
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

AccaSim: a customizable workload management simulator for job dispatching research in HPC systems /
Galleguillos C.; Kiziltan Z.; Netti A.; Soto R.. - In: CLUSTER COMPUTING. - ISSN 1386-7857. - ELETTRONICO.
- 23:(2020), pp. 107-122. [10.1007/s10586-019-02905-5]

Published Version:

AccaSim: a customizable workload management simulator for job dispatching research in HPC systems

Published:
DOI: http://doi.org/10.1007/s10586-019-02905-5

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/714476 since: 2020-01-17

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s10586-019-02905-5
https://hdl.handle.net/11585/714476

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Galleguillos, C., Kiziltan, Z., Netti, A. et al. (2020) AccaSim: a customizable workload
management simulator for job dispatching research in HPC systems. Cluster Comput
23, 107–122.

The final published version is available online at:

https://doi.org/10.1007/s10586-019-02905-5

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/s10586-019-02905-5

AccaSim: a Customizable Workload Management Simulator
for Job Dispatching Research in HPC Systems

Cristian Galleguillos · Zeynep Kiziltan · Alessio Netti · Ricardo Soto

Abstract We present AccaSim, a simulator for work-
load management in HPC systems. Thanks to AccaSim’s
scalability to large workload datasets, support for easy
customization, and practical automated tools to aid ex-
perimentation, users can easily represent various real
HPC systems, develop novel advanced dispatchers and
evaluate them in a convenient way across different work-
load sources. AccaSim is thus an attractive tool for con-
ducting job dispatching research in HPC systems.

Keywords HPC systems, workload management
system, job dispatching problem, simulation tool,
dispatcher development, dispatcher evaluation

1 Introduction

High Performance Computing (HPC) systems have be-
come fundamental tools to solve complex, compute-
intensive, and data-intensive problems in diverse en-
gineering, business and scientific fields, enabling new
scientific discoveries, innovation of more reliable and ef-
ficient products and services, and new insights in an in-
creasingly data-dependent world. This can be witnessed
for instance in the annual reports1 of PRACE and the
recent report2 by ITIF which accounts for the impor-
tance of HPC to the global economic competitiveness.

Cristian Galleguillos · Ricardo Soto
Pontificia Universidad Católica de Valparaíso, 2362807 Val-
paraíso, Chile
E-mail: cristian.galleguillos.m@mail.pucv.cl

Cristian Galleguillos · Zeynep Kiziltan · Alessio Netti
University of Bologna, 40126 Bologna, Italy

1 http://www.prace-ri.eu/praceannualreports/
2 http://www2.itif.org/2016-high-performance-computing.

pdf

As the demand for HPC technology continues to
grow, a typical HPC system receives a large number
of variable requests (jobs) by its end users. This calls
for the efficient management of the submitted workload
and system resources. This critical task is carried out
by the Workload Management System (WMS) software
component. Central to WMS is the dispatcher which
has the key role of deciding when and on which re-
sources to execute the individual jobs by ensuring high
system utilization and performance. An optimal dis-
patching decision is a hard problem [4], and yet sub-
optimal decisions could have severe consequences, like
wasted resources and/or exceptionally delayed requests.
Efficient job dispatching in an HPC system is thus an
active research area, see for instance [9] fo r an overview.

One of the challenges of job dispatching research
is the intensive experimentation necessary for evaluat-
ing and comparing various dispatchers in a controlled
environment. The experiments differ under a range of
conditions with respect to the workload, the number
and the heterogeneity of resources, and the dispatching
algorithms. Using a real HPC system for experiments is
not realistic for the following reasons. First, researchers
may not have access to a real system. Second, it is im-
possible to modify the hardware components of a sys-
tem, and often unlikely to access its WMS for any type
of alterations. And finally, even with a real system per-
mitting modifications in its WMS, it is inconceivable to
ensure that distinct dispatchers process the same work-
load, which hinders fair comparison. Therefore, simu-
lating a WMS is essential for conducting controlled dis-
patching experiments.

The contribution of this paper is the design and im-
plementation of AccaSim, a WMS simulator developed
for job dispatching research in HPC systems. AccaSim
is an open source, freely available library for Python,

thus compatible with any major operating system, and
executable on a wide range of computers thanks to its
lightweight installation and light memory footprint. Ac-
caSim is scalable to large workload datasets and pro-
vides support for easy customization, allowing to carry
out experiments across different workload sources, re-
source types, and dispatching algorithms. Moreover, Ac-
caSim enables users to develop novel advanced dispatch-
ers by exploiting information regarding the current sys-
tem status, which can be extended for including cus-
tom behaviors such as power and energy consumption
and failures of resources. Furthermore, AccaSim aids
users in their experiments via automated tools to gen-
erate synthetic workload datasets, to run simulation ex-
periments and to produce plots to evaluate dispatch-
ers. The researchers can thus use AccaSim to mimic
any real system, including those possessing heteroge-
neous resources, develop advanced dispatchers using for
instance power and energy-aware, fault-resilient algo-
rithms, and test and evaluate them in a convenient way
over a wide range of workload sources by using real
workload traces or by generating them.

This paper extends an earlier version [13] by provid-
ing three new automated tools for workload generation,
experimentation and plot generation, as well as a de-
tailed comparison to the relevant existing simulators.
In the rest of the paper, after giving the background in
Section 2 on WMS in HPC systems, we introduce the
architecture and the main features of AccaSim in Sec-
tion 3. We briefly describe AccaSim’s implementation
and customization, and show its various instantiations
in Section 4. We discuss in Section 5 the related work
and contrast AccaSim in Section 6 against the exist-
ing relevant simulators. We then present a case study
in Section 7 where we showcase AccaSim’s use in job
dispatching research. We conclude in Section 8.

2 Workload Management in HPC Systems

A WMS is an important software of an HPC system,
being the main access for the users to exploit the avail-
able resources for computing. A WMS manages user
requests and the system resources through critical ser-
vices. A user request consists of the execution of a com-
putational application over the system resources. Such
a request is referred to as job and the set of all jobs
are known as workload. The jobs are tracked by the
WMS during all their states, i.e. from their submission
time, to queuing, running, and completion. Once a job
is completed, the results are communicated to the re-
spective user. Figure 1 depicts a general scheme of a
WMS.

HPC system

System

resources

Workload management system

In
terface

Job dispatcher

Resource

manager

HPC users

User 1

User 2

User 3

User n

Job queue

Fig. 1: WMS in an HPC system.

A WMS offers distinct ways to users for job submis-
sion such as a GUI and/or a command line interface.
A submitted job includes the executable of a computa-
tional application, its respective arguments, input files,
and the resource requirements. An HPC system peri-
odically receives job submissions. Some jobs may have
the same computational application with different argu-
ments and input files, referring to the different running
conditions of the application in development, debugging
and production environments. When a job is submitted,
it is placed in a queue together with the other pending
jobs (if there are any). The time interval during which a
job remains in the queue is known as waiting time. The
queued jobs compete with each other to be executed on
limited resources.

A job dispatcher decides which jobs waiting in the
queue to run next (scheduling) and on which resources
to run them (allocation) by ensuring high system uti-
lization and performance. The dispatching decision is
generated according to a policy using the current sys-
tem status, such as the queued jobs, the running jobs
and the availability of the resources. A suboptimal dis-
patching decision could cause resource waste and/or
exceptional delays in the queue, worsening the system
performance and the perception of its users. A (near-
)optimal dispatching decision is thus a critical aspect
in a WMS.

The dispatcher periodically communicates with a re-
source manager of the WMS for obtaining the current
system status. The resource manager updates the sys-
tem status through a set of active monitors, one defined
on each resource which primarily keeps track of the re-
source availability. The WMS systematically calls the
dispatcher for the jobs in the queue. An answer means
that a set of jobs are ready for being executed. Then
the dispatching decision is processed by the resource
manager by removing the ready jobs from the queue
and sending them to their allocated resources. Once a
job starts running, the resource manager turns its state

Main data

AccaSim

Simulation

process

Simulation

process

Job submission

Job factory

Reader

Output

System

configuration

Dispatcher

Scheduler Allocator

Event manager

Resource manager

Queued

jobs
Loaded

jobs

Running

jobs

Additional data

…

Resource failures

System power

Workload

Monitoring

Results visualization

Tools

Experimentation

Workload generator

Fig. 2: AccaSim architecture.

from “queued” to “running”. The resource manager com-
monly tracks the running jobs for giving to the WMS
the ability to communicate their state to their users
through the interface, and in a more advanced setting
to (let the users) submit again their jobs in case of re-
source failures. When a job is completed, the resource
manager turns its state from “running” to “completed”
and communicates its result to the interface to be re-
trieved by the user.

3 AccaSim Architecture and Main Features

AccaSim enables to simulate the WMS of any real HPC
system with minimum effort and facilitates the study of
various issues related to dispatchers, such as feasibility,
behavior, and performance, accelerating the dispatch-
ing research process. In this section, we present the ar-
chitecture and highlight the main features of AccaSim.

AccaSim is designed as a discrete event simulator.
The simulation is guided by certain events that belong
to a real HPC system. These events are mainly col-
lected from the workload and correspond to the job
submission, starting and completion times, referred to
as Tsb, Tst and Tc, resp. The architecture of AccaSim
is depicted in Figure 2. Since there are no real users
for submitting jobs nor real resources for computation
during simulation, the first step for starting a simula-
tion is to define the synthetic system with its jobs and
resources.

Job submission. This component mimics the job sub-
mission of users. The main input data is the work-
load dataset provided in the form of a file which in-
cludes job descriptions. The default reader subcompo-
nent reads the input file in Standard Workload For-
mat (SWF)[12] and passes the parsed data to the job
factory subcomponent for creating the synthetic jobs

for simulation, keeping the information related to their
identification, submission time, duration and request of
system resources. The job factory can extend this basic
information with additional attributes for the synthetic
jobs, such as job duration estimation which is a use-
ful information for many dispatching algorithms [14].
The synthetic jobs are then mapped to the event man-
ager component, simulating the job submission process.
The main data input is customizable in the sense that
any workload dataset file can be used. This is possible
thanks to the reader which can be adapted easily to
parse any workload dataset file format. Consequently,
AccaSim can be employed with any workload source
corresponding to an existing workload dataset or to a
synthetic one produced by a workload generator.

Event manager. This is the core component of the sim-
ulator, which mimics the behavior of the synthetic jobs
and the presence of the synthetic resources, and man-
ages the coordination between the two. Differently from
a real WMS, the event manager tracks the jobs dur-
ing their artificial life-cycle by maintaining all their
possible states “loaded”, “queued”, “running” and “com-
pleted” via certain events. During simulation, at each
time point t:

– the event manager checks if t = Tsb for some jobs.
If the submission time of a job is not yet reached,
the event manager assigns the job the “loaded” state
meaning in the real context that the job has not yet
been submitted. If instead the submission time of a
job is reached, the event manager updates its status
to “queued”;

– the dispatcher component gives a dispatching deci-
sion on (the subset of) the queued jobs, assigning
them an immediate starting time. The event man-
ager reveals that t = Tst for some waiting jobs and
consequently updates their status to “running”;

– the event manager checks if t = Tc for currently
running jobs. Since these jobs were dispatched in a
previous time point, their starting and completion
times are known. The completion time of a job is
the sum of its starting time and duration, which are
known from the workload data. If the completion
time of a job is reached, the event manager updates
its status to “completed”.

The resource manager subcomponent of the event man-
ager defines the synthetic resources of the system us-
ing a system configuration file as input, and then mim-
ics their allocation and release at the job starting and
completion times. Hence, at a time point t, if a job
starts, the resource manager allocates for the job the
resources decided by the dispatcher ; and if it completes,

the resource manager releases its resources. The sys-
tem configuration file can be customized according to
the needed types of resources, which renders the sim-
ulation of a system possessing heterogeneous resources
possible.

AccaSim is designed to maintain a low consumption
of memory for scalability to large workload datasets,
therefore job loading is performed in an incremental
way, loading only the jobs that are near to be submitted
at the corresponding simulation time, as opposed to
loading them once and for all. Moreover, completed jobs
are removed from the system so as to release space in
the memory.

Dispatcher. This component, responsible for generat-
ing a dispatching decision, interacts with the event man-
ager for retrieving the current system status regarding
the queued jobs, the running jobs, and the availability
of the resources. Note that the dispatcher is not aware
of job durations. This information is known only by the
event manager to stop the jobs at their completion time
in a simulated environment. Therefore, the dispatching
decision can be solely based on job duration estimations
which are supplied as a job attribute. This has no im-
pact on the execution of jobs, which are always allowed
to run for their entire duration, despite the presence
of estimation errors. The scheduler and the allocator
subcomponents of the dispatcher are customizable ac-
cording to the algorithms of interest. Currently imple-
mented and available schedulers are: First In First Out
(FIFO), Shortest Job First (SJF), Longest Job First
(LJF) and Easy Backfilling with FIFO priority (EBF)
[36]; and allocators are: First-Fit (FF) which allocates
to the first available resource, and Best-Fit (BF) which
sorts the resources by their current load (busy resources
are preferred first), thus trying to fit as many jobs as
possible on the same resource, to decrease the fragmen-
tation of the system.

Additional data. It has been shown in the last decade
that system performance can be enhanced greatly if the
dispatchers are aware of additional information regard-
ing the current system status, such as energy and power
consumption of the resources [37,2,5,6], resource fail-
ures [22,7], and the heating/cooling conditions [35,3].
The additional data component of AccaSim provides
an interface to integrate such extra data to the sys-
tem which can then be utilized to develop and experi-
ment with advanced dispatchers which are for instance
energy and power-aware, fault-resilient and thermal-
aware. The interface lets receive the necessary data ex-
ternally from the user, make the necessary calculations
together with some input from the event manager, all

customizable according to the need, and pass back the
result to the event manager so as to transfer it to the
dispatcher.

Output. The output file contains two types of data. The
first regards the execution of the dispatching decision
for each job, such as the starting time, the comple-
tion time and its resource allocation, which gets up-
dated each time a job completes its execution. This
type of data can be utilized to contrast the quality of
the dispatching decisions from different perspectives.
An example is the effect on synthetic system resource
utilization: how many and which resources are used
in the system, and how they are distributed over the
nodes. Another example is the impact on system perfor-
mance. With the increasing trend in employing HPCs
for real-time applications which cannot tolerate delays
[26], some critical aspects of system performance are
job response times and system throughput. The sec-
ond type of output data regards the simulation process,
specifically the CPU time required by the simulation
tasks like job loading, generation of the dispatching de-
cision, and the total amount of memory used during
simulation, which gets updated at each simulation time
point. This type of data can be used, for instance, to
evaluate the performance of the simulator, as well as
the performance of the dispatchers in terms of the time
they incur for generating a decision.

Tools. The tools let users follow the simulation pro-
cess and facilitate their dispatching experimentation.
We will demonstrate their utility in Section 7. Themon-
itoring subcomponent includes the system status and
system utilization subcomponents. The system status
allows tracking the current system status, such as the
number of queued jobs, the running jobs, the completed
jobs, the availability of the resources, etc. The system
utilization instead shows in a GUI a representation of
the allocation of resources by the running jobs during
the simulation.

The results visualization subcomponent renders the
automatic generation of different types of plots for eval-
uating the quality of dispatching decisions as well as
the performance of the dispatchers. The experimenta-
tion subcomponent instead renders the automation of
complex experiments. After configuring the simulator
with a workload dataset, a system to simulate, and a set
of dispatchers, the experimentation performs a simula-
tion for each dispatcher and then produces comparative
plots through the results visualization.

When doing dispatching research with a real work-
load dataset, users could face issues such as the depen-
dency on the real system configuration which hinders

prepare_data()

DefaultWriter

start()

stop()

SystemUtilization

add_data()

exec()

AdditionalData

listen()

SystemStatus

add_newline()

WorkloadWriter

read()

parse()

DefaultReader

generate_jobs()

WorkloadGenerator

factory()

JobFactory

write_out()

Job

allocate()

release()

availability()

Resource

next()

Reader

allocate_job()

remove_job()

ResourceManager

load()

submit()

dispatch()

complete()

EventManager

allocate()

AllocatorBase

schedule()

SchedulerBase

set_files()

pre_process()

produce_plot()

PlotFactory

gen_dispatchers()

add_dispatcher()

run_simulation()

generate_plots()

Experiment

start_simulation()

Simulator

Fig. 3: AccaSim class diagram.

testing with other system configurations, the small size
of the dataset preventing scalability tests, or the un-
availability of certain data in the dataset for testing
specific cases. To tackle this, AccaSim provides a work-
load generator subcomponent which produces a syn-
thetic workload dataset. This subcomponent exploits
the data contained in a real workload dataset by mim-
icking, through statistical methods, its distributions for
job submission times, jobs resource requests, and job
durations. The generated dataset is written to a file
in the SWF format. Other file formats can as well be
considered by customizing its subcomponents.

To highlight the main features, (i) AccaSim is de-
signed to be scalable to large workload datasets; (ii) Ac-
caSim is customizable in its workload source, resource
types, and dispatching algorithms, providing maximum
flexibility in representing a WMS; (iii) AccaSim enables
users to develop novel advanced dispatchers by exploit-
ing information regarding the current system status,
which can be extended for including custom behav-
iors such as energy and power consumption and fail-
ures of the resources; (iv) Accasim provides output data
and automated tools to analyze the results, to follow
the simulation process and facilitate dispatching exper-
imentation.

4 Implementation, Customization, and
Instantiation

In this section, we briefly describe AccaSim’s imple-
mentation and customization, and show its various in-
stantiations. This not only serves to depict the internal
organization of AccaSim, but also provides evidence on
how easy it is to use and customize.

1 from accasim.base.simulator_class import Simulator
2 from accasim.base.scheduler_class import FirstInFirstOut
3 from accasim.base.allocator_class import FirstFit
4 from accasim.utils.plot_factory import PlotFactory
5
6 workload = 'workload.swf'
7 sys_cfg = 'sys_config.json'
8

9 allocator = FirstFit()
10 dispatcher = FirstInFirstOut(allocator)
11 simulator = Simulator(workload, sys_cfg, dispatcher)
12 output_file = simulator.start_simulation()
13

14 plot_factory = PlotFactory('decision', sys_cfg)
15 plot_factory.set_files(output_file, 'my_plot')
16 plot_factory.produce_plot('slowdown')

Fig. 4: A basic AccaSim instantiation.

AccaSim is implemented in Python which is an in-
terpreted, object-oriented, high-level programming lan-
guage, freely available for any major operating system,
and is widely used in academia and industry.3 All the
dependencies used by AccaSim are part of Python 3.5
and newer versions, except the matplotlib, scipy, sorted-
containters and psutil packages which can be easily in-
stalled using the pip management tool. The source code
is available under MIT License. User and API documen-
tations can be found on the AccaSim website.4 A release
version is available as a package in the PyPi repository.5

Customization is driven by the abstract classes and the
inheritance capabilities of Python. The UML class dia-
gram of the main classes is shown in Figure 3 where the
abstract classes associated to the customizable compo-
nents are highlighted in bold.

The simulator. A basic AccaSim instantiation is de-
tailed in Figure 4. A simulator object is created in line
11 by instantiating the Simulator class. It receives as
arguments a workload dataset file in, for instance, SWF,
a system configuration file in JSON format, and a dis-
patcher object, with which the synthetic system is gen-
erated and loaded with all the default features.

The workload dataset file is handled by an imple-
mentation of the abstract Reader class, which is the
SWF-based DefaultReader by default. The file is read
and parsed by the read() and parse() methods. By im-
plementing the Reader class appropriately, AccaSim can
be customized to read any workload dataset file format
beyond SWF, or to read workloads from any source,
not necessarily from a file. The system configuration
file, which is processed by the ResourceManager class,
defines the synthetic resources. The file has two main
contents. The first specifies the resource types and their

3 https://www.python.org/events/python-events/
4 http://accasim.readthedocs.io/en/latest/
5 https://pypi.org

quantity in a node belonging to a group, which is use-
ful for modeling HPC systems possessing heterogeneous
resources. The second, instead, defines the number of
nodes of each group. See Figure 7 for an example. The
user is free to mimic any real system by customizing
this configuration file suitably.

The dispatcher object is composed by implementa-
tions of the abstract SchedulerBase and AllocatorBase
classes. Both classes must implement their main meth-
ods, schedule() and allocate() respectively, to deal with
the scheduling and the allocation decisions of the dis-
patching. This illustrative instantiation exemplifies a
specific instance of the Simulator class, using as sched-
uler the FirstInFirstOut class, which implements Sched-
ulerBase with FIFO, and as allocator the FirstFit class,
which implements AllocatorBase using FF. Both the
FirstInFirstOut and FirstFit classes are available in
the library for importing, as done in lines 2-3 of Fig-
ure 4. AccaSim can be customized in its dispatching
algorithm by implementing the abstract SchedulerBase
and AllocatorBase classes as desired.

In line 12, the start_simulation() method launches
the simulation with the following optional arguments:

simulator.start_simulation(
system_status=True,
system_utilization=True,
additional_data=None)

which serve to require the use of the system status, the
system utilization, and the additional data tools of the
simulator. The additional_data argument is an array
of objects where each object is an implementation of
the abstract AdditionalData class, giving the possibility
to customization in terms of the extra data that the
user may want to provide to the system for dispatching
purposes. After the simulation is finished, the output
data file is returned.

The last three lines in Figure 4 serve to use the au-
tomated plot generation tool. In line 14, the PlotFac-
tory class is instantiated using two arguments. The first
indicates the plot type to be produced, as a decision-
related or performance-related type. A decision-related
plot shows metrics related to the quality of the dis-
patching decision, such as the job slowdown [11] or
queue size, while a performance-related plot serves to
show metrics related to the performance of the dis-
patcher, such as the average CPU time at a simulation
time point. Examples of such plots will be shown in
Section 7. The second argument is instead the system
configuration file which is necessary for the resource
specific plots. In line 15, the output file of the simula-
tor is set to be analyzed through the set_files() method,
together with a label to be used in the plots. Finally,

5 [...]
6 from accasim.base.scheduler_class import

↪→ ShortestJobFirst
7 from accasim.experimentation.experiment import

↪→ Experiment
8

9 experiment = Experiment('my_experiment', workload,
↪→ sys_cfg)

10 sched_list = [FirstInFirstOut, ShortestJobFirst]
11 alloc_list = [FirstFit]
12 experiment.gen_dispatchers(sched_list, alloc_list)
13 experiment.run_simulation()

Fig. 5: An AccaSim instantiation using the experimen-
tation tool.

the produce_plot() method produces the desired plot
as specified in its argument.

The experimentation tool. In Figure 5, an AccaSim in-
stantiation that uses the experimentation tool is de-
tailed. The first 4 lines related to imports and assign-
ment statements are the same as lines 2, 3, 6 and 7
in Figure 4 and are therefore omitted. An experiment
object is created in line 9 by instantiating the Experi-
ment class which takes as arguments the name of the
experiment (which is used to name the output direc-
tory as well), the workload dataset file, and the sys-
tem configuration file, along with the the optional ar-
guments supported by the Simulator class. In line 12,
the dispatchers of interest are generated through the
gen_dispatchers() method, which accepts as arguments
a list of scheduler and allocator classes. In this illustra-
tive instantiation of the Experiment class, we use the
FirstInFirstOut and the ShortestJobFirst classes which
implement FIFO and SJF scheduling, as well as the
FirstFit class which implements the FF allocation. All
these classes are available in the library for importing,
as done in lines 6-7 of Figure 5. The gen_dispatchers()
method then automatically creates the dispatchers cor-
responding to all possible combinations between the
schedulers and the allocators, facilitating greatly the
conduction of experiments on large sets of dispatchers.
If users wish to experiment with a specific dispatcher,
it can be formed by instantiating the corresponding im-
plementation of SchedulerBase and then passing the ob-
ject to the add_dispatcher() method, similarly to what
we have shown in the lines 9-11 in Figure 4 when instan-
tiating the Simulator class. Finally in line 13, the exper-
iment is launched with the run_simulation() method
which performs simulations for all configured dispatch-
ers and produces all the available plots.

The workload generator tool. The workload dataset file
can refer to a real workload dataset extracted from an
HPC system, or to a synthetic one generated through

1 from accasim.experimentation.workload_generator import
↪→ WorkloadGenerator

2
3 workload = 'real_workload.swf'
4 sys_cfg = 'sys_config.json'
5 performance = {'core': 1.667}
6 request_limits = {'min': {'core': 1, 'mem': 256}, 'max': {'

↪→ core': 8, 'mem': 1024}}
7

8 gen = WorkloadGenerator(workload, sys_cfg,
↪→ performance, request_limits)

9 jobs = gen.generate_jobs(500000, 'new_workload.swf')

Fig. 6: A basic workload generator instantiation.

an external workload generator such as AccaSim’s own
workload generator tool. Figure 6 shows its basic in-
stantiation. A generator object is created in line 8 via
the WorkloadGenerator class which is available in the
library for importing, as done in line 1. It receives as
arguments a real workload dataset file to be mimicked,
a system configuration file, and variables regarding per-
formance and request limits. The performance variable
is a dictionary storing the performance of each pro-
cessing unit as a unit-value pair. The request_limits
variable instead defines the minimum and maximum
request of each resource type available in the system.
Finally, the jobs are generated in line 9 using the gen-
erate_jobs() method, which receives as arguments the
number of jobs and the name of the output file in which
the generated workload dataset is saved.

As in the case of the simulator, the input workload
dataset file is parsed by an implementation of the ab-
stract Reader class, which is DefaultReader and imple-
ments an SWF reader by default. The output file is
instead written through an implementation of the ab-
stract WorkloadWriter class, which is the SWF-based
DefaultWriter by default. Similar to the Reader, the
output file format can be customized by implement-
ing the WorkloadWriter suitably. It is also possible to
customize the job generation process via the optional
arguments of the WorkloadGenerator constructor, as
detailed in the AccaSim documentation.

5 Related Work

HPC systems have been simulated from distinct per-
spectives, for instance to model their network topolo-
gies [1,18,27] or storage systems [33,31]. There also ex-
ist simulators dealing with the duties of a WMS, as in
our work, which are mainly focused on job submission,
resource management and job dispatching.

To the best of our knowledge, the WMS simulators
most similar to AccaSim are ScSF, Batsim, and Alea.
The ScSF simulator [32] emulates a real WMS, Slurm

Workload Manager6, which is popular in many HPC
systems. In [25,34] Slurm is modified to provide syn-
thetic job submission, resource management and job
dispatching through distinct daemons which run in di-
verse virtual machines and which communicate over
RPC calls, and a dedicated simulator is implemented.
ScSF extends this simulator with automatic generation
of synthetic job descriptions based on statistical data,
but does not give the possibility to read real workload
datasets. The dependency on a specific WMS compli-
cates the customization, and together with the addi-
tional dependency on virtual Machines and MySQL,
the set up of ScSF is rather complex. Moreover, ScSF
requires a significant amount of resources in the ma-
chines where the simulation will be executed.

Batsim [10] is developed on top of the SimGrid sim-
ulation framework.7 Batsim decouples the dispatcher
from the simulator and allows it to be implemented in
any programming language, yet both the simulator’s
and the dispatcher’s source code and binaries are avail-
able only for GNU/Linux. Batsim takes as input a file in
a JSON-based format, and provides a script to translate
from SWF with which it is possible to read real work-
load datasets. However, all jobs are loaded in memory
at the beginning of simulation which can hinder the
performance when experimenting with a large number
of jobs. While users can define different resource types
as supported by SimGrid, the concept of a single node
possessing heterogeneous resources is not natively im-
plemented in the simulator. This calls for significant
effort when users wish to model a system using hetero-
geneous resources. The dispatchers need to be adapted
as well in order to take into account the new represen-
tation of a system. Similar to AccaSim, additional data
regarding the current system status can be used in Bat-
sim for instance, to model the energy consumption of
the system. The type of data, however, depends exclu-
sively on the capabilities of SimGrid. And finally, while
Batsim includes a workload generator, it is simple, use-
ful for testing purposes only, and is not intended for
dispatching research.

Alea [19] is developed on top of the GridSim simula-
tion framework.8 Job submission, resource management
and job dispatching are driven by the predefined work-
load format, resource types, and dispatchers. The im-
plementation in Java is open-source and cross-platform.
However, any customization to the simulator needs to
be done at the source code level, which can be compli-
cated and error-prone. PYSS [23,21,28] and OCS [15]
have similar characteristics to Alea, but provide less ad-

6 https://slurm.schedmd.com/
7 http://simgrid.gforge.inria.fr/
8 http://www.cloudbus.org/gridsim/

vanced WMS features as they are developed primarily
for a specific research work in dispatching. In general,
simple simulators like PYSS and OCS hinder the de-
sign of novel advanced dispatchers and their evaluation
which requires a more flexible way to represent a WMS.

In [16], an energy aware WMS simulator, called Per-
formance and Energy Aware Scheduling (PEAS) simu-
lator is described. With the main aim being to minimize
the energy consumption and to increase the through-
put of the system, PEAS uses predefined dispatchers
and workload dataset file format, and the system power
calculations are based on fixed data from SPEC bench-
mark9 considering the entire processor at its max load.
PEAS is available only as GNU/Linux binary, therefore
it is not customizable in any of these aspects.

Brennan et al. [8] define a framework for WMS simu-
lation, called Cluster Discrete Event Simulator (CDES),
which uses predefined scheduling algorithms and relies
on specific resource types. Although CDES allows read-
ing real workload datasets for job submission, it loads
all jobs in memory at the beginning of the simulation,
like Batsim does. Moreover, the implementation is not
available which prevents any form of customization.

In [17], a WMS simulator based on a discrete event
library called Omnet++10 is introduced. Similar to ScSF,
only automatically generated synthetic job descriptions
are accepted for job submission. Since Omnet++ is
primarily used for building network simulators and is
not devoted to workload management, there exist is-
sues such as the inability to consider different types of
resources as in CDES. Moreover, due to lack of docu-
mentation, it is hard to understand to what extent the
simulator is customizable.

The main issues presented in the existing WMS sim-
ulators w.r.t. to AccaSim can be summarized as com-
plex set up and need of many virtual machines and
resources, inflexibility in the workload source and re-
source types, limited support for additional data, po-
tential performance degrade with large workload datasets,
difficulty or the impossibility of the customization of
the WMS, platform restriction, and unavailable or un-
documented implementation. As AccaSim is developed
for facilitating job dispatching research in HPC sys-
tems, it is designed to be scalable to large workload
datasets and provides maximum flexibility in represent-
ing a WMS in terms of workload source, resource types,
and dispatchers. It is open-source and cross-platform,
simple to install and use, and is easy to customize via
abstract class implementations without having to touch
the source code.

9 https://www.spec.org/power_ssj2008/
10 http://www.omnetpp.org/

6 Comparison of Simulators

In this section, we contrast AccaSim with a critical at-
tention against ScSF, Batsim and Alea which are the
most similar simulators to AccaSim.

6.1 Comparison to ScSF

ScSF11 is a complex framework which needs an en-
tire testing environment for running. The environment
should have at least two real or virtual machines with
dedicated resources, enough hard disk space for the sim-
ulator and its components, and external applications
such as a database. The network connection is also a
key point in the simulation, since it is required to have
a low latency in order to maintain a fast link between its
components. We do not compare AccaSim to ScSF ex-
perimentally for the following reasons. First, the physi-
cal resources needed for experimentation with ScSF are
much more than those required by AccaSim. Second,
the processes involved in a simulation are more compli-
cated, and they are not encapsulated in a single parent
process, as in AccaSim, which hinders a fair compari-
son. For instance, there are processes that are executed
in the MySQL database or that depend on ssh con-
nections, which can affect the performance evaluation.
Third, job submission in ScSF is performed only by its
own workload generator which restricts the experiments
to the synthetic jobs generated by ScSF itself.

6.2 Comparison to Batsim and Alea

We here conduct an experimental study to compare
the performance of AccaSim to Batsim and Alea us-
ing three real workload datasets, which are freely avail-
able in SWF. The study is performed on an Ubuntu
16.04 machine with an Intel Core i7-2600 CPU, 16 GB
of RAM and a WD10EZEX HDD with 1 TB of capac-
ity. The software used for each simulator experiment
are AccaSim 1.0 with Python 3.6.5, Batsim 2.0.0 with
Batsched 1.2.0, and finally Alea 4.0 with OpenJDK
1.8.0_171 and 4 GB of max. heap size. All the scripts
used to setup and run to experiments, and to evalu-
ate their results are available on the AccaSim GitHub
repository.12

Workload datasets It is important to compare the sim-
ulators’ performance on datasets diverse in terms of
size and time span, so as to derive robust conclusions

11 http://frieda.lbl.gov/download
12 https://git.io/fhmbM

on their behavior, especially on how they scale up to
large workload datasets. The three datasets on which
the experiments are based differ in these aspects. They
range from medium-size to very large-size, and they
are created in time periods ranging from a decade ago
to recent years. The first dataset is based on a work-
load trace collected from the Seth cluster13 which was
part of the High Performance Computing Center North
of the Swedish National Infrastructure for Computing.
The dataset file is available on-line14 in SWF, and it
contains 202,871 jobs spanning through 4 years, from
July 2002 to January 2006. Seth was composed of 120
nodes, 480 cores and 120 GB of RAM in total.

The workload trace on which the second dataset is
based is collected from the RICC supercomputer [29]
which was part of RIKEN, an independent scientific re-
search and technology institution of the Japanese gov-
ernment. The dataset file is available on-line15 SWF,
and it contains 447,794 jobs spanning through 5 months,
from May 2010 to September 2010. RICC was a mas-
sively parallel cluster, which was composed of 1,024
nodes, 8192 cores and 12 TB of RAM in total.

The last workload dataset is based on a workload
trace collected from the MetaCentrum Czech National
Grid [20]. The dataset file is available on-line16 in SWF,
and it contains 5,731,100 jobs spanning through 2 years,
from Jan 2013 to Apr 2015. The MetaCentrum grid 17 is
composed of several clusters, the composition of which
has changed over the time. During the recorded period,
it was composed of 19 clusters with 495 nodes, 8412
cores and 10 TB of RAM in total.

Experimental setup Each experiment corresponds to the
simulation of one of the three workload datasets using
one of the three simulators. In order to isolate the core
actions of a simulator from external factors, such as
non-optimal dispatcher implementations, we use a dis-
patcher which rejects any submitted job. While the re-
jecting dispatcher is available in AccaSim and Batsim,
we implemented it ourselves in Alea. We evaluate the
simulators’ performance in terms of the total CPU time
required to run an experiment and memory footprint.
To do so, we use a script which sequentially runs each
experiment and repeats it 10 times as a child program
in a new process so as to obtain reliable and representa-
tive results. The script records each experiment’s start

13 https://www.hpc2n.umu.se/resources/hardware/seth
14 http://www.cs.huji.ac.il/labs/parallel/workload/l_
hpc2n/index.html
15 http://www.cs.huji.ac.il/labs/parallel/workload/l_
ricc/index.html
16 http://www.cs.huji.ac.il/labs/parallel/workload/l_
metacentrum2/index.html
17 https://metavo.metacentrum.cz/en/index.html

and ending time, and gathers the memory consumption
every 10ms by using the Python psutil library.18

Batsim19 is conveniently packaged in the Nix pack-
age manager for an easy and clean installation on any
Linux distribution with superuser privileges. Batsim
does not accept SWF in input, and instead provides
a script to convert SWF into the required format. This
script also works as a workload preprocessor which re-
moves jobs with incomplete or erroneous data. The CPU
time and memory consumption of this preprocessing
phase is not considered in the Batsim performance re-
sult. Instead in AccaSim and Alea, a similar preprocess-
ing is carried out during job submission, therefore the
corresponding CPU time and memory consumption are
included in the AccaSim and Alea performance results.

Alea20 is distributed as a Netbeans Java project in
which the entire source code is available. All depen-
dencies and a sample simulation configuration are pro-
vided. As opposed to Batsim, Alea accepts SWF in in-
put. However, Alea needs the number of expected jobs
in the simulation. Since the number of jobs in the work-
load may reduce during the preprocessing step, a mis-
match with the workload size may crash the job submis-
sion process. We indeed faced the problem with the Seth
dataset and worked around it by using a number of jobs
(200,500), obtained by trial and error, lower than the
size of the workload (202,871). Another issue in Alea
is that it includes hardcoded instructions for specific
datasets or systems which may have to be modified for
recent or custom datasets. This kind of implementation
makes Alea rather difficult to use.

Experimental results We present the results in Table 1,
where the MetaCentrum dataset is abbreviated as MC,
the total CPU time spent in an experiment is expressed
in MM:SS, and the memory usage is expressed with
its average and maximum values in MB. The reported
values of an experiment are aggregated across all the 10
iterations, and both mean (µ) and standard deviation
(σ) are shown. Across the same dataset and metric, the
best results are indicated in bold.

It is clear to see that AccaSim uses up much less
memory than the other simulators due to its incre-
mental job loading and job removal capability. This
approach is shared by Alea which shows better per-
formance than Batsim. As was discussed in Section 5,
Batsim loads in memory the preprocessed data from
the workload at the beginning of the simulation, which
clearly hinders the performance when experimenting
with a large workload dataset. As for the total CPU

18 https://pypi.org/project/psutil/
19 https://github.com/oar-team/batsim
20 https://github.com/aleasimulator/alea/

Workload Simulator
AccaSim Batsim Alea

Seth

Total time µ 00:15 00:34 00:15
(MM:SS) σ 0.2 0.5 0.5

Mem. Avg. µ 18 596 161

(MB)
σ 0.1 2.5 5.4

Max. µ 18 964 209
σ 0.1 0.2 23.7

RICC

Total time µ 00:27 01:03 00:24
(MM:SS) σ 0.5 0.7 0.2

Mem. Avg. µ 21 1,220 162

(MB)
σ 0.1 5.4 5.6

Max. µ 26 2,072 272
σ 0.1 0.1 52.3

MC

Total time µ 06:23 29:29 09:08
(MM:SS) σ 4.1 14.2 3.7

Mem. Avg. µ 19 12,647 195

(MB)
σ 0.1 137.2 17.4

Max. µ 19 15,431 1,165
σ 0.2 6.7 234.4

Table 1: Performance comparison of AccaSim, Batsim
and Alea.

time, AccaSim and Alea show competitive results. De-
spite AccaSim’s more general and costly approach in
creating synthetic jobs that can have additional at-
tributes with respect to Alea, the results are close with
the medium-size Seth and large-size RICC datasets. Ac-
caSim shows the best results with the very large-size
MetaCentrum dataset. Batsim’s performance worsens,
as the workload size increases. This can be explained by
its high memory consumption. In general, when an ap-
plication requires high amount of memory, the OS has
to employ auxiliary data structures at the expense of
reduced performance. In addition, Batsim is not opti-
mized for fixed-length job execution models, but rather
for models which take into account network and CPU
contention.

We can conclude that, Accasim is scalable to large
workload datasets, and overall it performs much better
than the similar simulators Batsim and Alea.

7 Case Study

In this section, we present a case study to illustrate’s
AccaSim use in job dispatching research. We here focus
primarily on dispatcher evaluation and synthetic work-
load generation. AccaSim can as well be used to develop
advanced dispatchers, see [14] for an example. We leave
further examples of dispatcher development in AccaSim
to future work.

The experimental study conducted in this section
is performed on a CentOS 7.3 machine with two Intel
Xeon E5-2630 v3 CPUs, 128GB of RAM, using Python
3.6.5 and Accasim 1.0. All the scripts used to setup and

{
"system_name": "Seth − HPC2N",
"start_time": 1027839845,
"equivalence": {

"processor": {
"core": 2

}
},
"groups": {

"g0": {
"core": 4,
"mem": 1000000

}
},
"resources": {

"g0": 120
}

}

Fig. 7: System configuration of Seth.

run the experiments, and to evaluate their results are
available on the AccaSim GitHub repository. 21

7.1 Experimental setup for dispatcher evaluation

To conduct the experimental study regarding dispatcher
evaluation, we use the Seth dataset introduced in Sec-
tion 6, given its reasonable size for proof of concept. The
corresponding synthetic system configuration is shown
in Figure 7. Since multiple jobs can co-exist on the same
node, we consider a better representation of the system,
made of cores instead of processors. We note that Ac-
caSim can as well be used to simulate an HPC system
possessing heterogeneous resources, such as the Eurora
system, as was shown in [30].

As for dispatchers, we employ all the implemented
and available dispatchers of AccaSim which are com-
posed of all combinations between the schedulers: First
In First Out (FIFO), Shortest Job First (SJF), Longest
Job First (LJF) and Easy Backfilling with FIFO prior-
ity (EBF); and the allocators: First Fit (FF) and Best
Fit (BF). To run the experiments, we conveniently use
the experimentation tool of AccaSim, as was shown in
Figure 5. Each experiment corresponds to the simula-
tion of the Seth workload using a specific dispatcher,
and is repeated 10 times so as to obtain reliable and
representative results.

7.2 Dispatcher evaluation

Dispatchers can be evaluated and compared from differ-
ent perspectives thanks to AccaSim’s tools and output
data. In Figures 8 and 9, sample snapshots taken by
the two components of the monitoring tool at certain

21 https://git.io/fhmba

> python status-sim.py -h

Usage: status-sim.py [-h] [-usage] [-progress] [-all] [-ip

HOSTIP]

AccaSim System Status

optional arguments:

-h, --help show this help message and exit

-usage Request current virtual resource usage.

-progress Request current local progress.

-all Request all previous data.

-ip HOSTIP IP of server machine.

> python status-sim.py -all

- Current test instance: workloads/HPC2N-2002-2.2.1-cln.swf

Completion percentage: 0.97%

Current simulated time : 2002-09-19 10:59:18

Loaded 11, Queued 0, Running 19, and Finished 710 Jobs

Resource Utilization: core: 90.83%, mem: 14.61%

Real elapsed time : 12.70 secs

Fig. 8: System status.

13-09-2002 14:23:37 Time

c
o

re
 4

0
.8

3
%

m
e
m

 1
3

.1
7
%

Resource utilization

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Fig. 9: System visualization.

time points during the FIFO-FF experiment are shown.
The system status tool receives command line queries
to show a variety of information regarding the current
synthetic system status, such as the queued jobs, the
running jobs, the completed jobs, resource utilization,
the current simulation time point, as well as the total
CPU time elapsed by the simulator. The system visual-
ization tool summarizes the allocation of resources by
the running jobs each indicated with a different color,
using an estimation (such as wall-time) for job dura-
tion. The display is divided by the types of synthetic
resources. In our case study, the core and memory usage
are shown separately.

The experimentation tool automatically generates
plots to compare the dispatchers according to their ef-
fect on system utilization, job response times, system
throughput, and their performance in terms of the time

FIFO-FF FIFO-BF LJF-FF LJF-BF SJF-FF SJF-BF EBF-FF EBF-BF
Dispatching method

100

101

102

103

104

105

106

Sl
ow
do
wn

Fig. 10: Distributions for job slowdown.

FIFO-FF FIFO-BF LJF-FF LJF-BF SJF-FF SJF-BF EBF-FF EBF-BF
Dispatching method

101

102

103

Qu
eu

e
siz

e

Fig. 11: Distributions of queue size.

they incur for generating a decision. For job response
times and system throughput, two metrics are used.
The first is the job slowdown, a common indicator for
evaluating job scheduling algorithms [11], which quan-
tifies the effect of a dispatching method on the jobs
themselves and is directly perceived also by the HPC
users. The slowdown of a job j is a normalized response
time and is defined as slowdownj = (Tw,j + Tr,j)/Tr,j
where Tw,j is the waiting time and Tr,j is the duration of
job j. A job waiting more than its duration has a higher
slowdown than a job waiting less than its duration. The
second metric is the queue size, which counts the num-
ber of queued jobs at a certain dispatching time. This
metric is a measure of the effects of dispatching on the
computing system itself. The lower these two metrics
are, the better job response times and system through-
put are.

In Figures 10 and 11, we present the automatically-
generated box-and-whisker plots showing the distribu-
tions of the slowdown and the queue size for each exper-

FIFO-FFFIFO-BF LJF-FF LJF-BF SJF-FF SJF-BF EBF-FF EBF-BF

Dispatcher

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 [

m
s
]

Fig. 12: Average CPU time at a simulation time point.

iment. We can see that SJF and EBF-based dispatch-
ers achieve the best results, independently of their al-
locators probably due to the homogeneous nature of
the synthetic system. Their slowdown values are mainly
lower than the median of the FIFO and LJF-based dis-
patchers. SJF maintains overall lower slowdown values
than the others, but a higher mean than the EBF. SJF
maintains also slightly higher mean in the queue size
than the EBF. The scheduling algorithm of EBF does
not sort the jobs, like SJF, instead it tries to fit as many
jobs as possible into the system, which can explain the
best average results achieved in terms of slowdown and
queue size.

In Figure 12, we present the automatically-generated
plot which shows the average CPU time required at a
simulation time point for each dispatcher. The average
CPU time of an experiment is obtained by aggregating
the data from all its 10 iterations. The time spent in
simulation, other than generating the dispatching de-
cision, is constant (around 0.2 ms) across all the ex-
periments, and the EBF-based dispatchers spend much
more time in generating a decision than the others.
In Figure 13, we instead present the automatically-
generated plot that analyzes the scalability. Specifically,
it reports for each queue size the average CPU time
spent at a simulation time point in generating a dis-
patching decision. Also in this case, we considered the
data related to all 10 iterations of the experiments.
While all the dispatchers scale well, the EBF-based dis-
patchers require more CPU time for processing bigger
queue sizes, due to their scheduling algorithm which
tries to fit as many jobs as possible into the system.

AccaSim users are free to analyze the output data
as they wish to evaluate the dispatchers further. For
instance, to compare in more detail the dispatchers’
performance, they can extract the total usage of CPU

0 500 1000 1500 2000 2500

Queue size

0

20

40

60

80

100

T
im

e
 [

m
s
]

Fig. 13: Average CPU time at a simulation time point
to generate a dispatching decision w.r.t. queue size.

time and memory of each experiment, as reported in Ta-
ble 2. In the table, the time columns correspond to the
total CPU time spent by the simulator and the time
spent in generating the dispatching decision; whereas
the memory columns give the average and the maxi-
mum amount of memory utilized over the entire sim-
ulation time points. The reported values of an exper-
iment are aggregated across all the 10 iterations, and
both mean (µ) and standard deviation (σ) are shown.

Most of the experiments took around 8 minutes.
The exceptions are the EBF-based experiments which
require around 22 minutes because the underlying dis-
patching algorithms are computationally more inten-
sive. In accordance with Figure 12, the time spent by
the simulator, other than generating the dispatching
decision, is constant (around 40 seconds) across all the
experiments. The total CPU usage is thus highly depen-
dent on the complexity of the dispatcher. The average
memory usage is around 80MB with a peak at 86MB
across all the experiments.

Our analysis restricted to the considered dataset re-
veals that, while the EBF-based dispatchers give the
best results in terms of response times and throughput,
they are much more costly in generating a dispatching
decision. Simple dispatchers based on SJF are valid al-
ternatives with their excellent scalability and with their
comparable results in response times and throughput.

7.3 Synthetic workload datasets

In order to generate synthetic workload datasets, and
later for comparison purposes, we utilize the Seth and
RICC datasets introduced in Section 6. With each, we
generate four datasets using different configurations in
terms of resource type, processing unit performance,

Dispatcher
Time (MM:SS) Memory (MB)

Total Disp. Avg. Max.
µ σ µ σ µ σ µ σ

FIFO-FF 08:01 2.6 07:15 2.3 76 0.2 82 0.3
FIFO-BF 08:05 1.8 07:18 1.6 79 0.1 85 1.1
LJF-FF 08:13 2.4 07:24 2.1 80 0.7 86 0.9
LJF-BF 08:17 2.3 07:27 2.1 81 0.8 86 0.9
SJF-FF 07:46 2.2 07:04 2.0 82 0.8 86 0.5
SJF-BF 07:49 1.7 07:06 1.5 82 0.4 86 0.6
EBF-FF 22:24 2.9 21:41 2.7 82 0.6 85 0.7
EBF-BF 22:19 4.6 21:36 4.2 82 0.6 84 0.8

Table 2: Total CPU time and memory usage during the simulation.

and the number of jobs. The first dataset includes 50,000
jobs and a 1.5x improvement in core performance. The
second includes 100,000 jobs with double number of
nodes. The third includes 200,000 jobs, two GPU ac-
celerator cards for a quarter of the nodes with a per-
formance of 933 GFLOPS per second. Finally, the last
includes 500,000 jobs, two GPU accelerator cards for a
half of the nodes with a performance of 933 GFLOPS
per second and a 1.5x improvement in the core perfor-
mance. The improved performance and the change in
the number of nodes are relative to the system that the
workload dataset in consideration belongs to. In the fol-
lowing, we first briefly describe the generation process,
and then show the similarity between the real and the
generated datasets.

Synthetic workload dataset generation. The first aspect
to compare between a real and a synthetic workload
dataset is the job submission cycle which refers to the
job submission times and reflects the usage of the sys-
tem by its users. The cycles could be represented by
certain periods of working time to reflect better the
real usage of the system. The WorkloadGenerator cal-
culates the submission time of a job j based on a daily
cycle model proposed in [24]. In the original algorithm,
named Slot Weight Method, a day is represented by 48
slots of 30 minutes each (s). Thus, the first slot starts
at midnight, the next one at 00:30, and so on. Each
slot has a specific weight which is the ratio between the
number of jobs belonging to the time slot and the to-
tal number of jobs in the real workload dataset, which
represents a measure for selecting a slot for j. The al-
gorithm generates a random value v between 0 and 5 to
represent the maximum number of days that can elapse
between j and its predecessor, based on the statistical
distribution of the interarrival times of the real work-
load dataset. For selecting a slot, the algorithm starts
from the slot of the predecessor of j. The slots are con-
sidered as a circular list. For each considered slot, if v
is greater or equal to the slot weight, v is updated by
subtracting the slot weight. Update continues with the

next slot, otherwise, the algorithm stops and selects the
current slot. Then, the job submission time of j is cal-
culated by summing the half hours of all the surpassed
slots plus the remaining amount of v.

We modify this algorithm in two aspects so as to
assimilate a real job submission cycle. First, we mod-
ify the fixed upper-bound vmax of v to the maximum
value of the interarrival times of the dataset. Second,
we add a dynamic process that modifies vmax during
a job submission time generation. For this purpose, we
calculate the ratio between the number of the currently
generated jobs and the required jobs in three different
ways in relation to the last submitted hour, the last
submitted day, and the last submitted month. This al-
lows to keep the generation of values as similar to the
real data as possible. Then, we calculate the progress
ratio of each ratio by dividing it by the respective ra-
tios in the real data. The overall progress ratio is the
multiplication between all progress ratios (pr). Finally,
vmax is dynamically adapted at each job submission
time generation as follows:

vmax ← vmax − (vmax − s) ∗ (1− pr)

If pr = 1, the job submission time generation of the
predecessor reached the real ratios, thus for j, we use
vmax. In addition, when the real data does not include
specific months, pr has only hourly and daily ratios.

The second aspect to compare is the theoretical
computed FLOPs for each job during its execution in
the system, which depends on, among others, its dura-
tion and resource requests in terms of resource type re-
stricted to the processing units (e.g., cores, GPU, MIC,
etc.) and quantity. These features of a job are generated
in three phases. The first phase is based on an algorithm
from [24] to select the job type, serial or parallel, and
the number of requested nodes. Since this algorithm
considers a job parallel if it runs on multiple nodes, we
modify it to create parallel jobs on a single node, i.e.
when the number of required cores is greater than one.
In the second phase, the resource request is defined by

0 5 10 15 20

2

4

6
Hourly dist.

original gen-50K gen-100K gen-200K gen-500K

Mon Tue Wed Thu Fri Sat Sun

10

12

15

%
 jo
b
su
bm

iss
io
ns

Weekly dist.

Jan Mar May Jul Sep Nov
5

8

10

12 Monthly dist.

Fig. 14: Seth workload dataset.

0 5 10 15 20

2

4

6
Hourly dist.

original gen-50K gen-100K gen-200K gen-500K

Mon Tue Wed Thu Fri Sat Sun

10

15

20

%
 jo
b
su
bm

iss
io
ns

Weekly dist.

Jan Mar May Jul Sep Nov
0

10

20

30 Monthly dist.

Fig. 15: RICC workload dataset.

randomly choosing among the available resource types
and assigning them a quantity, using a uniform dis-
tribution and considering the request limits passed as
an argument during the WorkloadGenerator instantia-
tion, as shown in Figure 6. Finally, in the third phase,
the job duration is calculated as the division between
(i) a random FLOP value and (ii) the dot product of
the resource requests and their corresponding theoreti-
cal performance, multiplied by the number of required
nodes.

Comparison to the real workload datasets. Figures 14
and 15 show the the hourly, daily, monthly job submis-
sion distributions of the real and the generated work-
load datasets. The introduced modifications generate
submissions that took place mainly during the work-
ing hours, weekdays, and working months, resulting in
a more realistic scenario. The generated datasets look
very similar to the real datasets, except in the case

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
GFLOPs 1e7

10−2

10−1

100

101

102

%
 o
f j
ob

s

original
gen-50K
gen-100K
gen-200K
gen-500K

Fig. 16: Seth workload dataset.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
GFLOPs 1e10

10−3

10−2

10−1

100

101

102
%
 o
f j
ob

s
original
gen-50K
gen-100K
gen-200K
gen-500K

Fig. 17: RICC workload dataset.

of the monthly distribution of the RICC dataset. The
reason is that the RICC job submissions span to five
months, not to an entire year.

Figures 16 and 17 show the distributions of the com-
puted theoretical FLOPS, here represented in GFLOPS,
between the real and the generated workload datasets.
We observe a similar pattern also here. The usage of
the FLOPS calculation for the generation of the jobs’
features allows maintaining a distribution similar to the
real workload dataset, independent of the configuration
of the real system. In this way, the real dataset can be
tested with other system configurations using the gen-
erated dataset.

8 Conclusions

In this paper, we presented AccaSim, a library for sim-
ulating WMS in an HPC system, which offers to the
researchers an accessible tool to facilitate their job dis-

patching research. The library is open-source, imple-
mented in Python, which is freely available for any
major operating system, and works with dependencies
reachable in any distribution. It is executable on a wide
range of computers thanks to its lightweight installa-
tion and light memory footprint. AccaSim is scalable
to large workload datasets and provides support for
easy customization, allowing to carry out experiments
across different workload sources, resource types, and
dispatching algorithms. Moreover, AccaSim enables users
to develop novel advanced dispatchers by exploiting in-
formation regarding the current system status, which
can be extended for including custom behaviors such
as energy and power consumption and failures of the
resources. Last but not least, AccaSim aids users in
their experiments via automated tools to generate syn-
thetic workload datasets, to run the simulation exper-
iments and to produce plots to evaluate dispatchers.
The researchers can thus use AccaSim to mimic any
real system, including those possessing heterogeneous
resources, develop advanced dispatchers using for in-
stance power and energy-aware, fault-resilient algorithms,
and test and evaluate them in a convenient way over a
wide range of workload sources by using real workload
traces or by generating them.

In order to highlight the main contributions of Ac-
caSim, we discussed the existing related simulators, pre-
sented a critical comparison to the most similar simu-
lators, and showcased AccaSim’s use in job dispatch-
ing research, specifically in dispatcher evaluation and
synthetic workload generation. In future work, we plan
to use AccaSim to develop advanced dispatchers using
power and energy-aware, fault-resilient algorithms.

Acknowledgements C. Galleguillos is supported by Postgrad-
uate Grant PUCV 2018. A. Netti is supported by a research
fellowship from the Oprecomp-Open Transprecision Computing
project. R. Soto is supported by Grant CONICYT/FONDECYT/
REGULAR/1160455. We are grateful to Åke Sandgren, Motoyoshi
Kurokawa, and the Czech National Grid Infrastructure MetaCen-
trum, for providing, respectively, the Seth, RICC and the Meta-
Centrum workload datasets. We thank Alina Sîrbu for fruitful
discussions on the work presented here. Finally, we appreciate
the precious comments of the reviewers which helped improve
the paper significantly. We especially thank Millian Poquet for
signing his review and giving us the possibility to interact during
the revision of the paper.

References

1. B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers,
and L. V. Kalé. Preliminary evaluation of a parallel trace
replay tool for HPC network simulations. In Proc. of Euro-
Par’15 Workshops, volume 9523 of LNCS, pages 417–429.
Springer, 2015.

2. A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer,
H. Huber, R. Panda, F. Thomas, and T. Wilde. A case study
of energy aware scheduling on supermuc. In Proc. of ISC’14,
volume 8488 of LNCS, pages 394–409. Springer, 2014.

3. A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. K.
Gupta. Integrating cooling awareness with thermal aware
workload placement for hpc data centers. Sustainable Com-
puting: Informatics and Systems, 1(2):134 – 150, 2011.

4. J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan. Scheduling
subject to resource constraints: classification and complexity.
Discrete Applied Mathematics, 5(1):11–24, 1983.

5. D. Bodas, J. Song, M. Rajappa, and A. Hoffman. Simple
power-aware scheduler to limit power consumption by HPC
system within a budget. In Proc. of E2SC@SC’14, pages
21–30. IEEE, 2014.

6. A. Borghesi, F. Collina, M. Lombardi, M. Milano, and
L. Benini. Power capping in high performance computing
systems. In Proc. of CP’15, volume 9255 of LNCS, pages
524–540. Springer, 2015.

7. J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. Mayo, P. P.
Pébay, D. C. Thompson, and M. Wong. Using probabilistic
characterization to reduce runtime faults in HPC systems. In
Proc. of CCGRID’08, pages 759–764. IEEE CS, 2008.

8. J. Brennan, I. Kureshi, and V. Holmes. CDES: an approach
to HPC workload modelling. In Proc. of DS-RT’14, pages
47–54. IEEE CS, 2014.

9. T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and
L. Benini. A constraint programming scheduler for heteroge-
neous high-performance computing machines. IEEE Trans.
Parallel Distrib. Syst., 27(10):2781–2794, 2016.

10. P. Dutot, M. Mercier, M. Poquet, and O. Richard. Batsim:
A realistic language-independent resources and jobs man-
agement systems simulator. In Proc. of JSSPP’16, volume
10353 of Lecture Notes in Computer Science, pages 178–197.
Springer, 2016.

11. D. G. Feitelson. Metrics for parallel job scheduling and their
convergence. In Proc. of JSSPP’01, volume 2221 of LNCS,
pages 188–206. Springer, 2001.

12. D. G. Feitelson, D. Tsafrir, and D. Krakov. Experience with
using the parallel workloads archive. J. Parallel Distrib.
Comput., 74(10):2967–2982, 2014.

13. C. Galleguillos, Z. Kiziltan, and A. Netti. Accasim: An HPC
simulator for workload management. In Proc. of CARLA’17,
volume 796 of Communications in Computer and Informa-
tion Science, pages 169–184. Springer, 2017.

14. C. Galleguillos, A. Sîrbu, Z. Kiziltan, Ö. Babaoglu, A. Borgh-
esi, and T. Bridi. Data-driven job dispatching in HPC sys-
tems. In Proc. of MOD’17, volume 10710 of Lecture Notes
in Computer Science, pages 449–461. Springer, 2017.

15. É. Gaussier, D. Glesser, V. Reis, and D. Trystram. Improv-
ing backfilling by using machine learning to predict running
times. In Proc. of SC’15, pages 64:1–64:10. ACM, 2015.

16. C. Gómez-Martín, M. A. Vega-Rodríguez, and J. L. G.
Sánchez. Performance and energy aware scheduling simu-
lator for HPC: evaluating different resource selection meth-
ods. Concurrency and Computation: Practice and Experi-
ence, 27(17):5436–5459, 2015.

17. W. B. Hurst, S. Ramaswamy, R. B. Lenin, and D. Hoffman.
Modeling and simulation of hpc systems through job schedul-
ing analysis. In Conference on Applied Research in Informa-
tion Technology. Acxiom Laboratory of Applied Research,
2010.

18. N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kalé.
Evaluating HPC networks via simulation of parallel work-
loads. In Proc. of SC’16, pages 154–165. IEEE CS, 2016.

19. D. Klusácek and H. Rudová. Alea 2: job scheduling simula-
tor. In Proc. of SimuTools’10, pages 61:1–61:10. ICST/ACM,
2010.

20. D. Klusácek, S. Tóth, and G. Podolníková. Real-life experi-
ence with major reconfiguration of job scheduling system. In
Proc. of JSSPP’15, volume 10353 of Lecture Notes in Com-
puter Science, pages 83–101. Springer, 2015.

21. J. Lelong, V. Reis, and D. Trystram. Tuning easy-backfilling
queues. In Proc. of JSSPP’17, volume 10773 of Lecture Notes
in Computer Science, pages 43–61. Springer, 2017.

22. Y. Li, P. Gujrati, Z. Lan, and X. Sun. Fault-driven re-
scheduling for improving system-level fault resilience. In
Proc. of ICPP’07, page 39. IEEE CS, 2007.

23. F. Liu and J. B. Weissman. Elastic job bundling: an adaptive
resource request strategy for large-scale parallel applications.
In Proc. of SC’15, pages 33:1–33:12. ACM, 2015.

24. U. Lublin and D. G. Feitelson. The workload on parallel
supercomputers: modeling the characteristics of rigid jobs.
J. Parallel Distrib. Comput., 63(11):1105–1122, 2003.

25. A. Lucero. Simulation of batch scheduling using real
production-ready software tools. In Proc. of IBERGRID’11,
pages 345–356. Netbiblo, 2011.

26. N. Mohamed and J. Al-Jaroodi. Real-time big data analytics:
Applications and challenges. In Proc. of HPCS’14, pages
305–310. IEEE, 2014.

27. M. Mubarak, C. D. Carothers, R. B. Ross, and P. H. Carns.
Enabling parallel simulation of large-scale HPC network sys-
tems. IEEE Trans. Parallel Distrib. Syst., 28(1):87–100,
2017.

28. P. Murali and S. Vadhiyar. Metascheduling of HPC jobs in
day-ahead electricity markets. IEEE Trans. Parallel Distrib.
Syst., 29(3):614–627, 2018.

29. M. Nakata. All about RICC: RIKEN integrated cluster of
clusters. In Proc. of ICNC’11, pages 27–29. IEEE Computer
Society, 2011.

30. A. Netti, C. Galleguillos, Z. Kiziltan, A. Sîrbu, and
Ö. Babaoglu. Heterogeneity-aware resource allocation in
HPC systems. In Proc. of ISC’18, volume 10876 of Lecture
Notes in Computer Science, pages 3–21. Springer, 2018.

31. A. Nuñez, J. Fernández, J. D. García, F. García, and J. Car-
retero. New techniques for simulating high performance MPI
applications on large storage networks. The Journal of Su-
percomputing, 51(1):40–57, 2010.

32. G. P. Rodrigo, E. Elmroth, P. Östberg, and L. Ramakrish-
nan. Scsf: A scheduling simulation framework. In Proc. of
JSSPP’17, volume 10773 of Lecture Notes in Computer Sci-
ence, pages 152–173. Springer, 2017.

33. S. Snyder, P. H. Carns, R. Latham, M. Mubarak, R. B. Ross,
C. D. Carothers, B. Behzad, H. V. T. Luu, S. Byna, and
Prabhat. Techniques for modeling large-scale HPC I/O work-
loads. In Proc. of PMBS@SC’15, pages 5:1–5:11. ACM, 2015.

34. T. Stephen and M. Benini. Using and modifying the bsc
slurm workload simulator. Technical report, Slurm User
Group Meeting, 2015.

35. Q. Tang, S. K. S. Gupta, and G. Varsamopoulos. Energy-
efficient thermal-aware task scheduling for homogeneous
high-performance computing data centers: A cyber-physical
approach. IEEE Trans. Parallel Distrib. Syst., 19(11):1458–
1472, 2008.

36. A. K. L. Wong and A. M. Goscinski. Evaluating the easy-
backfill job scheduling of static workloads on clusters. In
Proc. of CLUSTER’07. IEEE Computer Society, 2007.

37. Z. Zhou, Z. Lan, W. Tang, and N. Desai. Reducing energy
costs for IBM blue gene/p via power-aware job scheduling.
In Proc. of JSSPP’13, volume 8429 of LNCS, pages 96–115.
Springer, 2014.

