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Abstract We study an a priori Traveling Salesman Problem with Time Win-
dows (tsptw) in which the travel times along the arcs are uncertain and the
goal is to determine within a budget constraint, a route for the service vehicle
in order to arrive at the customers’ locations within their stipulated time win-
dows as well as possible. In particular, service at customer’s location cannot
commence before the beginning of the time window and any arrival after the
end of the time window is considered late and constitutes to poor customer
service. In articulating the service level of the tsptw under uncertainty, we
propose a new decision criterion, called the essential riskiness index, which has
the computationally attractive feature of convexity that enables us to formu-
late and solve the problem more effectively. As a decision criterion for articu-
lating service levels, it takes into account both the probability of lateness and
its magnitude, and can be applied in contexts where either the distributional
information of the uncertain travel times is fully or partially known. We pro-
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pose a new formulation for the tsptw, where we explicitly express the service
starting time at each customer’s location as a convex piecewise affine function
of the travel times, which would enable us to obtain the tractable formulation
of the corresponding distributionally robust problem. We also show how to
optimize the essential riskiness index via Benders decomposition and present
cases where we can obtain closed-form solutions to the subproblems. We also
illustrate in our numerical studies that this approach scales well with the num-
ber of samples used for the sample average approximation. The approach can
be extended to a more general setting including Vehicle Routing Problem with
Time Windows with uncertain travel times and customers’ demands.

Keywords vehicle routing problem · uncertain travel time · time windows ·
risk and ambiguity · distributionally robust optimization

Mathematics Subject Classification (2000) 90C15 · 49M27 · 90C11 ·
90C22

1 Introduction

In the deterministic setting, Dantzig and Ramser (1959) are first to introduce
the vehicle routing problem (vrp) as an extension to the Traveling Salesman
Problem (tsp) to optimize routes for a fleet of vehicles for the purpose of
delivering goods to or collecting them from customers at various locations.
Due to its practical importance, despite the computational challenges, the vrp
has received much attentions from both industry practitioners and academic
researchers (see, for instance, Laporte 2009, Toth and Vigo 2014). Among
the variants of the vrp family, the Capacitated vrp (cvrp) and the vrp

with Time Windows (vrptw) are most prominent and have been studied
extensively (see, for instance, Baldacci et al 2012, Desaulniers et al 2014). In
the former problem, a fleet of identical vehicles located at a central depot are
optimally routed to fulfill the demands of the customers subject to vehicular
capacity constraints. vrptw generalizes the cvrp by further imposing that
each customer has to be served within a specified time interval, known as the
time window. Specifically, if a vehicle arrives early, service cannot be rendered
until the commencement of the time window. Furthermore, any arrival after
the end of the time window or deadline would be prohibited. Notably, the
vrp with Deadline (vrpd) is an important special case of vrptw, where
the customers’ time windows are only specified by deadlines. When only one
vehicle route is involved, we refer to the vrptw and the vrpd respectively as
the tsp with Time Windows (tsptw) and the tsp with Deadlines (tspd).

Since tsp, the simplest form of vrp, is alreadyNP-hard, incorporating un-
certainty in vrp would further elevate the computational difficulties of solving
the problem. Hence, most routing optimization problems considered in the
vrp literature assume deterministic travel times. For the state-of-the-art ex-
act algorithms for deterministic vrp, we refer readers to Baldacci et al (2010),
Toth and Vigo (2014), Pecin et al (2017a,b), among others. Nevertheless, from
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the modeling perspective, ignoring uncertainty at the planning level can po-
tentially result in poor routing decisions leading to, among other things, poor
customer services that could adversely impact on the reputation of the com-
pany. Hence, approaches that could mitigate uncertainty in vrp are highly
desired.

Several models and algorithms have been proposed in the literature to
mitigate uncertain travel times in tspd and vrpd. Kao (1978) develops a
preference ordered dynamic programming approach to address a stochastic
tspd that minimizes the probability of late completions. However, as noted
by Sniedovich (1981), the approach may yield suboptimal solutions. Laporte
et al (1992) propose a chance-constrained model (see, for instance, Charnes and
Cooper 1959) for a stochastic vrpd, which minimizes the operating cost while
limiting the probability of late returns of vehicles to the depot. They present
instances, such as having normally distributed travel times, under which this
model can be transformed to a deterministic optimization problem. They also
propose models that minimize the operating and expected tardiness costs,
and provide a branch-and-cut procedure to solve these models via sample av-
erage approximations. Kenyon and Morton (2003) propose two branch-and-cut
procedures for addressing a stochastic vrpd that minimizes the expected com-
pletion time of the vehicle fleet or its tardiness probability. The first approach
is capable of obtaining exact solutions when the sample size is small, while
the second approach could obtain approximate solutions for larger problem
instances. Verweij et al (2003) provide a computational study of the decompo-
sition and branch-and-cut techniques for solving a stochastic tspd via sample
average approximation, in which the objective is to minimize the operating
and expected tardiness costs. Taş et al (2014) propose a column generation
procedure for solving the stochastic vrptw that minimizes sum of the operat-
ing costs and expected penalty costs of time window violations. Note that the
enforcement of time windows in this model is “soft” in the sense that service
commencement is permitted even if the vehicle arrives early at a customer’s
location.

The literature on stochastic vrp with “hard” time windows is rather lim-
ited. The resulting optimization problem is considerably more difficult than
the case with soft time windows, since the probability distributions of arrival
times at customers locations have to be truncated because of the hard time
windows. Errico et al (2016b) consider the vrp with hard time windows and
stochastic service times and formulated it as a chance-constrained optimiza-
tion model that includes a probabilistic constraint. The same problem has
been recently addressed by Errico et al (2016a) and modelled as a two-stage
stochastic program using two recourse policies to recover operations feasibility
when the first stage plan turns out to be infeasible. The problem has been
formulated as a set partitioning problem and solved by an exact branch-cut-
and-price algorithm.

A review of the literature on the stochastic vrp including stochastic de-
mands, customers and travel times, and a concise description of relevant solu-
tion concepts is found in Gendreau et al (2014).
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Robust optimization techniques have also been applied to address vrp

with uncertain travel times. Based on the so called budgeted uncertainty sets
of Bertsimas and Sim (2003), Lee et al (2011) study a robust vrpd which
ensures feasible schedules for all uncertainty arising from the uncertainty sets,
while minimizing the total travel costs. Agra et al (2013) extend this approach
to investigate a robust vrptw.

Our approach to address the vrptw under uncertainty is inspired by a
recent work of Jaillet et al (2016), who propose a new decision criterion that
can be applied to solve a variety of vrps under uncertainty. In particular, they
motivate and adopt a relatively new targeted oriented decision criterion that
is based on the riskiness index of Aumann and Serrano (2008) and has been
generalized by Brown and Sim (2009) from the perspective of satisficing in
decsion making. The decision criterion is a convex function that penalizes the
risks of constraints’ violations by accounting for both their infeasibility prob-
abilities and magnitudes of violations. Apart from the coherency in decision
making, the convexity of the decision criterion has important ramifications
in solving the tsp, that would lead to better performance in computational
studies against an approach that maximizes the feasibility probability (see also
computational results in Adulyasak and Jaillet 2015). However, although the
riskiness index can be adopted for distributionally robustness, where proba-
bility distributions of the uncertain parameters are not fully characterized,
to achieve computationally tractable models, it requires the uncertain out-
comes to be expressed as affine summations of independently random vari-
ables. Hence, while the approach can be applied to address uncertain vrp

in various settings included those with deadlines, soft time windows and un-
certain demands (see Gounaris et al 2013), as we will further explain, it is
however, incapable of extending to vrptw where service commencement is
not permitted if the vehicle arrives earlier at a customer’s location.

Inspired by this work, we focus on a new decision criterion that has similar
properties to the riskiness index and develop new solution approach that can
be used to address an uncertainty vrptw. For notational simplicity and clarity
of the exposition, we will focus on a tsptw in the context of uncertain travel
times and the goal is to determine within a budget constraint, a route for
the service vehicle to traverse in order to arrive at the customers’ locations
within their stipulated time windows as well as possible. We can generalize the
approach to address vrptw under uncertainty including those with uncertain
demands. For such extensions, we will refer interested readers to Jaillet et al
(2016). Our distinct contributions in this paper are as follows:

– We propose and motivate a new decision criterion known as the essential
riskiness index that can be applied to address tsptw with uncertain travel
times. Similar to the riskiness index of Aumann and Serrano (2008), the
essential riskiness index takes into account of both the probability of dead-
line violations and its magnitude of such violations whenever they occur.
It can also be applied in contexts where either the distributional informa-
tion of the uncertain travel times is fully or partially known. Quite apart
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from the Aumann and Serrano (2008) riskiness index, the essential riski-
ness enables us to model correlation naturally, without having to impose
stochastic independence in the underlying uncertain parameters. Moreover,
an important feature of the new decision criterion is the ability to provide
computationally amenable reformations when the risk is in the form of con-
vex piecewise affine functions of the underlying random variables, which
enables us to formulate and solve the tsptw more effectively.

– To incorporate the essential riskiness index in the tsptw formulation, we
adopt a multi-commodity flow formulation that enables us to explicitly
characterize the time for service commencement at each node in the form
of a convex piecewise linear function of the travel times. Among other
benefits, this approach also enables us to formulate the distributionally
robust aspect of the tsptw explicitly and compactly.

– We propose Benders decomposition methods for solving the stochastic and
the distributionally robust versions of the tsptw. For solving the stochas-
tic tsptw via sample average approximation and the distributionally ro-
bust tspd with known mean and covariance of travel times, we exploit
the problem structures and obtain closed form solutions for the Benders
subproblems. Our computational studies suggest that the decomposition
approach scales well computationally with the problem size.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce the multi-commodity flow formulation that can be applied to model
a tsptw with uncertain travel times. In Section 3, we introduce the essential
riskiness index as a coherent decision criterion that penalizes late arrivals by
accounting for both their tardiness probabilities and magnitudes. In Section 4,
we apply the essential riskiness index to address a stochastic tsptw via sam-
ple average approximation and a distributionally robust tsptw with mean
and covariance ambiguity set. In Section 5 we provide an efficient and scal-
able Benders decomposition method to solve the problems computationally
and show that in some cases closed-form solutions to the subproblems can be
obtained. We provide an extension in Section 6 and the computational stud-
ies in Section 7. Finally, we conclude the paper and indicate future research
directions in Section 8.

Notation

We adopt the following notations throughout the paper. We denote by |N |
the cardinality of a set N . We use boldface lowercase letters to represent
vectors and x′ to represent the transpose of a vector x, for example, x =
(x1, x2, . . . , xn)

′. We use tilde ( .̃ ) to denote uncertain parameters. We model
uncertainty by a state-space Ω and a σ−algebra F of events in Ω. We define V
as the space of real-valued random variables and R the space of real numbers.
In the distributionally robust optimization model, instead of specifying the
true distribution P on (Ω,F), we assume that it belongs to a distributional
uncertainty set F, such that P ∈ F. We denote by EP

(
t̃
)
the expectation

of t̃ under probability distribution P. The inequality between two uncertain
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parameters t̃ ≥ ṽ describes state-wise dominance, i.e., t̃(ω) ≥ ṽ(ω) for all
ω ∈ Ω. The inequality between two vectors x ≥ y corresponds to the element-
wise comparison.

2 A model for tsptw with travel times uncertainty

To formulate the tsptw, we consider a directed network G = (N ,A), where
N = {1, 2, · · · , n} represents the set of nodes and A the set of arcs. Let node
1 be the origin depot, node n be the destination depot and the rest of the
nodes i, i ∈ N\{1, n} represent customers at various locations. We use (i, j)
and a interchangeably to represent an arc in A. Let ca denote the cost for
traversing arc a ∈ A and let z̃ij , (i, j) ∈ A, be the consolidated random
variable associated with the random service time at node i and random travel
time for traversing arc (i, j). For each node i ∈ N , we denote, respectively, the
set of its incoming arcs and the set of its outgoing arcs by

δ−(i) = {(j, i) ∈ A | j ∈ N\{i}} and δ+(i) = {(i, j) ∈ A | j ∈ N\{i}} .

We assume that δ−(1) = δ+(n) = ∅ and that A does not contain arc (1, n).
The service vehicle departs at the origin depot at time zero. At each cus-

tomer’s node i, i ∈ N , the time window for service commencement is denoted
by [τ i, τ i], where τ i ∈ R+ is the earliest time for service commencement and
τ i ∈ R+ ∪ {∞} represents the latest time or deadline. Not all customers have
clearly specified service time windows. In the absence of earliest time or dead-
line, we would let τ i = 0 or τ i = ∞, respectively. At the origin node, we have
τ1 = 0 and τ1 = ∞. We denote the set of nodes with positive earliest times
by

N = {i ∈ N | τ i > 0}
and the set of nodes with finite deadlines by

N = {i ∈ N | τ i <∞}.

In the tsptw model, if the vehicle arrives early at node i, i ∈ N , we do not
allow the service to commence until the time τ i . However, service would still
be rendered if the vehicle arrives late after the deadline, τ i. Although late
services are inevitable, they could be mitigated through appropriate choice
of route by solving an optimization problem that takes into account of the
network uncertainty.

To formulate the model, we let X ⊆ {0, 1}|A| represent the set of feasible
routes, where each feasible route is a Hamiltonian path that starts from node
1, visits each node i, i ∈ N\{1, n} exactly once, and ends at node n. Given
a feasible route, x = (xa)a∈A ∈ X , we denote xa = 1 if arc a is in the route,
and xa = 0, otherwise. Next, we characterize the feasible set of routes for the
tsptw that would enable us to determine the service starting time at each
node i, i ∈ N . To do so, we adopt the multi-commodity flow formulation
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proposed by Claus (1984) for the Asymmetric Traveling Salesman Problem by
defining the set

S =







x ∈ {0, 1}|A|

s ∈ R
|A|×|N|
+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

a∈δ+(i)

xa = 1, i ∈ N\{n},
∑

a∈δ−(i)

xa = 1, i ∈ N\{1},

s1a = 0, a ∈ A,
sla ≤ xa, l ∈ N\{1}, a ∈ A,
∑

a∈δ+(1)

sla = 1, l ∈ N\{1},
∑

a∈δ+(i)

sla −
∑

a∈δ−(i)

sla = 0, l ∈ N\{1}, i ∈ N\{1, l},
∑

a∈δ+(l)

sla −
∑

a∈δ−(l)

sla = −1, l ∈ N\{1},







.

where we denote s = (sl)l∈N and sl ∈ R
|A|
+ , l ∈ N . For extension to vrptw

and to the case with uncertain demand, we refer interested readers to Adulyasak
and Jaillet (2015) and Jaillet et al (2016).

Proposition 1 The set of feasible routes is given by

X =
{

x
∣
∣
∣ (x, s) ∈ S for some s ∈ R

|A|×|N|
+

}

.

Moreover, for any feasible x ∈ X , there is an unique s ∈ {0, 1}|A|×|N| such
that (x, s) ∈ S. In particular, for all l ∈ N , sl corresponds to the path on
route x that starts at node 1 and ends at node l.

Proof. See, for instance, Jaillet et al (2016). �

The vehicle departs the origin node at t1 = 0. Let z ∈ R
|A|
+ denote a

realization of (z̃ij)(i,j)∈A. For a given solution x ∈ X , we can determine the
service starting time recursively as

tj = max{ti + zij , τ j} (1)

for every arc (i, j) along the path x, i.e., xij = 1. Hence, if the arrival time at
node j, is earlier than τ j , the service starting time would be τ j . Otherwise,
the service starting time would coincide with the arrival time given by ti+zij .
Next, we show that the service starting time can be represented as a convex
piecewise linear function of z as follows.

Proposition 2 Given (x, s) ∈ S and a realization of z̃, denoted by z, the
service starting time for each node l ∈ N is determined by the function

tl(s, z) = max
k∈N∪{1}







∑

a∈δ−(k)

slaτk + z′
(
sl − sk

)






. (2)
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Proof. See Appendix A.1.

Corollary 1 The tsptw with deterministic travel times, z can be formulated
as

min c′x

s.t.
∑

a∈δ−(k)

slaτk + z′
(
sl − sk

)
≤ τ l, ∀k ∈ N ∪ {1}, l ∈ N ,

(x, s) ∈ S.
(3)

Remark: As far as we know, this formulation of the deterministic tsptw is
new. It is polynomial in size, O(|N |3), and the decision variables (x, s) ∈ S are
associated with the choice of route but not the travel times along it. It avoids
“big-M” and does not require decision variables associated with the departure
and arrival times as in Fisher et al (1997) nor discrete travel times as in Dash
et al (2012). More importantly, as we will show in Section 4, by expressing
the service starting time at each customer’s location as a convex piecewise
affine function of the travel times, we are able to obtain tractable formulation
for the corresponding distributionally robust problem. Indeed, an alternative
idea to enable a convex piecewise affine expression of the service starting time,
and thus a tractable distributionally robust formulation, has been proposed
by Agra et al (2012); they express the underlying graph as a layered graph
and present a tractable formulation for the robust vrptw, which is also of
size O(|N |3). We leave the in-depth comparison of our formulation and theirs
for future research. Although there are other proposed tsptw models in the
literature (see, for instance, Fisher et al 1997, Dash et al 2012, Baldacci et al
2012), we are unaware of any method that can adopt or extend them to obtain
tractable formulations when addressing uncertain travel times.

We also define the delay function at node i, i ∈ N as

ξi(s, z) = ti(s, z)− τ i

so that an arrival at node i is late if and only if ξi(s, z) > 0. Observe that
the delay function is a convex piecewise affine function of z. Correspondingly,
we denote the function map of uncertain delays by ξ(s, z̃) = (ξi(s, z̃))i∈N . To
improve customer service, the optimization problem should penalize tardiness
and ensure that the service vehicle could arrive at the customers’ locations
within their stipulated time windows as well as possible. Hence, a natural
approach would be to determine the route within the budget constraint that
maximizes the joint probability of punctual arrivals as follows.

max P(ξ(s, z̃) ≤ 0)
s.t. c′x ≤ B,

(x, s) ∈ S.
(4)

However, as articulated in Jaillet et al (2016), the decision criterion associated
with Problem (4) may not necessarily be well justified. Among other things,
the decision criterion captures only the frequency of tardiness and completely



Routing Optimization with Time Windows under Uncertainty 9

ignores the magnitude of delays. Conceivably, if the tardiness probabilities as-
sociated with two random arrivals are the same, the one with a potential delay
of five minutes may have the same preference as the alternative with a delay of
fifty minutes. Moreover, since the objective to be maximized is not a concave
function, solving Problem (4), even via sampling average approximations, can
be computationally excruciating.

3 Essential Riskiness Index

To quantify the risk associated with the violation of deadlines, Jaillet et al
(2016) adopt a different objective function that is based on the riskiness index
of Aumann and Serrano (2008).

Definition 1 Given a random delay denoted by the random variable ξ̃ ∈ V
with probability distribution P, the riskiness index ρR

(

ξ̃
)

: V → [0,∞] is

defined as

ρR

(

ξ̃
)

= inf
{

α > 0
∣
∣
∣ Cα

(

ξ̃
)

≤ 0
}

,

where inf ∅ = ∞ and Cα

(

ξ̃
)

, α > 0, is the certainty equivalent of the ξ̃ under

exponential disutility given by

Cα

(

ξ̃
)

= α lnEP

(

exp

(

ξ̃

α

))

.

In particular, Jaillet et al (2016) propose solving an optimization problem that
minimizes the sum of riskiness indexes for all nodes with finite deadlines as
follows:

min
∑

i∈N

ρR(ξi(s, z̃))

s.t. c′x ≤ B,

(x, s) ∈ S.
(5)

Note that the certainty equivalent of the random delay is nonincreasing in the
risk tolerant parameter α. Hence, we may interpret the riskiness index as the
lowest risk tolerant parameter such that the corresponding certainty equivalent
of the random delay under exponential disutility remains nonpositive. With
regards to mitigating delay risks, Jaillet et al (2016) motivate the riskiness
index by highlighting its salient properties as follows. For all ξ̃, ξ̃1, ξ̃2 ∈ V :

i) Satisficing: ρR

(

ξ̃
)

= 0 if and only if P
(

ξ̃ ≤ 0
)

= 1;

ii) Infeasibility: If EP

(

ξ̃
)

> 0 , then ρR

(

ξ̃
)

= ∞;

iii) Convexity: For any λ ∈ [0, 1], ρR

(

λξ̃1 + (1− λ)ξ̃2

)

≤ λρR

(

ξ̃1

)

+ (1 −
λ)ρR

(

ξ̃2

)

;
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iv) Delay bounds:

P

(

ξ̃ > ρR

(

ξ̃
)

θ
)

≤ exp (−θ) , ∀ θ > 0.

As a decision criterion to be minimized, the satsificing property implies arrivals
that meet deadlines almost surely are most preferred. Moreover, solutions that
result in arrivals with positive expected delays are considered infeasible. The
convexity property, apart from being synonymous with risk pooling, also leads
to more tractable formulations of Problem (5) over Problem (4). The last
property ensures that the probability of a delay diminishes exponentially as
the magnitude of the delay increases in multiples of the riskiness index.

To obtain tractable results, the riskiness index requires the random delay
ξ̃ to be affinely dependent on independently distributed random variables.
Indeed, based on Theorem 2, for the case of tspd where N = ∅, the delay at
node l, l ∈ N becomes

ξl(s, z̃) = tl(s, z̃)− τ l = z̃′sl − τ l.

Hence, if z̃ comprises independently distributed random variables, we can
evaluate the certainty equivalent without resorting to numerical integration as
follows (Jaillet et al 2016).

Cα (ξl(s, z̃)) =
∑

a∈A

Cα(s
l
az̃a)− τ l.

In particular, if z̃ is normally distributed with mean, µ and covariance, Σ,
then ξl(s, z̃) would also be normally distributed and

Cα (ξl(s, z̃)) = µ′sl +
sl

′
Σsl

2α
− τ l,

and Problem (5) would be simplified to

min
∑

l∈N

αl

s.t. sl
′
Σsl ≤ 2αl(τ l − µ′sl), ∀l ∈ N ,

c′x ≤ B

(x, s) ∈ S
αl ≥ 0, ∀l ∈ N .

(6)

However, for the case of tsptw, the delay function is not an affine, but
rather a piecewise convex function of z̃, which prohibits us from obtaining
an explicit and tractable formulation as in the case of tspd. Although we
could evaluate the riskiness index via sampling average approximation, the
resultant model would involve optimization over exponential functions, which
are nonlinear and incompatible with discrete optimization framework desired
for solving the tsptw. Hence, this motivates us to explore a similar but less
computationally demanding decision criterion which, in our opinion, is more
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computationally scalable and better suited for solving tsptw under uncer-
tainty.

We propose the essential riskiness index, which has similar properties as
the riskiness index of Aumann and Serrano (2008).

Definition 2 Given a random delay denoted by the random variable ξ̃ ∈ V
with probability distribution P, we define the essential riskiness index ρE

(

ξ̃
)

:

V → [0,∞] as follows:

ρE

(

ξ̃
)

= min
{

α ≥ 0
∣
∣
∣ EP

(

max
{

ξ̃,−α
})

≤ 0
}

.

We interpret the essential riskiness index as the lowest risk tolerant parameter
such that the corresponding certainty equivalent of the random delay under a
ramp disutility remains nonpositive. The essential riskiness index has similar
salient properties as follows:

Proposition 3 For all ξ̃, ξ̃1, ξ̃2 ∈ V:

i) Satisficing: ρE

(

ξ̃
)

= 0 if and only if P
(

ξ̃ ≤ 0
)

= 1;

ii) Infeasibility: If EP

(

ξ̃
)

> 0, then ρE

(

ξ̃
)

= ∞;

iii) Convexity: For any λ ∈ [0, 1], ρE

(

λξ̃1 + (1− λ)ξ̃2

)

≤ λρE

(

ξ̃1

)

+ (1 −
λ)ρE

(

ξ̃2

)

;

iv) Delay bounds:

P

(

ξ̃ > ρE

(

ξ̃
)

θ
)

≤ 1

1 + θ
, ∀ θ > 0.

Proof. See Appendix A.2.
We use the prefix “essential” in the sense that the ramp function is the

simplest form of disutility that we could use to obtain the salient properties.
Recall that the classical on-time arrival probability criterion captures only the
probability of tardiness and completely ignores the magnitude of delays. In
contrast, as expounded in the property of delay bounds, the essential riski-
ness index ensures that the probability of a delay diminishes reciprocally as
the magnitude of the delay increases in multiples of the essential riskiness in-
dex. Hence, the essential riskiness index accounts for both the probability of
tardiness and its magnitude. Although the delay bounds are not as sharp as
the Aumann and Serrano (2008) riskiness index, as we will demonstrate, the
key advantage of having a ramp over exponential disutility is that it provides
more tractable formulation for addressing the tsptw under uncertainty. We
will also show in the next section that when applying the essential riskiness
index on the tspd, i.e., N = ∅, there is an important situation in which the
solutions of minimizing the riskiness index coincide with those that minimize
the essential riskiness index under distributional ambiguity.

To obtain tractable formulations in routing optimization problems, the use
of Aumann and Serrano (2008) riskiness index in the decision criterion would



12 Yu Zhang et al.

require such formulations to have random delays being affinely dependent on a
set of independently distributed random variables. As in the case of the tsptw
model of Jaillet et al (2016), it poses a serious modeling issue, which requires
the mean arrival times to fall within the “soft” time windows as follows:

Example 1 Consider the network in Figure 1, which comprises 3 nodes {1, 2, 3}
and 2 arcs {(1, 2), (2, 3)}, with travel times such that P(z̃12 = 1) = 1 and
P(z̃23 = 1) = 1, respectively. The customer prescribes a time window [τ2, τ2]
to be [2, 3]. There is only one feasible route: {(1, 2), (2, 3)}. In the hard time

Fig. 1: A network example

window case, the vehicle departs from the origin depot at time 0, arrives
at the customer node at time 1, waits for a duration of 1, serves the cus-
tomer node and departs at time 2, and finally returns to the destination depot
at time 3. The delay function at the customer node, max{z̃12, τ2} − τ2, is
convex piecewise affine in z̃. The corresponding essential riskiness index is
min {α ≥ 0 | EP (max {max{z̃12, τ2} − τ2,−α}) ≤ 0} = 0, implying that the
route is feasible, even fully satisficing. However, if we use the approach pro-
posed by Jaillet et al (2016) for soft time windows, the riskiness index would
be inf{α > 0 | Cα (z̃12)− τ2 ≤ 0, Cα (−z̃12) + τ2 ≤ 0} = ∞, implying that the
route is infeasible.

Moreover, Adulyasak and Jaillet (2015) have demonstrated via numerical ex-
periments that applying the Aumann and Serrano (2008) riskiness index for
tsptw would result in poor performance in mitigating the time window vio-
lation.

As a decision criterion for target oriented stochastic or distributional ro-
bust optimization problems, the use of the essential riskiness index has greater
computational advantage over Aumann and Serrano (2008) riskiness index.
For instance, under the essential riskiness index, we can formulate a two-stage
stochastic optimization problem as a large scale linear optimization problem
via sample average approximation (SAA). In contrast, under the Aumann and
Serrano (2008) riskiness index, it would become a large scale convex optimiza-
tion problems involving exponential functions, an optimization format that is
not as scalable and efficiently solvable as linear optimization problems. More-
over, due to the convex piecewise nature of the essential riskiness index, it is
compatible with the format of adaptive distributionally robust optimization
models for which approximation techniques such as linear decision rules (Bert-
simas et al 2017) and Fourier-Motzkin’s elimination are available to solve the
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problem (Zhen et al 2017). However, these approximation techniques would
not be possible if the decision criterion is based on the Aumann and Ser-
rano (2008) riskiness index. Other applications of the essential riskiness index
beyond vrptw include, among others, inventory management (See and Sim
2010, Xin et al 2013) and medical appointment scheduling (Gupta and Den-
ton 2008, Qi 2016). The only computational advantage of the Aumann and
Serrano (2008) riskiness index over the essential riskiness index occurs when
the underlying risk is affinely dependent on a set of independently distributed
random variables, which has limited scope for application.

4 Routing optimization over Essential Riskiness Index

Similar to Jaillet et al (2016), we propose solving an optimization problem
that minimizes the sum of essential riskiness indexes as follows:

min
∑

i∈N

ρE(ξi(s, z̃))

s.t. c′x ≤ B,

(x, s) ∈ S
(7)

or equivalently, based on Theorem 2, we have

min
∑

l∈N

αl

s.t. EP



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + z̃′(sl − sk)






− τ l,−αl









 ≤ 0, ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(8)

4.1 Sample average approximation

For a given distribution, P, evaluating the expectation requires high dimen-
sional integration, which is generally a computationally expensive procedure.
Nevertheless, using sample average approximation method, we can reformulate
Problem (8) as follows. LetΩ denote the set of sample indexes. In the ω-th sam-
ple, ω ∈ Ω, the realization of z̃ is denoted by z(ω). We introduce auxiliary vari-

able yωl = max
{

maxk∈N∪{1}

{
∑

a∈δ−(k) s
l
aτk + z(ω)′(sl − sk)

}

− τ l,−αl

}

for

each l ∈ N in order to linearize the reformulation. Problem (8) can then be
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approximated by the following mixed integer optimization problem:

min
∑

l∈N

αl

s.t.
∑

ω∈Ω

yωl ≤ 0, ∀l ∈ N ,

yωl ≥
∑

a∈δ−(k)

slaτk + z(ω)′(sl − sk)− τ l, ∀l ∈ N , k ∈ N ∪ {1}, ω ∈ Ω,

yωl ≥ −αl, ∀l ∈ N , ω ∈ Ω,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(9)
Here, each sample ω ∈ Ω of travel times occurs with an equal probability. If,
in general, it occurs with a probability pω ∈ [0, 1] subject to

∑

ω∈Ω p
ω = 1, we

simply revise the first constraint as
∑

ω∈Ω p
ωyωl ≤ 0, ∀l ∈ N .

Note that to solve Problem (4) via sample average approximation, we would
require to introduce as many new binary decision variables as the number of
samples (see, for instance, Adulyasak and Jaillet 2015). In contrast, the de-
cision variables yωl introduced in Problem (9) are all continuous, which are
generally easier to optimize compared to discrete ones. Nevertheless, while we
may formulate Problem (9) and solve directly using state-of-the-art commer-
cial solvers such as CPLEX and Gurobi, we will show in Section 5 that for
a large sample size, it would be more computationally efficient to solve the
problem via Benders decomposition.

4.2 A distributionally robust model

We can extend and define the essential riskiness index to encompasses distri-
butional ambiguity as follows

ρE

(

ξ̃
)

= min

{

α ≥ 0

∣
∣
∣
∣
sup
P∈F

EP

(

max
{

ξ̃,−α
})

≤ 0

}

,

where F is an ambiguity set of probability distributions. Note that this indeed
generalizes the previous definition because when the distribution P is exactly
known, the ambiguity set is a singleton, i.e. F = {P}. Under this definition,
when the probability distribution is not uniquely specified, the index would
be evaluated on the worst case distribution, which reflects the attitude of
ambiguity aversion. Correspondingly, we formulate the distributionally robust
tsptw as
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min
∑

l∈N

αl

s.t. sup
P∈F

EP



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + z̃′(sl − sk)






− τ l,−αl









 ≤ 0, ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(10)

To derive an explicit formulation, we consider the cross moment ambiguity
set, which is characterized by the mean values and covariance of z̃ as follows

F =

{

P ∈ P
∣
∣
∣
∣

EP(z̃) = µ

EP ((z̃ − µ)(z̃ − µ)′) = Σ

}

,

where µ > 0 and Σ is a positive definite matrix and P is the set of all
probability distributions on R|A|. We refer interested readers to Wiesemann
et al (2014) for more general forms of ambiguity sets that would also lead to
tractable formulations.

Theorem 1 Problem (10) under the cross moments ambiguity set is equiva-
lent to the following optimization problem.

min
∑

l∈N

αl

s.t. vl0 + tr(ΣV l) ≤ αl, ∀l ∈ N ,



vl0

v′
l

2vl

2
V l



 ∈ S
|A|+1
+ , ∀l ∈ N ,







vl0 −
∑

a∈δ−(k)

slaτk − µ′(sl − sk) + τ l − αl
(vl − sl + sk)′

2

vl − sl + sk

2
V l






∈ S

|A|+1
+ , ∀l ∈ N ,

k ∈ N ∪ {1}
c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(11)

where tr(A) denotes the trace of matrix A and S
|A|+1
+ denotes the set of sym-

metric positive semidefinite matrices in R(|A|+1)×(|A|+1).

Proof. See Appendix A.3.
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For the case of tspd, which is a special case of Problem (10) with N = ∅,
Problem (11) becomes

min
∑

l∈N

αl

s.t. vl0 + tr(ΣV l) ≤ αl, ∀l ∈ N ,



vl0

v′
l

2vl

2
V l



 ∈ S
|A|+1
+ , ∀l ∈ N ,






vl0 − µ′sl + τ l − αl
(vl − sl)′

2
vl − sl

2
V l




 ∈ S

|A|+1
+ , ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(12)

However, we can further eliminate the the positive semidefinite constraints
and replace them with second-order conic constraints as follows:

Theorem 2 When N = ∅, Problem (10) under the cross moments ambiguity
set is equivalent to the following optimization problem.

min
∑

l∈N

αl

s.t. sl′Σsl ≤ 4αl(τ l − µ′sl), ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(13)

Proof. We can derive the result using the projection theorem of Popescu
(2007) and the worst-case expectation result for a newsvendor problem of Scarf
et al (1958). In Appendix A.4, we present a different proof that demonstrates
directly the equivalence of Problems (12) and (13).

Incidentally, it is interesting to note that despite the difference in objective
values, the optimal routes obtained from solving Problems (13) and (6) are
the same. We also note that Problems (11) and (13) have both discrete and
nonlinear conic constraints. Although such a format is generally not supported
by discrete optimization software packages, by exploiting conic duality, we can
still adopt Benders decomposition techniques to solve these problems.

5 Benders decomposition

We develop a Benders decomposition approach for solving the routing opti-
mization problem (7), which in the most general form, can be expressed as
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follows:

min
∑

l∈N

ηl

s.t. ηl ≥ Fl(s), ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,

where the function Fl(s) : R|A|×|N| 7→ [0,∞] corresponds to the essential
riskiness index at the node l, l ∈ N given by

Fl(s) = min αl

s.t. sup
P∈F

EP



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + z̃′(sl − sk)






− τ l,−αl









 ≤ 0,

αl ≥ 0.
(14)

The following proposition shows the convexity of Fl(s), which is crucial in
developing Benders decomposition approach.

Proposition 4 Function Fl(s) is convex in s.

Proof. See Appendix A.5.

We further assume that Problem (14) has a tractable dual formulation and
that the conditions of strong duality holds so that

Fl(s) = max
(ζl0,ζl

)∈Zl

ζl0 + ζ ′
ls, (15)

where ζl0 ∈ R, ζl = (ζj
l )j∈N , ζj

l ∈ R
|A|
+ and Zl ⊆ R × R|A|×|N| is a non-

empty convex set. Note that when Problem (15) is unbounded, it corresponds
to the case when the essential riskiness index evaluated at node l is infinite
and implies that the route is infeasible. Hence, we define the set Rl as the
recession cone of Zl, i.e.,

Rl =
{(
ζl0, ζl

)
∈ R× R|A|×|N| | (ζl0, ζl) + λ

(
ζ l0, ζl

)
∈ Zl, ∀(ζl0, ζl) ∈ Zl, λ ≥ 0

}

,

so that Fl(s) is finite if and only if

ζ l0 + ζ
′
ls ≤ 0, ∀(ζ l0, ζl) ∈ Rl.

We assume that there exists an efficient algorithm to obtain the optimal solu-
tion of Problem (15) if it is finite. Otherwise, we can also efficiently determine

a recession direction (ζ l0, ζl) ∈ Rl such that ζl0 + ζ
′

ls > 0.
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To solve Problem (7) using the Benders decomposition approach, we define
the restricted master problem at the t-th iteration as

min
∑

l∈N

ηl

s.t. ζl0 + ζ ′
ls ≤ ηl, ∀(ζl0, ζl) ∈ Zt

l , ∀l ∈ N ,

ζl0 + ζ
′

ls ≤ 0, ∀(ζl0, ζl) ∈ Rt
l , ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,

(16)

where Zt
l and Rt

l are finite subsets of Zl and Rl respectively, for all l ∈ N .

Algorithm 1 (Benders decomposition)

Initialization: Set t := 1, Z1
l := ∅ and R1

l := ∅, ∀l ∈ N .

1. Solve Problem (16) and let (x∗, s∗,η∗) be an optimal solution.
2. For all l ∈ N , solve Problem (15). If Fl(s

∗) is finite, let the optimal solution
be (ζl0, ζl) ∈ Zl. Otherwise, let (ζ l0, ζl) ∈ Rl be a recession direction such

that ζ l0 + ζl

′
s∗ > 0.

3. If Fl(s
∗) = η∗l for all l ∈ N then terminate algorithm and return optimal

route x∗.
4. Set

Rt+1
l := Rt

l ∪ {(ζ l0, ζl)} ∀l ∈ N : Fl(s
∗) = ∞

and

Zt+1
l := Zt

l ∪ {(ζl0, ζl)} ∀l ∈ N : Fl(s
∗) ∈ (η∗l ,∞).

5. Set t := t+ 1. Go to Step 1.

Since the domain of variables (x, s) is finite, the algorithm must terminate
because only finitely many subproblems can be defined.

Algorithm 1 presents a cutting-plane implementation, in which Benders
dual subproblems (15) would be solved only after the restricted master prob-
lem (16) is solved to optimality. However, it is well-known that Benders de-
composition can benefit in computational speed from using branch-and-cut
implementations (Vanderbeck and Wolsey 2010), in which Benders dual sub-
problems (15) are solved at the restricted master problem (16)’s integer nodes
and possibly at the fractional nodes of low depth, but not just at its optimal
node. The branch-and-cut variant of Algorithm 1 can be easily implemented in
modern integer programming solvers. In our computational study in Section
7, we will use the IBM CPLEX general purpose integer programming solver
to solve the restricted master problem in a branch-and-cut fashion, where the
Benders cuts are added using the function ILOLAZYCONSTRAINTCALLBACK.

We next elaborate on how we can form and solve the dual problem (15)
for several concrete cases of the primal problem (14). For sample average
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approximation, we write Problem (14) as

Fl(s) = min αl

s.t.
∑

ω∈Ω

yω ≤ 0,

yω ≥ ξωlk(s), ∀k ∈ N ∪ {1}, ω ∈ Ω,

yω ≥ −αl, ∀ω ∈ Ω,

αl ≥ 0,

(17)

where ξωlk(s) =
∑

a∈δ−(k) s
l
aτk + z(ω)′(sl − sk)− τ l.

Theorem 3 Let ξωl (s) = maxk∈N∪{1} ξ
ω
lk(s) and let the index function ν :

Ω 7→ Ω be a permutation of Ω such that

ξ
ν(1)
l (s) ≥ ξ

ν(2)
l (s) ≥ · · · ≥ ξ

ν(|Ω|)
l (s).

If
∑

ω∈Ω ξ
ω
l (s) > 0, then Fl(s) = ∞. Otherwise,

Fl(s) = max

{

max
i∈{1,2,··· ,|Ω|−1}

{
i∑

ω=1

ξ
ν(ω)
l (s)

|Ω| − i

}

, 0

}

. (18)

Proof. See Appendix A.6.
Theorem 3 indicates that we can solve the Benders subproblems via a

sorting algorithm, which is a strongly polynomial time algorithm that scales
well computationally with the number of samples, i.e., O(|Ω| log(|Ω|)). When
implementing the Benders decomposition for a given solution of the restricted
master problem, s∗, we determine for each l ∈ N , whether

∑

ω∈Ω ξ
ω
l (s

∗) > 0. If
so, we extract the index function, κ∗(ω) ∈ argmaxk∈N∪{1} ξ

ω
lk(s

∗), determine

the affine relation such that
∑

ω∈Ω ξ
ω
lκ∗(ω)(s

∗) = ζl0 + ζ
′

ls
∗, and add (ζ l0, ζl)

to the set Rt
l . Specifically, ζl0 = −|Ω|τ l and, for a ∈ A and j ∈ N , ζ

j

la =
∑

ω∈Ω ζ
j
laω , where

ζ
j
laω =







za(ω), if j = l 6= κ∗(ω), a ∈ A\δ−(κ∗(ω)),
za(ω) + τκ∗(ω), if j = l 6= κ∗(ω), a ∈ δ−(κ∗(ω)),

−za(ω), if j = κ∗(ω) 6= l, a ∈ A,
τκ∗(ω), if j = l = κ∗(ω), a ∈ δ−(κ∗(ω)),

0, otherwise.

If ξωl (s
∗) ≤ 0 for all ω ∈ Ω, we obtain from (18) that Fl(s

∗) = 0. Otherwise,
we have

Fl(s
∗) =

i∗∑

ω=1

ξ
ν(ω)
lκ∗(ν(ω))(s

∗)

|Ω| − i∗

for some i∗ ∈ {1, . . . , |Ω|−1}. Similarly, we can extract the affine relation such
that Fl(s

∗) = ζl0 + ζ′
ls

∗ and introduce (ζl0, ζl) to the set Zt
l , where

ζl0 = − i∗

|Ω| − i∗
τ l,
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and, for a ∈ A and j ∈ N ,

ζ
j
la =

i∗∑

ν(ω)=1

ζ
j
laν(ω)

|Ω| − i∗
.

For the distributionally robust model with the cross moments ambiguity
set, we express Problem (14) as the following semidefinite optimization prob-
lem.

Fl(s) = min αl

s.t. vl0 + tr(ΣV l) ≤ αl,



vl0

v′
l

2vl

2
V l



 ∈ S
|A|+1
+ ,







vl0 −
∑

a∈δ−(k)

slaτk − µ′(sl − sk) + τ l − αl
(vl − sl + sk)′

2

vl − sl + sk

2
V l






∈ S

|A|+1
+ ,

k ∈ N ∪ {1},
αl ≥ 0.

(19)

Theorem 4 The dual problem of Problem (19) is given by

Fl(s) = max
∑

k∈N∪{1}








∑

a∈δ−(k)

slaτk + µ′(sl − sk)− τ l



 rk0 +
(
sl − sk

)′
rk





s.t. β −
∑

k∈N∪{1}

rk0 ≤ 1,

−β + γ0 +
∑

k∈N∪{1}

rk0 = 0,

γ +
∑

k∈N∪{1}

rk = 0,

−Σβ + Γ +
∑

k∈N∪{1}

Rk = 0,

β ≥ 0,
[
γ0 γ′

γ Γ

]

∈ S
|A|+1
+ ,

[
rk0 r′

k

rk Rk

]

∈ S
|A|+1
+ , ∀k ∈ N ∪ {1}.

(20)

and their objectives coincide.
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Proof. See Appendix A.7.

As before, Theorem 4 indicates that we can solve the Benders subproblems
in polynomial time using solvers that support semidefinite optimization. From
the optimal objective of Problem(20), we can extract the affine relation with
respect to s∗ such that Fl(s

∗) = ζl0 + ζ ′
ls

∗, where ζl0 = −∑k∈N∪{1} τ lrk0

and, for a ∈ A and j ∈ N , ζjla =
∑

k∈N∪{1} ζ
j
lak,

ζ
j
lak =







µark0 + rak, if j = l 6= k, a ∈ A\δ−(k),
µark0 + rak + rk0τk, if j = l 6= k, a ∈ δ−(k),
−µark0 − rak, if j = k 6= l, a ∈ A,
rk0τk, if j = l = k, a ∈ δ−(k),
0, otherwise.

Moreover, whenever the objective is unbounded, i.e., Fl(s
∗) = ∞, we assume

that the solver can return the recession direction, that allows us to determine

the violating inequality, ζl0+ζ
′
ls

∗ > 0, which is the case of popular semidefinite
programming solvers such as MOSEK and SDPT3.

The Benders subproblem would be further simplified for the case of distri-
butionally robust tspd under the cross moment ambiguity set. Correspond-
ingly, we write Problem (14) as

Fl(s) = min αl

s.t. sl′Σsl ≤ 4αl(τ l − µ′sl)
αl ≥ 0.

(21)

Theorem 5 The dual problem of Problem (21) is given by

Fl(s) = max
r

{

−r′r(τ l − µ′sl)−
(

Σ
1
2 r
)′

sl
}

. (22)

Proof. See Appendix A.8.
Note that when sl

∗
= 0, then Fl(s

∗) = 0 and a cut would not be introduced
in the Benders decomposition. Otherwise, observe that if τ l −µ′sl

∗
> 0, then

by the first-order condition, the optimal solution is

r =
Σ

1
2 sl

∗

2
(
µ′sl

∗ − τ l
)

and correspondingly,

Fl(s
∗) = ζl0 +

∑

j∈N

ζ
j
l

′
sj

∗

where

ζl0 = − sl
∗′
Σsl

∗
τ l

4
(
µ′sl

∗ − τ l
)2
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and

ζ
j
l =







sl
∗′
Σsl

∗

4
(
µ′sl

∗ − τ l
)2µ− 1

2
(
µ′sl

∗ − τ l
)Σsl

∗
, if j = l,

0, otherwise.

Note also that since Σ is positive definite, Problem (22) is unbounded when
τ l − µ′sl

∗ ≤ 0, in which case, observe that

r̄ = −Σ
1
2 sl

∗

is a recession direction. Correspondingly, we have

ζl0 = −sl
∗′
Σsl

∗
τ l

and

ζ
j

l =

{

sl
∗′
Σsl

∗
µ+Σsl

∗
, if j = l,

0, otherwise.

6 Extensions

Apart from the essential riskiness index decision criterion, the results devel-
oped in the paper can easily be extended to a travel cost minimization problem
with constraints that safeguard the risk of late arrivals defined via the popular
Conditional Value-at-Risk (CVaR) measure of Rockafellar and Uryasev (2000)
defined as

CVaR1−ǫ (ṽ) = min
β∈R

(

β +
1

ǫ
EP

(

(ṽ − β)
+
))

.

In particular, the constraint CVaR1−ǫ (ṽ) ≤ 0 would imply that P(ṽ ≤ 0) ≥
1−ǫ. As it is well-known that CVaR is the best convex approximation of chance
constrained problems (see, for instance, Nemirovski and Shapiro 2006), we can
formulate the tsptw under uncertainty as

min c′x

s.t. CVaR1−ǫl (ξl(s, z̃)) ≤ 0, ∀l ∈ N ,

(x, s) ∈ S,
(23)

which is a safe approximation for the chance constrained tsptw under uncer-
tainty proposed in Laporte et al (1992) as follows,

min c′x

s.t. P (ξl(s, z̃) ≤ τ l) ≥ 1− ǫl, ∀l ∈ N ,

(x, s) ∈ S.
(24)
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Observe that Problem (23) can be explicitly written as

min c′x

s.t. βl +
1

ǫl
EP



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + z̃′(sl − sk)






− τ l − βl, 0









 ≤ 0,

∀l ∈ N ,

(x, s) ∈ S,
βl ∈ R, ∀l ∈ N .

(25)
which has similar structure as Problem (8) and, as well, its distributioanally
robust counterpart is similar to Problem (10). Hence, to address this variant
of the tsptw under uncertainty, we can straightforwardly extend the solution
techniques that we have proposed in this paper.

We briefly present the idea for solving the stochastic programming problem
(25). Due to the intractability for calculating the sum of random variables, we
routinely solve its sample average approximation reformulation (26) as follows.

min c′x

s.t. βl +
1

ǫl|Ω|
∑

ω∈Ω

yωl ≤ 0, ∀l ∈ N ,

yωl ≥
∑

a∈δ−(k)

slaτk + z(ω)′(sl − sk)− τ l − βl, ∀l ∈ N , k ∈ N ∪ {1}, ω ∈ Ω,

(x, s) ∈ S.
yωl ≥ 0, ∀l ∈ N , ω ∈ Ω,

βl ∈ R, ∀l ∈ N .

(26)
Here, we use z(ω), ω ∈ Ω, to denote the ω-th sample of travel times z̃. The
auxiliary decision variable, yωl = max{maxk∈N∪{1}{

∑

a∈δ−(k) s
l
aτk+z(ω)′(sl−

sk)} − τ l − βl, 0}, l ∈ N , ω ∈ Ω, is introduced to linearize the reformulation.
The reformulation can be solved via state-of-the-art commercial solvers such
as CPLEX and Gurobi directly, or via a more sophisticated Benders decom-
position method. We assume that typical readers are familiar with Benders
decomposition and next focus on solving its subproblem. We regard (x, s) as
the restricted master problem’s decision variables. Given the values of (x, s),
we formulate the Benders subproblem for some l ∈ N as follows.

Fl(s) = min βl +
1

ǫl|Ω|
∑

ω∈Ω

yωl

s.t. yωl + βl ≥ ξωl (s), ∀ω ∈ Ω,

yωl ≥ 0, ∀ω ∈ Ω,

βl ∈ R, ∀l ∈ N ,

(27)

where ξωl (s) = maxk∈N∪{1}

{
∑

a∈δ−(k) s
l
aτk + z(ω)′(sl − sk)− τ l

}

. Its deci-

sion variables are βl and (yωl )ω∈Ω. Problem (27) is a linear programming prob-
lem, for which the strong duality holds. We then formulate its dual problem
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as follows.
Fl(s) = max

∑

ω∈Ω

ξωl (s)p
ω
l

s.t.
∑

ω∈Ω

pωl = 1

pωl ≤ 1

ǫl|Ω| , ∀ω ∈ Ω,

pωl ≥ 0, ∀ω ∈ Ω,

(28)

in which (pωl )ω∈Ω are the decision variables. Observe that the objective func-
tion can be interpreted as an expectation of a discrete random variable taking
values at (ξωl (s))ω∈Ω with masses (pωl )ω∈Ω, respectively. To maximize the ex-
pectation, we can sort (ξωl (s))ω∈Ω and greedily determine their masses. Specif-
ically, we let the index function ν : Ω 7→ Ω be a permutation of Ω such that

ξ
ν(1)
l (s) ≥ ξ

ν(2)
l (s) ≥ · · · ≥ ξ

ν(|Ω|)
l (s).

We then assign mass 1
ǫl|Ω| for each of the first ⌊ǫl|Ω|⌋ values, and the remaining

mass for the (⌊ǫl|Ω|⌋+ 1)-th value. Therefore, we have a closed-form solution
to the dual problem, given as follows.

Fl(s) =

⌊ǫl|Ω|⌋
∑

i=1

ξ
ν(i)
l (s)

ǫl|Ω| +



1−
⌊ǫl|Ω|⌋
∑

i=1

1

ǫl|Ω|



 ξ
ν(⌊ǫl|Ω|⌋+1)
l (s), (29)

where we define
∑0

i=1 ξ = 0 and ξ
ν(|Ω|+1)
l = 0. The result can be rigorously

proved in a similar way as the proof of Theorem 3. We leave this and the
development of the distributionally robust optimization method as an exercise
to the reader.

7 Computational Study

As a proof of concept of our proposed models, we perform numerical studies to
understand their computational efficiency and to elucidate their effectiveness
in mitigating travel and service times uncertainty in tsptw and tspd. In par-
ticular, we consider a simple directed network of 12 nodes, N = {1, 2, · · · , 12}
with the nodes 1 and 12 being respectively the origin and the destination de-
pots. The set of arcs is given by A = {(i, j) | i ∈ N\{n}, j ∈ N\{1}, i 6=
j, (i, j) 6= (1, 12)} and hence, there are a total of |A| = 110 arcs. Let z̃Tij and

z̃Si denote respectively the random travel time along arc (i, j) ∈ A and the
random service time at node i ∈ N . Note that the service times at nodes 1 and
12 have zero values. By definition, we have z̃ij = z̃Si + z̃Tij for (i, j) ∈ A. We

assume that z̃Ta , a ∈ A is a two-point independently distributed random vari-
able with mean zTa so that P(z̃Ta = (1−λa)zTa ) = P(z̃Ta = (1+λa)z

T
a ) = 0.5 for

some λa > 0. Likewise, z̃Si , i ∈ N\{1, 12} is also a similar two-point indepen-
dently distributed random variable with mean zSi so that P(z̃Si = (1−λi)zSi ) =
P(z̃Si = (1 + λi)z

S
i ) = 0.5 for some λi > 0.
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The parameters zTa and zSi , a ∈ A, i ∈ N are given in Table 1 and for each
instance of the problem, λa and λi are randomly and independently selected
from the set {0.1, 0.2, · · · , 0.8} with equal probability. These parameters of the
problem are adopted from the instance rbg010a of Ascheuer et al (2001). For
simplicity, we do not impose a cost budget constraint in our experiments. As
shown in Table 1, three of the nodes have stipulated earliest arrival times and
eight of the nodes have deadlines.

Table 1: The dataset for the tsptw

N
z
T
a

zS
i

τ τ
1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 0 0 0 0 0 0 0 0 0 - - - -
2 - - 14 14 14 25 14 14 26 14 6 0 71 - 0
3 - 15 - 27 27 12 27 27 12 27 24 0 50 - 400
4 - 10 24 - 24 16 24 24 18 24 23 0 64 - 400
5 - 10 24 24 - 16 24 24 18 24 23 0 44 - 400
6 - 24 0 0 0 - 0 0 29 0 14 0 51 300 600
7 - 11 25 25 25 15 - 25 16 25 23 0 53 300 600
8 - 16 18 18 18 24 18 - 24 18 12 0 51 300 600
9 - 18 28 28 28 0 28 28 - 28 25 0 43 - -
10 - 11 25 25 25 15 25 25 16 - 27 0 53 - -
11 - 24 10 10 10 28 10 10 28 10 - 0 42 - -
12 - - - - - - - - - - - - - - 700

7.1 Experiments with sample average approximation methods on tsptw

Suppose we have |Ω| independent samples of travel times z̃, (z(ω))ω∈Ω . We
solve the stochastic tsptw through the following methods.

i) D: Solving the “deterministic” problem (3) that minimizes the travel cost
by a CPLEX solver, in which the travel times z are replaced with their
sample means |Ω|−1

∑

ω∈Ω z(ω). Hereafter, we let the travel costs c also
be equal to |Ω|−1

∑

ω∈Ω z(ω) in values.
ii) S-C: Solving Problem (26) that minimizes the travel cost subject to the

deadlines’ CVaR constraints by a CPLEX solver. Based on some prelim-
inary results, we find that the solution performance is affected by the
parameters ǫl ∈ (0, 1), l ∈ N . Small values for them may cause infeasibil-
ity for the problem. In our experiments, we let ǫl = 0.8 for l ∈ N .

iii) S-C-B: Solving Problem (26) via the Benders decomposition algorithm de-
scribed in Section 6, in which the Benders subproblems are solved through
Formula (29). We use a CPLEX solver to solve the restricted master prob-
lem and invoke function ILOLAZYCONSTRAINTCALLBACK to add the Benders
cuts in a branch-and-cut fashion. We let ǫl = 0.8 for l ∈ N .

iv) S-P: Solving Problem (4) that maximizes the joint on-time arrival proba-
bility via solving the following sample average approximation reformula-
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tion (30) by a CPLEX solver.

max |Ω|−1
∑

ω∈Ω Iω

s.t.
∑

a∈δ−(k)

slaτk + z(ω)′
(
sl − sk

)
− τ l ≤ (1− Iω)Ml, ∀k ∈ N ∪ {1}, l ∈ N , ω ∈ Ω,

c′x ≤ B,

(x, s) ∈ S,
Iω ∈ {0, 1}, ∀ω ∈ Ω.

(30)
Here, binary decision variable Iω indicates whether the vehicle arrives
at all nodes on time in sample ω ∈ Ω. If it does, Iω = 1, otherwise
Iω = 0. Notation Ml, l ∈ N , represents a big number. We choose Ml :=
maxk∈N τk+maxω∈Ω

∑

a∈A za(ω)−τ l, which is obviously an upper bound

of
∑

a∈δ−(k) s
l
aτk + z(ω)′

(
sl − sk

)
− τ l.

v) S-I: Solving Problem (9) that minimizes the sum of essential riskiness
indexes by a CPLEX solver.

vi) S-I-B: Solving Problem (9) by the branch-and-cut implementation of the
Benders decomposition algorithm described in Section 5, in which we solve
the Benders dual subproblems based on Theorem 3.

All these methods are implemented using the C++ language and the IBM
CPLEX solver (ver 12.6). We adopt the 8-thread computation provided by
CPLEX and impose a time limit of 3 hours, unless otherwise stated, for solv-
ing each instance via each method. The experiments are run on a personal
computer with a 4-core 3.2GHz CPU and a 8GB RAM.

For each of the above method under evaluation, we vary the the sample size,
|Ω| ∈ {20, 50, 80, 100, 150} to understand its influence on the computational
times as well as the quality of the solutions. For a given sample size, we per-
form 20 set of experiments. In each set, we randomly generate the parameters
(λa)a∈A, (λi)i∈N\{1,12} to first establish the probability distributions associ-
ated with the random variables for the set of experiments. Subsequently, we
solve the problem using the method via sample average approximation where
we generate |Ω| independent samples of z̃, (z(ω))ω∈Ω. In particular, we use
the same set of samples (z(ω))ω∈Ω to compute the optimal solutions for the
various methods. Thereafter, to evaluate the performance of these solutions,
we perform out-of-sample evaluation by generating another 20,000 indepen-
dent samples of z̃. After completing the 20 set of experiments, we report the
performance by taking the average values of the individual indicators obtained
in each set. In particular, we focus on the following indicators:

i) ObjVal: the objective value,
ii) Mean: the mean travel time,
iii) LateProb: the lateness probability, i.e., P(∃i ∈ N|ξi(s, z̃) > 0),
iv) ExpLate: the expected lateness, i.e.,

∑

i∈N E((ξi(s, z̃))
+), and

v) ComTime: the wall-clock computational time (in seconds),
vi) NoC/ToC: the number of the Benders cuts added/the total CPU time (in

seconds) used in solving the Benders subproblems,
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where ξ+ = max{ξ, 0} and the probability P and the expectation E are eval-
uated empirically using the 20, 000 out-of-sample data.

We report the solution performances for the various methods in Table
2. The number in the bracket in column Method represents the number of
instances without feasible solutions out of the 20 instances. When |Ω| = 3000,
Methods S-C, S-P and S-I cannot solve each instance due to the time limit
imposed. In contrast, we are able to obtain the optimal solution for Methods
S-I-B and S-I-C without much computational time.

Table 2: Performance comparison of different methods for solving the tsptw

Method |Ω| ObjVal Mean LatePro ExpLate ComTime NoC/ToC
D

20

630.43 642.70 0.485 53.9 0.39 -
S-C(3) 626.00 641.64 0.388 32.5 5.04 -

S-C-B(3) 626.00 641.64 0.388 32.5 1.83 118/1.48
S-P 0.80 650.78 0.337 31.5 351.02 -
S-I 23.69 646.22 0.309 23.3 394.48 -

S-I-B 23.69 646.22 0.309 23.3 460.31 119/3.66
D

50

635.80 641.79 0.467 50.7 0.34 -
S-C(1) 637.15 642.02 0.359 29.4 12.51 -

S-C-B(1) 637.15 642.02 0.359 29.4 2.26 153/3.39
S-P 0.76 646.13 0.306 24.7 988.92 -
S-I 28.44 644.35 0.294 19.8 1015.54 -

S-I-B 28.44 644.35 0.294 19.8 503.47 139/3.35
D

80

637.44 641.48 0.490 56.4 0.46 -
S-C 637.16 640.96 0.340 27.9 22.11 -

S-C-B 637.16 640.96 0.340 27.9 2.69 173/6.03
S-P 0.74 646.16 0.308 25.8 2539.41 -
S-I 27.68 644.78 0.293 19.2 2126.59 -

S-I-B 27.68 644.78 0.293 19.2 556.62 158/4.27
D

100

635.41 641.63 0.486 59.1 0.35 -
S-C 638.14 641.02 0.347 29.8 25.90 -

S-C-B 638.14 641.02 0.347 29.8 2.44 144/5.16
S-P 0.75 646.86 0.301 25.1 3983.28 -
S-I 26.11 645.02 0.292 19.4 3626.74 -

S-I-B 26.11 645.02 0.292 19.4 431.43 161/6.58
D

150

638.17 641.42 0.485 55.2 0.39 -
S-C 636.53 641.05 0.342 27.6 42.62 -

S-C-B 636.53 641.05 0.342 27.6 4.54 256/17.87
S-P 0.74 646.33 0.293 23.4 7824.18 -
S-I 27.52 644.42 0.288 19.3 6570.30 -

S-I-B 27.52 644.42 0.288 19.3 494.61 192/9.33
D

3000

640.70 641.13 0.479 48.6 0.39 -
S-C-B 639.81 640.96 0.351 23.4 68.27 328/401.98
S-I-B 27.58 643.14 0.286 18.6 526.29 297/113.30

We conclude from Table 2 that Methods D, S-C, and S-C-I outperform
Methods S-P, S-I, and S-I-B in terms of the average travel timeMean, while the
latter three methods are more effective in mitigating the lateness, as indicated
by LateProb and ExpLate. This phenomenon is a natural result of the objectives
of these methods.
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Method S-C presents a better performance than Method D in mitigating
the lateness, and meanwhile is slightly better in reducing the average travel
time expect for the case of |Ω| = 50. Although Method D accounts for the mean
values of travel times, its general poor performance may result from ignoring
the travel times’ dispersions. Method S-C provides a trade-off between the low
average travel time and the high likelihood of on-time arrivals.

We next focus on comparing the latter three methods regarding their per-
formance in mitigating the lateness. We observe that the performance of both
indicators LateProb and ExpLate generally improves with the sample size, |Ω|,
which is consistent with our expectations. In particular, Method S-I-B with
3000 samples has the best performance. We also observe that for the same
sample size, Method S-I outperforms Method S-P in both performance indi-
cators, which could be rather surprising since we may have expected Method
S-P to have better performance on the LateProb indicator. Nevertheless, when
the sample size is large enough, we would expect Method S-P to yield solu-
tions that are at least as good over those of Method S-I on this indicator.
However, on the flip side, it may also be computationally prohibitive to solve
these problems to optimality using Method S-P.

Method D consumes the least computational time and the time is insen-
sitive to the sample size, which is consistent with our expectation since the
deterministic model has less decision variables and the number of decision
variables is independent of the sample size. Method S-C requires more com-
putational time; Methods S-P and S-I need far more. We also observe that
the computational times of methods S-C, S-P and S-I are severely affected by
the sample size, |Ω| and are in stark contrast to Methods S-C-B and S-I-B,
where the total computational times, the numbers of Benders cuts added, and
the computational times for solving Benders subproblems are only slightly
impacted. Benders decomposition method S-C-B/S-I-B greatly improves the
computational speed upon its counterpart S-C/S-I when |Ω| ≥ 50 in our exper-
iment. As the sample size increases, the computational times of Methods S-P
and S-I increase super-linearly, with the former increasing at a faster rate than
the latter. We note that the superior computational performance of Method
S-I-B underscores the effectiveness of the Benders decomposition approach.

In summary, we suggest the decision makers who attempt to minimize
the travel costs using Method S-C-B. Those who are seeking to mitigate the
lateness are suggested choosing Method S-I-B. We encourage them to use a
large number of samples (e.g., |Ω| = 3000) in solving the problems.

7.2 Experiments with distributionally robust tspd

We had initially tried to extend the computational study to distributionally
robust tsptw by implementing the corresponding branch-and-cut variant of
the Benders decomposition algorithm described in Section 5, in which we used
a MOSEK solver (ver 8.1) to obtain the solutions of the semidefinite program-
ming subproblem based on Theorem 4. Preliminary results showed that it
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could take 4-8 minutes to obtain the optimal solution for each subproblem, or
if unbounded, obtain its recession direction, and we were unable to obtain the
optimal solution for any of the instances of the distributionally robust tsptw
within two days. The sluggish computational time might result from long time
to solve each Benders subproblem, a large number of Benders cuts to add, and
the inability to get MOSEK to solve subproblems in parallel. Hence, we aban-
don the numerical study for tsptw and focus on distributionally robust tspd,
where we can obtain the solutions to the subproblems easily.

We repeat the aforementioned computational study without the earliest
arrival time τ in Table 1 so that the tsptw would be reduced to a tspd. To
concentrate on comparing the methods for mitigating the lateness, we omit
Methods D, S-C, and S-C-B, and indicator Mean. Apart from Methods S-P, S-
I, and S-I-B, we introduce two more methods based on distributionally robust
optimization.

i) R-I-B: Solving the distributionally robust tspd (13) by the branch-and-
cut implementation of the Benders decomposition algorithm described in
Section 5, where the closed form solutions of the subproblems are com-
puted via Theorem 5. In particular, the means µ and the covariance ma-
trix Σ in the cross moment ambiguity set are estimated empirically from
the samples of travel times, that is, we let µ = |Ω|−1

∑

ω∈Ω z(ω) and each
element ofΣ, the covariance of z̃a and z̃â, a, â ∈ A, be |Ω|−1

∑

ω∈Ω(za(ω)−
µa)(zâ(ω)− µâ).

ii) R-RI-B: Solving the riskiness-index-based distributionally robust tspd

(31) by using a branch-and-cut implementation of the Benders decompo-
sition algorithm proposed by Jaillet et al (2016).

inf
∑

l∈N

αl

s.t. αl ln sup
P∈F

EP

(

exp

(
z̃′sl − τ l

αl

))

≤ 0, ∀l ∈ N ,

c′x ≤ B,

(x, s) ∈ S,
αl ≥ 0, ∀l ∈ N .

(31)

In this problem, the ambiguity set F is given as

F =

{

P ∈ P
∣
∣
∣
∣

EP(z̃) = µ,

P (z̃ ∈ [z, z]) = 1,

}

,

where the means µ and supports [z, z] of travel times z̃ are estimated
empirically from the samples. In particular, we let za = minω∈Ω za(ω)
and za = maxω∈Ω za(ω) for a ∈ A. We regard (x, s) as the restricted
master problem’s decision variables and solve the Benders subproblem
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(32) for each l ∈ N using the technique proposed by Jaillet et al (2016).

inf αl

s.t. αl ln sup
P∈F

EP

(

exp

(
z̃′sl − τ l

αl

))

≤ 0,

αl ≥ 0.

(32)

Table 3: Performance comparison of different methods for solving the tspd

Method |Ω| ObjVal LatePro ExpLate ComTime NoC/ToC
S-P

20

0.81 0.337 28.3 89.26 -
S-I 21.17 0.309 23.4 85.73 -

S-I-B 21.17 0.309 23.4 173.82 137/4.40
R-RI-B 136.17 0.302 20.6 586.87 2524/91.87
R-I-B 64.71 0.318 23.4 216.25 441/3.93

S-P

50

0.77 0.318 25.7 194.10 -
S-I 26.65 0.291 19.6 176.39 -

S-I-B 26.65 0.291 19.6 195.70 178/5.42
R-RI-B 123.95 0.290 18.8 627.40 2452/78.66
R-I-B 73.08 0.301 19.9 213.95 438/4.05

S-P

80

0.75 0.302 23.6 340.23 -
S-I 27.46 0.291 19.6 228.79 -

S-I-B 27.46 0.291 19.6 202.01 183/5.31
R-RI-B 122.52 0.286 18.4 693.77 2845/103.58
R-I-B 75.05 0.298 19.5 211.74 483/4.26

S-P

100

0.76 0.298 23.1 482.48 -
S-I 24.22 0.289 19.3 335.92 -

S-I-B 24.22 0.289 19.3 208.76 185/6.18
R-RI-B 119.11 0.287 18.3 689.77 2956/96.39
R-I-B 69.67 0.296 19.5 201.22 456/3.92

S-P

150

0.74 0.286 20.3 902.31 -
S-I 25.50 0.283 18.7 488.53 -

S-I-B 25.50 0.283 18.7 210.90 212/7.57
R-RI-B 124.79 0.284 18.2 611.10 2675/80.44
R-I-B 71.48 0.295 19.2 201.44 462/4.34

S-I-B

3000

26.40 0.279 18.2 216.23 332/81.27
R-RI-B 123.14 0.285 18.2 637.37 2647/85.76
R-I-B 73.26 0.287 18.6 189.98 479/3.69

We report the results in Table 3. When the number of samples is small,
|Ω| ≤ 100, Method R-RI-B has the best performance in terms of LatePro
and ExpLate, but it requires significantly longer computational time than the
others. We expect Method R-RI-B to perform well because the travel times
are independently distributed, which can be exploited by the Aumann and
Serrano (2008) riskiness index. Methods R-I-B and S-I-B performs reasonably
well against R-RI-B. Nonetheless, when we have 3000 samples of travel times,
Method S-I-B has the best overall performance.

It is also interesting to note that despite the limited use of distributional
information, the performance of the distributionally robust tspd is relatively
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close to the stochastic tspd. Hence, since the actual distribution may not be
available in many practical situations, it is reassuring that the solutions to
the distributioanlly robust tspd are near optimal. Moreover, to exemplify the
benefits of the distributional robust solutions, there are already computational
studies suggesting that if the assumed distribution used in the sample average
approximation deviates from the true distribution, the solutions may be infe-
rior to those obtained from distributionally robust models (see, for instance,
Adulyasak and Jaillet 2015).

8 Conclusions and future research

We study a tsptw with hard time windows under uncertain travel and ser-
vice times. To quantify the risk associated with deadline violations, we propose
the essential riskiness index as the decision criterion to be minimized, which
has the salient properties such as convexity for coherent decision making and
computational needs. We also propose algorithms to minimize the index for
the tsptw via Benders decomposition technique based on sample average ap-
proximation and distributionally robust formuations. We demonstrate through
a computational study that that our approach can outperform the approach
that maximizes punctuality probability via sample average approximations.
Apart from tsptw under uncertainty, the application of the essential riski-
ness index is quite broad and can be applied in other contexts that may arise
involving multiple agents and the criterion will help them collectively attain
their targets as well as possible under uncertainty. Nevertheless, we have yet
to adequately address the computational efficiency of our approach as we are
unable to solve larger sized problems within reasonable time. Hence, further
work will be needed to investigate how we can address larger sized problems,
perhaps by leveraging on the state-of-the-art vehicle routing techniques in the
literature.
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A Proofs of Analytical Results

A.1 Proof of Proposition 2

It has been established that the variable sl, l ∈ N , represents the partial route
from node 1 to node l along the route determined by x, say {(1, i2), (i2, i3),
· · · , (iκ̌−1, iκ̌

︸︷︷︸

=l

), · · · , (in−1, in
︸︷︷︸

=n

)} so that

sla =

{
1, if a ∈ {(1, i2), (i2, i3), · · · , (iκ̌−1, l)},
0, otherwise

(33)

(see, for instance, Jaillet et al 2016). We have from Equation (1) that the
service commencement time at the node l can be determined recursively as
follows,

t1 = τ1 = 0,
ti2 = max{t1 + z1i2 , τ i2},
ti3 = max{ti2 + zi2i3 , τ i3},

...
tl = max{tiκ̌−1 + ziκ̌−1l, τ l}.

Hence, we have

tl = max
{

max
{

· · ·max
{
max

{
t1 + z1i2 , τ i2

}
+ zi2i3 , τ i3

}
· · · , τ iκ̌−1

}

+ ziκ̌−1l, τ l

}

= max
k∈{1,i2,i3,··· ,iκ̌−1,l}






τk +

∑

a∈{(k,iκ̂+1),(iκ̂+1,iκ̂+2),··· ,(iκ̌−1,l)}

za






,

(34)
where k = iκ̂ represents a node along the partial route from node 1 to node l.

Next we show that the service commencement time at node l can also
determined by Equation (2). For notational convenience, we define

tkl =
∑

a∈δ−(k)

slaτk + z′
(
sl − sk

)
,

for all k ∈ N ∪ {1} and consider three cases as follows:

i) When k = 1, we have τ1 = 0 and s1 = 0 and hence, we have

t1l =
∑

a∈δ−(1)

slaτ1 + z′(sl − s1) = τ1 +
∑

a∈{(1,i2),(i2,i3),··· ,(iκ̌−1,l)}

za.

Moreover, t1l ≥ 0 because z ≥ 0.
ii) When k ∈ {i2, i3, · · · , iκ̌−1, l} ∩ N , we have

∑

a∈δ−(k) s
l
a = 1 and

tkl =
∑

a∈δ−(k)

slaτk + z′(sl − sk) = τk +
∑

a∈{(k,iκ̂+1),(iκ̂+1,iκ̂+2),··· ,(iκ̌−1,l)}

za.
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iii) When k ∈ {iκ̌+1, iκ̌+2, · · · , n} ∩ N , we have
∑

a∈δ−(k) s
l
a = 0 and (sl −

sk) ≤ 0. Since z ≥ 0, we have

tkl =
∑

a∈δ−(k)

slaτk + z′(sl − sk) ≤ 0 ≤ t1l .

Hence, max{t1l , tkl } = t1l for all k ∈ {iκ̌+1, iκ̌+2, · · · , n} ∩ N .

Observe that we can express Equation (2) as

tl = max
k∈N∪{1}

tkl = max
k∈{1}∪({i2,i3,··· ,iκ̌−1,l}∩N )






τk +

∑

a∈{(k,iκ̂+1),(iκ̂+1,iκ̂+2),··· ,(iκ̌−1,l)}

za






.

(35)
We note that for all k ∈ {i2, i3, · · · , iκ̂−1, l}\N we have τk = 0 and since
z ≥ 0, we also have

τk+
∑

a∈{(k,iκ̂+1),(iκ̂+1,iκ̂+2),··· ,(iκ̌−1,l)}

za ≤ τ1+
∑

a∈{(1,i2),(i2,i3),··· ,(k,iκ̂+1),··· ,(iκ̌−1,l)}

za = t1l .

Hence, max{t1l , tkl } = t1l for all k ∈ {i2, i3, · · · , iκ̌−1, l}\N . Therefore, taking
these conditions into account, we have shown the equivalence of Equations
(34), (35) and (2).

A.2 Proof of Proposition 3

i) Satisficing: If P
(

ξ̃ ≤ 0
)

= 1, then EP

(

max{ξ̃,−α}
)

≤ 0 for all α ≥ 0

and ρE(ξ̃) = 0. Conversely, if ρE(ξ̃) = 0, we have EP

(

max{ξ̃, 0}
)

≤ 0,

which implies P
(

ξ̃ ≤ 0
)

= 1.

ii) Infeasibility: For any α ∈ [0,∞), if EP

(

ξ̃
)

> 0, then EP

(

max{ξ̃,−α}
)

>

0. However, the definition requires

EP

(

max{ξ̃,−α}
)

≤ 0.

We conclude that ρE(ξ̃) = min ∅ = ∞.

iii) Convexity:We denote α∗
1 = ρE

(

ξ̃1

)

and α∗
2 = ρE

(

ξ̃2

)

. Hence, EP

(

max{ξ̃1,−α∗
1}
)

≤
0 and EP

(

max{ξ̃2,−α∗
2}
)

≤ 0. Since the function EP

(

max{ξ̃,−α}
)

is

jointly convex in ξ̃ and α, we have for λ ∈ [0, 1],

EP

(

max{λξ̃1 + (1 − λ)ξ̃2,− (λα∗
1 + (1− λ)α∗

2)}
)

≤ λEP

(

max{ξ̃1,−α∗
1}
)

+ (1− λ)EP

(

max{ξ̃2,−α∗
2}
)

≤ 0.
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Hence, αλ = λα∗
1+(1−λ)α∗

2 satisfies EP

(

max{λξ̃1 + (1− λ)ξ̃2,−αλ}
)

≤
0 and ρE

(

λξ̃1 + (1− λ)ξ̃2

)

≤ αλ = λρE

(

ξ̃1

)

+ (1− λ)ρE

(

ξ̃2

)

.

iv) Delay bounds: The bound is true for ρE

(

ξ̃
)

= ∞ and ρE

(

ξ̃
)

= 0, since

the latter would imply P

(

ξ̃ > 0
)

= 0. For ρE

(

ξ̃
)

∈ (0,∞), we let α∗ =

ρE

(

ξ̃
)

and hence we have

P

(

ξ̃ > α∗θ
)

= P

(

ξ̃ + α∗ > α∗θ + α∗
)

≤ P

((

ξ̃ + α∗
)+

> α∗(1 + θ)

)

≤
E

(

(ξ̃ + α∗)+
)

α∗(1 + θ)

≤ α∗

α∗(1 + θ)

=
1

1 + θ
.

The second inequality holds because of Markov inequality; the third in-

equality is due to EP

(

max{ξ̃ + α∗, 0}
)

≤ α∗, implied by the definition.

A.3 Proof of Theorem 1

We denote ũ = z̃ − µ and rewrite the ambiguity set as

G =

{

Q ∈ P
∣
∣
∣
∣

EQ(ũ) = 0
EQ

(
ũũ′

)
= Σ

}

.

For each l ∈ N , we determine the worse-case expectation

sup
Q∈G

EQ



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + (ũ+ µ)′(sl − sk)






− τ l + αl, 0











by formulating the following optimization problem:

sup

∫

R|A|



max






max

k∈N∪{1}







∑

a∈δ−(k)

slaτk + (u+ µ)′
(
sl − sk

)






− τ l + αl, 0









 dQ

s.t.

∫

R|A|

u dQ = 0,
∫

R|A|

uu′ dQ = Σ,
∫

R|A|

dQ = 1,

dQ ≥ 0.
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Its dual problem is given as

inf vl0 + tr(ΣV l)
s.t. vl0 + u′vl + u′V lu ≥ 0, ∀u ∈ R|A|,

vl0 + u′vl + u′V lu ≥
∑

a∈δ−(k)

slaτk + (u + µ)′(sl − sk)− τ l + αl, ∀k ∈ N ∪ {1},

u ∈ R|A|,

(36)
for which strong duality holds and their objectives coincide (see, for instance,
Isii 1962). We express the first constraint in Problem (36) equivalently as

[
1
u

]′



vl0

v′
l

2vl

2
V l





[
1
u

]

≥ 0, ∀u ∈ R|A|,

or further as



vl0

v′
l

2vl

2
V l



 ∈ S
|A|+1
+ .

Similarly, we express the second constraint in Problem (36) equivalently as







vl0 −
∑

a∈δ−(k)

slaτk − µ′(sl − sk) + τ l − αl
(vl − sl + sk)′

2

vl − sl + sk

2
V l






∈ S

|A|+1
+ .

Hence, the first constraint of Problem (10) is satisfied if and only if there
exists vl0 ∈ R, vl ∈ R|A| and V l ∈ R|A|×|A| for l ∈ N that are feasible in the
following system of conic constraints,

vl0 + tr(ΣV l) ≤ αl, ∀l ∈ N ,



vl0

v′
l

2vl

2
V l



 ∈ S
|A|+1
+ , ∀l ∈ N ,







vl0 −
∑

a∈δ−(k)

slaτk − µ′(sl − sk) + τ l − αl
(vl − sl + sk)′

2

vl − sl + sk

2
V l






∈ S

|A|+1
+ , ∀l ∈ N ,

k ∈ N ∪ {1}.

Substituting them in Problem (10), we obtain Problem (11).



38 Yu Zhang et al.

A.4 Proof of Theorem 2

It suffices to show that for a given s0 ∈ R, s ∈ R|A|, s 6= 0, α ≥ 0, the following
constraints are feasible

v0 + tr(ΣV ) ≤ α





v0 − s0
(v − s)′

2
v − s

2
V




 ∈ S

|A|+1
+ ,




v0

v′

2v

2
V



 ∈ S
|A|+1
+ ,

(37)

for some v0 ∈ R,v ∈ R|A|,V ∈ S
|A|
+ if and only if

s′Σs ≤ 4α(α− s0). (38)

For the “if” direction, suppose the constraint (38) is feasible, since s′Σ′s > 0,
we would have α > 0 and α− s0 > 0. Let

v0 =

(

s0 +
√

s20 + s′Σs
)2

4
√

s20 + s′Σs
,

v =

(

s0 +
√

s20 + s′Σs
)

s

2
√

s20 + s′Σs
,

V =
ss′

4
√

s20 + s′Σs
.

Observe that for all u ∈ R|A|,

[
1
u

]′



v0

v′

2v

2
V





[
1
u

]

=

(

s0 +
√

s20 + s′Σs
)2

4
√

s20 + s′Σs
+

(

s0 +
√

s20 + s′Σs
)

2
√

s20 + s′Σs
s′u+

(s′u)2

4
√

s20 + s′Σs

=

(

s0 +
√

s20 + s′Σs+ s′u
)2

4
√

s20 + s′Σs
≥ 0,
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and

[
1
u

]′






v0 − s0
(v − s)′

2
(v − s)

2
V






[
1
u

]

=

(

s0 +
√

s20 + s′Σs
)2

4
√

s20 + s′Σs
− s0 +





(

s0 +
√

s20 + s′Σs
)

2
√

s20 + s′Σs
− 1



 s′u+
(s′u)2

4
√

s20 + s′Σs

=

(

s0 −
√

s20 + s′Σs
)2

4
√

s20 + s′Σs
+

(

s0 −
√

s20 + s′Σs
)

2
√

s20 + s′Σs
s′u+

(s′u)2

4
√

s20 + s′Σs

=

(

s0 −
√

s20 + s′Σs+ s′u
)2

4
√

s20 + s′Σs
≥ 0.

Moreover,

s′Σs ≤ 4α(α− s0)
⇒ s20 + s′Σs ≤ (2α− s0)

2

⇒
√

s20 + s′Σs ≤ 2α− s0 since 2α− s0 > α− s0 > 0

⇒ 1

2
s0 +

1

2

√

s0 + s′Σs ≤ α

⇒ 2s0
√

s20 + s′Σs+ 2(s20 + s′Σs)

4
√

s20 + s′Σs
≤ α since s′Σs > 0

⇒

(

s0 +
√

s20 + s′Σs
)2

4
√

s20 + s′Σs
+

s′Σs

4
√

s20 + s′Σs
≤ α

⇒ v0 + tr(ΣV ) ≤ α.

Hence, the constraints in (37) are also feasible.
Conversely, suppose the constraints in (37) are feasible for some v0 ∈ R,v ∈

R|A|,V ∈ S
|A|
+ . Let

r0 =
1

2
+

s0

2
√

s20 + s′Σs
,

r =
Σs

2
√

s20 + s′Σs
,

Note that since sΣs > 0, we have r0 ∈ (0, 1). Observe that

[
r0 r′

r 1
r0
rr′

]

∈ S
|A|
+ and

[
1− r0 −r′

−r Σ − 1
r0
rr′

]

∈ S
|A|
+

since for all w ∈ R|A|,

[
1
w

]′ [
r0 r′

r 1
r0
rr′

] [
1
w

]

= r0 + 2r′w +
1

r0
(r′w)2 =

(√
r0 +

1√
r0

r′w

)2

≥ 0
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and
[
1
w

]′ [
1− r0 −r′

−r Σ − 1
r0
rr′

] [
1
w

]

= 1− r0 − 2r′w − 1

r0
(r′w)2 +w′Σw

=

(√
1− r0 −

1√
1− r0

r′w

)2

−
(

1

r0
+

1

1− r0

)

(r′w)2 +w′Σw

≥ − 1

r0(1− r0)
(r′w)2 +w′Σw

= −4
(
s20 + s′Σs

)

s′Σs
(r′w)2 +w′Σw

= − 1

s′Σs
(w′Σs)2 +w′Σw

= − 1

s′Σs
((Σ1/2w)′Σ1/2s)2 +w′Σw

≥ − 1

s′Σs
(s′Σs)(w′Σw) +w′Σw Cauchy-Schwarz inequality

= 0.

Therefore,

tr








v0

v′

2v

2
V





[
1− r0 −r′

−r Σ − 1
r0
rr′

]


+tr











v0 − s0
(v − s)′

2
v − s

2
V






[
r0 r′

r 1
r0
rr′

]




 ≥ 0

or equivalently

v0 + tr(ΣV ) ≥ s0r0 + r′s =
1

2
s0 +

1

2

√

s20 + s′Σs.

Hence,
1

2
s0 +

1

2

√

s20 + s′Σs ≤ v0 + tr(ΣV ) ≤ α,

which implies the feasibility of the constraint (38).

A.5 Proof of Proposition 4

Denote the optimal solutions of Problem (14) with s being š and ŝ by α̌l and
α̂l, respectively, so that Fl(š) = α̌l and Fl(ŝ) = α̂l. To prove the convexity of
Fl(s) by definition, we shall prove Fl(λš+ (1 − λ)ŝ) ≤ λFl(š) + (1 − λ)Fl(ŝ)
for any λ ∈ [0, 1].

Observe that the left-hand side function of the first constraint in Problem
(14), g(s, αl) = supP∈FEP

(

max
{

maxk∈N∪{1}

{
∑

a∈δ−(k) s
l
aτk + z̃′(sl − sk)

}

− τ l,−αl

})

,

is convex piecewise affine in (s, αl). We then have, for any λ ∈ [0, 1],

g (λš+ (1− λ)ŝ, λα̌+ (1 − λ)α̂) ≤ λg(š, α̌) + (1− λ)g(ŝ, α̂),
≤ λ0 + (1− λ)0.
= 0.
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Also note that λα̌+ (1− λ)α̂ ≥ 0. Hence, λα̌+ (1− λ)α̂ is a feasible solution
to Problem (14) with s being λš+ (1− λ)ŝ. As a result,

Fl(λš+ (1 − λ)ŝ) ≤ λα̌ + (1− λ)α̂ = λFl(š) + (1 − λ)Fl(ŝ).

This completes the proof.

A.6 Proof of Theorem 3

We specify the dual problem of Problem (17) as follows,

F̂l(s) = max
∑

ω∈Ω

∑

k∈N∪{1}

ξωlk(s)r
ω
k

s.t. −ψ +
∑

k∈N∪{1}

rωk + qω = 0, ∀ω ∈ Ω,

∑

ω∈Ω

qω ≤ 1,

ψ ≥ 0,
rωk ≥ 0, k ∈ N ∪ {1}, ω ∈ Ω,

qω ≥ 0, ∀ω ∈ Ω,

(39)

which we claim is equivalent to the following problem,

F̌l(s) = max
∑

ω∈Ω

ξωl (s)p
ω

s.t. |Ω|pω −
∑

i∈Ω

pi ≤ 1, ∀ω ∈ Ω,

pω ≥ 0, ∀ω ∈ Ω.

(40)

We next prove the claim. For an optimal solution (ψ, r, q) to Problem (39),
we infer from the first and the fifth constraints that ψ ≥ ∑

k∈N∪{1} r
ω
k ,

∀ω ∈ Ω, and therefore, qi = ψ−∑k∈N∪{1} r
i
k ≥∑k∈N∪{1} r

ω
k −

∑

k∈N∪{1} r
i
k,

∀i, ω ∈ Ω. This inequality and the second constraint in Problem (39) imply
that |Ω|∑k∈N∪{1} r

ω
k −∑k∈N∪{1}

∑

i∈Ω r
i
k ≤ 1, ∀ω ∈ Ω. Hence, the solu-

tion pω :=
∑

k∈N∪{1} r
ω
k , ∀ω ∈ Ω, is clearly feasible in Problem (40). Since,

by definition ξωl (s) = maxk∈N∪{1} ξ
ω
lk(s), it follows that F̌l(s) ≥ F̂l(s). Con-

versely, for an optimal solution p to Problem (40), we construct a solution
to Problem (39) as follows. Let rωκ∗(ω) := pω for all ω ∈ Ω where κ∗(ω) ∈
argmaxk∈N∪{1} ξ

ω
lk(s), r

ω
k := 0 for all ω ∈ Ω and k ∈ N ∪ {1}\{κ∗(ω)},

ψ := maxω∈Ω p
ω, and qω := maxi∈Ω p

i − pω for all ω ∈ Ω. We can verify
that the solution is feasible and the objective value is equal to F̌l(s). In par-
ticular, Constraint

∑

ω∈Ω q
ω ≤ 1 is feasible since |Ω|pω −∑i∈Ω p

i ≤ 1 for all

ω ∈ argmaxi∈Ω p
i. Hence, F̂l(s) ≥ F̌l(s). We then conclude that F̂l(s) = F̌l(s)

and the two problems are equivalent. Observe that 0 is a feasible solution
to Problem (40); the problem then can be bounded optimal or unbounded.
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Since strong duality holds for linear programming problems, we also have
F̂l(s) = Fl(s).

We next solve Problem (40). The problem is unbounded if and only if there
exists a recession direction p 6= 0, |Ω|pω −∑i∈Ω p

i ≤ 0 and pω ≥ 0 for ω ∈ Ω,
such that

∑

ω∈Ω ξ
ω
l (s)p

ω > 0. The recession direction should satisfy p1 =

p2 = · · · = p|Ω| > 0, or otherwise the constraint |Ω|pω−∑i∈Ω p
i ≤ 0 would be

violated for all ω ∈ argmaxi∈Ω p
i. Hence, the condition

∑

ω∈Ω ξ
ω
l (s)p

ω > 0 is
equivalent to

∑

ω∈Ω ξ
ω
l (s) > 0, and in which case, the problem is unbounded

and Fl(s) = ∞.
If the problem is bounded and optimal, there exists an optimal extreme

point solution, which is determined by selecting |Ω| binding constraints in
Problem (40). Observe that for a given ω ∈ Ω the constraints pω ≥ 0 and
|Ω|pω −∑i∈Ω p

i ≤ 1 cannot be simultaneously binding because it would im-
ply that −∑i∈Ω\{ω} p

i = 1, which contradicts with the nonnegativity of p.

Hence, partition Ω into two subsets Ω1 and Ω2, such that |Ω|pω−∑i∈Ω p
i = 1,

∀ω ∈ Ω1 and pω = 0, ∀ω ∈ Ω2. When Ω1 = ∅, we have p = 0 being an extreme
point with objective value of zero. We also note that |Ω1| = |Ω| is inadmissible
because we would have

∑

ω∈Ω(|Ω|pω−∑i∈Ω p
i) =

∑

ω∈Ω 1, which is a contra-
diction unless |Ω| = 0. When 1 ≤ |Ω1| ≤ |Ω|−1, we solve for the system of lin-
ear equations, |Ω|pω −∑i∈Ω p

i = 1, ∀ω ∈ Ω1, or equivalently, (|Ω|I−ee′)p =

e, where I is the unit diagonal matrix in R|Ω1|×|Ω1|, p = (pω)′ω∈Ω1
, and e is

the vector of ones in R|Ω1|. Observe that p = 1
|Ω|−|Ω1|

e is a feasible solution.

Moreover, it is the unique solution because (|Ω|I − ee′) is invertible and we
can verify that (|Ω|I−ee′)( 1

|Ω|I+
1

|Ω|(|Ω|−|Ω1|)
ee′) = I. Hence, pω = 1

|Ω|−|Ω1|
,

∀ω ∈ Ω1 and pω = 0, ∀ω ∈ Ω2 is an extreme point solution. Observe that at
optimality, Ω1 would correspond to the set {ν(1), ν(2), · · · , ν(|Ω1|)} and the

objective value would be
∑|Ω1|

ω=1
ξ
ν(ω)
l

(s)
|Ω|−|Ω1|

. Finally, we conclude that

F̌l(s) = max

{

max
i∈{1,2,··· ,|Ω|−1}

{
i∑

ω=1

ξ
ν(ω)
l (s)

|Ω| − i

}

, 0

}

,

and the result follows.

A.7 Proof of Theorem 4

Let β,

[
γ0, γ

′

γ, Γ

]

, and

[
rk0, r

′
k

rk, Rk

]

, k ∈ N∪{1}, be the dual variables correspond-

ing to the first three constraints in Problem (19), respectively, where γ ∈ R|A|,
Γ ∈ R|A|×|A|, rk ∈ R|A|, Rk ∈ R|A|×|A|. Based on the theory of conic duality
(see, for instance, Ben-Tal and Nemirovski 2001), we obtain its dual problem
(20). Moreover, their objectives coincide because the Slater’s condition holds,
i.e., there exists a strictly relative interior point for Problem (20), defined as

β = 1, γ0 = rk0 = 1
|N |+2 , γ = rk = 0, and Γ = Rk = Σ

|N |+2 , k ∈ N ∪ {1},
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such that
β −

∑

k∈N∪{1}

rk0 < 1,

−β + γ0 +
∑

k∈N∪{1}

rk0 = 0,

γ +
∑

k∈N∪{1}

rk = 0,

−Σβ + Γ +
∑

k∈N∪{1}

Rk = 0,

β > 0,
[
γ0 γ′

γ Γ

]

∈ S
|A|+1
++ ,

[
rk0 r′

k

rk Rk

]

∈ S
|A|+1
++ , ∀k ∈ N ∪ {1},

where S
|A|+1
++ represents the set of symmetric positive definite matrices in

R(|A|+1)×(|A|+1). The last two constraints hold because

Σ ∈ S
|A|
++ ⇔






1

|N |+ 2
0′

0
Σ

|N |+ 2




 ∈ S

|A|+1
++ .

A.8 Proof of Theorem 5

Given a restricted master problem’s solution s∗, we denote the objective values
of Problem (21) and (22) by F̂ (s∗) and F̌ (s∗), respectively. When sl

∗
= 0, we

observe that F̂ (s∗) = F̌ (s∗) = 0. Otherwise, if τ l −µ′sl
∗
> 0, it is easy to see

that

F̂ (s∗) =
sl

∗′
Σsl

∗

4(τ l − µ′sl
∗
)
.

Based on the first-order condition, the optimal solution of Problem (22) is

r =
Σ

1
2 sl

∗

2
(
µ′sl

∗ − τ l
)

and correspondingly,

F̌ (s∗) =
sl

∗′
Σsl

∗

4(τ l − µ′sl
∗
)
= F̂ (s∗).

If τ l −µ′sl
∗ ≤ 0, since Σ is positive definite, we observe that Problem (21) is

infeasible and F̂ (s∗) = ∞. Observe also that

r̄ = −Σ
1
2 sl

∗

is an recession direction to Problem (22) such that F̌ (s∗) = ∞ = F̂ (s∗).
Hence, the result follows.


