventually in-
troducing stochastic identifiers.

A Proofs

A.1 Proof of Lemma 1

Let

F (λ) :=

(
A− λI B
Ce 0

)
.

We first prove that the set U := {λ ∈ C : rankF (λ) <
n + ne} is finite. Pick λ ∈ C/σ(A). Then A − λI is
invertible and the matrix

M(λ) :=

(
In 0n×ne

Ce(A− λI)−1 −Ine

)

is well-defined and full rank. Thus

rankF (λ) = rank(M(λ)F (λ))

= rank

(
A− λI B

0ne Ce(A− λI)−1B

)
≥ n+ rank(Ce(A− λI)−1B).

By assumption, as rankB ≥ ne, the number of λ ∈ C
for which rank(Ce(A − λI)−1B) < ne is finite. Since
σ(A) has at most n elements, then we conclude that U
is finite. Let Pd denote the set of monic polynomials of
degree d with coefficients in R. Each element of Pd can
be written as pa(s) = sd+ads

d−1+· · ·+a2s+a1, for some
a ∈ Rd, so as there is a natural isomorphism ι : Rd → Pd,
a = col(a1, . . . , ad) 7→ pa(s). Let P (λ) ⊂ Pd denote the
set of polynomials in Pd that have λ as a root. Suppose
λ ∈ R, each element in P (λ) can be univocally written as

pa(s) = (s− λ)(sd−1 + ad−1s
d−2 + · · ·+ a2s+ a1)

= sd + (ad−1 − λ)sd−1 + · · ·+ (a1 − a2λ)s− a1λ,

so as ι−1(P (λ)) is the (d−1)-dimensional affine subspace
of Rd given by ι−1(P (λ)) = {(−λa1, a1−λa2, . . . , ad−2−
λad−1, ad−1 − λ) ∈ Rd : (a1, . . . , ad−1) ∈ Rd−1}. If
instead λ ∈ C/R, in the same way as before it can be seen
that ι−1(P (λ)) is a (d − 2)-dimensional affine subspace
of Rd. As Q can be written as Q = {θ ∈ Rd : ι(θ) ∈
P (λ), λ ∈ U} = ∪λ∈U ι−1(P (λ)), then Q is the union of
a finite number of affine subspaces of Rd of dimension
d− 1 or d− 2. Pick r > 0 arbitrarily and notice that the
set Q + Br is open as it is a union of open sets. Hence
Rd \ (Q + Br) is closed and it remains to show that it
is not empty. We thus notice that for each λ ∈ U we
can write ι−1(P (λ)) = xλ + ImAλ, for some xλ ∈ Rd
and Aλ ∈ Rd×(d−1). Pick any λ ∈ U and define the set
S := {xλ + y + v ∈ Rd−1 : y ∈ ImAλ, v ∈ (ImAλ)⊥}.
We now show that S ∩ (Rd \ (Q + Br)) 6= ∅. For, let
Uλ ⊂ U be the set of µ ∈ U such that ImAλ ⊆ ImAµ.
Then for each µ ∈ Uλ, each y ∈ ImAλ, and with p =
xλ + y + v ∈ S, in view of [31, Thm. 4.9], we have

|p|ι−1(P (µ)) = inf
z∈ImAµ

|xµ + z − xλ − y − v|

= |(xµ − xλ)′ − v′|

where (xµ−xλ)′ and v′ denote the projection of xµ−xλ
and v onto (ImAµ)⊥. Hence, for each v ∈ (ImAλ)⊥

fulfilling |v′| > r + maxµ∈Uλ |xµ − xλ| we obtain
|p|ι−1(P (µ)) ≥ |v′| − |(xµ − xλ)′| > r, and this in turn
shows that, for every y ∈ ImAλ and for sufficiently large
v, p = xλ + y + v ∈ Rd \ (∪µ∈Uλι−1(P (µ)) + Br). Pick
now µ ∈ U \ Uλ and fix a v ∈ (ImAλ)⊥ satisfying the
above bound, then ImAλ ∩ (ImAµ)⊥ 6= ∅ and we get

|p|ι−1(P (µ)) = inf
z∈ImAµ

|xµ + z − xλ − y − v|

= |(xµ − xλ)′′ − y′′ − v′′|
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with (xµ − xλ)′′, y′′ and v′′ the projections of xµ − xλ,
y and v onto (ImAµ)⊥. Hence choosing y so that |y′′| >
r+maxµ∈U\Uλ |xµ−xλ|+|v′′| yields |p|ι−1(P (µ)) > r, and
this in turn proves that there exists a p ∈ S satisfying
p ∈ Rd \ (Q+ Br). Hence the claim. �

A.2 Proof of Proposition 1

Recall that, for z = (R, v) ∈ Z, |z|2 = |R|2 + |v|2. Thus

|z+
1 − z

+
2 |2

= |µ(R1 −R2) + γ(α1)γ(α1)T − γ(α2)γ(α2)T |2

+ |µ(v1 − v2) + γ(α1)β1 − γ(α2)β2|2

≤ µ2|z1 − z2|2 + |γ(α1)γ(α1)T − γ(α2)γ(α2)T |2

+ |γ(α1)β1 − γ(α2)β2|2,

and the first point follows from the fact that |γ(α1)γ(α1)T−
γ(α2)γ(α2)T |2 = |γ(α1)(γ(α1) − γ(α2))T − (γ(α2) −
γ(α1))γ(α2)T |2 ≤ (|α1|2 + |α2|2)|α1 − α2|2 and
|γ(α1)β1 − γ(α2)β2|2 = |γ(α1)(β1 − β2) − (γ(α2) −
γ(α1))β2|2 ≤ |α1|2|β1 − β2|2 + |β2|2|α1 − α2|2, with
ρ = 2|α1|2 + |α2|2 + |β2|2. For what concerns the sec-
ond point, pick (t, j) ∈ dom(α?, β?). Then θ◦α?,β?(t, j)
is the set of points that annihilate the gradient of
Jα?,β?(θ)(t, j) with respect to θ. Simple computa-
tions show that such a set is given by (13)-(14), with
(α?, β?) in place of (α, β). By direct solution it is pos-
sible to show that z? := (R?, v?), with R? and v?

given by (14) is exactly the solution to the subsys-
tem z of (9) with (α, β) = (α?, β?) originating from
z?(0, 0) = (γ(α?(0, 0))γ(α?(0, 0))T , γ(α?(0, 0))β?(0, 0)),
and this concludes the proof. �

A.3 Proof of Lemma 3

Let `∞ be the space of bounded sequences s = (sn)n∈N
and, for s ∈ `∞, let |s|n1,n2 := supn1≤n≤n2

|sn|. Let

φ(α) := col(α(t0, 0), α(t1, 1), . . . ) ∈ `∞ and, for k, j ∈
N, let Σjk : `∞ → Rd×d be the function

s 7→ Σjk(s) :=

j−1∑
i=k

µj−i−1γ(si)γ(si)
T .

For any two q1, q2 ∈ Rned there exists c0 > 0 such that
|γ(q1)γ(q1)T − γ(q2)γ(q2)T | ≤ c0|q1 − q2|. As a conse-
quence, for each two s1, s2 ∈ `∞ there exists c0 > 0 such
that, for each k, j ∈ N, we have

|Σjk(s1)− Σjk(s2)|

=

j−1∑
i=k

µj−i−1(γ(s1
i )γ(s1

i )
T − γ(s2

i )γ(s2
i )
T )

≤

(
j−1∑
i=k

µj−i−1

)
c0|s1 − s2|k,∞.

Noting that

j−1∑
i=k

µj−i−1 ≤
j−1∑
i=0

µj−i−1 =

j−1∑
`=0

µ` ≤
∞∑
`=0

µ` =
1

1− µ
,

we thus obtain

|Σjk(s1)− Σjk(s2)| ≤ c1|s1 − s2|k,∞, (A.1)

for each k, j ∈ N and with c1 := c0/(1− µ). As the map
R ∈ Rned×ned 7→ minσ(R) ∈ R≥0 is continuous, for
every υ > 0 there exists rυ > 0 such that

|Σj0(φ(α))− Σj0(φ(α?))| ≤ rυ
=⇒ |minσ(Σj0(φ(α)))−minσ(Σj0(φ(α?)))| ≤ υ.

(A.2)

As Σj0 has symmetric positive semi-definite values then

minσ(Σj0(φ(α?))) = |minσ(Σj0(φ(α?)))|
=
∣∣minσ(Σj0(φ(α)))

−
(

minσ(Σj0(φ(α)))−minσ(Σj0(φ(α?)))
)∣∣

≥
∣∣|minσ(Σj0(φ(α)))|
− |minσ(Σj0(φ(α)))−minσ(Σj0(φ(α?)))|

∣∣.
(A.3)

Noting that Σj0(φ(α)) is exactly the matrix appearing in

(15), and since α is (J, ε)-PE, then minσ(Σj0(φ(α))) > ε.
Pick ε′ < ε and υ ∈ (0, ε − ε′) arbitrarily. Thus if for

some J ′ ≥ J we have |Σj0(φ(α)) − Σj0(φ(α?))| ≤ rυ for
all j ≥ J ′, then (A.2) and (A.3) give

minσ(Σj0(φ(α?))) ≥ ε− υ ≥ ε′,

for all j ≥ J ′, that is the first claim. We thus have to
show that (A.2) holds for sufficiently small δ̄. Note that,
for each j > J

|Σj0(φ(α))− Σj0(φ(α?))| ≤ µj−J |ΣJ0 (φ(α))− ΣJ0 (φ(α?))|
+ |ΣjJ(φ(α))− ΣjJ(φ(α?))|.

(A.4)
As the first term of (A.4) is a constant multiplied by µj ,
and µ < 1, we claim the existence of J ′ ≥ J such that
in (A.4) we have that µj−J |ΣJ0 (φ(α)) − ΣJ0 (φ(α?))| ≤
rυ/2 for all j ≥ J ′. Moreover, in view of (A.1),
|φ(δα)|J,∞ = |φ(α) − φ(α?)|J,∞ ≤ rυ/(2c1) implies

|ΣjJ(φ(α)) − ΣjJ(φ(α?))| ≤ rυ/2 for all j ≥ J . Thus
(A.4) yields (A.2) for all j ≥ J ′. This in turn proves the
first claim, with δ̄ := rυ/(2c1). To see that θ◦α?,β?(t, j)
is single valued, notice that it is the set of θ in which
the gradient of (11) vanishes, which is given by (13)-
(14) with (α?, β?) in place of (α, β). In view of (14),
v?(t, j) ∈ ImR?(t, j). Thus, noting that for j ≥ J ′,

R?(t, j) = Σj0(φ(α?)) is nonsingular, then (13) is a
singleton and the second claim follows. �
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A.4 Proof of Lemma 4:

For sake of readability, we will omit the time dependency.
By letting θui (t, j) := Ri(t, j)

†vi(t, j), then for suitable
selections s1

E and s2
E of pE , we obtain

|θ1 − θ2|2 = |s1
E(θ

u
1 )− s2

E(θ
u
2 )|2

= |s1
E(θ

u
1 )− θu1 + θu1 − θu2 + θu2 − s2

E(θ
u
2 )|2

≤ inf
θE∈E

|θu1 − θE |2 + inf
θE∈E

|θu2 − θE |2 + |θu1 − θu2 |2

≤ 3|θu1 − θu2 |2 = 3|R†1v1 −R†2v2|2

≤ 3|R†1 −R
†
2|2|v1|2 + 3|R†2|2|v1 − v2|2.

In view of [32, Thm. 10.4.5], we have |R†1 − R†2|2 ≤
9 max{|R†1|4, |R

†
2|4}|R1 −R2|2, which yields

|θ1 − θ2|2

≤ 3 max{9 max{|R†1|, |R
†
2|}4|v1|2, |R†2|2}|z1 − z2|2

(A.5)
By direct solution we obtain, for i = 1, 2

Ri(t, j) = µjRi(0, 0)

+

j−1∑
k=0

µj−1−kγ(αi(t
k, k))γ(αi(t

k, k))T

(A.6)
Since µ < 1 the first term of (A.6) vanishes exponen-
tially with j. Thus using the fact that αi is (Ji, εi)-PE,
the same arguments of Lemma 3 can be used to show
that (A.6) implies that for any ε′i ∈ (0, εi), there ex-
ists J ′i ≥ Ji such that, for all (t, j) ∈ domRi such that
j ≥ J ′i , minσ(Ri(t, j)) ≥ ε′i. As a consequence, by let-
ting J := max{J ′1, J ′2} and ε := min{ε′1, ε′2}, we obtain
|Ri(t, j)†| ≤ 1/ε for all (t, j) ∈ domR such that j ≥ J .
Thus the result follows from (A.5) by noting that bound-
edness of (αi, βi) for i = 1, 2 implies those of vi. �

Proof of Lemma 5:
Pick any k ∈ (0, a) and q ∈ (µ2, 1), and let

`1 ∈ (0, q − µ2) , `2 ∈ (1, q/(µ2 + `1)) .

then 0 < `1 < 1, `2 > 1 and (`1 + µ2)`2 < q < 1. Let

ψ ≥ r10/`1, T?2 := max

{
T?ε ,

1

k
log

(
r9 + ρr3ψ

q

)}
(A.7)

pick in the jump set of (23) T ≥ T ≥ T?2 and let

h ∈ (0, log(`2)/T). (A.8)

Define the function

W (w, χ, z, θ, z̃) := ekτV (w,χ, z, θ) + ψe−hτ |z̃|2.

Then, clearly,

V (w,χ, z, θ) + |z̃|2 ≤ max{1, ehT/ψ}W (w, χ, z, θ, z̃).
(A.9)

Pick a solution pair ((w, χ, z, θ), ν) ∈ Sε with T ≥ T ≥
T?2. Then, using (18), for all (t, j) ∈ dom(w, χ, z, θ)|≥s̄3
such that t ∈ (tj , tj+1), (36) yields (we omit the time
dependency)

Ẇ (w, χ, z, θ, z̃) ≤ −aWW (w, χ, z, θ, z̃) + r12|ν|2,
(A.10)

with aW := min{a− k, h} and r12 := ekTr0. As τ+ = 0,
for all (t, j) ∈ Γ(dom(w, χ, z, θ)|≥s̄3), instead, (37) yields

W (w+, χ+, z+, θ+, z̃+) ≤ (r9 + ρr3)V (w,χ, z, θ)

+ (r10 + ψµ2)|z̃|2 + r13|ν|2,

with r13 := r11 + ρr4ψ. As for each (t, j) ∈ Γ(dom(w, χ,
z, θ)), necessarily, T ≤ τ(t, j) ≤ T, we get

W (w+, χ+,z+, θ+, z̃+)

≤ (r9 + ρr3ψ)e−kTekτV (w,χ, z, θ)

+ (r10 + ψµ2)ehTe−hτ |z̃|2 + r13|ν|2.

(A.7)-(A.8) and T ≥ T?2 gives:

(r9 + ρr3ψ)e−kT ≤ (r9 + ρr3ψ)e−kT?
2 ≤ q

(r10 + ψµ2)ehT ≤ ψ(r10/ψ + µ2)`2c ≤ ψq,

so that we obtain

W (w+, χ+, z+, θ+, z̃+) ≤ qW (w, χ, z, θ, z̃) + r13|ν|2,
(A.11)

and the claim follows from (A.9), (A.10) and (A.11). �
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