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Abstract—Non-Intrusive Load Monitoring (NILM) is the dis-
aggregation of the power consumption of individual appliances
from agglomerated measurements taken from a single point
of measure. The paper proposes a NILM methodology based
on load signature analysis, and it then suggests that to deploy
NILM in the large, a set of interoperable tools should support
each stakeholder of the NILM value chain. This tool-chain
is made interoperable by a shared domain model based on
well-known ontologies, such as Saref and Schema. The paper
shows that this approach enables smooth NILM-based industrial
innovation, because the toolchain may be easily extended to
provide capabilities such as predictive appliance maintenance,
appliance aging understanding, fault detection and interaction
with the utility companies. The paper proposes a NILM tool-
chain development road-map based on an interoperability plat-
form named Arrowhead to increase the value proposition of the
NILM device.

Index Terms—Near sensor processing; non intrusive load
monitoring; NILM; Service-oriented architecture; SOA; Ultra
Low-Power Processing

I. INTRODUCTION

Combining new technologies and novel service architectures
with flexible tool-chains for life-long support originates new
products that bring in disruptive innovation in challenging
application domains. This paper highlights a novel and uncom-
mitted current sensor with embedded neural computing capa-
bilities, that can be tailored to provide in-situ load identifica-
tion and Non-Intrusive Load Monitoring (NILM) in industrial
as well as domestic environments. Its architecture inherently
supports life-long learning and adaptation to the changing
current profiles of the sub-grid monitored. Consequently, the
proposed sensor may produce not only measurements but also
anomaly detection and predictive maintenance calls.

The flexibility enabled by its computing and feature ex-
traction capabilities rises the interest of a community of
stakeholders playing entirely different roles, such as users,
service providers and owners of the monitored space, as
well as manufacturers, service providers of the monitored
appliances, and the utilities themselves. An inherent and hard
to measure business potential may originate from these sensor
capabilities, up to the point that new stakeholders, new jobs,
and new business models will likely appear based on the

proposed approach. To turn this vision into reality, we propose
to wrap the sensor within a set of innovative tools support-
ing all phases of its life-cycle, from design to deployment,
commissioning maintenance, and evolution. Such tools are
innovative at least for two reasons: they support innovative
functions (such as NILM, in-situ load identification, life cycle
adaptation, anomaly detection) and they are interoperable and
chained in a round-robin fashion, exchanging data according
to a shared semantic data model.

This paper describes the proposed sensor architecture, en-
visions the mentioned tools and introduces a just started
>80 Me European Innovation Action, titled Arrowhead
Tools1, aiming to build a European culture of engineering
tools to support the ongoing cooperative-automation revolution
in the industry and in everyday life. This Action intends to
demonstrate the potential of such a revolution through several
use cases wrapped around an advanced System Oriented Ar-
chitecture and its framework (named Arrowhead Framework).
The plan is to demonstrate the proposed sensor and associated
tool-chain integrated within this framework.

This paper is organized as follows: Section II presents
related works and shows the recent approaches for load iden-
tification. Section III is dedicated to the architecture of energy
meter sensor node with near sensor processing capabilities.
Section III-A enlightens the computational approach taken
and the algorithm to deliver in-situ load identification and
Non-Intrusive Load Monitoring (NILM). Section IV will point
out the chain of tools needed to support the design, the
configuration, the operation, and the evolution of the sensor,
along the life cycle of the monitored environment. Section V
introduces the data model shared among the tools Section VI
concludes the main body of the paper with a quick introduction
to the arrowhead framework and the proposed sensor and
toolchain integration therein. Some concluding remarks and
plans for future work complete this paper in Section VII.

1https://arrowhead.eu/arrowheadtools



II. RELATED WORKS

A. Interoperability frameworks

Interoperability platforms and frameworks may address in-
teroperability at many different levels, including communica-
tion [1], information [2], [3], service [4], and interaction [5]
level. System of systems and IoT applications, such as NILM
mostly benefit from interoperability platforms at information
and service level. The need for Semantic Interoperability
Architectures in IoT based multi-stakeholder scenarios, with
examples in the appliance domain is extensively discussed
in [6]. Here a network of semantic information brokers is
proposed to enable device and service discovery both by name
and by a set of properties. An emerging framework based on
the conceptualization of any appliance as an interoperable web
thing, described in terms of events, properties and actions is
the W3C Web of Things [7] and [8] depicts an architecture
to support semantics-based web things discovery and interop-
erability. NILM information an data are of interest for many
stakeholders, from industry [9] to data-center [10], therefore
it would be useful to make it available in the form of dynamic
open linked data. An information interoperability platform
providing event-based access to distributed, context-aware
Dynamic Linked RDF Data is described in [11]. None of the
above platforms or frameworks has ever been used to for the
deployment of NILM with the support of an integrated tool-
chain. Within the scope of this work, we consider a framework
developed within an EU project – i.e. Arrowhead (2013 -
2017) – implementing a SoA for collaborative automation and
M2M communication [4]. This framework has been used for
interfacing simple wireless smart meters, as presented in [12],
and it is expected to host the proposed NILM tool-chain
described in Section VI.

B. Load Identification

Non-Intrusive Load Monitoring (NILM) describes the task
of disaggregation power consumption of single appliances
from an agglomerated mains power measurement. From the
machine learning point of view, this is considered a single-
channel blind source separation problem, where multiple
sources need to be extracted from one combined measurement.

George W. Hart founded the field of energy disaggregation
in the 1980s and published 1992 the seminal paper for Non-
intrusive Load Monitoring [13], where he introduced different
NILM scenarios and implemented first disaggregation algo-
rithms based on low-frequency features at a sampling rate of
1 Hz. Along with the recent rising interest in the machine
learning field, the topic of NILM gained a boost in popu-
larity, resulting in various publications combining different
classification methods and features [14]. This can generally
be distinguished into two different approaches, of which one
is using low frequency data and machine learning methods as
J. Kelly 2015 with the first application of Neural Networks
to NILM [15]. Moreover, the other one is deploying richer
features in terms of measurements sampled at higher frequency
as S. Gupta [16] by using EMI features in the frequency

domain, as done by harmonic analyzers and flickermeters [17].
While the biggest advantage of the low-frequency approach is
its applicability in low-cost smart meters [18]–[20], the higher
frequency approach can distinguish similar and more complex
loads. Since both types have their shortcomings, the presented
method here combines low and higher frequency features
following the implementation of T. Bernard et al. [21] for
a single-channel blind source separation problem. Therefore,
we take the active and reactive power consumption as well
as the first 15 harmonics of real power consumption into
consideration. To measure active and reactive power sample
rates lower than 50 Hz (respectively 60 Hz in the US) are
sufficient, while for the harmonics higher sampling rates are
necessary. To measure harmonics till the 15th harmonic at a
power frequency of 50 Hz we need hardware capable of a
sample rate >1.5 kHz. While many types of the research in
the last years focused on low-frequency vectors, since they can
be already measured by existing smart meters, [21] shows that
it is very promising to take also middle frequency features into
consideration, especially to separate loads with similar power
intake. Eventually, the feature vector consists of active and
reactive power as well as 8 harmonics each with an imaginary
and a real part.

III. THE NILM SENSOR

This section briefly describes the hardware and the test
setup we are deploying for our experiment. For both data
recording and data processing, we use the same customized
measurement device. The key components are two microcon-
trollers, of which one is active, and one is idle at a time.
We deploy one ultralow-power machine learning optimized
RISC-V GAP8 processor and the other a power-optimized
microcontroller from the STM32-L4 family. Furthermore, we
use a dual-channel ADC that is capable of sampling rates
up to 1.5 Msps while recording simultaneously. The analog
stage contains an ultra-low power operational amplifier that
measures synchronous voltage and current via a shunt. For
the training phase, we stream the recorded data via Wi-Fi
to a server. During the recording and training stage, we use
the STM32 microcontroller to record and send the data to
a server, where it then gets preprocessed and the training
of the algorithm is executed. As proof of concept, we will
concentrate on an insulated power net and use a small number
of different appliances, which are powered with a specific
switching pattern. After the training stage, the trained model
gets transferred to the GAP8 microcontroller, where the online
classification of data is executed. This measurement device can
conduct synchronous voltage and current measurements up to
1.5 Msps. For online classification, considering the available
memory onboard, and the choice of features and algorithm
described in Sec. III-A, more than 30 classes consisting of 30
cluster points can be stored.

A. Features and NILM algorithm

Based on [21], a modified k-Nearest Neighbor algorithm
is deployed. Unlike an unmodified k-NN algorithm, this ap-



ADC
2 Channel
1.5Msps

STM32L4

GAP8

Wi-Fi
802.11 b/g/n

Server SPIUARTTCP/IP

Fig. 1. Schematic Overview of Hardware

Sample 
Data

New 
Event?

Extract
Features

Calculate
Delta

Device 
in DB?

Update 
Database

Add Device 
to DB

Check DB

Yes

Yes

No

No

Fig. 2. Simplified Flowchart of Device Matching

proach benefits from a flexible cluster count that is set during
operation. Since the user only needs to label every cluster once,
this algorithm has the advantage of being mostly unsupervised.
Furthermore, we aim at demonstrating that the trained model
can be transferred to an unseen household on the one hand and
extended by unseen load signatures on the other hand, to gain
a maximum in compatibility for the proposed measurement
and classification node.

The outline of the algorithm is as follows: first, current
and voltage are measured continuously with a frequency of
1 kHz, and the real power is calculated. If a change in
consumed power exceeds a certain threshold, a switching event
is triggered, the features described are extracted and a delta
feature vector is calculated. This vector is then multiplied with
a weighing vector and the result is parsed with the current
cluster database. If a nearby cluster is found, it gets extended
by the weighed delta feature vector and the cluster database
is updated. If the distance to all previous clusters exceeds
a specific threshold a new cluster is created, to which the
delta feature vector is added. The clusters then eventually
need to be labeled by the user. We seek to extend this
algorithm by Bernard by the option of exchanging the created
cluster database between different houses and adding new load
signatures to it using the framework.

IV. THE SYSTEM-OF-SYSTEMS: A ”TOOL-RING” CONCEPT
ARCHITECTURE

As described above, through the combination of machine
learning and clustering technologies, ultra-low-power process-

Algorithm 1 Hybrid NILM
1: while |Pdiff | < Power Threshold do
2: Sample Voltage and Current
3: Pdiff =

∫ T

0
i(t)dt

∫ T

0
u(t)dt− Pprevious

. Event Detected
4: Calculate Feature Vector F
5: δF = F − Fprevious

6: Store Fprevious, Pprevious

7: Apply Feature Vector weighing δFweighed =W · δF
8: Calculate Distances from δF to all cluster points in DB
9: if Distances > Matching Threshold then

10: Notify new Datapoint for new Cluster validation and
update DB

11: else
12: Add Datapoint to existing device in DB

ing, high-speed continuous sampling and wireless transmis-
sion, loads can be disaggregated and characterized from a
single point of measure. This approach enables disruptive
new models of energy optimization and management to be
envisioned, including:

• unobtrusive profiling of individual appliance activity;
• monitoring of power supplies degradation and detection

of equipment faults.
Any traditional set of appliances connected to a user sub-

grid is a system of systems (SoS). Altogether, new require-
ments concerning normal SoS, operation, life-cycle monitor-
ing, predictive maintenance, and anomaly detection can be
satisfied. This value proposition calls for the engagement of
many stakeholders, and particularly the appliance manufactur-
ers, the users and the service providers that provide services
along the SoS life cycle, e.g. installation and maintenance
companies as well as utilities; altogether a very large and
relevant community. Clearly, the stakeholders need to interact
by sharing and exchanging information, therefore accurate data
models and a set of interoperable tools, that should conform
to a well-designed tool-chain architecture, are required. Fig. 3
envisions a toolset arranged in a round-robin fashion (tool
ring): they set up the conceptual context for NILM deployment
at large. The rationale behind such tool-ring follows. At first,
the set of features required by the NILM algorithm recalled
in the previous paragraph are defined and shared among all
appliance manufacturers. Then, at product development time,
each manufacturer publishes the set of feature values for each
operation step of each of its products. This collection of feature
sets is called the Appliance Signature. A tool named Signature
Creator is expected to support the signature creation process,
while a second tool, named Signature Manager, handles the
exchange of signatures with down-stream tools.

In turn, when the NILM-device is installed in the target
SoS, it needs to be configured with the signatures of all its
SoS appliances. The configuration procedure could be partially
automatic (as suggested above), and partially supported by
an APP gathering the appropriate missing signatures through



Fig. 3. The Tool Ring Architecture

its interaction with the Signature Manager. This APP is an
additional tool of our tool-ring, it might be called NILM device
configurator, and it delivers the signatures received by the
Signature Manager to the NILM device run time support tool
through the NILM device wireless connection.

The NILM device may hosts additional tools, including
one to understand normal aging of each appliance through
variations of its digital signature (this tool might improve
the digital appliance signature and might enable a predictive
maintenance service), a tool to detect equipment faults and
trigger a request for the appropriate maintenance service, and
a tool to provide the utility with the required metering info.

As Fig. 3 shows, at least three different platforms will host
the envisioned tools: a cloud, an embedded device, and a tablet
or Smart Phone or similar device. For a smooth and controlled
interaction among the above tools, as well as a seamless
signature-exchange between them, the following approach is
here suggested:

1) each tool is implemented as a service registered at the
service registry of a secure distributed service-oriented
architecture

2) an ontology modeling the addressed multi-stakeholder
context is defined, where all entities and their properties
relevant in the proposed scenario (e.g. the appliance
manufacturer, the appliance and its signature, the SoS,
the NILM device) are formally specified.

V. DATA MODEL

A crucial requirement for tool interoperability is common
shared knowledge. This can reduce the cost of the integration

and the complexity of the software developed to import data.
Therefore, this paper introduces an abstract data model that
could be used as a reference for NILM tools. The model
employs concepts from well known IoT reference ontologies
such as schema.org2 and saref3, as shown in its schematic view
in Fig. 4. In particular, the data model includes 5 main classes
of objects:

• NILM Device: this class represents the monitoring device
installed in the target private or public environment (a
System of Systems). It contains the device unique ID as
an URN which can be used to identify its instance in dif-
ferent IT systems. Furthermore, it stores the information
about the power consumption of the load and the status
of the device itself.

• System of Systems: this class is a virtual twin of the
target environment which is identified by the collection
of the connected appliances. Moreover, it could contain
relevant information about the context of the systems
such as the postal address, if it is part of a condominium
building, the presence of other power sources, the number
of people who live there, etc.

• Appliance: The appliance class derives from
saref:Appliance and schema:Product. From schema
it inherits human descriptive properties like the
Manufacturer, picture, sizes, format. While from
saref:Appliance it is used for functional descriptive
properties such as ”hasFunction” or ”hasState”.

2https://schema.org/
3https://sites.google.com/site/smartappliancesproject/ontologies/

reference-ontology



• Organization: The Organization class identify stakehold-
ers and service providers registered in the Arrowhead
framework. Their role inside the tool-ring is identified by
their relations with other classes. For example, the man-
ufacturer of an appliance is connected using a property
called Manufacturer which identify that Organization as
the manufacturer of that appliance.

• Appliance Load Signature: A generic class which iden-
tifies a load signature of a specific appliance. In the future,
a standardization process may be needed to prevent the
emergence of different signature formats. Otherwise, the
data model could be extended with more descriptive
classes which inherit from Appliance Load Signature.

VI. THE ARROWHEAD TOOLS FRAMEWORK

The IoT is a key enabler of Industry 4.0 and all the
applications revolving around it, including Home Automation
Scenarios. Several research efforts have been made in such
direction, as it is explained in Section II, making the world of
interoperability frameworks vast. The common trend is to shift
from a SCADA/DCS-driven organization of component in an
industrial process to a networked IoT ecosystem in which each
entity is responsible for producing or consuming services, as
in any Service-Oriented Architecture. The Arrowhead Frame-
work4 is the result of an effort of more than 80 European
partners [4] and has been used extensively in several other
connected initiatives such as Productive 4.05 and Far-Edge6.
In this work, we use the Arrowhead Framework for the purpose
of interoperability between the tools outlined in the previous
sections and for compatibility with a plethora of other services
in the Arrowhead-Tools workflow.

The Framework consists of connected local clouds, each of
them managing their internal services and communicating with
each other to separate the control on different scenarios while
keeping them interoperable. Each local cloud hosts several
Systems, defined as the software components that interact and
constitute the application workflow. Each system can expose
a number of Services as well as consume other services in
the network, thus, for our purpose, we define them as Service
Providers or Service Consumers (clearly any system can be
both). In order to implement the -key paradigms that charac-
terize a SOA – defined as late binding, loose coupling, and
lookup – each local cloud hosts several “Core Systems” (CS)
that support and orchestrate the exchange of information. They
are divided onto Mandatory CS and Support CS; Mandatory
CS have to be deployed within a local cloud to make it an
Arrowhead-compatible cloud [22]. A brief description of the
Mandatory CS is below:

• Service Registry: it is the system responsible for register
each service within the local cloud. It acts as a repository,
thus other systems can perform a service lookup in order
to find the service that they are looking for together with a

4https://www.arrowhead.eu
5https://productive40.eu/
6http://faredge.eu/#/

set of metadata (e.g. endpoint, transport and application
protocols, etc.). Service lookup is performed using the
well-known DNS-SD lookup protocol [23].

• Authorization: it is the system responsible for the correct
interaction between producers and consumers according
to their rights. In particular, it manages the correct au-
thentication of providers and consumers as well as their
authorization for consuming or producing resources.

• Orchestration: it is the system responsible for coordinat-
ing the interactions between systems without the need for
the consumer to define its preferences at design time. The
Orchestration system is capable of choosing dynamically
the service producer suitable for any request by the
consumer on top of a list of orchestration rules as well
as the type of service requested. This can automatically
handle faults and load imbalance at the producers’ side.

Support CS are not mandatory and can be included in any
local cloud upon need. Example of available Support CS
are: QoS Manager, Data Manager, System Registry, Device
registry, Translator System, Event Handler, Plant Description,
and Configuration Manager. A special mention is deserved by
the Gatekeeper System and the Gateway System, which are
devoted to putting two or more local clouds in communica-
tion [24]. We envision every single tool of the architecture
presented in Section IV to be integrated as an Arrowhead
compatible service, taking an active part in the Arrowhead
Framework as a set of service providers and consumers.

VII. CONCLUSION

Technology advances such as NILM enable more and more
functionalities to be offered so that new requirements can
be satisfied at less and less costs. To deploy NILM in the
large, several actors need to be involved, and a ”new” value
chain may be created. A collection of tools to support such
value chain are proposed. Their deployment is enabled by a
framework implementing a SoA together with an appropriate
ontology describing the semantics of the addressed domain. A
European research and innovation project, Arrowhead Tools,
started in mid 2019 with the goal to increase the maturity
of a pre-existing SoA framework. Future work includes the
development of a demonstrator of the proposed tool-ring
hosted by the Arrowhead Framework.
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