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A Cox-de Boor-type recurrence relation for C
1 multi-degree splines

Carolina Vittoria Beccaria,⇤, Giulio Casciolaa

a
Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

Multi-degree splines are piecewise functions comprised of polynomial segments of di↵erent degrees. A subclass of
such splines, that we refer to as C

1 MD-splines, is featured by arbitrary continuity between pieces of same degree
and at most C

1 continuity between pieces of di↵erent degrees. For these spline spaces a B-spline basis can be defined
by means of an integral recurrence relation, as an instance of the more general construction in [1]. In this paper, we
provide e�cient formulas for evaluating C

1 MD-splines and their derivatives, akin to the classical B-spline recurrence
relations. Furthermore we derive algorithms for geometric design, including knot insertion and local degree elevation.
Finally we demonstrate the utility of these splines, not only for geometric modeling, but also for graphical applications,
discussing in particular the advantages for modeling and storing vector images.

Keywords: Multi-Degree spline, B-spline basis recurrence relation, B-spline derivative, Geometric modeling, Vector
graphics
2010 MSC: 65D07, 65D17, 41A15, 68W25

1. Introduction

Multi-degree splines (MD-splines, for short) are piecewise polynomial functions where each piece can have dif-
ferent degree. In this way, they require less control points to represent a shape with respect to using conventional
splines (piecewise polynomial functions having pieces of the same degree). Their study was initiated in [2–4] and has
been a subject of several recent researches, with applications ranging from geometric design [1, 5–10] to isogeometric
analysis [11].

In a recent paper [1] multi-degree spline spaces are defined starting from a sequence of intervals, each associated
with a degree, and from a sequence of continuities, so as to replicate the setup of conventional splines. Consequently,
the dimension of a space, and therefore the number of control points, is unambiguously determined. Splines in these
spaces have continuity C

d�1 between pieces of same degree d and C
k between pieces of degrees di and di+1, with

k B min{di, di+1}. Moreover continuity can locally be reduced by means of multiple knots, in a similar way as for
conventional splines. The general framework in [1] comprises as special cases some previously appeared instances
of MD-splines, such as those in [6, 7]. Furthermore, the considered MD-spline spaces possess B-spline-type bases
that can be generated by an integral recurrence relation. All relations of this kind, however, are of little practical use
for evaluating a spline, due to the computational complexity of the integral formulation. To overcome this limitation,
the same work proposes another method, much more viable from a computational point of view, which consists in
determining each B-spline basis function as the solution of a small linear system. For splines in the same spaces, an
alternative evaluation algorithm, reported in [11, 12], is based on a global extraction operator that allows to e�ciently
represent each element of the multi-degree B-spline basis as a linear combination of local B-splines of di↵erent
degrees.

The evaluation of MD-splines through a Cox-de Boor-type recurrence relation has previously been studied in
[8]. The input of the algorithm consists of a sequence of knot intervals, a sequence of degrees and a control polygon.
Moreover, it is required that knot intervals be associated with either controls points or control polygon edges according
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to a degree assignment rule. The resulting splines are C
1 continuous in between intervals having di↵erent associated

degrees and C
d�1 in case of same degree d. However, for a given input configuration, the scheme might generate a

curve that does not belong to any of the spaces studied in the aforementioned works. In addition, the construction in
[8] does not allow to prescribe as input a specific continuity, lower than the maximum one, in correspondence of a
breakpoint.

In this paper, we focus on the subclass of the splines in [1] where at most C
1 continuity is allowed between

pieces of di↵erent degrees, referred to as C
1 MD-splines. Conventional splines with non-uniform knots and arbitrary

multiplicities are special instances of these splines. In fact, since the restriction to have at most C
1 continuity occurs

only at the join of pieces having di↵erent degrees, the considered splines can be interpreted as conventional splines
with local modifications, corresponding to the intervals where the degree changes. As we will see, this particular setup
makes it possible to develop simple, stable and e�cient algorithms that generalize the classical ones. In particular,
a Cox de-Boor type evaluation algorithm for C

1 MD-splines was already suggested in [1] without proof. Here we
reformulate that recurrence relation in a more concise and computationally e�cient way and prove its correctness. In
addition we provide a recurrence scheme for derivatives along with geometric design tools, such as knot insertion and
removal and local degree elevation and reduction.

Working with C
1 continuity is the standard in relevant applications, such as artistic drawing and Web design. We

demonstrate the utility of C
1 MD-splines by discussing their application in two di↵erent contexts. One is concerned

with modeling and storing images in SVG (Scalable Vector Graphics) format, whereas the other with the design of
non-uniform rational MD-splines reproducing circles and quadrics. To experience and appreciate the potential of C

1

MD-splines, we also provide a simple yet powerful Web-App based on the modeling tools proposed in this paper.
The remainder of the paper is organized as follows. Section 2 is devoted to recalling the basics on MD-splines

and to presenting some preliminary material. Section 3 contains the Cox-de Boor-type recurrence relation for C
1

MD-splines and a recurrence relation for their derivatives. E�cient modeling algorithms for the considered splines
are presented in Section 4, including knot insertion and degree elevation and the corresponding knot removal and
degree reduction. Section 5 illustrates the construction of periodic MD-splines and finally Section 6 introduces the
aforementioned applications of C

1 MD-splines. Section 7 closes the paper presenting the conclusions.

2. Multi-Degree spline spaces and B-spline bases

A multi-degree spline is a function defined on a real interval [a, b] and composed of polynomial pieces of di↵erent
degrees, defined on subintervals and joined at the endpoints with suitable degree of smoothness. In this section we
recall the basics on such splines from [1] and we develop some preliminary material.
Let [a, b] be a bounded and closed interval and X B {xi}qi=1 be a set of breakpoints such that a ⌘ x0 < x1 < . . . < xq <

xq+1 ⌘ b. Let also d B
⇣
d0, . . . , dq

⌘
be a vector of positive integers, where di is the degree of the polynomial defined

on the interval [xi, xi+1]. Furthermore let us assume that two adjacent polynomial pieces join at a breakpoint xi with
continuity C

ki where

0 6 ki 6
(

min(di�1, di), if di�1 , di,
di � 1, if di�1 = di,

in such a way that the vector of nonnegative integers K B
⇣
k1, . . . , kq

⌘
contains information on the degree of smooth-

ness at breakpoints. We can hence define a multi-degree spline space S (Pd,X,K) as follows.

Definition 1 (Multi-degree spline space). Given a partition X = {xi}qi=1 on the bounded and closed interval [a, b], a
vector of polynomial degrees d and avector K of degrees of smoothness, the corresponding space of multi-degree

splines is defined as

S (Pd,X,K) B
n
f

��� there exist pi 2 Pdi
, i = 0, . . . , q, such that:

i) f (x) = pi(x) for x 2 [xi, xi+1], i = 0, . . . , q;

ii) D
`
pi�1(xi) = D

`
pi(xi) for ` = 0, . . . , ki, i = 1, . . . , q

o
,

where Pdi
denotes the space of algebraic polynomials of degree di.

2



Note that if di = d, for all i = 0, . . . , q, and a fixed positive integer d, then S (Pd,X,K) is reduced to a conventional
spline space.

The following result on the dimension of multi-degree spline spaces can be proved by standard arguments.

Proposition 1 (Dimension of a multi-degree spline space). The set S (Pd,X,K) of multi-degree splines in Definition

1 is a function space of dimension

K B dim S (Pd,X,K) = d0 + 1+
qX

i=1

(di � ki) or equivalently K B dim S (Pd,X,K) =
qX

i=1

(di�1 � ki)+ dq + 1.

The B-spline basis of a conventional spline space is classically defined on an extended partition, computed from
the breakpoints and continuity conditions. In the multi-degree context, to construct an analogous basis, we will need
to consider two extended partitions defined as follows.

Definition 2 (Extended partitions). The set of knots s B
n
s j

oK

j=1
is called the left extended partition associated with

an MD-spline space S (Pd,X,K) if and only if:

i) s1 6 s2 6 . . . 6 sK ;

ii) sd0+1 ⌘ a;

iii)
�
sd0+2, . . . , sK

 ⌘ {x1, . . . , x1|     {z     }
d1�k1 times

, . . . , xq, . . . , xq|     {z     }
dq�kq times

}.

Similarly, the set of knots t B
n
t j

oK

j=1
is called the right extended partition associated with S (Pd,X,K) if and only if:

i) t1 6 t2 6 . . . 6 tK ;

ii) tK�dq
⌘ b;

iii)
n
t1, . . . , tK�dq�1

o
⌘ {x1, . . . , x1|     {z     }

d0�k1 times

, . . . , xq, . . . , xq|     {z     }
dq�1�kq times

}.

For simplicity and without loss of generality, we will limit our discussion to the case of clamped partitions,
i.e. extended partitions with the two extreme breakpoints repeated d0 + 1 times in s, and dq + 1 times in t, that is
s1 = . . . = sd0+1 = x0 and tK�dq

= . . . = tK = xq+1. Nevertheless the theory is readily generalizable to other partitions,
including the periodic case which will be discussed in Section 5.

Multi-degree spline spaces posses a B-spline-type basis defined on the extended partitions s and t [1]. Hereinafter,
we refer to the elements of a such basis as MDB-spline basis functions or simply MDB-splines and denote them by
{Ni,m}Ki=1, with m B max j=0,...,q{d j}. Moreover we define as usual the support of a function f to be the set supp( f ) =
closure{x : f (x) , 0}.

Each MDB-spline Ni,m can be generated by an integral relation which requires to compute recursively the functions
Ni,n, n = 0, . . . ,m, where supp(Ni,n) = [si, ti�m+n] and for x 2 [x j, x j+1) ⇢ [si, ti�m+n] (with si < ti�m+n):

Ni,n(x) B

8>>>>>><
>>>>>>:

1, x j 6 x < x j+1, n = m � d j,
R

x

�1
⇥
�i,n�1Ni,n�1(u) � �i+1,n�1Ni+1,n�1(u)

⇤
du, n > m � d j,

0, otherwise,

(1)

with

�i,n B
 Z +1

�1
Ni,n(x)dx

!�1

.
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Note that undefined Ni,n functions shall be intended to be identically zero and their integral at the right-hand side of
(1) shall be computed as Z

x

�1
�i,nNi,n(u) du B

(
0, x < si,
1, x > si.

The above integral construction warrants that functions Ni,m belong to the multi-degree spline space S (Pd,X,K)
and in addition yields the following properties, which highlight the analogy with respect to conventional B-spline
bases.

Proposition 2 (Properties of the MDB-spline basis). The MDB-spline functions {Ni,m}Ki=1 satisfy the following prop-

erties:

i) Local Support: Ni,m(x) = 0, for x < [si, ti];

ii) Positivity: Ni,m(x) > 0, for x 2 (si, ti);

iii) End Point: Ni,m vanishes exactly

• dpsi
�max{ j > 0 | si = si+ j} times at si,

• dpti�1 �max{ j > 0 | ti� j = ti} times at ti,

where psi is the index of the breakpoint in X which coincides with the knot si and pti is the index of the

breakpoint in X coinciding with ti;

iv) Partition of unity:
KX

i=1

Ni,m(x) = 1, for all x 2 [a, b].

Remark 1 (Uniqueness of the MDB-spline basis). Each MDB-spline Ni,m is uniquely determined by properties i),

iii), iv) together with the continuity conditions at the breakpoints contained in (si, ti) (see [1] for further details).

The existence of an MDB-spline basis {Ni,m}Ki=1 with the above properties makes so that any function f in the
spline space can be represented as

f (x) =
KX

i=1

ci Ni,m(x), x 2 [a, b],

and also, locally, as

f (x) =
X̀

i=`�d j

ci Ni,m(x), x 2 [x j, x j+1), s` 6 x j < min (s`+1, b) , (2)

where we take min (s`+1, b) to be b if s`+1 is not defined or, equivalently, if ` + 1 > K.
Throughout the paper we will deal with multi-degree spline spaces where functions can be either C

0 or C
1 at

the breakpoints separating intervals of di↵erent degrees. These spaces are instances of the following definition for
k = 0, 1.

Definition 3 (Ck multi-degree spline space). A function space S (Pd,X,K) as in Definition 1 is said to be a C
k

MD-

spline space if its functions are at most C
k continuous at the joins between pieces of di↵erent degrees. Therefore it is

defined by

S (Pd,X,K), with K = (k0, k1, . . . , kq) and 0 6 ki 6 k if di�1 , di, i = 1, . . . , q.

The corresponding MDB-spline basis is referred to as a C
k

MDB-spline basis.

It is immediate to observe that the integral relation (1), when applied in the context of a conventional spline space,
generates the B-spline basis. Moreover, for our future purposes, it is convenient to characterize the functions produced
by (1) when the degrees are the same just locally. To this aim we introduce the following definition and remark.
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Definition 4 (Conventional MDB-splines). A function f in a C
k MD-spline space S (Pd,X,K) such that supp( f ) =

[xr, xr+ j] is said to be conventional when all breakpoint intervals included in its support have associated equal degree,
namely when d` = d, for all ` = r, . . . , r + j � 1.

Remark 2. The following properties of the MDB-spline basis, that hold for locally uniform degrees, are an immediate

consequence of the integral construction (1):

i) A conventional MDB-spline Ni,m, such that d` = d, ` = psi, . . . , pti�1, is a B-spline of a conventional spline

space of degree d. In other words, there exists a conventional spline space (defined on the same breakpoint

sequence) where a B-spline basis function is identical to Ni,m on [si, ti] ⌘ [xpsi
, xpti

].

ii) A C
0

MDB-spline basis is a conventional B-spline basis piecewisely. In particular, let xi and x j be two break-

points with associated C
0

continuity and let d` = d, for ` = i, . . . , j�1. Then the C
0

MDB-spline basis, restricted

to [xi, x j], is a conventional B-spline basis of degree d .

In the following we will implicitly assume that S (Pd,X,K) is a C
1 MD-spline space where ki = 1, if di , di+1,

i = 1, . . . , q, in such a way that the functions {Ni,m�1}Ki=2, generated at the last but one iteration of (1), be continuous and
thus belong to a C

0 MD-spline space. The results developed in this paper are nevertheless valid with any continuity
ki 2 {0, 1}. In fact, if a spline space presents C

0 continuity at any breakpoint xi, we will simply split it into two spaces
with all interior continuities greater than zero and continue separately in each of these MD-spline spaces. Under this
assumption, it can easily be seen that the set {Ni,m�1}Ki=2 is a C

0 MDB-spline basis. Moreover, the support of each
Ni,m�1 is characterized by the following property, which holds more generally for any MDB-spline basis function of a
C

0 MD-spline space.

Proposition 3. Let S (Pd,X,K) be a C
1

multi-degree spline space. Each C
0

MDB-spline Ni,m�1, i = 2 . . . ,K, gen-

erated at the last but one iteration of the integral relation (1), is either a conventional B-spline or it is nonzero on at

most three consecutive breakpoint intervals.

Proof. We proceed by contradiction and suppose that there exists a C
0 MDB-spline Ni,m�1 which is nonzero on four

consecutive breakpoint intervals with associated di↵erent degrees. The support [si, ti�1] of Ni,m�1 depends on the
continuity at the breakpoints in such a way that the higher the continuity, the larger the number of breakpoint intervals
included in it. We will thus consider a local configuration which allows us to maximize the support, corresponding to
a degree vector d = (d, d, d, 0), a continuity vectorK = (d� 1, d� 1, 0), C

d�1 continuity at si and C
0 continuity at ti�1.

The total number of degrees of freedom provided by the configuration is 3d + 4, whereas the number of continuity
conditions is 3d+2. This is in contradiction with a necessary condition for the existence and uniqueness of the MDB-
spline basis functions, which requires to have as many degrees of freedom as the number of continuity conditions
plus one (where the additional condition arises from the partition of unity property). Therefore there cannot exist
a nonconventional Ni,m�1 which is nonzero on four consecutive breakpoint intervals. The same count of constraints
versus degrees of freedom shows that functions Ni,m�1 having support on three breakpoint intervals are uniquely
determined. A function of this kind can be derived by considering degrees d = (d, 0, d), continuities K = (0, 0) and
C

d�1 continuity at the endpoints of the support, si and ti�1. In fact, the latter configuration fulfills all the conditions
for the existence and uniqueness of MDB-spline basis functions recalled in Remark 1.

Remark 3. Proposition 3 entails that the support of a nonconventional Ni,m�1 can include either two or three break-

point intervals (if the support consists of one breakpoint interval only, then Ni,m�1 is necessarily conventional). The

same arguments in the proof of Proposition 3, together with the endpoint property of MDB-splines, allow us to further

characterize nonconventional Ni,m�1 functions. In particular, in the former case, supposed supp(Ni,m�1) = [xr�1, xr+1],
Ni,m�1 is the last Bernstein basis function of degree dr�1 � 1 relative to [xr�1, xr] and the first Bernstein basis function

of degree dr � 1 relative to [xr, xr+1]. If instead supp(Ni,m�1) = [xr�1, xr+2], then Ni,m�1 must necessarily have degree

zero on [xr, xr+1]. Moreover it coincides with the last and first Bernstein basis function of degree dr�1 � 1 and dr+1 � 1
relative to the first and last breakpoint interval, respectively. The fact that Ni,m�1 can only have these two particular

forms also entails that on a breakpoint interval there can be at most two nonconventional nonvanishing functions of

level m � 1. All these observations will be relevant for proving the correctness of the Cox-de Boor-type recurrence

relation presented in the following section.
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3. Recurrence schemes for C1 MD-splines and their derivatives

In the reminder of the paper we restrict our attention to the class of C
1 MD-splines and accordingly, from now on,

we indicate by S (Pd,X,K) a space of such splines, rather than a generic one. We will show that the considered splines
can be evaluated by e�cient and stable recurrence schemes, similar to those available in the conventional setting.

3.1. A Cox-de Boor-type recurrence relation for C
1

MD-splines

The main result of this section is the following proposition, which provides a recurrence scheme for the evaluation
of C

1 MD-splines. A proof will be given at the end of the section, since it requires some preliminary results.

Proposition 4 (Cox-de Boor-type recurrence relation). Let S (Pd,X,K) be a C
1

MD-spline space on [a, b]. Let also

eX B {x̃ j}qj=1 together with x̃0 and x̃q+1 be obtained by scaling and translating X, x0 and xq+1 as follows:

x̃0 = 0 and x̃ j =

jX

i=1

xi � xi�1

di�1
, j = 1, . . . , q + 1.

In addition, let us consider the extended partitions s̃ = {s̃ j}Kj=1 and t̃ = {t̃ j}Kj=1 obtained from eX according to Definition

2 and let us set m B max j=0,...,q{d j}. Then an MDB-spline Ni,m, i = 1, . . . ,K, can be computed on the breakpoint

interval [x j, x j+1) contained in its support [si, ti] by the following recurrence scheme:

N`,m�d j
(x) =

8>><
>>:

1, x j 6 x < x j+1, for ` such that s` 6 x j < min(s`+1, b),

0, otherwise,

Ni,n(x) = �n�1
i

(x)Ni,n�1(x) +
⇣
1 � �n�1

i+1 (x)
⌘

Ni+1,n�1(x), n = m � d j + 1, . . . ,m,
(3)

with

�n�1
i

(x) =
x̃ � s̃i

t̃i�m+n�1 � s̃i

, (4)

and where x̃ is the scaled and translated version of x 2 [x j, x j+1) according to:

x̃ = x̃ j +
x � x j

d j

. (5)

Note that undefined Ni,n functions in (3) shall be regarded as the zero function, and 0/0 in (4) shall be intended as 0.

Remark 4. The computation of each nonvanishing Ni,m at x 2 [x j, x j+1) requires precisely d j steps of the recurrence

scheme (3)–(4).

Functions Ni,m generated by (3)–(4) have by construction supp(Ni,m) = [si, ti]. In the following we will prove that
they are a C

1 MDB-spline basis and in particular that (3)–(4) and (1) generate the same set of functions on the extended
partitions s and t. To this end, we observe below that the proposed Cox-de Boor-type recurrence relation generates all
the C

1 MDB-splines that are of conventional type. This is a consequence of the fact that, when the degrees are locally
(or globally) uniform, equations (3)–(4) are reduced to the classical Cox-de Boor recurrence scheme [13, 14], which
we will also refer to as the B-spline recurrence relation.

Lemma 1. Let Ni,m be a function generated by the recurrence scheme in Proposition 4. Moreover let us assume that

all the breakpoint intervals included in supp(Ni,m) = [si, ti] have same associated degree, namely that d j = d, for all

j = dpsi
, . . . , dpti�1. Then Ni,m is an element of the C

1
MDB-spline basis.

Proof. Under the given assumption, all the functions �n�1
j

, for n = m � d + 1, . . . ,m, involved in the computation
of Ni,m, can be rewritten so as to take the same expression as in the standard B-spline recurrence relation, namely
�n�1

j
(x) = (x� si)/(ti�m+n�1 � si), for x 2 supp(Nj,n�1) = [si, ti�m+n�1]. This is a simple consequence of the fact that the

denominator of each �n�1
j

corresponds to the support of the associated Nj,n�1 in (3) and of Remark 4. Thus Ni,m is a
B-spline of a conventional space and, in view of Remark 2-i), is an element of the C

1 MDB-spline basis.
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The following fact is an immediate consequence of the above lemma and of Remark 4.

Remark 5. When dj = d, for all j = 0, . . . , q, the recurrence scheme (3)–(4) generates the B-spline basis of a

conventional degree-d spline space.

Let us now consider the special case of spaces of C
0 multi-degree splines. In this case, it is easy to understand that

the MDB-spline basis can be obtained by locally applying the classical B-spline recurrence relation. The following
result shows that the proposed Cox-de Boor-type recurrence scheme will also generate this basis.

Lemma 2. If S (Pd,X,K) is a C
0

MD-spline space on [a, b], then the recurrence scheme in Proposition 4 generates

its MDB-spline basis.

Proof. Let xi and x j be two breakpoints with associated C
0 continuity and let d` = d, for ` = i, . . . , j � 1. Then, there

will be one knot of multiplicity d in s corresponding to xi and one knot of multiplicity d in t corresponding to x j.
In view of Remarks 5 and 2-ii), in the restriction of the space to [xi, x j] the scheme (3)–(4) generates a conventional
B-spline basis of degree d, which is the C

0 MDB-spline basis restricted to [xi, x j]. Note that the B-spline recurrence
relation, in a clamped partition, does not depend on the location of the first and last knot, that is on the location of the
first knot in s and of the last knot in t and therefore those knots can be undefined.

An important consequence of the above lemma is that, if S (Pd,X,K) is a C
1 MD-spline space, then the last but

one step of the recurrence scheme (3)–(4) generates a C
0 MDB-spline basis {Ni,m�1}Ki=2. From this one can also see

that the functions {Ni,m}Ki=1 produced by (3) enjoy the partition of unity property. The latter two facts are among the
key ingredients of the following proof.

Proof of Proposition 4. In the following we will show that the recurrence scheme (3)–(4) and the integral relation (1)
generate the same set of functions {Ni,m}Ki=1. Due to Lemmas 1 and 2, this is already known to be true for all functions
Ni,m of conventional type and for the set of functions {Ni,m�1}Ki=2 generated at the last but one iteration. Our analysis
can therefore be limited to nonconventional Ni,m functions only.

The remainder of the proof is organized as follows. Parts I and II are devoted to legitimate the definition of
functions �n�1

i
in (4). In particular, in Part I we show that, whenever a function Ni,m�1 at the right-hand side of (3) is

nonconventional, the corresponding �m�1
i

shall be computed as

�m�1
i

(x) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

1
�

x � xpsi

dpsi

, x 2 [xpsi
, xpsi+1],

1
�

 
xpsi+1 � xpsi

dpsi

+
x � xpsi+1

dpsi+1

!
, x 2 [xpsi+1, xpsi+2],

1
�

 
xpsi+1 � xpsi

dpsi

+
xpsi+2 � xpsi+1

dpsi+1
+

x � xpsi+2

dpsi+2

!
, x 2 [xpsi+2, xpti�1 ],

� B
pti�1�1X

j=psi

x j+1 � x j

d j

. (6)

The fact that each �m�1
i

considered above needs to be defined on at most three breakpoint intervals is a consequence of
Proposition 3 and guarantees that formula (6) covers all possible scenarios. We remind in passing that any conventional
Ni,m�1 may instead have arbitrary support width and that the associated �m�1

i
is defined as in the standard B-spline

recurrence relation, namely as �m�1
i

(x) = (x � xpsi
)/(xpti�1 � xpsi

), x 2 [xpsi
, xpti�1 ] (see Lemma 1). We also recall

that formula (6) was originally presented in [1], even though without proof. In Part II we show that (6) and (4) are
equivalent expressions of the functions �m�1

i
. Finally, in Part III we prove that the (nonvanishing) nonconventional

Ni,m functions generated by (3)–(4) and (1) are the same on any breakpoint interval [xr, xr+1].

Part 1. We shall define each function �m�1
i

on the support of the corresponding nonconventional Ni,m�1 at the
right-hand side of (3). Due to Proposition 3, in particular, supp(Ni,m�1) = [si, ti�1] may include either two or three
breakpoint intervals.

On account of Remark 3, if supp(Ni,m�1) includes two breakpoint intervals, then [si, ti�1] ⌘ [xpsi
, xpsi+2] and

kpsi+1 = 1 (Figure 1(a) illustrates this situation in full generality). Since Ni+1,m�1(x) = 0, for x 6 xpsi+1 6 si+1, from
(3) we obtain

�m�1
i

(x) =
Ni,m(x)

Ni,m�1(x)
, x 2 [xpsi

, xpsi+1]. (7)
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Function Ni,m has degree dpsi
on [xpsi

, xpsi+1] and vanishes dpsi
times at si, whereas Ni,m�1 has degree dpsi

� 1 and
vanishes dpsi

� 1 times at the same point. There follows that �m�1
i

is a linear function and that �m�1
i

(si) = 0. Similarly,
recalling that Ni�1,m�1(x) = 0, for x > xpsi+1 > ti�2, and using (3) with Ni�1,m at the left-hand side we obtain

1 � �m�1
i

(x) =
Ni�1,m(x)
Ni,m�1(x)

, x 2 [xpsi+1, xpsi+2]. (8)

In [xpsi+1, xpsi+2] the functions Ni�1,m and Ni,m�1 have degrees dpsi+1 and dpsi+1 � 1, respectively; in addition, they have
a zero of multiplicity dpsi+1 + 1 and dpsi+1, respectively, at ti�1. Therefore �m�1

i
is a linear function and �m�1

i
(ti�1) = 1.

We will now show that �m�1
i

is continuous at xpsi+1 and compute its value. To this aim, note that Ni,m�1 is C
0 at

xpsi+1 and thus Ni,m�1(xpsi+1) = 1. Using the integral definition of the MDB-spline basis in (1), equation (7) yields

�m�1
i

(x
�
psi+1) = Ni,m(xpsi+1) =

R
xpsi+1

xpsi

Ni,m�1(x) dx

R
xpsi+2

xpsi

Ni,m�1(x) dx

,

and equation (8) yields

�m�1
i

(x
+
psi+1) = 1 � Ni�1,m(xpsi+1) = 1 � 1 +

R
xpsi+1

xpsi

Ni,m�1(x) dx

R
xpsi+2

xpsi

Ni,m�1(x) dx

.

From the two above identities one can see that �m�1
i

is continuous at xpsi+1. To compute �m�1
i

(xpsi+1) we shall recall
that Ni,m�1 is nothing else than the last Bernstein basis function of degree dpsi

� 1 relative to [xpsi
, xpsi+1] and the first

Bernstein basis function of degree dpsi+1 � 1 relative to [xpsi+1, xpsi+2] (see Remark 3). This yields

�m�1
i

(xpsi+1) =
xpsi+1 � xpsi

dpsi

 
xpsi+1 � xpsi

dpsi

+
xpsi+2 � xpsi+1

dpsi+1

!�1

.

The expression of �m�1
i

on [xpsi
, xpsi+2] can thus explicitly be computed using the fact that �m�1

i
is piecewise linear,

continuous and interpolates known values at xpsi
, xpsi+1, xpsi+2. This yields the first and second line of equation (6).

If instead supp(Ni,m�1) includes three breakpoint intervals, then [si, ti�1] ⌘ [xpsi
, xpsi+3] and, again on account

of Remark 3, we shall have dpsi+1 = 1 and C
1 continuity at the breakpoints (this circumstance is illustrated with

full generality in Figure 1(b)). Similarly as above, we can prove that �m�1
i

is a linear and continuous function, that
�m�1

i
(xpsi

) = 0, �m�1
i

(xpsi+3) = 1 and we can compute the values of �m�1
i

at xpsi+1 and xpsi+2. Constructing �m�1
i

by
linear interpolation we hence obtain the first, second and third line of (6).

In view of Part 3, it is useful to observe that, due to the construction of functions �m�1
i

, the scheme (3)–(4) will
generate two pieces of functions

Ni,m(x), x 2 [xpsi
, xpsi+1] and Ni�1,m(x), x 2 [xpti�1�1, xpti�1 ], (9)

coinciding with those defined by the integral relation (1). Therefore, the above indicated pieces of functions Ni,m and
Ni�1,m belong by construction to the C

1 MDB-spline basis. In particular, Ni,m is the function which “starts” in xpsi

with the maximum continuity C
dpsi
�1, whereas Ni�1,m is the function which “terminates” in xpti�1 with the maximum

continuity C
dpti�2�1.

Part 2. We show that (4) and (6) are equivalent formulations to compute functions �m�1
i

associated with noncon-
ventional Ni,m�1. In particular, when n = m, equation (4) becomes

�m�1
i

(x) =
x̃ � s̃i

t̃i�1 � s̃i

, (10)

and rewriting � in (6) in terms of the extended partitions s̃ and t̃ we get

� =
pti�1�1X

j=psi

x j+1 � x j

d j

= x̃pti�1 � x̃psi
= t̃i�1 � s̃i, (11)

8



xpsi xpsi+1 xpsi+2
dpsi dpsi+1

C1

s si�1 si si+1...
t ti�2 ti�1 ti

...

Ni,m�1

Ni�1,m Ni,m

�m�1
i

(a)

xpsi xpsi+1 xpsi+2 xpsi+3
dpsi dpsi+1 dpsi+2

C1 C1

s si�1 si si+1...
t ti�2 ti�1 ti

...

Ni,m�1

Ni�1,m Ni,m

�m�1
i

(b)

Figure 1: The two possible types of nonconventional Ni,m�1 (in blue) that can be generated at the last but one level of the Cox-de Boor-type
recurrence relation (see Remark 3) and the corresponding configurations to be considered in the proof of Proposition 4.

which yields the denominator of (10). As for the numerator x̃ � s̃i, we shall recall that s̃i = x̃psi
and address the

following three cases, which correspond to each line of (6).
If x 2 [xpsi

, xpsi+1], then x̃ = x̃psi
+ (x � xpsi

)/dpsi
and thus

x̃ � s̃i = x̃psi
+

x � xpsi

dpsi

� x̃psi
=

x � xpsi

dpsi

. (12)

If x 2 [xpsi+1, xpsi+2], then x̃ = x̃psi+1 + (x � xpsi+1)/dpsi+1 and thus

x̃ � s̃i = x̃psi+1 +
x � xpsi+1

dpsi+1
� x̃psi

=

psi+1X

i=1

xi � xi�1

di�1
+

x � xpsi+1

dpsi+1
�

psiX

i=1

xi � xi�1

di�1
=

xpsi+1 � xpsi

dpsi

+
x � xpsi+1

dpsi+1
. (13)

Finally, if x 2 [xpsi+2, xpti�1 ] ⌘ [xpsi+2, xpsi+3], then x̃ = x̃psi+2 + (x � xpsi+2)/dpsi+2 and

x̃� s̃i = x̃psi+2+
x � xpsi+2

dpsi+2
�x̃psi

=

psi+2X

i=1

xi � xi�1

di�1
+

x � xpsi+2

dpsi+2
�

psiX

i=1

xi � xi�1

di�1
=

xpsi+1 � xpsi

dpsi

+
xpsi+2 � xpsi+1

dpsi+1
+

x � xpsi+2

dpsi+2
.

(14)
The equivalence of formulas (10) and (6) straightforwardly follows from the above equalities (11), (12), (13) and (14).

Part 3. In the following we consider a generic breakpoint interval [xr, xr+1] and show that the recurrence scheme
(3)–(4) generates the pieces of all the dr +1 MDB-splines that are nonvanishing on it. In particular, we will only study
functions Ni,m which (with a slight abuse of terminology) are nonconventional, since, due to Lemma 1, we can already
conclude that all the others are correct.

The functions we are concerned with are generated by (3) when either one of Ni,m�1 or Ni+1,m�1, or both, are
nonconventional. Hence, since on [xr, xr+1] there can be at most two nonconventional functions at level m � 1 (see
Remark 3), there will be at most four such functions at level m. We can confine ourselves to proving the correctness of
all but one of them, as the remaining one can be handled by the partition of unity property of the set {Ni,m}Ki=1, recalled
earlier in this section.

As a consequence, if there is just one nonconventional Ni,m on [xr, xr+1], then there is nothing to prove – this
happens when either one of Ni,m�1 or Ni+1,m�1 is nonconventional and its support does not include [xr, xr+1].

If instead on [xr, xr+1] there is one (nonvanishing) nonconventional function at level m � 1, or there are two of
them with successive i-indices, at level m these will give rise to two or three nonconventional functions, respectively.
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As pointed out at the end of Part 1, on any breakpoint interval as many pieces of nonconventional Ni,m functions as
the number of nonconventional Ni,m�1 turn out to be correct by construction. On this account, also in this case, we can
conclude that all the functions Ni,m into analysis will be correct.

Therefore, there only remains to be studied the case in which there are four level-m nonconventional functions on
[xr, xr+1], which may only occur when

dr�1 , dr, dr , dr+1, dr > 3, kr = kr+1 = 1. (15)

The above configuration results in two nonconventional Ni,m�1 and Nj+1,m�1, such that j > i, and four corresponding
nonconventional Ni�1,m, Ni,m, Nj,m, Nj+1,m. Of these, Ni�1,m and Nj+1,m have the maximum continuity C

dr�1 at xr+1
and xr, respectively, and thus their correctness is ensured by the construction of �m�1

i
and �m�1

j+1 (see (9) and related
discussion). Moreover, since at xr there is a knot in s of multiplicity > 2, whereas at xr+1 there is a knot in t of
multiplicity > 2, the functions Ni,m and Nj,m have a zero of multiplicity dr � 2 at xr+1 and xr, respectively. We will
next focus on studying one of these two functions which, without loosing generality, we can suppose to be Nj,m. The
verification of the correctness of Nj,m will conclude the proof.

Under the assumed configuration (15), Nj,m is a combination of a conventional Nj,m�1 and a nonconventional
Nj+1,m�1. Hence Nj,m is a continuous function and we will now show that it is C

1-continuous at xr+1. In particular,
Nj,m�1 and Nj+1,m�1 are respectively the last but one and last Bernstein basis functions of degree dr � 1 relative to
[xr, xr+1]. Moreover, Nj+1,m�1 is the first Bernstein basis function of degree dr+1 � 1 relative to [xr+1, xr+2] (and Nj,m�1
is identically zero). As a consequence, �m�1

j
(x) = x�xr

xr+1�xr

, x 2 [xr, xr+1]. In addition, constructiong �m�1
j+1 as in Part I,

we obtain1

�m�1
j+1 (x) =

8>>>>>><
>>>>>>:

x � xr

xr+1 � xr

cr, x 2 [xr, xr+1],

xr+2 � x

xr+2 � xr+1
cr +

x � xr+1

xr+2 � xr+1
cr+1, x 2 [xr+1, xr+2],

with 8>>>>><
>>>>>:

cr =
�r

�r + �r+1
and cr+1 = 1, if supp(Nj+1,m�1) = [xr, xr+2],

cr =
�r

�r + �r+1 + �r+2
and cr+1 =

�r + �r+1

�r + �r+1 + �r+2
, if supp(Nj+1,m�1) = [xr, xr+3],

and �r B (xr+1 � xr)/dr. Substituting the explicit expressions at the right-hand side of (3), one can directly verify that,
at xr+1, the left and right first derivatives of Nj,m are identical. In addition, the recurrence scheme (3)–(4) guarantees
that Nj,m has a zero of multiplicity dr � 2 at xr and hence satisfies the endpoint property in Proposition 2-iii).

Finally, we observe that all the pieces of Nj,m on [si, ti] \ [xr, xr+1] turn out to be correct, either by construction or
by the aforementioned partition of unity argument. In fact, if this was not true, then there would be another interval
[xp, xp+1] ⇢ [si, ti] \ [xr, xr+1] on which there are four nonconventional functions such that Nj,m is either the second or
third of them. It is easy to see that this circumstance can never occur.

We can thus conclude that Nj,m is the unique function in the spline space satisfying the properties in Proposition
2 (see also Remark 1) and thus is a C

1 MDB-spline basis function. This concludes the proof that Nj,m is correct on
[xr, xr+1] and the proof of the proposition.

Remark 6. We observe that, when n < m, each function �n

i
(x) in (4) would have the same values if defined on s

and t (see Lemmas 5 and 2). This allowed us to formulate the recurrence scheme (3)–(4) in terms of the scaled and

translated partitions both at each step n < m and at the last step n = m, and in the latter case both for conventional B-

splines and for MDB-splines having pieces of di↵erent degrees, obtaining a simplified version of the Cox-de Boor-type

evaluation scheme in [1].

Remark 7. It should be recalled that a similar scaling and translation strategy was firstly proposed in [8], though

within a di↵erent setting. In that paper, however, the scaled and translated knot intervals must necessarily be used

1Note that �m�1
j+1 has been constructed only on the two intervals where it needs to be evaluated and recall that dr+1 = 1 in case supp(N j+1,m�1) =

[xr , xr+3], as observed in Remark 3.
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at each recurrence step to guarantee that the generated curves will be C
1

continuous between segments of di↵erent

degrees.

Example 1. This example illustrates the use of recurrence scheme (3)–(4) for the evaluation of all MDB-splines
nonvanishing at a given point. To this end, consider the C

1 MD-spline space S (Pd,X,K) defined on [0, 9], with
X = {3, 6, 7}, d = (3, 3, 1, 2) and K = (2, 1, 1). The sequence of breakpoint intervals and the associated extended
partitions s and t are illustrated in Figure 2, together with the degree of the polynomial segments and the continuity at
breakpoints.

x0 x1 x2 x3 x4

d0 = 3 d1 = 3 d2 = 1 d3 = 2

C
2

C
1

C
1

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

Figure 2: Setting for the spline space in Example 1.

Prior to starting the evaluation procedure, the scaled and translated partition X̃ = {1, 2, 3}, [x̃0, x̃q+1] = [0, 4] and
the extended partitions s̃ = {0, 0, 0, 0, 1, 3} and t̃ = {1, 2, 2, 4, 4} are computed.

We now aim to evaluate a C
1 MD-spline f expanded in the MDB-spline basis with coe�cients {ci}Ki=1. Taking the

evaluation point to be x̄ = 4.5, the steps of the scheme are:

1. determine j such that x̄ 2 [x j, x j+1); in the considered case, this yields j = 1;

2. determine ` such that s` 6 x j < min(s`+1, b); in the considered case, this yields ` = 5;

3. determine ˜̄x from equation (5), obtaining ˜̄x = 1.5.

For m = 3, j = 1, d j = 3, ` = 5, the function N`,m�d j
in equation (3) corresponds to N5,0, which is identically equal

to one in [x j, x j+1) = [x1, x2). Next, for n = m � d j + 1, . . . ,m = 1, 2, 3, the scheme (3)–(4) applied at x̄ yields

0 0 0 0 N5,0(x̄) 0
0 0 0 N4,1(x̄) N5,1(x̄) 0
0 0 N3,2(x̄) N4,2(x̄) N5,2(x̄) 0
0 N2,3(x̄) N3,3(x̄) N4,3(x̄) N5,3(x̄) 0

and hence

f (x̄) =
5X

i=2

ci Ni,3(x̄).

Moving the evaluation point to x̄ = 6.5 2 [x2, x3) (corresponding to ˜̄x = 2.5), we get m = 3, j = 2, d j = 1 and ` = 5
and thus N`,m�d j

corresponds to N5,2, which is identically one in [x j, x j+1) = [x2, x3). For n = m � d j + 1, . . . ,m = 3,
the scheme (3)–(4) applied at x̄ = 6.5 yields

0 0 N5,2(x̄) 0
0 N4,3(x̄) N5,3(x̄) 0.

The C
1 MDB-spline basis {Ni,3}6i=1 is shown in Figure 3(i). From the illustration, it can be noted that there are four

nonvanishing basis functions in the first two breakpoint intervals, whereas there are two and three such functions in the
third and fourth intervals, respectively. This is consistent with the assigned degree vector d = (3, 3, 1, 2). The function
sequences {Ni,n}, built by the recurrence process (3), are illustrated in Figure 3 for increasing steps n = 0, . . . , 3. Note
that the support of a function Ni,n is [si, ti�3+n].
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1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(a) Ni,0, i = 4, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(b) �0
i
, i = 4, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(c) Ni,1, i = 3, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(d) Ni,1, i = 3, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(e) �1
i
, i = 3, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(f) Ni,2, i = 2, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(g) Ni,2, i = 2, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(h) �2
i
, i = 2, . . . , 6.

1

x0 x1 x2 x3 x4

s s1⌘s4 s5 s6

t t1 t2⌘t3 t4⌘t6

(i) Ni,3, i = 1, . . . , 6.

Figure 3: The function sequences {Ni,n}, n = 0, . . . , 3, built by the recurrence relation (3)–(4) for the MD-spline space in Example 1.
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Remark 8. With reference to the extended partitions in Example 1, we observe that some breakpoints do not appear

in either the left partition s or in the right partition t. This happens when one asks for C
1

continuity at a breakpoint

separating two pieces of degree one and greater than one, respectively. The situation can thus be interpreted as having

a knot of zero multiplicity in either one of the extended partitions.

The standard Cox de-Boor relation naturally yields a recurrence scheme for the coe�cients of conventional
splines. Similarly, formulas (3)–(4) can be inserted in equation (2) to obtain the following relation, for x 2 [x j, x j+1)
and s` 6 x j < min(s`+1, b):

c
k

i
(x) = �m�k

i
(x)ck�1

i
(x) +

⇣
1 � �m�k

i
(x)

⌘
c

k�1
i�1 (x), for k = 1, . . . , d j, i = ` � d j + k, . . . , `, (16)

with c
0
i

:= ci, i = ` � d j, . . . , `, and where functions �m�k

i
are defined as in (4). In particular, for a given x̄ 2 [x j, x j+1),

f (x̄) will be equal to c
dj

` (x̄). In addition, we observe that formula (16) allows for subdividing an MD-spline at x̄ 2
[x j, x j+1] in two pieces with coe�cients

c1, . . . , c`�d j
, c1
`�d j+1, . . . , c

dj

` , and c
dj

` , c
d j�1
` , . . . , c1

` , c`, . . . , cK .

In the particular case where x̄ corresponds to a breakpoint, some of the above coe�cients will be the same and the
recurrence scheme (16) will require less than d j steps.

We remark that applying the coe�cients recurrence scheme at breakpoints yields the Bézier representation of each
piece.

3.2. Recurrence scheme for derivatives computation

The following proposition provides a recurrence relation for the evaluation of derivatives of C
1 MDB-splines.

Proposition 5. In the same setting of Proposition 4, the derivatives of the MDB-spline functions are given by

D+Ni,n(x) =

8>>>>>><
>>>>>>:

0, n = m � d j,

d j � m + n

d j

 
Ni,n�1(x)

t̃i�m+n�1 � s̃i

� Ni+1,n�1(x)
t̃i�m+n � s̃i+1

!
, n = m � d j + 1, . . . ,m, i = ` � n + m � d j, . . . , `,

(17)
for x 2 [x j, x j+1) and where ` is such that s` 6 x j < min (s`+1, b).

Proof. Up to step m � 1 the scheme involves C
0 MDB-splines. Hence, proceeding by analogy with the proof of

Lemma 2, we can conclude that, for any n 6 m � 1, equation (17) coincides with the standard recurrence relation for
the derivatives of B-splines. There remains to prove that the last step, corresponding to n = m, generates the derivatives
of the MDB-splines {Ni,m}Ki=1. To this aim, for any Ni,m, we di↵erentiate (3) and use formula (17), with n = m � 1,
to express the derivatives of functions Ni,m�1 in terms of functions Ni,m�2. After suitable algebraic manipulations, we
again use (3) to express functions Ni,m�2 in terms of Ni,m�1. The passages are developed in detail in Appendix A.

For x 2 [x j, x j+1) and s` 6 x j < min (s`+1, b), from equation (17) the following scheme for the coe�cients of the
derivatives of an MD-spline is obtained:

c
(k)
i
=

8>>>>>><
>>>>>>:

ci, k = 0,
d j � k + 1

d j

c
(k�1)
i
� c

(k�1)
i�1

t̃i�k � s̃i

, k > 1 and t̃i�k > s̃i,

0, k > 0 and t̃i�k = s̃i,

(18)

where c
(k)
i

, i = ` � d j + k, . . . , `, are the coe�cients of the derivative of order k 6 d j, namely:

D
(k)
+ f (x) =

X̀

i=`�d j+k

c
(k)
i

Ni,m�k(x), x 2 [x j, x j+1), s` 6 x j < min (s`+1, b) .
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Alternatively, for a given order of di↵erentiation k, it is possible to determine all the coe�cients c
(k)
i

from equation
(18). In this case, for each coe�cient c

(k)
i

it is necessary to take the corresponding degree d j, where the correspondence
between c

(k)
i

and d j is given by the relation i = k + 1, . . . ,
Pq

j=0(d j � k j). Hence the derivative is expressed as

D
(k)
+ f (x) =

KX

i=k+1

c
(k)
i

Ni,m�k(x), x 2 [a, b].

4. Modeling tools

In this section we consider C
1 MD-splines generated by the proposed Cox-de Boor-type recurrence relation and

derive e�cient formulas for common design tools, including knot-insertion and removal and local degree elevation
and reduction. These generalize the classical analogous tools for conventional splines.

4.1. Knot insertion

Knot insertion corresponds to either decreasing continuity at a breakpoint or to inserting a new breakpoint in the
middle of one interval. When inserting a breakpoint x̂ such that x j < x̂ < x j+1 then the interval [x j, x j+1] is divided
in two subintervals with the same associated degree d j and thus, in the new space, a spline will be continuous of
order d j � 1 at x̂. Instead, if x̂ ⌘ x j, a spline in the new space will be continuous of order k j � 1. In both cases,
the extended partitions s and t should suitably be updated according to the new configuration of breakpoints and
associated continuities. In particular knot insertion requires inserting one knot in both s and t. We will denote the
updated breakpoint sequence by bX, the (K + 1)-dimensional space obtained after knot-insertion by S (Pbd,

bX, bK), the
associated extended partitions by ŝ = {ŝi}K+1

i=1 and t̂ = {t̂i}K+1
i=1 and the MDB-spline basis by {N̂i,m}K+1

i=1 .
The MDB-spline bases {Ni,m}Ki=1 and {N̂i,m}K+1

i=1 are related through

Ni,m = ↵iN̂i,m + (1 � ↵i+1)N̂i+1,m, i = 1, . . . ,K, (19)

and in the case of C
1 MDB-splines the coe�cients ↵i are given by:

↵i =

8>>>>>><
>>>>>>:

1, i 6 ` � d j,
˜̂x � ˜̂si

˜̂ti � ˜̂si

, ` � d j + 1 6 i 6 ` � r + 1,

0, i > ` � r + 2,

(20)

where ˜̂s = { ˜̂s j} and ˜̂t = { ˜̂t j} are associated with ebX, ˜̂x is the scaled and translated version of x̂ 2 [x j, x j+1), r is the
multiplicity of ˜̂x in ˜̂s (or equivalenlty of x̂ in ŝ) and ` is such that s` 6 x j < min (s`+1, b).

Equation (20) is obtained from [1, formula (13)], assuming that the functions fi in the referenced formula are C
1

MD-splines, recalling that fi =
P

K

j=i
N j,m and computing derivatives through (17).

As a consequence of relation (19), a C
1 MD-spline can be expressed as

f (x) =
KX

i=1

ci Ni,m(x) =
K+1X

i=1

ĉi N̂i,m(x), x 2 [a, b],

where

ĉi =

8>>>>><
>>>>>:

ci, i 6 ` � d j,

↵i ci + (1 � ↵i) ci�1, ` � d j + 1 6 i 6 ` � r + 1,
ci�1, i > ` � r + 2,

with coe�cients ↵i, i = ` � d j + 1, . . . , ` � r + 1, given by (20), x̂ 2 [x j, x j+1) and where ` is such that s` 6 x j <
min (s`+1, b).
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4.2. Degree elevation

As a peculiarity of MD-splines, degree elevation can be performed locally, namely one can raise the degree of
one (or more) section space(s) only, maintaining the other degrees unchanged. Apparently, this feature is a major and
important di↵erence with respect to conventional splines, where elevating the degree is a global operation.

Let S (Pd,X,K) be an MD-spline space having degree sequence d = (d0, . . . , dq) and dimension K. It su�ces
to discuss the case in which one wants to elevate the degree on a single interval, say [x j, x j+1], from d j to d j + 1,
generating a (K + 1)-dimensional space S (Pbd,X,K). In this setting, each MDB-spline basis function of S (Pd,X,K)
nonvanishing in [x j, x j+1] will be expressed as a combination of two “new” ones. At the same time, all the MDB-
spline basis functions in S (Pd,X,K) which are zero on [x j, x j+1] remain unchanged in the degree elevated space.
Thus degree elevation only requires to recompute a limited number of basis functions, as already observed in [1].

A C
1 MD-spline can be expressed as

f (x) =
KX

i=1

ci Ni,m(x) =
K+1X

i=1

ĉi N̂i,m̂(x), x 2 [a, b],

where

ĉi =

8>>>>><
>>>>>:

ci, i 6 ` � d j,

↵i ci + (1 � ↵i) ci�1, ` � d j + 1 6 i 6 `,
ci�1, i > ` + 1,

with ↵i given by:

↵i =
` + 1 � i

d j

˜̂ti�1 � ˜̂si

t̃i�1 � s̃i

, i = ` � d j + 1, . . . , `, (21)

where s̃ and t̃ are the scaled and translated extended partitions relative to S (Pd,X,K), ˜̂s and ˜̂t are the scaled and
translated extended partitions relative to S (Pbd,X,K), and ` is such that s` 6 x j < min(s`+1, b). A proof of (21) is
given in Appendix B.

Remark 9. We shall observe that, when elevating the degree of one piece, one may generate adjacent breakpoint

intervals with associated di↵erent degrees. Therefore, prior to performing degree elevation, it will be necessary to

apply multiple knot insertions to reduce the continuity to be at most C
1

where necessary.

Remark 10. One can also use the proposed local degree elevation method to perform global degree elevation in

conventional spline spaces of any continuity. In particular, to do so, first knot insertion needs to be performed at each

breakpoint, so as to decrease the continuity to be at most C
1
. Successively local degree elevation shall be applied on

each breakpoint interval. Finally knot removal shall be performed to restore the original continuity.

4.3. Knot removal and degree reduction by dual basis

Knot removal and degree reduction are the inverse operations of knot insertion and degree elevation and they
consist in representing an MD-spline function in a space with lower dimension. Such representation can be exact or
approximated, depending on whether the lower dimensional space contains the initial function or not. As a peculiarity
of MD-splines, degree reduction can be performed locally. One advantage of having the MDB-spline basis at our
disposal is that we can use its dual basis in order to approximate the initial function, when necessary. The dual basis
can e�ciently be computed using the algorithm in [15], which naturally lends itself to be generalized to MD-splines
and can be applied to perform a constrained or unconstrained least squares approximation of the initial function. We
remark that, despite least squares approximation can either be local or global, according to our numerical experiments
a global method results in significantly higher quality.

5. Periodic MD-splines

For ease of presentation, so far we have dealt with spline spaces on clamped partitions. Nevertheless the results in
this paper are readily generalizable to the case of periodic partitions.
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To generate a periodic MD-spline function we will additionally need to specify a continuity k0 = kq+1 at the
endpoints a ⌘ x0 and b ⌘ xq+1, in such a way that �1 6 k0 6 min(d0, dq). Note that k0 = kq+1 = �1 corresponds to a
non periodic setting. Generalizing Proposition 1, we can see that the spline space has dimension:

K =

qX

i=0

di � ki =

qX

i=0

di � ki+1.

To generate a periodic spline, we will replicate a suitable number of breakpoints and associated continuities outside
the interval [a, b]. More precisely, the amount of information to be replicated is given by as many breakpoint intervals
and continuities as necessary in order to generate a left extended partition with d0 + 1 knots smaller than or equal
to a; Similarly we will need to generate an extended right partition having dq + 1 knots ti greater than or equal to b.
A periodic MD-spline is defined by K coe�cients and according to the discussed wrapping strategy the first k0 + 1
coe�cients must be replicated at the end of the sequence so as to generate K + k0 + 1 coe�cients overall.

The following two examples illustrate the procedure for obtaining a periodic C
1 MD-spline. We remark, however,

that the periodic construction applies more generally to the wider class of MD-splines in [1].

Example 2. Let us consider an interval [0, 4], a partition X = {2}, a degree vector d = (3, 3) and a continuity vector
K = (2). We additionally require C

1 continuity at the closure, namely k0 = k2 = 1. The resulting periodic MD-spline
space has dimension K = 3 and in order to construct the corresponding MDB-splines, we will need to augment the

x�2 x�1 x0 x1 x2 x3 x4

d�2 = 3 d�1 = 3 d0 = 3 d1 = 3 d2 = 3 d3 = 3

C
1

C
2

C
1

C
2

C
1

C
2

C
1

s s1 s2 s3⌘s4 s5

t t1 t2⌘t3 t4 t5

Figure 4: Setting for the spline space in Example 2.

sequence of breakpoints and the degree and continuity vectors as shown in Figure 4. In this way we obtain

X = {�4,�2, 0, 2, 4, 6, 8}, d = (3, 3, 3, 3, 3, 3), K = (2, 2, 1, 2, 1, 2, 2),

and the corresponding left and right extended partitions become

s = {�4,�2, 0, 0, 2} and t = {2, 4, 4, 6, 8}.

The peculiarity of this example is that the first entry in the augmented continuity vectorK is 2, despite replicating
periodically the spline space configuration would give C

1 continuity at x�2 (see Figure 4). This is due to the fact that
all MDB-spline basis functions nonvanishing in [0, 2] can be determined from a left extended partition s having just
one knot at x�2. The same reasoning explains the continuity at the last entry of K and the multiplicity of the last knot
in t.

The C
1 MDB-spline basis and a curve from the considered space are illustrated in Figure 6(a)–(b). Note that, since

we require C
1 continuity at the closure, the first two control points have been replicated at the end.

Example 3. Let us consider an interval [0, 9], a partition X = {3, 6, 7}, a degree vector d = (3, 3, 1, 2) and a continuity
vector K = (2, 1, 1). Furthermore, let us require C

1 continuity at the closure, namely k0 = k4 = 1. The corresponding
spline space has dimension K = 4 and we will need to augment the sequence of breakpoints and the vectors of degrees
and continuities as shown in Figure 5. This yields

X = {�6,�3,�2, 0, 3, 6, 7, 9, 12, 15}, d = (3, 1, 2, 3, 3, 1, 2, 3, 3), K = (2, 1, 1, 1, 2, 1, 1, 1, 2, 2),

and, accordingly, the left and right extended partitions become

s = {�6,�2, 0, 0, 3, 7} and t = {3, 6, 6, 9, 12, 15}.
16



In particular, note that the last entry in K is 2 (instead of 1) and thus there is only the one knot t6 in correspondence
to the breakpoint x6. This is explained by the fact that only three knots greater than or equal to x4 ⌘ b are required in
order to generate a periodic closure.

x�3 x�2 x�1 x0 x1 x2 x3 x4 x5 x6

d�3 = 3 d�2 = 1 d�1 = 2 d0 = 3 d1 = 3 d2 = 1 d3 = 2 d3 = 3 d3 = 3
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1

C
1

C
1

C
2

C
1

C
1

C
1

C
2

C
1

s s1 s2 s3⌘s4 s5 s6

t t1 t2⌘t3 t4 t5 t6

Figure 5: Setting for the spline space in Example 3.

The C
1 MDB-spline basis and a curve from this space are illustrated in Figure 6(c)–(d). Note that, since we require

C
1 continuity at the closure, the first two coe�cients have been replicated at the end.

Remark 11. Note that the discussed Cox de-Boor-type recurrence relation does not depend on the location of the

first knot in s, nor of the last knot in t. As a consequence one could set these knots to be coincident with the next

neighboring ones. For instance, in Example 2, setting s1 ⌘ s2 and t5 ⌘ t4 the result would be unchanged, but we

would avoid replicating two breakpoint intervals. The same holds for Example 3.

6. Examples and applications

In this section we address two specific applications, aimed at demonstrating the potential of C
1 MD-splines. One

is concerned with modeling and storing images in SVG format, whereas the other with designing non-uniform rational
C

1 MD-splines reproducing circles and quadrics.

6.1. C
1

MD-spline curves and SVG image format

As part of this research we designed a simple yet powerful Web-App to experience and appreciate the benefits
of modeling with C

1 MD-splines. The Web-App, available at http://www.dm.unibo.it/⇠casciola/MD spline, allows
for generating a single 2D C

1 MD-spline curve and for editing it by exploiting the modeling tools proposed in this
paper. In particular, the user starts by choosing a degree and an order of continuity and interactively places the
control points. Hence a conventional spline curve is generated and can then be edited by all the tools described in
the previous sections, namely local degree elevation and reduction, decrease/increase of continuity at a breakpoint
(i.e. knot insertion/removal), subdivision of one interval by insertion of a new breakpoint and by simply moving the
control points.
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Figure 6: Periodic curves obtained from the C
1 MD-spline spaces described in Examples 2 and 3 and related periodic MDB-spline bases. The

endpoints of the di↵erent curve pieces are marked by black dots and the green circle indicates the first endpoint of the curve, that is oriented
clockwise; the first and last control points are marked by a red and green asterisk, respectively.
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The potential of MD-splines goes far beyond the well-known savings in terms of more compact storage. To make
this apparent it is necessary to say something more about existing technologies for handling vector graphics. Indeed,
nowadays there exist several Web-Apps for online drawing of vector images and nearly all of them allow to load and
save vector graphics in SVG format.

From Wikipedia: Scalable Vector Graphics (SVG) is an XML-based vector image format for two-dimensional

graphics with support for interactivity and animation. The SVG specification is an open standard developed by the

World Wide Web Consortium (W3C) since 1999. SVG images and their behaviors are defined in XML text files. This

means that they can be searched, indexed, scripted, and compressed. As XML files, SVG images can be created and

edited with any text editor, as well as with drawing software. All major modern web browsers including Mozilla

Firefox, Internet Explorer, Google Chrome, Opera, Safari and Microsoft Edge provide SVG rendering support .
One of the most powerful tags in SVG is the <path>. A path is typically composed of a number of distinct curves,

each of which can be formed by several polynomial pieces of degree 1, 2 or 3; the continuity between pieces of the
same degree can be C

0 or C
1. In fact, the SVG format provides the commands L, Q, C (Linear, Quadratic, Cubic)

that allow for defining curve pieces joined with C
0 continuity, but also the S and T commands that define respectively

a cubic or quadratic piece connected with C
1 continuity with the previous one, if both have the same degree. Table 1

presents some examples of SVG syntax to define piecewise curves with di↵erent continuities at the joins.

M x1 y1 L x2 y2 L x3 y3 two line pieces with a C0 join
M x1 y1 Q x2 y2 x3 y3 Q x4 y4 x5 y5 two quadratic pieces with a C0 join
M x1 y1 Q x2 y2 x3 y3 T x5 y5 two quadratic pieces with a C1 join
M x1 y1 C x2 y2 x3 y3 x4 y4 C x5 y5 x6 y6 x7 y7 two cubic pieces with a C0 join
M x1 y1 C x2 y2 x3 y3 x4 y4 S x6 y6 x7 y7 two cubic pieces with a C1 join

Table 1: Continuity between polynomial pieces stored in SVG format.

Of course, one can modify a vector image in SVG format by editing its source file. This is possible for small
files and simple drawings, but it turns out impractical in all other cases, where it is by far preferable to use a drawing
software that allows for loading and saving in SVG format, such as for example the well known and professional
Inkscape.

Any software that allows for editing an SVG file represents the curves of a path in its own internal format. For
example, Inkscape represents a linear piece (command L) with a line segment and a quadratic or cubic piece (Q or
C commands) with a cubic polynomial. When two consecutive quadratic or cubic pieces join with C

1 continuity (T
or S commands), then Inkscape stores them as two cubic pieces with a C

0 join and identifies with a blue square the
breakpoint in between, allowing the user to modify the control points while keeping the C

1 constraint. However, as
soon as one piece of a curve path is modified, Inkscape saves the path in its internal format, namely as one sequence
of linear and cubic pieces joined with C

0 continuity.
On the contrary, a system based on C

1 MD-splines has the potential of maintaining the degrees and continuities of
the di↵erent pieces during the editing phase and to save the path information in the most compact possible way. The
following examples aim at illustrating these advantages. Table 2 shows the syntax of a simple SVG file containing
a path with only one closed curve, formed by a sequence of pieces of degrees 3,2,1,3,2,2 (CQLCQT), with orders of
continuity 0, 0, 0, 0, 1 and 0 at the closure; the corresponding curve is shown in Figure 7(a).

Figure 7(b) shows the same curve in Inkscape, along with the control points of the internal representation (circles,
squares and diamonds, the latter two are also the images of the breakpoints). Note that blue squares correspond to
breakpoints where C

1 continuity is required, whereas blue diamonds identify breakpoints where only C
0 continuity is

required. Figure 7(c) shows the same curve represented as a C
1 MD-spline, along with its control points (black dots)

and breakpoint images (red dots). It can be noted that Inkscape converts the two quadratic pieces with a C
1 join (QT)

into two cubic pieces with a C
0 join, thus using 7 control points. Oppositely the C

1 MD-spline representation enables
us to maintain unaltered the di↵erent degrees of the pieces and continuities, in such a way that the same two quadratic
pieces joined C

1 can be represented with 4 control points only.
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<?xml version="1.0" encoding="UTF-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0,0,1000,1000">
<g transform="translate(98.198506,-0.000000)">
<path d="M 129.797768 361.737805 C -98.198506 203.887510 71.210508 0.000000
184.877504 76.664516 Q 355.377997 191.661290 479.965266 2.894955 L 809.990080
593.465674 C 901.801494 754.755997 584.183628 935.897436 487.905712 775.103391
Q 343.482830 533.912329 414.208442 361.455749 T 129.797768 361.737805 "
stroke="black" fill="none"/>
</g>
</svg>

Table 2: A simple SVG file defining one path.

(a) (b) (c)

Figure 7: (a) Curve in SVG format; (b) Inkscape screenshot; (c) Web-App screenshot.

(a) (b) (c)

Figure 8: (a) Glyph ca; (b) Facebook logo; (c) Apple logo.

M 129.797768 361.737805 C -98.198506 203.887510 71.210508 0.000000
184.877504 76.664516 Q 355.377997 191.661290 479.965266 2.894955 L 809.990080
593.465674 C 901.801494 754.755997 584.183628 935.897436 487.905712 775.103391
Q 343.482830 533.912329 414.208442 361.455749 T 129.797768 361.737805

Table 3: Example of a file containing a path that can be uploaded through the Web-App.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Some TrueType characters and their outlines.

Note that although the SVG path defines only one C
1 join (QT), our SVG parser detects that there is another C

1

join between the first cubic and quadratic pieces (CQ) and maintains that continuity.
The Web-App made as a demo for 2D C

1 MD-spline curves allows for uploading files containing a single curve
path in SVG format. Figure 7(c) is a screenshot of the Web-App canvas and the corresponding uploaded file is
provided in Table 3.

Name Curve Segments LQC (Linear/Quadratic/Cubic) CPs MD CPs Inkscape CPs
ca c 11 LQQQQLQQQQQ 21 17 30
ca a out 14 LQQQQQQLCCQQLQ 28 25 37
ca a into 5 QQQLQ 10 10 14
facebook f 17 LLLLLLCLLLCLLLLLL 22 22 22
facebook ⇤ 8 QLQLQLQL 13 13 17
facebook ⇢� 8 QLQLQLQL 13 13 17
apple apple 10 CCCCCCCCCC 31 25 31
apple leaf 2 CC 7 7 7

Table 4: Defining parameters for the SVG images in Figure 8.

Figure 8 presents examples of simple SVG images, each of which is formed by various piecewise curves having
di↵erent degrees. Table 4 lists the related information: in particular columns CPs, MD CPs and Inkscape CPs report
respectively the number of control points stored in the initial SVG file, used for the internal representation as C

1

MD-splines (note that the implemented algorithm determines the minimum configuration) and for the internal repre-
sentation in Inkscape. Although only examples of small size have been considered, the savings in terms of control
points is noticeable.

As mentioned, as soon as just one piece is edited, Inkscape requires to store a file with as many control points
as those of its internal representation, while a software based on C

1 MD-splines will save it with the control points
indicated in the CPs column, to comply with the SVG format.

Figure 9 shows characters (or glyphs) extracted from TrueType files and exported in SVG format; the outlines
in the True-Type files are made of straight lines and quadratic Bézier curves. This means that once imported into
Inkscape they will be converted to linear and cubic pieces, and, after editing, their saving in SVG format will reflect
the internal representation in Inkscape with a significant increase in file size; this increase is not only due to the use
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of cubic sections to represent quadratic pieces, but also to the floating point format used by Inkscape for saving (fixed
point representation with 5 decimal places). In Table 5 some useful information for analysis and comparison are
reported.

Inkscape
Name Curves Segments CPs Bytes Bytes
Turtle 1 116 185 2411 4586
Libra 7 259 458 4112 8510
Taurus 18 343 624 5294 11855
Motorbike 162 1179 1951 14045 28183

Table 5: Defining parameters for the SVG images in Figure 9.

In all these examples, the files saved by Inkscape require more than double storage occupancy in bytes with respect
to the original SVG files.

To conclude this section, we observe that the SVG standard handles only C
0 joins between curve pieces of di↵erent

degrees, whereas a C
1 join is only possible when the two pieces have the same degree. The discussed benefits of C

1

MD-splines suggest that the SVG standard could conveniently be extended to handle C
1 continuity between pieces of

di↵erent degrees and C
2 continuity between cubic segments.

6.2. Multi degree NURBS and reproduction of circles and quadrics

Non-uniform rational multi-degree curves and surfaces can be constructed in the same way as NURBS from
conventional splines. The rational formulation enables us to exactly (or approximately) represent conic sections or
quadric surface patches with the additional benefits of the multi-degree framework, namely using less control points
compared to the conventional representation. As a demonstration, we will discuss how to construct surfaces including
exact spherical patches by means of rational MD-spline segments joined with C

0 continuity. Moreover we will discuss
how to approximate the same surfaces using less control points by means of rational MD-splines joined with C

1

continuity.
Let us consider the problem of designing a square frame with spherical corners. We will see how this can be done

using a trajectory curve and three di↵erent profile curves modeled by means of MD-NURBS. The trajectory curve
represents a closed frame (Figure 10(a)), composed of four rational pieces of degree 2/2, each of which is a circular
arc of 90o joined to two linear segments with C

0 continuity. The corresponding MD-NURBS space S 1,u is determined
by the following parameters:

S 1,u: [a, b] = [0, 8], X = {1, 2, 3, 4, 5, 6, 7}, d = (2, 1, 2, 1, 2, 1, 2, 1), K = (0, 0, 0, 0, 0, 0, 0), k0 = k8 = 0,
w = (1,

p
2/2, 1, 1,

p
2/2, 1, 1,

p
2/2, 1, 1,

p
2/2, 1),

where w are the weights of the rational representation.
The three profile curves (Figure 10(b)) are each composed of 3 sections and defined by the same 5 control points

(indicated by small circles and blue control polygon). However, they are di↵erent in shape since they have di↵erent
associated breakpoint sequences, degree vectors and continuity vectors. In particular, the corresponding MD-NURBS
spaces S 1,v, S 2,v, S 3,v are described by parameters [a, b] = [0, 3], k0 = k3 = �1, w = (1,

p
2/2, 1, 1, 1) and

S 1,v: X = {1, 2}, d = (2, 1, 1);

S 2,v: X = {1, 1 + 2h}, with h = 0.2, d = (2, 2, 1);

S 3,v: X = {1, 1 + 2h}, with h = 0.8, d = (2, 2, 1).

Note that the first piece of all three profile curves is a circular segment of 90o.
The trajectory and profile curves have been composed to generate swinging surfaces of MD-NURBS type, repre-

senting three 3D frames with di↵erent profile sections. Figure 12 shows a section of each surface, highlighting the
di↵erent profiles. Figures 11(a) and 11(c) show the entire surface obtained from the profile curve in S 2,v, respectively
from the top and from a generic point of view, with the related grid of 12 ⇥ 5 control points. The smooth corner
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Figure 10: Construction of the MD-NURBS surfaces discussed in Section 6.2. (a) Trajectory curve in space S 1,u; (b) Profile curves in spaces S 1,v,
S 2,v, S 3,v; (c) Trajectory curve in space S 2,u.
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Figure 11: Construction of the MD-NURBS surfaces discussed in Section 6.2. (a) Swinging surface obtained from a trajectory curve in space S 1,u
and a profile curve in space S 2,v; (b) Swinging surface obtained from a trajectory curve in space S 2,u and a profile curve in space S 3,v; (c)–(d)
Perspective views of the surfaces in (a) and (b) respectively.

(a) (b) (c)

Figure 12: Parts of the MD-NURBS swinging surfaces obtained from a trajectory curve in space S 1,u and profile curves (a) in S 1,v, (b) in S 2,v and
(c) in S 3,v.
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patches are exact ellipsoidal patches. Note that a conventional NURBS representation (i.e. where all pieces have same
degree) of the same surface would result in a 17 ⇥ 5 grid of control points and weights.

To conclude, we illustrate how to model a similar surface, where the circular sections are just approximated. This
will result in higher smoothness and less control points. To obtain a close approximation of the trajectory curve (see
Figure 10(c)), we rely on the MD-NURBS space

S 2,u: [a, b] = [0, 8], X = {1, 1.25, 2.25, 3.25, 3.5, 4.5, 5.5, 5.75, 6.75, 7.75}, d = (1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1),
K = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1), k0 = k12 = 0, w = (1, 0.25, 1, 0.25, 1, 0.25, 1, 0.25).

The resulting curve has more pieces than the previous one, and, more precisely, is composed of 4 rational pieces
of degree 2/2 and 8 pieces of degree 1/1, joined with C

1 continuity. The corresponding control polygon has 8 control
points only, so that the swinging surface obtained by composing the approximated trajectory curve with one of the
profile curves from S 1,v, S 2,v or S 3,v will be defined by a grid of 8 ⇥ 5 control points and weights.

The rational quadratic approximation of the circular arcs can be modified by altering the weights associated with
the control points of the quadratic rational segments. In the example, the relative error between the rational quadratic
and the circle of radius 0.5 (in green in the figure) is 1/100 (that is the distance between the curve points and the circle
is at most 1/100 of the radius). Figures 11(b) and 11(d) show the swinging surface generated using profile curve S 3,v,
respectively from the top and from an arbitrary point of view, together with the related grid of 8 ⇥ 5 control points.

7. Conclusion

We have proposed a Cox-de Boor-type recurrence relation for evaluating multi-degree splines that are at most
C

1 continuous between pieces of di↵erent degrees, along with a similar formula for the computation of derivatives
and algorithms for knot-insertion/removal and local degree elevation/reduction. The impact of e�cient algorithms
for MD-splines, even though with limited continuity, has been illustrated by several numerical examples concerning
applications in geometric modeling as well as vector graphics. These examples emphasize that one can e�ciently
evaluate C

1 MD-splines, perform modeling operations maintaining the continuity, save the necessary data and load
them again to continue editing. This is not possible within any available modeling software nor within the current
SVG standard.

Cox-de Boor-type recurrence relations are probably the simplest and most e�cient technique for spline evaluation.
However, as proved in [1], these relations are available for C

1 MD-splines only, whereas no similar method may exist if
one allows more general continuities between pieces of di↵erent degrees. Our future research extends in the direction
of studying alternative algorithms for more general multi-degree spline spaces and applications of the multi-degree
framework in surface modeling.
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Appendix A. Proof of the recurrence scheme for derivatives computation

Without loss of generality, we prove relation (17) for a C
1 MDB-spline Ni,m(x), with x 2 [x j, x j+1), j = psi, . . . , pti�

1. By di↵erentiating (3) and substituting D+Ni,m�1 and D+Ni+1,m�1 with (17), which is known to be correct up to step
m � 1, we get

D+Ni,m(x) =
1/dj

t̃i�1 � s̃i

Ni,m�1(x) +
x̃ � s̃i

t̃i�1 � s̃i

D+Ni,m�1(x) � 1/dj

t̃i � s̃i+1
Ni+1,m�1(x) +

t̃i � x̃

t̃i � s̃i+1
D+Ni+1,m�1(x)

=
1/dj

t̃i�1 � s̃i

Ni,m�1(x) +
x̃ � s̃i

t̃i�1 � s̃i

d j � 1
dj

 
Ni,m�2(x)
t̃i�2 � s̃i

� Ni+1,m�2(x)
t̃i�1 � s̃i+1

!

� 1/dj

t̃i � s̃i+1
Ni+1,m�1(x) +

t̃i � x̃

t̃i � s̃i+1

dj � 1
dj

 
Ni+1,m�2(x)
t̃i�1 � s̃i+1

� Ni+2,m�2(x)
t̃i � s̃i+2

!
.
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By adding and subtracting to the right-hand side of the last equality the quantities

t̃i�1 � x̃

t̃i�1 � s̃i+1
Ni+1,m�2(x) and

x̃ � s̃i+1

t̃i�1 � s̃i+1
Ni+1,m�2(x)

we obtain

D+Ni,m(x) =
1/dj

t̃i�1 � s̃i

Ni,m�1(x) +
(dj � 1)/dj

t̃i�1 � s̃i

 
x̃ � s̃i

t̃i�2 � s̃i

Ni,m�2(x) +
t̃i�1 � x̃

t̃i�1 � s̃i+1
Ni+1,m�2(x) � t̃i�1 � x̃

t̃i�1 � s̃i+1
Ni+1,m�2(x) � x̃ � s̃i

t̃i�1 � s̃i+1
Ni+1,m�2(x)

!

� 1/dj

t̃i � s̃i+1
Ni+1,m�1(x) +

(dj � 1)/dj

t̃i � s̃i+1

 
t̃i � x̃

t̃i�1 � s̃i+1
Ni+1,m�2(x) +

x̃ � s̃i+1

t̃i�1 � s̃i+1
Ni+1,m�2(x) � x̃ � s̃i+1

t̃i�1 � s̃i+1
Ni+1,m�2(x) � t̃i � x̃

t̃i � s̃i+2
Ni+2,m�2(x)

!
.

Using (3) and adding up we obtain

D+Ni,m(x) =
1/dj

t̃i�1 � s̃i

Ni,m�1(x) +
(dj � 1)/dj

t̃i�1 � s̃i

Ni,m�1(x) � (dj � 1)/dj

t̃i�1 � s̃i

t̃i�1 � s̃i

t̃i�1 � s̃i+1
Ni+1,m�2(x)

� 1/dj

t̃i � s̃i+1
Ni+1,m�1(x) � (dj � 1)/dj

t̃i � s̃i+1
Ni+1,m�1(x) +

(dj � 1)/dj

t̃i � s̃i+1

t̃i � s̃i+1

t̃i�1 � s̃i+1
Ni+1,m�2(x).

Simplifying the above expression and using again (3) we finally get

D+Ni,m(x) =
Ni,m�1(x)
t̃i�1 � s̃i

� Ni+1,m�1(x)
t̃i � s̃i+1

.

This completes the proof.

Appendix B. Proof of the degree-elevation formula for C1 MD-splines

In the following we will show the correctness of equation (21). To perform degree-elevation, we consider the
derivative of a C

1 MD-spline, which is a polynomial of degree d j � 1 on [x j, x j+1]. By taking the expansion in the
Bernstein basis of degree d j�1 relative to [x j, x j+1], degree-elevating and computing the primitive we get the expression
of the degree-elevated MD-spline in the considered interval.

For completeness, we recall the well-known relation between the coe�cients of a polynomial f and its degree-
elevated version in the Bernstein basis, namely

f (x) =
nX

i=0

biBi,n(x) =
n+1X

i=0

b̂iBi,n+1(x),

with
b̂i = ↵ibi�1 + (1 � ↵i)bi i = 0, . . . , n + 1 and ↵i =

i

n + 1
. (B.1)

To perform degree elevation in [x j, x j+1], with s` 6 x j < min(s`+1, b), we shall first reduce to C
1 the continuity

at x j and x j+1 and then consider the coe�cients ci, for i = ` � d j, . . . , `, which define the MD-spline function in the
considered interval. Hence we proceed as follows:

1. using (18) determine c
(1)
i

, for i = ` � d j + 1, . . . , `, that are the coe�cients of a polynomial of degree d j � 1 in
the Bernstein basis;

2. using (B.1) elevate the degree from d j � 1 to d j, obtaining coe�cients ĉ
(1)
i

, for i = ` � d j + 1, . . . , ` + 1;

3. using the inverse of (18) and coe�cients ĉ
(1)
i

, compute the coe�cients ĉi, for i = ` � d j + 1, . . . , `.

Equation (21) is the result of the above three steps.
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