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Abstract 

 

We address the issue of parameter dimensionality reduction in Vector Autoregressive 

models (VARs) for many variables by imposing speci…c reduced rank restrictions on 

the coe¢cient matrices that simplify the VARs into Multivariate Autoregressive Index 

(MAI) models. We derive the Wold representation implied by the MAIs and show that it 

is closely related to that associated with dynamic factor models. Then, the theoretical 

analysis is extended to the case of general rank restrictions on the VAR coe¢cients. 

Next, we describe classical and Bayesian estimation of large MAIs, and discuss methods 

for rank determination. Finally, the performance of the MAIs is compared with that 

of large Bayesian VARs in the context of Monte Carlo simulations and two empirical 

applications, on the transmission mechanism of monetary policy and on the propagation 

of demand and supply shocks. 

Keywords: Large datasets, Multivariate Autoregressive Index models, Reduced Rank 

Regressions, Bayesian VARs, Factor Models, Forecasting, Structural Analysis. 
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1 Introduction 
 
The recent theoretical and applied econometrics literature has paid substantial attention to 

modelling in the presence of datasets with a large cross-sectional dimension. In estimating 

models for large datasets, the econometrician is faced with the so-called curse of dimension- 

ality problem, namely the fact that the number of parameters that need to be estimated 

grows to be so large that it rapidly exhausts the degrees of freedom o¤ered by the available 

observations. The macroeconometrics literature has tackled this problem using two main 

approaches. 

The …rst approach uses a small number of factors to summarize the information contained 

in a large dataset. Factor models were introduced in economics by Geweke (1977) in a small 

dataset context. Larger systems (typically of more than a hundred variables) were estimated 

using semi-parametric techniques by Stock and Watson (1989, 2002a, 2002b), Forni et al. 

(2000). Parametric approaches to large datasets emerged later, mainly in the structural 

factor augmented VAR (FAVAR) literature, e.g. Bernanke et al. (2005), Kose et al. (2005), 

Del Negro and Otrok (2008), Baumeister, Liu and Mumtaz (2010), Doz et al. (2011), 

Eickmeier, Lemke, Marcellino (2014), and the review in Lütkepohl (2014). 

The second approach uses Bayesian Vector Autoregressive models (BVARs). BVARs 

were introduced by Doan, Litterman, and Sims (1984) and Litterman (1986). These models 

handle large datasets by exploiting Bayesian shrinkage as a regularization method, and 

have been successfully used in estimation of increasingly large models in studies such as 

Leeper, Sims and Zha (1996), Banbura, Giannone, and Reichlin (2010), and Koop (2013). 

Large classical VARs are not a viable alternative, unless constraints are imposed in order 

to substantially reduce the number of free parameters, see e.g., Carriero, Kapetanios and 

Marcellino (2011). 

Both FAVARs and BVARs have pros and cons. The FAVARs nicely capture the idea of 

few key shocks or variables as drivers of the entire economy. However, they often rely on 

a two-step approach (estimate factors, then treat them as known in subsequent analyses), 

though full Kalman …lter based estimation has been also developed, see e.g. Doz, Giannone 

and Reichlin (2011)). In both cases, the number of variables, N, must diverge in order to 

get consistent factor estimators, and the speed of divergence must be faster than that of 

the temporal dimension, T , in order to avoid generated regressors problems in subsequent 

analyses, see e.g. Bai and Ng (2006a). 

Moreover, it is unclear why the factors are modelled as a VAR in FAVARs, in particular 

when they are estimated as the static or dynamic principal components of the variables. Du- 

four and Stevanovic (2013) demonstrate that a VARMA representation is more appropriate, 

though more complex (see also Lütkepohl (1984)). Furthermore, structural identi…cation in 

factor models is in principle rather easy but in practice often complex, so that few empirical 

applications have been produced (e.g., Forni and Gambetti (2010)). In addition, testing hy- 

potheses on the factors, e.g., whether they are equal to speci…c macroeconomic or …nancial 
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variables, is quite complex (e.g. Bai and Ng (2006b)). 

BVARs are overall easier to handle than FAVARs in terms of (Bayesian) estimation and 

inference. However, with the exception of some speci…c prior speci…cations guaranteeing 

conjugacy, their estimation remains computationally demanding (see Carriero, Clark and 

Marcellino (2015) for a discussion). Moreover, the fact of having one shock for each variable, 

each of them equally important, means that these models are somewhat less attractive than 

FAVAR models to perform structural analysis. 

In this paper, we suggest to use a model that bridges BVARs and FAVARs. Speci…cally, 

we propose to impose reduced rank restrictions on the parameter matrices of a BVAR that, 

while preserving its attractive features, reduces its dimensionality and makes it similar to 

a factor model in terms of having a smaller set of key shocks or variables. The resulting 

speci…cation is a Multivariate Autoregressive Index (MAI) model, originally introduced by 

Reinsel (1983) within a classical context. 

From a theoretical point of view, we build on Reinsel (1983) and extend his work in 

four directions. First, we derive asymptotic results for classical estimation of MAI models 

for large N. Second, we provide conditional posterior distributions and an e¢cient MCMC 

algorithm for Bayesian estimation of large MAI models. Third, we introduce a moving 

average representation of the MAI model that is particularly useful for identifying struc- 

tural shocks and their dynamic propagation. Finally, we extend the theoretical analysis to 

general reduced rank VAR models, …nding however a substantial increase in computational 

costs, which makes them less attractive than MAI for economic applications based on large 

datasets. 

From an applied perspective, we assess the relative performance of large MAI and BVAR 

models both in extensive simulation experiments and in two empirical applications. 

The paper is structured as follows. In Section 2 we introduce the MAI model, where each 

variable is driven by a limited number of speci…c linear combinations of the other variables, 

say r, with r much smaller than N. Since these combinations are the counterpart of the 

factors in the factor literature, we also refer to them as ‘factors’. We also show that these 

factors admit an exact VAR representation, whose coe¢cients can be analytically derived 

from those of the MAI. We then derive alternative moving average representations of the 

MAI, where each variable is driven either by the N original MAI errors, or by the r errors in 

the VAR for the factors (common to all variables) plus N r other errors, orthogonal to the 

factor errors. The former representation is similar to the one used in the BVAR literature, 

the latter to the one used in the FAVAR literature. We do not prefer either representation, 

we suggest to use the one that is more suited to address the speci…c empirical problem under 

analysis. In Section 2 we also discuss the relationship of the MAI model with factor models, 

more general reduced rank VAR models, and with the reduced rank multivariate regression 

studied in a Bayesian setting by Geweke (1996). 

In Section 3 we introduce classical and Bayesian estimation methods for the MAI. Re- 

duced rank regressions have been introduced by Anderson (1951), and the speci…c case of 
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reduced rank autoregressions and MAI models has been studied in detail by Reinsel (1983) 

(see also Velu, Reinsel and Wichern (1986) and Reinsel and Velu (1998)). As mentioned, 

we show that this technique can be also implemented when N diverges, under some reg- 

ularity conditions.  In the Bayesian context, we derive the conditional distributions of the 

parameters under standard assumptions on the priors, and provide a new MCMC algorithm 

to handle the model non-linearity in the coe¢cients. 

In Section 4 we discuss classical and Bayesian methods for the determination of the 

rank, r, of the MAI. In a classical context, rank determination can be determined either by 

information criteria or by sequential testing methods. In a Bayesian framework, we propose 

to select the rank associated with the highest marginal data density, which can be e¢ciently 

approximated numerically using Rao-Blackwellization combined with the harmonic mean 

estimator of Gelfand and Dey (1994) and Geweke’s (1999), as suggested e.g. in Fuentes- 

Albero and Melosi (2013). 

In Section 5 we perform a set of Monte Carlo exercises, which show that the MAI 

estimated with Bayesian methods systematically outperforms the classical MAI, as well as 

an unrestricted BVAR, when the data generating process contains rank reduction in the 

conditional mean parameters. 

In Section 6 we illustrate the theoretical proposals by means of two empirical applica- 

tions. First, we replicate in the MAI context the BVAR analysis of the transmission of 

US monetary policy shocks conducted by Banbura, Giannone and Reichlin (2010), using an 

updated dataset. We use the N -shock MA representation of the MAI and obtain responses 

that are economically sensible and sometimes di¤erent from those resulting from the full 

rank BVAR approach of Banbura et al. (2010). We also show that the Bayesian procedure 

produces more reasonable impulse responses than the classical ones. Second, we assess the 

e¤ects of demand and supply shocks. In this case we use the FAVAR-style MA representa- 

tion of the MAI and assume that the factors re‡ect movements in real, …nancial, and price 

variables, where the shocks associated with these factors are interpreted as, respectively, 

demand, …nancial / monetary, and supply shocks. Again, the resulting responses are very 

sensible from an economic point of view. 

Finally, Section 7 concludes and proposes directions for further research. 
 
 

2 The MAI Model: Speci…cation and MA Representations 
 

2.1 The MAI-model 

We assume that the N -dimensional zero mean weakly stationary process Yt = (y1;t; : : : ; yN;t)0
 

admits the representation: 

Yt =  (L)Yt +  t; (1) 

where t = 1; : : : ; T ,  (L) =   1L + : : : : +  pLp  is a polynomial of order p, and  t are i.i.d. 

N (0;  ). 
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Following Reinsel (1983), we further assume that (L) can be factorized as (L) = 

A(L)B0, where A(L) = A1L+: : : :+ApLp, each matrix Au is of dimension N r, u = 1; : : : ; p, 

and B0 is of dimension r N and full row rank. The resulting model, labeled Multivariate 

Autoregressive Index (MAI) model by Reinsel (1983), is:1 
 

p 

Yt = 
X 

AuB0Yt 

 
u +  t: (2) 

u=1 
 

If r is much smaller than N and N is large, there are much fewer parameters in the MAI 

model in (2) than in the corresponding unrestricted VAR in (1). For example, in our 

empirical application, we have T = 460, N = 20, p = 13 and r = 3, so that there are 

N(Np r(p + 1)) = 4360 parameters less in the MAI in (2) than in the corresponding 

unrestricted VAR in (1). The total number of parameters in (1) and (2) is, respectively, 

N 2p = 5200 and Nr(p + 1) = 20 3 14 = 840. 

From an economic point of view, the MAI model in (2) implies that all the variables are 

driven by a (possibly much) smaller number of indicators, the r variables B0Yt u, which 

can be labeled as "indexes" (as in Reinsel, 1983) or as "factors", as in the factor literature. 

We prefer the latter denomination and therefore de…ne the factors Ft as: 

 

Ft = B0Yt: (3) 

 
Using (3), it is straightforward to rewrite the MAI in (2) as: 

 

p 

Yt = 
X 

AuFt 

 
u + t 

 
= A(L)Ft 

 
+  t: (4) 

u=1 
 

As in the case of the factor model, the "loadings" Au and the factor weights B0 are not 

uniquely identi…ed in a MAI model. Without any loss of generality, we assume that B0 = 

(Ir; Be0). We will come back to the relationship between MAI and factor models in subsection 

2.3. 

An important characteristic of the MAI model is that the linear combinations B0Yt in (3) 

have a closed form V AR(p) representation, while in general when Yt follows an unrestricted 

V AR linear combinations of Yt are complicated V ARM A processes, see e.g. Lütkepohl 

(2007). To see this, it is su¢cient to pre-multiply by B0 both sides of equation (2) and use 

(3) to get: 
p 

Ft = B0 

X 
AuFt u + B0 t = C(L)Ft + ut; (5) 

u=1 

with C(L) = B0A(L) = B0A1L + B0A2L2 + : : : : + B0ApLp and with ut = B0 t being an 

1 More general reduced rank models are considered in Section 2.4. Error correction models for cointegrated 

variables are also a special class of reduced rank models, see e.g. Johansen (1995) and Koop et al. (2006) in, 

respectively, classical and Bayesian contexts. See also George et al. (2005) for a Bayesian stochastic search 

approach to selecting restrictions for VAR models. 
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i.i.d. Gaussian process with mean zero and variance   = B0  B0 . 

 
2.2 Moving average representations 

In order to use the MAI model for structural impulse response analysis, we need to derive 

its moving average (MA) representation. We consider three alternative representations. 

Inverting equation (2), under the weak stationarity assumption, provides a …rst moving 

average representation: 

Yt = (I    A(L)B0)  1 
t: (6) 

From this expression it is easy to derive optimal forecasts and impulse response functions 

by using standard techniques, see e.g. Lütkepohl (1990, 2007). 

A second moving average representation is: 

 
Yt = (A(L)(I    B0A(L)) 1B0 + I) t: (7) 

 
This expression is obtained by …rst deriving the moving average representation for Ft from 

equation (5): 

Ft = (I   C(L)) 1ut = (I   B0A(L)) 1B0 t; (8) 

and then inserting it into equation (4). The two alternative moving average representations 

for Yt in (6) and (7) are of course equivalent: 

(I    A(L)B0) 1 = A(L)(I    B0A(L)) 1B0 + I: (9) 

 
A third moving average representation is particularly convenient for structural analysis. 

Let us introduce the (N     r)     N full row rank matrix B0?  that is orthogonal to B0, i.e. 
B0B0

 = 0, such that the rank of (B0 ; B0
 ) is N. Note that B0B0

 and B0   B0
 have full 

0? 0 0? 0 0 

rank (as we assumed B0 has full row rank) and we have the following decomposition (see 

Johansen (1995, p.39), and Centoni and Cubadda (2003, p.48)):2 

 
 B0 (B0   B

0 )  1B0 + B0
 (B0   1B0 ) 1B0

   1  = I : (10) 
0 0 0? ? 0? ? N 

 

This key identity can now be inserted into the Wold representation in (7) to yield: 
 

Yt = ( B0 (B0   B
0 ) 1 + A(L)(I    B0A(L)) 1)B0 t + B0

 (B0   1B0 ) 1B0
   1  .  (11) 

0 0 0? ? 0? ? t 

 

Since B0 t = ut,    = B0   B0 , and de…ning B0         
1    =   , we have: 

0 t 
 

Yt = ( B0      1 + A(L)(I    B0A(L))  1)ut + B0
 (B0   1B0 )  1    : (12) 

0 0? ? 0? t 

 

The representation in (12) shows that each element of Yt is driven by a set of r common 

2 We are grateful to an anonymous Referee for pointing out the decomposition in (10) 
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errors, the ut that are the drivers of the factors Ft, and by linear combinations of  t. Since 
 

E(ut 
0 

) = E(B0 t 
0        1B

0

 ) = 0, (13) 
t t 0? 
0 0 

E(ut  i t) = 0; E(ut  t  i) = 0; i > 0 , (14) 

 
ut and  t are uncorrelated at all leads and lags. 

The recovery of the structural shocks vt driving Ft starting from the reduced form errors 

ut can be achieved using any technique adopted in the structural VAR and structural FAVAR 

literatures, see e.g. Bernanke et al. (2005) or Eickmeier et al. (2014). For example, the 

simplest option is the Cholesky decomposition 

 
vt = P ut; (15) 

 

where P is a lower triangular matrix such that     = P  1P  10 
, which implies that vt  are 

structural shocks with V ar(vt) = P   P 0 = I. Hence, combining (15) with (12) yields 
 

Yt = ( B0      1 + A(L)(I    B0A(L)) 1)P  1vt + B0
 (B0   1B0 )  1    ; (16) 

0 0? ? 0? t 

 

from which impulse response functions can be easily computed. 

Note that, since ut = B0 t, the structural shocks vt are also related to the t errors in 

the Wold representations in (6) or (7), via the relationship vt = P B0 t. However, from 

a structural point of view, there is an important di¤erence between the representations in 

(6) or (7) and that in (12). In the former case there can be as many structural shocks 

as variables, namely N, while in (12) we are explicitly assuming that there is a reduced 

number of structural shocks, r, which drive all the factors Ft. In principle, there could be 

other N    r structural shocks that drive the (N    r) errors  t in (12), but in practice these 

are never considered in the factor literature. 

 
2.3 Relationship with factor models 

The MAI model is clearly similar to the generalized dynamic factor model of Stock and 

Watson (2002a, 2002b) and Forni et al. (2000), and even more to the parametric versions of 

these models later adopted in the structural factor augmented VAR (FAVAR) literature, e.g. 

Bernanke et al. (2005) and Doz et al. (2011). The similarities increase when the unobserv- 

able factors are estimated by static principal components, since in this case the estimated 

factors end up being linear combinations of the variables, exactly like the elements of Ft. 

Moreover, the "common component" of the MAI model, ( B0        1 + A(L)(I    B0A(L))  1)ut 

in (12), is uncorrelated at all leads and lags with the error terms B0
 (B0         

1B0
 )  1    . 

0? 0? t 

However, there are also important di¤erences between MAI and factor models. In partic- 

ular, in the MAI model only lags of the "factors" Ft a¤ect the variables while in factor models 
there can be contemporaneous e¤ects as well. Moreover, the errors B0

 (B0         
1B0

 )  1 
0? 0? t 
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in (12) can be in general correlated among themselves, while in factor models they must 

be assumed to be either uncorrelated (exact factor models) or at most admit some limited 

dependence (approximate factor models) to make sure that the idiosyncratic component is 

not confounded with the common part. This separation between common and idiosyncratic 

components also requires conditions on the loadings, ensuring that the factors a¤ect almost 

all variables (see e.g. Stock and Watson (2002a, 2002b)). 

Importantly, in the factor literature the factors are unobservable and can be consistently 

estimated only when N diverges. As we will see in the next section, within a MAI context it 

is possible to consistently estimate the factors Ft even when N is …nite (and without having 

to impose conditions on the loadings or the error terms). Furthermore, testing speci…c 

hypotheses on the factors Ft, such as equality of a factor to a speci…c economic variable, is 

much simpler in the MAI context (by imposing restrictions on B0) than in a factor context 

(see Bai and Ng (2006b)). Finally, in general, factors estimated by principal components 

do not admit an exact VAR representation (see Dufour and Stevanovic (2013)), while as is 

clear from equation (5) this is the case within the MAI model. 

Overall, with respect to the factor approach, the MAI model seems to provide an easier, 

less constrained and theoretically more consistent framework for parametric modelling of 

large datasets. 

 
2.4 Relationship with general reduced rank VARs 

The model we considered so far is a special case of a more general reduced rank speci…cation, 

which also nests the reduced rank models of, e.g., Anderson (1951) and Geweke (1996). Let 

us again consider the VAR model in (1) and, as before, assume that  (L) can be factorized 
p1 

as   (L) = A(L)B(L), where A(L) = A1L + : : : : + Ap1 L and each Au is of dimension 

N    r, u = 1; : : : ; p1.  However, we now assume a more general speci…cation for B(L), 
p2 

namely B(L) = B0 + B1L + : : : : + Bp2 L where each Bv is full rank of dimension r   N, 

v = 1; : : : ; p2. Furthermore, we have p1 + p2 = p, p1      1, p2      0. This gives the following 

more general reduced rank VAR speci…cation: 
 

p1     p2 

Yt = A(L)B(L)Yt + t = 
X X 

AuBv Yt  u v +   : (17) 
t 

u=1 v=0 
 

In this more general model, the factors or indexes are the r-dimensional vectors of 

variables: 

Ft = B(L)Yt = B0Yt + B1Yt  1 + : : : : + Bp2 Yt  p2 : (18) 

With respect to the MAI model considered so far, there is more ‡exibility in the speci…cation 

of the autoregressive matrices, which need not have all rank equal to r. For example, for 

the case p1 = 2 and p2 = 1 it is 

A(L)B(L) = (A1L + A2L2)(B0 + B1L) = A1B0L + (A1B1 + A2B0)L2 + A2B1L3, 
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t  1, t  p 

0 

0 

 

 

so that rank(A1B0)  r, rank(A2B1)   r but rank(A1B1 + A2B0) can be larger than r. 

There is also more ‡exibility in the speci…cation of the factors, compare (3) with (18). On 

the other hand, the factors no longer follow a …nite order VAR but rather a VARMA, as it 

is: 

Ft = B(L)A(L)Ft + B(L) t: (19) 

For a description of the moving average representations and estimation details of this 

model we refer the reader to the working paper version of this article, Carriero, Kapetanios 

and Marcellino (2015). We should point out that the analytical derivation the moving 

average representation corresponding to (12) for this more general model is complex even in 

the case where A(L) and B(L) are known, which, for structural analysis, gives a substantial 

computational advantage to the MAI speci…cation. We will see in the next subsection that 

a substantial simpli…cation occurs for the case p1 = 1, p2 = p   1. 

 

2.5 Relationship with multivariate reduced rank regression 

In this section we focus on another special case of the general reduced rank VAR in (17), 

which is obtained by setting p1 = 1, p2 = p  1. De…ning Xt = (Y 
0
 

: : : ; Y 
0
 
  )

0, the resulting 

model can be written as: 

 

Yt  = A1 [B0; : : : ; Bp  1 ] Xt +  t ; (20) 
N  1 N  r r Np Np  1 N  1 

 

which is a multivariate reduced rank regression. This model was studied by Anderson (1951), 

Velu et al. (1986) in a classical context and Geweke (1996) in a Bayesian context, among 

others. It is useful to compare (20) with the MAI model written as: 

 

Yt  = [A1; : : : ; Ap](Ip     B
0 

)0  Xt +  t : (21) 
N  1 N  rp rp  Np Np  1 N  1 

 

As is clear from comparison of (20) with (21), the reduced rank VAR in (20) has only one 

A1 matrix of dimension N  r and p matrices B0; : : : ; Bp  1 each of dimension r  N, while 

the MAI in (21) has p matrices A1; : : : ; Ap each of dimension N   r and only one B0 matrix 

of dimension r    N. 

The main advantage of the speci…cation in (20) is that A1  has full rank r, therefore 
it is possible to premultiply the system by the generalized inverse A+ =  (A0 A1) 1A0 , 

1 1 

and -conditional on A1- to derive a closed form posterior distribution for [B0; : : : ; Bp  1 ], 

which can then be easily simulated using a Gibbs sampling step (details can be found in 

Geweke (1996)). Instead, the matrix [A1; : : : ; Ap] appearing in the MAI in (21) is not full 

rank, which is the reason why B0 can only be simulated using a Metropolis step, as we 

will see in more details in the next Section.3  The main advantage of speci…cation (21) is 

3 Blocking the system in p di¤erent blocks and deriving conditional posteriors is also not feasible in the 

MAI model. Indeed, while the regressor matrix Ip     B0 has a block-diagonal structure, each of the blocks in 
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t=1 

 

 

that, as we have discussed in Section 2.1, premultiplication of (20) by B0 provides a VAR 

speci…cation for the factors B0Yt, while in (20) the factors do not admit a …nite order VAR 

representation. Therefore, the MAI model is more suited for structural economic analysis as 

it implies that all the variables are driven by a limited number of r ‘factors’ and their lags, 

B0yt 1; : : : ; B0yt p, which can have di¤erent e¤ects over time and across variables, and B0yt 

admits a VAR representation. Instead, in the multivariate reduced rank model the large 

set of Np factors have a changing composition over time, B0yt 1; B1yt 2; : : : ; Bp 1yt p, and 

require a large VARMA speci…cation. 

To summarize, estimation of the multivariate reduced rank model in (20) is easier than 

estimation of the MAI model in (21), but the MAI model allows to derive a …nite order VAR 

representations for a set of r factors. For these reasons, speci…cation (20) can be preferable 

when the interest is in forecasting (see e.g. Carriero, Kapetanios and Marcellino (2011) for 

an application with a large dataset), while speci…cation (20) is better suited for structural 

analysis. 

 

3 Estimation of Large MAI Models 
 
For estimation it is convenient to compactly rewrite (2) as: 

 
Yt = AZt  1 +  t; (22) 

 
where Z0

 = (F 0 : : : ; F 
0
 ) = (Y 

0
 B0 ; : : : ; Y 

0
 B0 ) = (Y 

0
 : : : ; Y 

0
 )(Ip      B

0 
),  t is a 

t  1 t  1 t  p t  1   0 t  p   0 t  1, t  p 0 

1  rp vector, and A = (A1; : : : ; Ap) is a N  rp matrix. As, for all js, Aj B0 = Aj Q 1QB0 for 

any nonsingular matrix Q, we add the identi…cation restriction B0 = (Ir; Be0). De…ning 

Y = (Y1; : : : ; YT )0, Z = (Z0; Z1; : : : ; ZT   1)0, E = ( 1; : : : ; T )0 and stacking the equations in 

(22) for t = 1; : : : ; T , we have: 

Y = ZA0 + E; (23) 
 

where E has a matricvariate normal distribution with variance (   IT ). 

 
3.1 Estimation via Maximum Likelihood 

Reinsel (1983) studied estimation of the model in (22) via Maximum Likelihood (ML). In 

particular, he showed that ML estimators can be obtained by iterating over the …rst order 

conditions of the maximization problem. The likelihood function is: 
 

 0:5T log j  j   0:5 T
 (Yt     AZt  1)0     1(Yt — AZt  1 ): (24) 

 

this matrix is equal to the same matrix B0, and this cross-equations restriction precludes the derivation of 

conditional posteriors for each of the p blocks. 
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t  1 t  1 

t = (Y ; Y 

  Z 

  

X 

 
 

For any A and B~0 the maximization with respect to    yields: 

 

 ̂ = (Y  ZA0)0(Y  ZA0)=T: (25) 

The partial derivatives with respect to A (given B~0 and   ) can be obtained by noting that 

AZt  1 = vec(Z0
 A0) = (IN     Z0

 )vec(A0), and the corresponding …rst order conditions 

are given by:  

@l 
T

 

= (IN     Zt  1)    fYt  (IN     Zt 

 

 
1)vec(A )g = 0: (26) 

@vec(A0) 
t=1 1 0 0 

  
 

The partial derivatives with respect to B~0 (given A and   ) can be obtained by noting that 
p p 0 0 j=1 A Y + 

P 
(A   Y 0

 )vec(B~ ), where Y2;t comes from partitioning Yt 

AZt  1 = 
P

 j 1;t  j j=1 j 2;t   1 0 

in the …rst r and last N  r components: Y 
0
 

0 

1;t 

0 

2;t ). The corresponding …rst order 

conditions are given by: 

 
@l 

 
 
 

T 

= 
X 

Ut 

 
 
1A0     1fYt 

 

 
— (IN 

 
 
 
 

0 t  1 

 

 
)vec(A0)g = 0; (27) 

@vec(B~0)  
t=1 

 

where Ut  1 = (Ir    Y2;t  1; : : : ; Ir    Y2;t  p). 

Reinsel (1983) suggested to solve in turn equations (25), (26) and (27) until convergence 

is achieved, and established consistency and asymptotic normality of this estimator for …xed 

N. Of course these consistency and asymptotic normality results can be coupled with the 

standard impulse response analysis for …nite dimensional VAR models to produce standard 

errors for such impulse responses (see, e.g., Section 3.7 of Lütkepohl (2007)). Also, speci…c 

hypotheses on the parameters, and in particular on B0, can be tested using likelihood ratio 

statistics. 

Reinsel’s proof of the consistency of the MLE estimator (Reinsel (1983), pp. 148-149) is 

for a …nite number of variables, and we now want to extend it to the case where N possibly 

diverges. This is undertaken in Appendix A. In particular, assuming that Assumption 3 of 

Appendix A is valid for the MAI in (2) implies Lemma 6, which in turn implies Theorems 2 

and 3. In turn, these imply the following Theorem, where k.kF denotes the Frobenius norm 

of a matrix. 

 

Theorem 1 Let Assumption 3 hold for the MAI in (2). De…ne  N 0 = (vec(A)0; vec(B)0)0
 

to be the true value of the parameters and  ̂ N  its MLE estimator. Then, 
 

  ̂
N

   

N 0
 
 

 
N 5=2 

!    
N 

p p 
 

F 
= O 

+ O 
T T 1=2 

: (28) 

 

Our rate derivations require bounds that may not be as sharp as possible. However, 

given our Monte Carlo and empirical results, where large values of N seem to lead to a 
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0 

 

 

deteriorated performance, it may be the case that this rate is close to the best possible. It is 

worth noting that similar arguments can be used to prove the properties of MLE estimators 

of the more general models of Section 2.4. 

 
3.2 Priors and Estimation via Markov Chain Monte Carlo 

In this Subsection we elicit the priors for the parameters of the MAI model in (23), de- 

rive the conditional posterior distributions, and provide an MCMC algorithm for Bayesian 

estimation. 

 
3.2.1 Priors 

The model (23) has three sets of parameters, contained respectively in the matrices A0, Be0, 

and   . We elicit a natural conjugate Normal-Inverse Wishart prior for A0 and   : 

 
A0j       N(A0;       V0);         IW (S0; v0): (29) 

This prior features a Kronecker structure that restricts somehow the way shrinkage can be 

imposed, but ensures conjugacy and dramatically improves the computational time. 

In our empirical application, the prior moments are set as follows. The prior mean of 

the coe¢cients is set to A0 = 0 (a rp    N matrix of zeros). The prior variance V0 is set to 

a diagonal rp    rp matrix: 
 

V0 =    diag(V 1; V 2; : : : ; V 
p
), (30) 

0 0 0 

 

where each V k for k = 1; : : : ; p is a r-dimensional vector with all the entries equal to 1=k2. 

This choice for the prior mean and variance of the coe¢cients re‡ects the belief that, as 

the lag order increases, lagged values of the explanatory variables become increasingly less 

informative in explaining current values of the dependent variable, in line with the tradi- 

tional Minnesota prior implementation of Doan, Litterman and Sims (1984) and Litterman 

(1986). The hyperparameter provides the overall shrinkage and it is chosen optimally by 

maximizing the marginal data density of the model over a grid (more details can be found 

below, in Section 4.2 and Section 6.1). The prior scale matrix S0 is set to a diagonal matrix 

with entries given by the sum of squared residuals resulting from least squares estimation of 

simple AR(1) models for each of the N variables, based on a pre-sample of 84 observations. 

The priors degrees of freedom are set to v0 = N + 2 to ensure that the prior on the error 

variance is as di¤use as possible while remaining proper.4 

4 Given that in the empirical application the ratio of number of observations T   to number variables N 

is quite large (about 384 to 20) it is possible to use such a di¤use prior for the error variance. However 

for completeness we have also experimented with an informative version of the prior, setting v0 = 42 and 

v0 = 84: Both of these setups produced similar posterior estimates for the VAR coe¢cients but a slightly 

inferior mixing. 
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We now consider the elicitation of priors on the matrix Be0. This matrix contains the 

weights that each variable has in the composition of each of the factors, for example the 

element in row i and column j of Be0 measures the weight variable i has in the composition of 

factor j. To set the prior on Be0 we use an auxiliary model estimated on a pre-sample. Using 

a pre-sample of 84 observations we compute r factors using principal components.5 Then 

we regress each of the factors for j = 1; : : : ; r onto each individual variable yit, i = 1; : : : ; N 

and we use the resulting point estimate and standard deviation of the regression coe¢cient 

as prior means and standard deviation for the element in row j and column i of Be0. Table 

A2 in the online Appendix contains the prior mean and standard deviations resulting from 

this prior elicitation strategy. These are the values used in our empirical applications. 

 
3.2.2 Posteriors and MCMC algorithm 

The joint posterior distribution p(A0 ; Be0; jY ) has not a known form, but it can be simu- 

lated by using a Gibbs sampler drawing in turn from the conditional posterior distributions 

p(A0 ;  jBe0; Y ) and p(Be0jA0 ;  ; Y ). 

Drawing from the conditional posterior p(A0 ;  jBe0; Y ) is straightforward. Given knowl- 

edge of Be0 and Y , the variable Zt 1 is known, and (22) is a simple multivariate regression 

model as the one described in Zellner (1973). Then, under the natural conjugate prior 

described by (29), the conditional posterior distributions are: 

A0 j  ; Be0; Y     N(A ;       V  );    jBe0; Y     IW (S ; v ); (31) 

where V   = (V  1 + Z0Z)  1, A  = V  (V  1A0 + Z0Y ), S  = S0 + Y 0Y + A0 V  1A0  A 0V    1A , and 

0 0 0  0 

v  = v0 +T . Draws from p(A0 ;  jBe0; Y ) can be easily obtained by generating a sequence of M 

draws f mgM
 from   jBe0; Y     IW (S ; v ) and then for each m drawing from A0 j  ; Be0; Y    

N(A;   m      V ), which provides the sequence fA0
m;   mgM . 

m=1 

Drawing from p(Be0jA0;  ; Y ) is less straightforward, as B0  contains restrictions and 

enters the model in a nonlinear way. To draw Be0 conditional on A0 and we use a random 

walk Metropolis step. To improve the mixing in performing this step we use multiple blocks, 

and speci…cally we draw each element in the matrix Be0 separately. Let Be0ji denote the 

element in row j and column i in the matrix Be0, and let Be0ji   denote the set of all the 

remaining elements of Be0. At iteration m, a candidate Be 
 is drawn, conditional on A0;  , 

and the remaining elements Be0ji  , using a random walk proposal: 
 

Be  m  1 

0ji = Be0ji + c t, (32) 

 
where  t is a standard Gaussian i.i.d. process and c is a scaling factor calibrated in order 

to have a rejection rate of about 65%-70%.6   The candidate draw is then accepted with 

5 The principal components estimates are appropriately rescaled in order to ensure the normalization and 

identi…cation restrictions B0 = (Ir; Be0) are satis…ed. 
6 To choose the scaling constant c, which is the standard deviation of the proposal density, we use the 
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0ji 

0ji 0ji 

p(Bem   1  e 0 

0ji 

 

 

probability ( 

 k = min 1; 

 

p(Be 
 

 

jBe0ji   ; A
0 ;   ; Y ) 

) 

. (33) 

 
If the draw is accepted then Bem

 

0ji   jB0ji  ; A ;   ; Y ) 

is set equal to the candidate Be 
 

 
 

, otherwise it is set equal 

to the previous draw Bem  1. The procedure is repeated for all the elements of Be0, i.e. for 

j = 1; : : : ; r and i = 1; : : : ; N. 

Drawing in turn from p(A0;  jBe0; Y ) and p(Be0jA0 ;  ; Y ) provides a sequence of M draws 
fA0 ;  j; Be0gM

 from the joint posterior distribution of A0 ;  ; Be0: Each draw can be then 
j m=1 

inserted into equation (16), which can be used to derive the impulse response functions for 

any horizon. 

Given that the parameters in A(L) and B0 interact nonlinearly, there is a potential 

concern about convergence if elements in either A(L) or B0 get close to 0. This potential 

problem is dramatically mitigated by the normalization choice we make for B0 (setting r 

columns and rows to an identity matrix). In Appendix B we provide a series of convergence 

checks on the draws of A(L), B0, and their product A(L)B0. The analysis provided in Ap- 

pendix B shows that the algorithm has good convergence properties and it is not a¤ected by 

problems related to the nonlinearity. A more detailed discussion of the role of normalization 

in reduced rank models can be found in Hamilton et al. (2007) and Kleibergen and van Dijk 

(1994, 1998). 

 

4 Determining the Rank 
 

4.1 Classical approach 

The matter of determining the rank of the coe¢cient matrix in reduced rank VAR models 

has been analyzed extensively in the literature. A paper by Camba-Mendez, Kapetanios, 

Smith and Weale (2003) discusses this problem in detail. There are two main approaches. 

The …rst uses information criteria. This approach simply estimates (22) for all possible 

values of r and chooses the one that minimizes an information criterion (IC) that uses the 

…t of the model penalized by a penalty term that depends on the number of free parameters 

associated with every possible value of r. Standard information criteria can be used such 

as the Akaike IC or the Bayesian IC. An attractive feature of the use of ICs is that both r 

and the number of lags can be jointly determined in a single search. 

The second approach is based on sequential testing. Starting with the null hypothesis of 

r = 1, a sequence of tests is performed. If the null hypothesis is rejected, r is augmented by 

one and the test is repeated. When the null cannot be rejected, r is adopted as the estimate 

standard deviation of the prior density for each individual coe¢cient. As described in Section 3.2.1 these 

prior densities are obtained using auxiliary univariate AR models on a pre-sample of 84 observations. We 

then set c to 4 times the prior standard deviation, as this multiple ensures the desired rejection rates for 

all the coe¢cients. The scaling-up is necessary as the prior is independent across coe¢cients and therefore 

ignores their potential correlation in the posterior distribution. 
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of the rank of each matrix Ai in (22). Here, A must be estimated in an unrestricted way, i.e. 

without imposing a given rank. Then, standard tests of rank can be used on estimates of A. 

So this approach boils down to a repeated application of a test of rank. Examples of tests 

based on this approach include Cragg and Donald (1996) and Robin and Smith (2000).7 

 
4.2 Bayesian approach 

A natural way to choose the rank of the system is to compute the marginal data density 

(MDD) as a function of the chosen r. Such density is given by: 

Z 

pr(Y ) = 

 
p(Y j )p( )d , (34) 

 

where    = (A;   ; Be0) contains all the coe¢cients of the model.  The optimal rank for the 

system is associated with the model featuring the highest data density: 

 
r = arg max pr(Y ): (35) 

r 
 

Even though the number of coe¢cients in the MAI model is large, the density pr(Y ) can 

be e¢ciently approximated numerically by using Rao-Blackwellization and the harmonic 

mean estimator proposed by Gelfand and Dey (1994), as suggested in Fuentes-Albero and 

Melosi (2013). In particular, given M simulated posterior draws fBe0gM
 , we have: 

 " 
1  

M
 1 #  1 

p̂r (Y ) = 

   
X 

M p(Y Bm
 g(Bm) m ; (36) 

m=1 j e0 )p(Be0 ) 

where g( ) is a truncated multivariate normal distribution calibrated using the moments of 

the simulated posterior draws (see Geweke (1999)) and p(Bem) is the prior distribution of 

B~0 evaluated at the posterior draw Bem. The term p(Y jBem) is the integrating constant of 
0 0 

the conditional posterior distribution p(A;   jY; Be0).  Since conditionally on Bem the model 

is a multivariate regression with a naturally conjugate prior, p(Y jBem) is available in closed 

form: 

 
T N 

 
 

 
N v0  

 

 N ( 
v0+T ) 

p(Y jBem) =     2 j(I + ZmV0Zm0) 1j 2       jS0j 2      
2 

 N ( 
v0 ) 

v  

(37) 

  jS0 + (Y  ZmA0 )0(I + ZmV0Zm0) 1(Y  ZmA0 )j  2 ; 
0 0 

 

where  N ( ) is denoting the N -variate gamma function and where the conditioning on Bem is 
implicit in the conditioning on Zm = (Zm; Zm; : : : ; Zm

 )0 because Zm0
 = (Y 

0
 : : : ; Y 

0
 )(Ip  

B~m0 
0 1 T   1 t  1 t  1, t  p 

0  ). The result (37) for a general multivariate regression dates back to Zellner (1973), and a 

7 A simple alternative to tests of rank may be the use of a sequence of LR tests for the models with 

di¤erent rank orders. However, tests of rank have well established asymptotic and …nite properties in many 

contexts, as detailed in Camba-Mendez and Kapetanios (2009), whereas the …nite sample properties of the 

sequence of LR tests is not known. 
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straightforward derivation based on theorem A.19 in Bauwens, Lubrano and Richard (2000) 

can be found in Carriero, Kapetanios, and Marcellino (2011). 

The marginal data density (36) can also be used to select the optimal lag length p and 

optimal shrinkage hyperparameter  , and we do so in our empirical applications. 

 
5 Monte Carlo Evaluation 

 
In this section we present an extensive Monte Carlo study focusing on the properties of the 

MAI model, which will be later used also in empirical applications. 

We produce arti…cial data from two alternative Data Generating Processes (DGP). We 

recall equation (1) and rewrite it as: 
 

p 

Yt = 
X 

uYt 

 
u + t;  t 

 
  i:i:d:N (0; ): (38) 

u=1 
 

The …rst DGP (DGP1) is an unrestricted VAR, so it uses (38) without imposing any fur- 

ther restrictions. The second DGP (DGP2) is the MAI, so it imposes the rank reduction 

restriction: 

 u = AuB0; (39) 

with u = 1; : : : ; p. To set up the parameters and 1; : : : ; p we use the estimates obtained 

from our empirical application (which is extensively discussed in the next Section, along 

with a description of the data).  For DGP1 we estimate (38) using a standard Bayesian 

approach,8 which provides us with the estimated values ^ and ^ 
1; : : : ; ^ 

p.9  Similarly, for 

DGP2 we estimate (38) again but this time under the restriction (39), with rank set to 

r = 3, and using the estimation approach described in Section 3.2, which provides us with 

the estimated values   and  1; : : : ;  p. 

To simulate arti…cial data from the two alternative DGPs we set     and   1; : : : ;  p 

to ^ and ^ 
1; : : : ; ^ 

p (under DGP1) or and 1; : : : ; p (under DGP2), draw 100 di¤erent 

disturbances vectors from  t  i:i:d:N (0; ^ ) and  t  i:i:d:N (0;  ), and project forward (38), 

which provides 100 di¤erent realizations of the process Yt under DGP1 and 100 di¤erent 

realizations under DGP2. 

Finally, for each of the two DGPs we estimate three alternative models: i) the MAI under 

the Bayesian approach, described in Section 3.2; ii) the MAI under the classical approach, 

described in Section 3.1; iii) an unrestricted BVAR, estimated as in the baseline speci…cation 

of Carriero, Clark, and Marcellino (2015). 

8 To save space we do not spell out the Bayesian VAR estimation details here. Our implementation follows 

Kadiyiala and Karlsson (1996) and Carriero, Clark and Marcellino (2015) to which the reader is referred for 

further details. 
9 Note that while it is true that in a large sample the unrestricted BVAR estimates would eventually 

capture a rank reduction such as the one in (39), the dimension of the system is such that this does not 

happen with the sample size we are working with. Also, we have carefully checked that the values that we 

are using in this MC experiment for DGP1 always involve full rank   1; : : : ;   p matrices. 
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To ascertain the properties of the di¤erent models under the di¤erent DGPs we fo- 

cus on the Root Mean Squared Error (RMSE) and Mean Absolute Error (M AE) arising 

from estimation of the conditional mean parameters. As the number of coe¢cients is very 

large, rather than looking at individual RMSEs and M AEs for each of the coe¢cients 

appearing in 1; : : : ; p, we focus on the average RMSE and M AEs over all the estimated 

coe¢cients. Moreover, to facilitate comparisons, for the MAI models we provide results 

in relative terms with respect to those obtained by the standard unrestricted BV AR. We 

evaluate the performance along various dimensions, considering di¤erent values for the total 

number of variables N, the number of observations T , and the system rank r. 

We start with the results obtained under DGP2, i.e. the data generating process which 

does feature rank reduction. Results are displayed in Table 1. The Table is divided into two 

panels. Panel A displays results for di¤erent combinations of sample size and cross sectional 

size, in particular N = 5; 10; 15; 20 and T = 300; 460; 720.10 Panel B displays results for …xed 

N and T (20 and 460 respectively, which are the dimensions of our empirical application) 

and for di¤erent values of the rank of the DGP, r = 1; 2; 3; 4; 5 in (39).11  The entries 

of the table show the RMSE and M AE of the MAI model estimated with the Bayesian 

and classical approaches, relative to the RMSE and M AE obtained with the unrestricted 

BV AR. Therefore, …gures below 1 signal that the M AI model is performing better than 

the BV AR benchmark. 

The Bayesian MAI performance is systematically better than the classical MAI perfor- 

mance, with gains decreasing with the sample size T but remaining very large (over 100%) 

even with T = 720. The Bayesian MAI performs also much better than BVAR, in particular 

when N=15, 20, while the classical MAI is never better than the BVAR, which suggests that 

this model is still too overparametrized to be e¤ectively handled by maximum likelihood 

estimation. 

The considerations above are still valid when looking at results for di¤erent system ranks, 

with the Bayesian MAI outperforming consistently the BVAR. Interestingly, the classical 

MAI performs better than the BVAR only for r = 1, which again points towards the idea 

that for maximum likelihood estimation to work well one needs a rather small system, while 

for larger N and r the use of the Bayesian approach is preferable. It is worth noting that 

the best RMSE is achieved by a rank of 2, while the model with rank equal to 3 (which is 

the true rank in the DGP) performs slightly worse. 

10 It should be noted that while comparing results for increasing T and …xed N involves looking at the same 

DGP estimated with an increasing number of observations, comparing results for increasing N and …xed T 

is not as straightforward. Indeed, since the DGPs are calibrated using estimates obtained in a preliminary 

step based on actual data, qualitative di¤erences in the data used for the DGP calibration enter the picture 

and should be kept in mind. Another potential di¤erence lies in the fact that the overall shrinkage for the 

Bayesian approaches is kept …xed as N increases, while in theory the shrinkage parameter should be chosen 

optimally for each cross-sectional size and typically should decrease as the number of variables decreases. 
11 Recall that the rank restriction is imposed in the preliminary estimation step that provides us with the 

values of the DGP parameters.  To obtain di¤erent ranks in the DGP it is su¢cient to impose restriction 

(39) with the desired alternative values for the rank. 
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We now turn to the results obtained under DGP1, i.e. the data generating process which 

does not feature rank reduction. Results for this case are displayed in Table 2. Looking at 

the results in panel A, the Bayesian MAI remains systematically better than classical MAI, 

with gains decreasing with the sample size T but remaining very large even with T = 720. 

As expected, the Bayesian MAI is imposing a restriction which is not true in the data so 

it underperforms the BVAR under this data generating process. However, it is interesting 

to note that the cost of the rank reduction is decreasing as the dimension of the system 

increases, being about 50% worse than the BVAR for N = 5, but only less than 20% worse 

when N = 20, a result driven by the fact that the bias gets compensated by substantial 

improvements in e¢ciency as N increases. 

Looking at results for di¤erent ranks, the Classical MAI remains systematically worse 

than the BVAR and the Bayesian MAI, and losses increase with r. With r = 1 and N = 20, 

the Bayesian MAI performs even slightly better than the BVAR in terms of RMSE (but 

not in terms of M AE). With higher r both RMSE and M AE increase, which is related to 

the increased complexity of the model. 

Overall, the Monte Carlo experiments suggest that Bayesian estimation of the MAI 

model is systematically better than classical estimation. The ranking of the MAI and full 

rank BVAR models is -as one would expect- dependent on the true DGP. However, even 

with a full rank BVAR DGP, the MAI does reasonably well, in particular when N is large 

and/or r is small. 

 

6 Empirical Applications 
 
In this section we illustrate how the MAI model can be used for structural analysis. We 

begin with describing the data and then we move on to select the optimal rank, lag length 

and shrinkage of the model. Finally, we use the selected optimal model to study some 

alternative examples of structural shocks. 

 
6.1 Data and selection of optimal model 

We use the "medium" dataset of Banbura, Giannone, Reichlin (2010, BGR), which includes 

the 20 variables listed in Table 4 and Table A1 in the online Appendix. The sample is at 

monthly frequency and we have extended it to cover the period January 1974 to December 

2013. 

Since the Monte Carlo experiments have shown that the Bayesian approach produces 

much more reliable estimates than the classical approach, we focus the discussion on the 

former, but we will provide some results for the classical MAI when we analyze the e¤ects 

of monetary policy shocks. 

Before using the model for structural analysis, we proceed to select some of its key 

features such as lag length, rank, and shrinkage hyperparameter. We consider lag lengths 
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of 1 to 13 lags, a possible rank of the system ranging from 1 to 5, and di¤erent values of the 

shrinkage hyperparameter   in the grid 
p  

2{0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1}. This 

provides a total of 455 alternative speci…cations. We estimate all these speci…cations and 

rank them according to the marginal data density computed as shown in equation (36). 

In Table 3 we provide results for the best 20 speci…cations. The …rst three columns con- 

tain the rank-lags-shrinkage combination that uniquely identi…es a speci…cation. Columns 4 

and 5 contain the MDD of the MAI and the BVAR (note that the BVAR MDD can be ob- 

tained in closed form using a formula similar to (37) and is of course insensitive to the rank). 

For reference, columns 6 and 7 contain the (average) Potential Scale Reduction Factors for 

the MAI model.12 Columns 8 and 9 contain the Bayesian Information Criterion (BIC) com- 

puted for the MAI and the BVAR.13 As is clear from the table, the best speci…cation selects 

13 lags, a rank of 3, and a shrinkage parameter 
p 

= 0:02. With this combination of rank 

and lag length the MAI features a MDD of -9444. However it is important to note that 

instead the best BVAR model is obtained by setting 13 lags and an overall shrinkage of 

0:1 (a combination not shown in the table) which produces a MDD of-8956 and a BIC of 

81.35.14
 

Having chosen the system rank to be r = 3, we further restrict the B0 matrix in order to 

identify some economically relevant factors. More precisely, we identify an output factor, a 

price factor, and a …nancial / monetary factor by imposing restrictions on the matrix B0, as 

detailed in Table 4. The resulting factors and their components are plotted in Figure A1 in 

the online Appendix. Once this set of restrictions is imposed, we compute again the marginal 

data density and …nd that its value increases from -9444 to -9380, providing support for the 

restrictions.15 Table A2 in the online Appendix shows the prior and posterior mean and 

standard deviation of the elements of the matrix B0 under this optimal speci…cation, which 

is the one we use for the structural analysis discussed in the next subsections 

 
6.2 Structural analysis 

To illustrate how to conduct empirically structural analysis using the MAI, we …rst replicate 

in the MAI context the BVAR analysis of the transmission of US monetary policy shocks 

conducted by Banbura, Giannone, and Reichlin (2010), using the N -shock MA representa- 

12 The PSRFs provide an easy diagnostic tool for the convergence of the agorithm. Values below 1.1 are 

considered an indicator of good mixing and convergence properties of the algorithm. 
13 We report the BIC purely as an overall indication of goodness of …t, since it is a widely used benchmark 

criterion. However, it is important to stress that since we are varying the prior variance, the penalty in the 

criterion should be given by the log determinant of the posterior covariance matrix rather than its asymptotic 

form of number of parameters multiplied by log sample size. The latter penalty does not account for the 

e¤ect of the prior variance on model complexity: as the prior variance tightens, the goodness-of-in-sample 

…t is reduced but the penalty is not lowered. Instead, the MDD does take into account this e¤ect (note that 

the BIC is an approximation of the MDD). Our model selection is based on the MDD. 
14 When comparing the MAI impulse responses with the BVAR impulse responses we use this optimal 

speci…cation for the BVAR. 
15 We also re-compute the optimal shrinkage and lag-length under this restricted speci…cation and the 

resulting optimal values for the shrinkage is 
p  

= 0:1 and we use this value in the empirical application. 
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tion of the MAI. Then, we assess the e¤ects of demand and supply shocks, modelling the 

same dataset but with the FAVAR-style MA representation. 

 
6.2.1 Monetary policy shock 

 

In line with the literature, the monetary policy shock is identi…ed with a Cholesky scheme 

where the federal funds rate is ordered after the slow moving variables and before the fast 

ones.16 Formally, the impulse responses are based on the representation: 
 

Yt = fA(L)[I  B0A(L)] 1B0 + Ig   1   (40) 
 

where  t  are the structural shocks and      1  is the Cholesky factor of the reduced form 

shocks t. The resulting s-period ahead response is: 

 s = A1B0   s  1 + : : : + Amin(s;p)B0   s  min(s;p); s > 0 (41) 

with   0 = fA(0)[I  B0A(0)] 1B0 + Ig    1 =     1. 

We simulate the distribution of the impulse responses using 40000 draws17 and plot the 

median responses together with the 16th and 84th quantiles in Figure 1. In Figure 1 the 

Bayesian MAI impulse responses are overlaid with those obtained with a classical estimation 

of the MAI, and with the responses obtained using the unrestricted BVAR approach of 

Banbura, Giannone, and Reichlin (2010). 

As is clear from the Figure, the impulse responses of the Bayesian MAI model (red 

solid lines) are reasonable from an economic point of view. Following an increase in the 

federal funds rate, industrial production, capacity utilization, employment, consumption 

and housing starts decline, while unemployment increases. There is a negative reaction also 

in CPI, PPI, PCE de‡ator, and earnings. Money and reserves decrease, while the exchange 

rate appreciates and the reaction of the stock market is close to zero. 

Comparing the Bayesian MAI responses to those obtained with maximum likelihood 

(black dotted lines) it emerges that while the classical and Bayesian responses are overall 

similar at short horizons, in the long run they diverge because some classical responses tend 

to explode. This behaviour of the maximum likelihood estimates is in line with the Monte 

Carlo results presented before, and points towards the conclusion that, notwithstanding the 

rank reduction, classical estimation still su¤ers from overparameterization. 

Comparing the Bayesian MAI responses to those obtained with an unrestricted BVAR 

(blue dotted lines) it emerges that the MAI model produces more reasonable responses for 

the real variables. Indeed the BVAR speci…cation of Banbura, Giannone and Reichlin (2010) 

implies a puzzling reaction for the real variables in the …rst 6 to 12 months, with variables 

16 Other approaches are of course possible, see e.g. Lanne and Lutkepohl (2008). 
17 The 40000 draws are obtained by running 2 parallel chains of 25000 draws. For each chain we retain 

20000 draws and discard the …rst 5000 for burn-in. 
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such as employment, industrial production, capacity utilization and housing starts initially 

increasing and unemployment initially decreasing after a contractionary shock, which is at 

odd with economic intuition. 

 
6.2.2 Demand and supply shocks 

 

In this subsection we analyze the e¤ects of demand and supply shocks. More precisely, 

recall that we identi…ed an output factor, a price factor, and a …nancial / monetary factor 

by imposing restrictions on the matrix B0, as detailed in Table 4. 

The s-period ahead responses on the VAR equations are based on the representation 

(16) and are: 

 s = A1   s   1 + : : : + Amin(s;p)   s   min(s;p); s > 0 (42) 

with   0 = f B0     1 + A(0)[I  B0A(0)] 1gP  1 =  B0 P 0. 
0 0 

We simulate the distribution of the impulse responses using 40000 draws and plot the 

median responses together with the 16th and 84th quantiles. Speci…cally, Figures 2 and 3 

show the responses of the 20 macroeconomic variables to a demand and a supply shock, 

respectively. 

The (positive) demand shock is modelled as a shock to the …rst factor. As shown in Figure 

2, all the real variables react positively, and the prices also increase. As a consequence, the 

federal funds rate increases substantially, as well as the ten year rate, with a drop in monetary 

indicators and in the stock market index and an appreciation of the e¤ective exchange rate. 

The e¤ects are generally statistically signi…cant. 

The (negative) supply shock is modelled as a shock to the second factor. As shown in 

Figure 3, all the real variables deteriorate, and all the price variables increase. The latter 

e¤ect is more marked than the former, so that there is an increase in the federal funds 

rate, though much smaller than in the case of the demand shock. The ten year rate also 

increases, and there is a drop in the monetary indicators and in the stock market index and 

a depreciation of the e¤ective exchange rate, followed by an appreciation that starts about 

one year after the shock. The e¤ects are generally statistically signi…cant, in particular at 

short horizons in the case of the fast variables. 

Overall, these empirical applications illustrate how the MAI can be easily used to conduct 

structural analysis, along the lines of either the structural VAR and BVAR approaches or 

the FAVAR methodology. 

 

7 Conclusions 
 
In this paper we addressed the issue of parameter dimensionality reduction in Vector Autore- 

gressive models (VARs) for many variables by using the Multivariate Autoregressive Index 

(MAI) model of Reinsel (1983), which imposes reduced rank restrictions on the coe¢cient 

matrices, see also Lütkepohl (2007). 
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As we are particularly interested in the use of MAI models for structural analysis, we 

derived alternative Wold representations for them. We focused on a representation that 

highlights the similarities of MAI and dynamic factor models, a competing approach to 

model large datasets, but also discussed the di¤erences in the two methods. We then 

extended the analysis to general reduced rank VARs. 

We reviewed classical estimation of the MAI model, extended the asymptotic results to 

the case of N diverging, and provided the conditional posteriors and an MCMC algorithm 

for Bayesian estimation of the model. 

We assessed the …nite sample performance of the MAI estimation methods in a Monte 

Carlo experiment. The results show that Bayesian estimation of the MAI model performs 

much better than maximum likelihood, due to the overparameterization when N is large. 

The Bayesian MAI also provides relevant gains against an unrestricted Bayesian VAR when 

the true data generating process features less than full rank in the conditional mean matrices. 

Finally, structural analysis with the MAI was illustrated with empirical applications   

on the transmission mechanism of monetary policy, and of demand and supply shocks, in a 

model that includes 20 key macroeconomic variables for the US. The results we obtained are 

sensible from an economic point of view, often more than those from unrestricted BVARs. 

Overall, the method is general, simple, and well performing. It could be also extended in 

several directions, for example to allow for non-normal errors or Markov Switching changes 

in the parameters as e.g. in, respectively, Lanne and Lütkepohl (2010) and Lanne, Lütkepohl 

and Maciejowska (2010). Hence, the MAI model is a promising tool for structural analysis 

using large datasets. 
 
 

Appendix A: Properties of MLE Estimation when N Diverges 

In this appendix we set out a framework for analyzing Maximum Likelihood estimation in 

the presence of a large dataset modelled through the use of a parametric model. We …rst 

provide a general analysis of consistency and rates of convergence for the estimator and we 

then proceed to prove Theorem 1 by verifying the conditions needed for the general result. 

Consider a random matrix of dimension T    N, Y = (Y1; :::; YT )
0 ; Yt = (y1;t; :::; yN;t)0, 

with density F (Y;  N 0) depending on a vector of parameters,  N 0 2   N       RkN N  for some 

sequence of …nite constants kN .  We assume that N is a function of T .  Let  N  be an 

arbitrary element of   N , and let L (Y; N ) = L ( N ) = F (Y; N ) = 
QT

 Ft (YtjY1:t  1;  N ) 

denote the assumed likelihood function of Y , for some p > 1, where Y1:t  1 = (Y1; :::; Yt  1)0. 

Then, l (Y; N ) = l ( N ) = log L ( N ) = 
PT

 ft (YtjY1:t  1;  N ) denotes the log-likelihood 

function where ft (YtjY1:t  1;  N ) := ft (Yt;  N ) := log Ft (YtjY1:t  1;  N ). We also de…ne the 

kN    1 score vector by 
 

T 

z (Y; N ) = z ( N ) := @l=@ N := 
X 

zt ( N ) ; 

t=p 
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! 

X X 

 

 

and the Hessian  

 1  
T

 

 

 1  
T

 

 
 
@2ft (Yt; N ) 

H (Y; N ) = H ( N ) := 
T

 
 

t=1 
Ht ( N ) := 

T
 
 

t=1 
@ N 

: 
@ 0

 

 

When l ( N ) is di¤erentiable, the MLE  ̂ N satis…es 

z  Y; ̂ N    = 0: (43) 

 
In the general analysis that follows, we assume the following set of regularity conditions: 

 

Assumption 1 (RC1) The support of F , S =  Y 2 RT   N : F (Y;  N ) > 0 , is independent 

of  N ; (RC2) F (Y; N ) is twice continuously di¤erentiable with respect to  N ; (RC3) The 
matrix J ( N ) := E  

@
 

log F (Y; N )   has …nite elements and is negative de…nite at = . 
@ N @ 0

 N N 0 

 

We …rst consider consistency of MLE estimation. We make the additional assumption: 

 
Assumption 2 (C1) F (Y; ) is continuous w.r.t.  ; (C2)   N is a compact subset of RkN N 

for all N; (C3)   N 0 lies on the interior of    N  and is the unique maximizer of El ( N ) over 

 N . In other words, 

  ( N ) := El ( N 0)  El ( N ) > 0 (44) 

for all  N 2   n f N 0g; (C4) l ( N ) satis…es a uniform law of large numbers over   N : 
 

T 
max 

  1  X 
[f  (Y  Y ; ) Ef (Y  Y   ; )]

 
 0 as T : (45)   

 N 2  N   T 
t 

t=p 

tj 1:t  1 N 0 t tj 1:t 1 N 0 !p ! 1 

 

Theorem 2 (Consistency)  Under (C1)-(C4), 
 

  ̂
N

 
  

  
N 0

 
p 

  0  as  T ! 1: 

 

Proof. For arbitrary   > 0, consider an open neighborhood around  N 0 of radius  : 

 
N ( ) := f N 2   N : k N     N 0k <  g : 

 
Both N ( ) and its complement 

 

N ( ) = f N 2   N : k N     N 0k     g 

 
are subsets of N which, in turn, is a subset of RkN N . It is easy to see that N ( ) is an 

open set, so N ( ) is a closed set. N ( ) is also bounded, since it is a subset of the bounded 

set  N (see (C2)). We conclude that N ( ) is a closed and bounded subset of RkN , so N ( ) 

is compact by the Heine-Borel theorem. Since, by (C1), El (Y;  N ) is a continuous function 

2 
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N     E N   

) 

1   

Y 

  " 

 
 
 

  

w.r.t.  N , the maximizer of El (Y; N ) over N ( ) belongs to N ( ): denoting this maximizer 
 

 

by   N , we conclude that there exists   N 2 N ( ) satisfying 

El (Y;   N )    El (Y;  N ) for all  N 2 N ( ): (46) 

We next note that (45) is equivalent to the event 
 

   
1 " 

  
A (") := ! : max 

       
l (Y (!);     ) [l (Y (!);     )]   

  
< 

 N 2  N        T 2 

occurring with probability tending to 1 for arbitrary " > 0, i.e., limT !1 P (A (")) = 1. If 

we can show the inequality 

 n 
P (A ("))   P ! : ̂ N (!) 2 N (  

o 
 ; (47) 

for arbitrary  > 0 and some " > 0, consistency of ̂ N will follow immediately since 

o n o  

P  
n
! : ̂ N (!) 2 N ( ) = P ! :   ̂ N (!)  N 0   < ; 

and the right hand side tends to 1 as T ! 1 as P (A (")) ! 1 for arbitrary " > 0.  It 

remains to show (47). Using the identity jxj < r , r < x < r, we obtain for all  N 2   N : 
( 

E  1 l (Y (!); N )   
" < 1 l (Y (!); N ) 

! 2 A (") ) T
 2 T    1 " (48) 

T l (Y (!);  N ) < E T l (Y (!);  N ) + 2 : 

Since  N 0 2  N and  ̂N 2  N (by compactness of   N and continuity of the log-likelihood) 

(48) will apply for  N  =  N 0 for the top inequality and  N  =  ̂ N  for the bottom inequal- 

ity. Since l (Y (!); N )    l 
 

 (!); ̂ N     by de…nition of the MLE, (48) implies the chain of 

inequalities 

  
1 " 1 

E l (Y (!);  N 0) 
T   

2  
<  

T 
l (Y (!);  N 0) 

1 

   
T 

l 
Y (!); ̂ N 

  
1
 

< E  l 
T 

Y (!); ̂ N + : 
2 

We conclude that 

  
1 1

 
! 2 A (") ) E l (Y (!);  N 0) 

T 
< E  l 

T 
Y (!); ̂ N + " (49) 

for arbitrary " > 0. Since (49) holds for arbitrary " > 0, we may choose 

  
1 1

 
" =   (  N ) = E l (Y (!); N 0)   E l (Y (!);  N ) 

T T 
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) 

i;m < 1; 

  

N 

  " 
1

 

  

1 1 1 

PT PT 

X   1 

  

 
 
 

 

in the notation of (44). This choice is possible since   N 2 N ( )     n f 0g so positivity of 

  (  N ) is guaranteed by (C2). Imposing the choice of " =  (  N ) in (49), we obtain 
 

  
1 1

 
! 2 A (  (  N )) ) E l (Y (!);  N ) 

T 
< E  l 

T 
Y (!); ̂ N 

) ̂ N 2=   N \ N ( )  by (46). 
 

Therefore ! 2 A (  (   N )) ) ̂ N (!) 2 N ( ), i.e. P [A (  (   N ))]     P 
h

! :  ̂ N (!) 2 N (   
i
, 

establishing (47). 

Note that in this Theorem the convergence is in terms of T but N can also tend to 

in…nity as a function of T , as long as the conditions of the Theorem are satis…ed as well. 

We next consider the rates of convergence for the MLE estimator. We de…ne the Frobenius 

norm of a matrix A as kAkF . Then we have the following Theorem. 

Theorem 3 (Rates) Under (C1)-(C4), if  (T1) E [H ( N 0)] is invertible, (T2)  ̂ N  is con- 

sistent, (T3) yi;t are strong mixing processes with mixing coe¢cients  i;m, such that 
 

1 

sup 
X  

=(2+ ) 

i m=1 
 

for some   > 0, and  
  

1  
T 

! 

(T4) sup V ar 
i 

X 
yi;t  E (yi;t) 

t=1 

= O  T  1   ; 

 

then  
  ̂

N
 

 

  

N 0
 
 

 
N 5=2 

!    
N 

p p 
 

F 
= O 

+ O 
T T 1=2 

 
 

 

Proof. Let    be a point intermediate to  ̂ N  and  N 0, i.e., 
 

k   — N 0k   
 
 ̂N     N 0

    
: 

N F 
F

 
 

Then, by a mean value expansion, we have 
 

 
  ̂

N
 

  
  

N 0
  

t 

#  1 T 
X 

t 

  
  

N 0  

 
  

F 
=   
  H 

T 
t=1 

( N ) 
z (  

T 
t=1 

) = 
  
 

F
 

   h PT
 i 1 

T
    

1  
PT   1       PT

 

T t=1 Ht ( N ) 
P 

T t=1 
zt ( N 0) T t=1 E [Ht ( N 0)] T t=1 zt ( N 0) + 

  
1
 

T t=1 E [Ht ( N 0)] 
  1  

1
 

T t=1 zt ( N 0) 
 
 
F 

  

T 

T 
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t 

PT 
  X 

P 

  
N 

  

    
i 

  
  

= 

N 

X 
N 

  

  

  

  

T   T   

   

u 

t 

 
 

 " 
1  

T
 #  1  

1  
T   

1   
T

 ! 1  
1  

T         X 
H (   ) 

X 
zt ( N 0)   

X 
E [Ht ( N 0)] 

X 
zt ( N 0)   + 

T 
t=1 

N T 
t=1 

T 
t=1 

  

  
t=1 

 
 
F 

   
1  

T
 ! 1  

1  
T 

         X 
  E [Ht ( N 0)] 

   
zt ( N 0)

 
 

T 
t=1 

T 
t=1 

F
 

 

We have 

 " 
1  

T
 

 
#  1  

1  
T 

 
  

1  
T

 

 
! 1  

1  
T         X 

H (   ) 
X 

zt ( N 0)   
X 

E [Ht ( N 0)] 
X 

zt ( N 0)
 

= 

T 
t=1 

 
 

N T 
t=1 

T 
t=1 

  
t=1 

 
 
F 

 

 0" 
1  

T
 #  1 

 
  

1  
T

 
! 1

1 

1  
T       X 

H (  ) 
X 

E [Ht ( N 0)] 
X 

zt ( N 0)
 
 

 @ 
N

   
t=1 

T 
t=1 

h 
1
 

 
i 1 

A   
t=1 

 
 
F     

T 
  

T t=1 Ht ( N ) 
    

 1        
1  

PT   1 zt ( N 0)
 
   

T t=1 E [Ht ( N 0)]    T 
t=1 F 

         2         
1 T 

  

  1    1  
PT Ht (   )   1  

PT E [Ht ( N 0)]
 

T 

T t=1 E [Ht ( N 0)] 
 

T t=1  
F

 N T t=1 
 

F 
  1  X 
  

zt ( N 0  

 
 

    1 T 
1       1 PT

 E [Ht ( N 0)]   1  
PT Ht (    )  

1 PT
 E [Ht ( N 0)]

 
 t=1 F 

T t=1 
 

F  

 T 
t=1 T t=1 

F 

          1
 
 

where the last inequality follows by, e.g., (2.15) of Berk (1974). We examine  1 PT
 E [Ht ( N 0)] , 

  
 1 

PT 
 

 1 T 

  
 1  
PT 

T t=1  
F

 
 1 

PT 

 T t=1 Ht ( N )  T 

P 
=1 E [ t ( N 0)] and  T t=1 

zt ( N 0) 
 

F
 
. By symmetry of T t=1 E [Ht ( N 0)], 

we have that 

 
   

1  
T

 

 
   

! 1
 v 

N 
         X 
  E [Ht ( N 0)] 

uX  
2 = O  

p
 N

 
(50) 

T 1  PT 

t=1 

 
 

 
F 

i=1 
t=1 E[Ht( N 0)];i 

 

where A;i denotes the i-th eigenvalue of A, in order of magnitude in absolute value, as 

long as all eigenvalues of E [H ( N 0)] are bounded away from zero, by the assumption of 

nonsingularity of E [H ( N 0)]. By consistency of  ̂
N , and twice di¤erentiability of ft it 

follows that every element of H ( ) converges, at rate T 1=2, to the respective element of 

E [H ( N 0)] uniformly over all elements. Therefore,18
 

 
T T   

 1       Ht (   )    1 X   
E [Ht ( N 0)]

 
 = Op 

  
  N   

 
 (51) 

 T 
t=1 

T 
t=1 

  
T 1=2 

 
F

 

18 Note that in (50), which only involves a population quantity, we can use our assumptions to get a sharper 

rate result than the one we use in (51), which involves the convergence of a sample quantity to its population 

counterpart. 

t 

t 

  

)
  

T 

X 

T 

T 
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t N 0
 

p 

  

  

  

   
> 

  

 

 

Further, by (T2), (T4), (C1)-(C4) and the fact that functions of mixing processes are mix- 

ing (see, e.g., Theorem 14.1 of Davidson (1994)) we have that a central limit theorem 

(such as, e.g., Theorem 18.5.3 of Ibragimov and Linnik (1971)) implies that all elements of 
 1 

PT 1=2 

T t=1 zt ( N 0) converge to zero at rate T and so, 
 T 

N 1=2 
!

 
  1 X      
  

 

 T 
t=1 

zt ( N 0)
 
 
  
 

F
 
= Op 

T 1=2 
(52) 

 

Overall, using (51), (52) and (50) and noting that, by (51) and (T1), 
 

        
1
 

 1
 
 = Op(1); 

1       1 PT
 E [Ht ( N 0)]

 
 

  
1  
PT Ht (    )  

1 PT
 E [Ht ( N 0)]

 
 

T t=1 
 

F  

 T 
t=1 T t=1 

F 

 

we have 

 
8          1 2 

9 
>     1 

PT   1  
PT 1 

PT > 

<> 
T

 t=1 E [Ht ( N 0)]  T t=1 Ht ( N )   T t=1 E [Ht ( N 0)] >=   
1         P P 

> 1 
PT 1 T 1 T > 

>: 1     T t=1 E [Ht ( N 0)] T t=1 Ht ( N ) T t=1 E [Ht ( N 0)] >; 
T 

N 5=2 
!

 
  1 X      
  
 T 

t=1 

zt ( N 0)
 
   
  = Op 

T
 

 

and   
   

1  
T

 ! 1  
1  

T 
N

 
         X 
  E [Ht ( N 0)] 

    X 
z  (  )

  
= O 

  
 

 
 

giving 

T 
t=1 

T 
t=1 T 1=2 

  ̂
N

   

N 0
 
 

 
N 5=2 

!    
N 

p p 
 

F 
= O 

+ O : 
T T 1=2 

 
 

 

Remark 4 Given the above general results, we need to prove the conditions needed for 

Theorems 2 and 3 to hold for the MAI model (22). For ease of reference, we recall the 

general VAR model 

Yt =  (L)Yt + t; 
 

and its MAI specialization 
 

p 

Yt = A(L)B0Yt + t = 
X 

AuB0Yt 

 
u +  t; (53) 

u=1 
 

We will provide results for (53) while using the relation  (L) = A(L)B0 and noting that 
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i;t 

i;m < 1; (57) 

i 

i;t 

m=1   

i;t   i;t 

 

 

straightforward extensions would make (17) also amenable to our analysis. The general 

notation introduced in this Appendix for the MLE estimation will apply for the parametric 

reduced rank model with the obvious adjustments. In particular, we consider the concentrated 

likelihood as presented in page 147 of Reinsel (1983) and therefore N = (vec(A)0; vec(B)0)0 

where A = (A1; :::; Ap). 

 

We make the following assumption: 

 
Assumption 3 (i) All roots of (L) are bounded away from the unit circle uniformly over 

N. (ii) t is an i.i.d. sequence, which has a continuous, twice di¤erentiable and bounded 

probability density function and …nite 2 +  moments for some  > 0 and (iii) E [H ( N 0)] 

is invertible. 

 
Remark 5 Assumption 3 ensures that Assumption 1 and Assumption 2 (i)-(iii) hold. There- 

fore we only need to prove Assumption 2 (iv) and Condition (T2) of Theorem 3. This result 

is provided by Lemma 6. 

 

Lemma 6 Under Assumption 3 and if N = o T 1=2  the following hold: 
 

  
1  

T 
! 

sup V ar 
i 

X 
yi;t  E (yi;t) 

t=1 

= O  T  1
 

(54) 

 

and 
T 

max 

  1  X 
f  (Y  Y ;    ) Ef (Y  Y   ;    )

 
 0 as T : (55)   

 N 2  N   T 
t 

t=p 

tj 1:t  1 N t tj 1:t 1 N !p ! 1 

 

Proof. To show (54) we use Theorem 18.5.3 of Ibragimov and Linnik (1971). Then, it is 

su¢cient to prove that 

sup Ey
2+   

< 1; for some   > 0; (56) 

 
and 

i 
 

1 

sup 
X  

=(2+ ) 

i m=1 

where   i;m are the strong mixing coe¢cients of yi;t. By assumption, the eigenvalues of the 

companion form matrix obtained from  (L) are bounded away from 1 in absolute value. 

This implies that   i;m =  m,  i > 0, where supi i < 1, which implies (57) for all   > 0. 

Further, the above eigenvalue assumption implies that supi Ey2
 < 1, which implies that 

supi 

P1
 

2 
i;m < 1, where  i;m are the coe¢cients of the univariate MA representation 

of yi;t. This, coupled with the Marcinkiewicz–Zygmund inequality, gives 
 

sup Ey
2+        

sup 

   
1

 

X 
2

 
i;m 

!1+ =2 

E 
2+   

< 1; (58) 
i i m=1 

T 
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— t  1 

2 

 

 

proving (56).  Using the above we now derive the properties of ft (Yi;  N ).  By the above 

analysis we have that every element of Yt  AZt  1 has …nite variance for all values of A that 

satisfy Assumption 3 (i), where Zt  1 = (Y 
0     

B0 :::; Y 
0
 

  

B0 )0. Then, for all  N 2   N , 

h 
2
i 

0; t  p   0; 

 
2 2 2 2 

E  (ft (Yt; Zt  1;  N ))   kAkF  kB0kF  sup Eyi;t  = O(N  ) 
i 

 

Then, 
 

T 
X 

ft (YtjY1:t  1;  N 0)  Eft (YtjY1:t  1;  N 0) = Op 

t=p 

 
  

NT   

 
 

1=2 

 
 

= op(1) (59) 

To prove (55) we use (59) and note that 
 

sup E N 2@l=@ N 

 
   N 2     sup kAk2

 sup kB0k2 sup Ey2
 = O(1) 

 N 2  N 
 

F
 

 N 2  N 

F 
 N 2  N 

F i;t 
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N 2@l=@ N 

 
 
 
= Op(1) 

 
F

 
 N 2  N 

Then, stochastic equicontinuity follows by Theorem (21.10) and (21.57) of Davidson (1994) 

proving (55). 

Note that the condition of Lemma 6, in terms of the relative rates of N and T , given 

by N = o T 1=2 , is milder than that of Theorem 1, as it relates to consistency, but the 

conditions of Theorem 1 also relate to the rate of convergence of the estimator. 

 

Appendix B: convergence diagnostics 
 
In this section we discuss convergence of the algorithm used in the paper. The results in 

the paper are based on 40000 draws from the simulated posterior, obtained by drawing 2 

parallel chains of 25000 draws each and discarding the …rst 5000 draws for burn-in. 

We assess convergence by looking at the Ine¢ciency Factor (IF) and the Potential Scale 

Reduction Factor (PSRF). The IF are related to the autocorrelation functions and measure 

how e¢cient the sampler is, in reference to i.i.d. sampling. An IF of 1 denotes that the 

draws produced by the algorithm are virtually i.i.d. Typically, an IF below 20 is considered 

satisfactory for an MCMC sampler. The PSRF, proposed by Gelman and Rubin (1992) is a 

measure of convergence based on the within-chain and between-chain variance of the draws. 

When the PRSF is below 1.1, this is taken as indication of convergence of the algorithm. 

Results can be found in Table A3 in the online Appendix and show that the algorithm is 

e¢cient and reaches convergence. 

1 
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the BVAR (i.e. ratios). The BVAR entries are the RMSE and MAE (levels). 

 

 

 

Table 1. MC results under the MAI DGP 

PANEL A: r=3, increasing N and T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PANEL B: N=20, T=460, increasing r 
 

 
 

RMSE 

 

r=1 
 

r=2 
 

r=3 
 

r=4 
 

r=5 

Bayesian MAI 0.50 0.41 0.43 0.47 0.51 
Classical MAI 0.87 2.10 2.93 3.41 3.38 
BVAR (benchmark) 0.012 0.010 0.010 0.010 0.012 

MAE 
Bayesian MAI 

 

0.47 

 

0.40 

 

0.43 

 

0.45 

 

0.49 

Classical MAI 0.77 1.90 2.65 3.11 3.03 
BVAR (benchmark) 0.010 0.008 0.008 0.009 0.010 

For the Bayesian and Classical MAI the entries show the average RMSE and 

average MAE (averages computed over all the estimated coefficients) relative to 

 
 
RMSE 
Bayesian MAI 

N=5 
T=300 

 
0.76 

 
T=460 

 
0.74 

 
T=720 

 
0.74 

N=10 
T=300 

 
0.74 

 
T=460 

 
0.74 

 
T=720 

 
0.74 

Classical MAI 6.23 4.75 3.64 4.69 3.56 2.70 
BVAR (benchmark) 0.009 0.010 0.009 0.011 0.011 0.011 

MAE 
Bayesian MAI 

 

0.90 

 

0.89 

 

0.88 

 

0.84 

 

0.84 

 

0.84 

Classical MAI 5.94 4.53 3.49 4.25 3.23 2.48 
BVAR (benchmark) 0.008 0.008 0.008 0.009 0.009 0.009 

 
 

RMSE 

N=15 

T=300 

 

T=460 

 

T=720 
N=20 

T=300 

 

T=460 

 

T=720 

Bayesian MAI 0.53 0.48 0.43 0.49 0.44 0.39 
Classical MAI 4.99 3.64 2.80 4.28 2.89 2.08 
BVAR (benchmark) 0.010 0.010 0.010 0.010 0.010 0.010 

MAE 
Bayesian MAI 

 

0.52 

 

0.48 

 

0.43 

 

0.48 

 

0.43 

 

0.39 

Classical MAI 4.47 3.30 2.55 3.86 2.63 1.88 
BVAR (benchmark) 0.008 0.008 0.008 0.008 0.008 0.008 

 



the BVAR (i.e. ratios). The BVAR entries are the RMSE and MAE (levels). 

Table 2. MC results under the VAR DGP 

 

 

 

 

PANEL A; r=3, increasing N and T 
 

 
 

RMSE 
Bayesian MAI 

N=5 
T=300 

 
1.45 

 

T=460 

 
1.43 

 

T=720 

 
1.51 

N=10 
T=300 

 
1.33 

 

T=460 

 
1.38 

 

T=720 

 
1.37 

Classical MAI 4.84 3.86 3.22 4.57 3.51 2.82 
BVAR (benchmark) 0.012 0.011 0.011 0.011 0.010 0.010 

MAE 
Bayesian MAI 

 

1.52 

 

1.57 

 

1.65 

 

1.38 

 

1.44 

 

1.48 

Classical MAI 4.48 3.65 3.14 4.22 3.33 2.74 
BVAR (benchmark) 0.010 0.010 0.009 0.009 0.009 0.008 

 
 

RMSE 

N=15 

T=300 

 

T=460 

 

T=720 
N=20 

T=300 

 

T=460 

 

T=720 

Bayesian MAI 1.21 1.22 1.19 1.19 1.17 1.16 
Classical MAI 5.58 3.88 2.87 4.91 3.35 2.53 
BVAR (benchmark) 0.010 0.010 0.010 0.010 0.010 0.009 

MAE 
Bayesian MAI 

 

1.25 

 

1.30 

 

1.29 

 

1.24 

 

1.26 

 

1.27 

Classical MAI 5.04 3.61 2.77 4.49 3.17 2.48 
BVAR (benchmark) 0.009 0.008 0.008 0.008 0.008 0.008 

 
 

PANEL B; N=20, T=460, increasing r 
 

 
 

RMSE 

 

r=1 
 

r=2 
 

r=3 
 

r=4 
 

r=5 
 

Bayesian MAI 0.98 1.08 1.16 1.23 1.20  

Classical MAI 2.10 2.74 3.35 4.12 4.43  

BVAR (benchmark) 0.010 0.010 0.010 0.010 0.010  

MAE 
Bayesian MAI 

 

1.13 

 

1.18 

 

1.24 

 

1.30 

 

1.29 

 

Classical MAI 1.97 2.59 3.16 3.89 4.18  

BVAR (benchmark) 0.008 0.008 0.008 0.008 0.008  

For the Bayesian and Classical MAI the entries show the average RMSE  and 
average MAE (averages computed over all the estimated coefficients) relative to 



 

 

 

Table 3. Model Selection 
 

rank lag shrinkage MDD MAI MDD BVAR PSRF A PSRF B BIC MAI BIC BVAR 
3 13 0.02 &9444.7093 &9515.2808 1.0002 1.0059 20.0427 88.6515 

1 13 0.01 &9450.9542 &9640.5519 1.0001 1.0054 12.3536 90.1107 

3 13 0.01 &9455.7154 &9640.5519 1.0001 1.0057 20.8802 90.1107 

2 13 0.02 &9459.1787 &9515.2808 1.0002 1.0064 15.9236 88.6515 
2 13 0.01 &9466.1494 &9640.5519 1.0214 1.128 16.9676 90.1107 
3 13 0.03 &9466.5513 &9381.8707 1.0002 1.0064 19.7179 87.1783 
2 13 0.03 &9473.9637 &9381.8707 1.0003 1.0068 15.6196 87.1783 
2 13 0.04 &9496.0593 &9266.832 1.0004 1.0078 15.4534 85.9316 

4 13 0.01 &9499.3865 &9640.5519 1.0099 1.0809 25.1342 90.1107 

3 13 0.04 &9508.7044 &9266.832 1.0004 1.0075 19.5049 85.9316 

4 13 0.02 &9511.0926 &9515.2808 1.0002 1.0051 24.1133 88.6515 
2 13 0.05 &9521.6541 &9174.9242 1.0004 1.0085 15.3483 84.8981 
3 10 0.02 &9543.7343 &9606.8359 1.0001 1.0055 17.4953 69.6937 
4 13 0.03 &9545.1576 &9381.8707 1.0002 1.0056 23.8075 87.1783 
3 10 0.01 &9553.7817 &9733.2675 1.0001 1.0052 18.2257 71.1452 
2 10 0.02 &9556.1981 &9606.8359 1.0002 1.0064 14.2989 69.6937 
1 10 0.01 &9562.3531 &9733.2675 1.0001 1.0053 11.8007 71.1452 
1 13 0.02 &9566.8502 &9515.2808 1.0001 1.0055 12.2667 88.6515 
2 10 0.03 &9566.8998 &9472.8706 1.0004 1.008 14.071 68.2408 
3 10 0.03 &9567.0252 &9472.8706 1.0002 1.0062 17.2419 68.2408 

The table displays the top-20 MAI specifications (in terms of MDD) we found over the total 455 

specifications we searched over. The first three columns contain the rank-lags-shrinkage combination 

that uniquely identifies a specification. Columns 4 and 5 contain the value of the Marginal Data Density 

of the MAI and the BVAR. Columns 6 and 7 contain the Potential Scale Reduction Factors for the MAI 
model, for the parameters in the matrices A and B respectively. Columns 8 and 9 contain the Bayesian 

Information Criterion for the MAI and the BVAR. 



 

 

 

Table 4. Composition of factors. 
 

 

Variable F1 F2 F3 

Employees on nonfarm payroll 1 0 0 
Average hourly earnings b_{1,2}          0 0 
Personal income b_{1,3}          0 0 
Real Consumption b_{1,4}          0 0 
Industrial Production Index b_{1,5}          0 0 
Capacity Utilization b_{1,6}          0 0 
Unemployment rate b_{1,7}          0 0 

Housing starts b_{1,8}          0 0 
CPI all items 0 1 0 
Producer Price Index (finished goods) 0 b_{2,10}        0 
Implicit price deflator for personal cons. exp. 0 b_{2,11}        0 
PPI ex food and energy 0 b_{2,12}        0 
Federal Funds, effective 0 0 1 
M1 money stock 0 0 b_{3,14} 
M2 money stock 0 0 b_{3,15} 
Total reserves of depository institutions 0 0 b_{3,16} 
Nonborrowed reserves of depository institutions 0 0 b_{3,17} 
S&P's common stock price index 0 0 b_{3,18} 
Interest rate on treasury bills, 10 year constant maturity        0 0 b_{3,19} 

Effective Echange rate 0 0 b_{3,20} 

In the table, the notation b_{j,i} denotes the element in the j-th row and i-th column of 
the matrix B0. The index j runs through different factors j=1,…,3 and the index i runs 

through different variables i=1,…,N. 
 
 

 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Impulse responses of alternative models. Responses to a permanent shock to the 

Federal Funds rate. Red solid line and green dashed lines are the median and 16%-84% quantiles 

of the Bayesian MAI impulse responses. The dotted black line represents the responses from 

the MAI computed using maximum likelihood estimation. The blue dotted line represents the 

responses computed using the unrestricted BVAR. 



 

 

 

 

 

 

 
 

 

Figure 2: Demand Shock. Responses to a permanent shock to factor 1. Red solid line and green 

dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses. 



 

 

 

 

 

 

 
 

 

Figure 3: Supply shock. Responses to a permanent shock to factor 2. Red solid line and green 

dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses. 



 

 

 

CAPTIONS TO TABLES 
-for the corresponding tables, open the xls file. 

 
 

Table 1 
For the Bayesian and Classical MAI the entries show the average RMSE and average MAE 

(averages computed over all the estimated coefficients) relative to the BVAR (i.e. ratios). 
The BVAR entries are the RMSE and MAE (levels). 

 
Table 2 
For the Bayesian and Classical MAI the entries show the average RMSE and average MAE 

(averages computed over all the estimated coefficients) relative to the BVAR (i.e. ratios). 
The BVAR entries are the RMSE and MAE (levels). 

 
Table 3 
The table displays the top-20 MAI specifications (in terms of MDD) we found over the 

total 455 specifications we searched over. The first three columns contain the rank-lags- 
shrinkage combination that uniquely identifies a specification. Columns 4 and 5 contain 

the value of the Marginal Data Density of the MAI and the BVAR. Columns 6 and 7 contain 

the Potential Scale Reduction Factors for the MAI model, for the parameters in the 

matrices A and B respectively. Columns 8 and 9 contain the Bayesian Information 

Criterion for the MAI and the BVAR. 
 
 

Table 4 
In the table, the notation b_{j,i} denotes the element in the j-th row and i-th column of the 

matrix B0. The index j runs through different factors j=1,…,3 and the index i runs through 

different variables i=1,…,N. 


