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Abstract
Ultrasonic wavefield imaging with a non-contact technology can provide detailed information about the health status of
an inspected structure. However, high spatial resolution, often necessary for accurate damage quantification, typically
demands a long scanning time. In this work, we investigate a novel methodology to acquire high resolution wavefields
with a reduced number of measurement points to minimize the acquisition time. Such methodology is based on the
combination of compressive sensing and convolutional neural networks to recover high spatial frequency information
from low resolution images. A dataset was built from 652 wavefield images acquired with a laser Doppler vibrometer
describing guided ultrasonic wave propagation in 8 different structures, with and without various simulated defects.
Out of those 652 images, 326 cases without defect and 326 cases with defect were used as a training database for
the convolutional neural network. In addition, 273 wavefield images were used as a testing database to validate the
proposed methodology. For quantitative evaluation, two image quality metrics were calculated and compared to those
achieved with different recovery methods or by training the convolutional neural network with non-wavefield images
dataset. The results demonstrate the capability of the technique for enhancing image resolution and quality, as well
as similarity to the wavefield acquired on the full high resolution grid of scan points, while reducing the number of
measurement points down to 10% of the number of scan points for a full grid.
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Introduction

Non-Destructive Testing (NDT) and Structural Health
Monitoring (SHM) techniques recognize structural features
using several sensing devices and signal processing
methods1. Ultrasonic techniques, including active and
passive sensing, have been widely studied and applied in
the field of SHM2,3. Guided ultrasonic wave inspection
methods are often adopted for the detection and the
characterization of defects in plate-like structures because of
their high sensitivity and long propagation range4,5. Guided
ultrasonic waves detection can be either based on transducers
permanently bonded to the inspected environment (in SHM)
or on movable or non-contact transducers (in NDT)6.
In the second case, the measurement can be performed
using point-by-point scanning technologies such as scanning
laser Doppler vibrometers (SLDV)7, or air-coupled moving
transducers8,9.

Guided ultrasonic wavefield images provide both practical
and fundamental information for diagnosis tasks, including
material parameter extraction and defect detection7. Imaging
quality greatly affects the subsequent image analysis and
processing. In fact, structural imaging in high spatial
resolution reveals accurately structural details. In other
words, the amount of information that can be extracted
from the wavefield is directly related to the number of
points at which the wave propagation is measured, enabling
accurate image diagnostic for identifying waves interaction
with defects such as cracks, corrosion, and impact. In most
cases, high resolution (HR) wavefield images are required to

make a proper diagnosis. However, HR measuring strategies
typically involve long scanning time, further increased by
the adoption of extensive waveform averaging required
to improve the signal to noise ratio. Therefore, there is
a recognized need in reducing the number of sampled
waveforms to minimize the acquisition time while increasing
the signal to noise ratio without any artifacts resulting.

The Compressive Sensing (CS) method has been
investigated as a mean to tackle this problem by
reconstructing wavefield images from a few sampling
data, thus reducing the scanning time significantly10. To
improve the reconstruction quality of the compressed sensed
images, different solutions were investigated in11. However,
the downsampling which allows meeting the quality
requirements for wavefield reconstruction is still relatively
modest (20-50% of scan points retained). Alternative
approaches based on CS are those presented by Harley and
co-workers12,13. Recently, they used an autoencoder neural
network to learn low-dimensional representations of wave
propagation14. Mesnil and Ruzzene15 presented a sparse
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wavefield reconstruction and damage detection technique
based on the analysis of guided wavefields by locating the
nonpristine material points generating scattered wavefields.
In these cases, the achieved downsampling rate is significant
but the subsequent recovery is not meant to be used for
HR imaging, but for the extraction of information related to
wave propagation (such as dispersion curves, or anomalous
reflector positions).

Therefore, high-speed and HR wavefield imaging is
still an open research field. Possible strategies to further
increase CS performance include model-based CS16, or
novel sparsity-based methods such as gradient-based17, and
operator splitting algorithms18. Although these methods are
generally very efficient, it is not trivial to set their parameters
to have the proper reconstruction accuracy.

Recently, Neural Networks (NN) have achieved notewor-
thy successes in image denoising tasks because of the strong
ability to learn from data19. Some authors have evaluated the
combined used of NNs and CS20,21.

The idea is to firstly recover images from compressive
or low resolution (LR) samples, and then map the result
into HR images by applying properly trained Super-
Resolution Convolutional Neural Networks (SRCNNs)22.
Such concepts have been used in a large number of computer
vision problems, including image enhancement, such as
denoising23 and deblurring24. Learning based on super-
resolution was shown to be capable of obtaining HR images
without any over-smoothing, no ringing and jagged artifacts
such as aliasing, blur, and halo around the edges25. The
first attempt to combine CS and SRCNN in wavefield
imaging was done, to the best of the authors’ knowledge,
in a conference paper by Park et al.26, where some first
qualitative results were presented. The approach described
in Park’s work was based on a training set constituted by
generic heterogeneous images.

In this work, we have investigated i) how crucial in the
quality of the HR image recovery can be the creation of
a large and representative training database of wavefield
images and the proper tuning of CS parameters, and ii) the
move from SRCNN to Very-Deep Super Resolution (VDSR)
procedures. Deep neural network are NN with multiple
layers between the input and output layers. Thanks to their
complexity, they achieve superior performances with respect
to conventional NN27.

Finally, we have quantified the benefit brought by the
proposed approach with different performance metrics.

The paper is organized as follows. Section II describes the
basics of CS for wavefield acquisition. Section III presents
the details of the wavefield imaging HR reconstruction
algorithm. Section IV illustrates the wavefield dataset that
was created for training and validating the application of
SRCNN and VDSR to guided ultrasonic wavefield imaging.
Next, Section V presents the experimental results. Finally,
Section VI summarizes the main findings of the work and
provides recommendations for future investigations.

Compressive sensing of wavefields

Wavefield imaging basics
The term guided ultrasonic wavefield imaging is generally
referred to the analysis of series of images representing

the time evolution of propagating guided ultrasonic waves
and, possibly, their interaction with defects. The image
wavefields can be generated and received with various kinds
of transducers and may allow to diagnose the health of
structures by determining the location and the extent of the
defects28.

Figure 1. Experimental setup used to measure ultrasonic
guided wavefields.

In the current work, we focus on guided ultrasonic
wavefields generated by piezoelectric transducers attached
to the inspected structures, and acquired with SLDV in the
spatial and temporal domains. More specifically, non-contact
measurement of the in-plane and out-of-plane velocity is
performed using a 3-D Laser Doppler Vibrometer (3D-
LDV) over a square grid of points to extract the required
information. A sketch of the setup adopted for ultrasonic
wavefield measurement is shown in Fig.1. Waves travel
across the inspection area and are recorded at several
measurement grid points.

The data is stored in 3D arrays W (x, y, t), taking into
account measurement locations and time instants. 3D data
arrays contain information that can be used for structural
characterization28.

As an example of a guided ultrasonic wavefield image,
Fig.2 (a) and (b) show the experimental setup and a snapshot
at 98µs of waves propagating in a simple aluminum plate and
interacting with a clamped mass. The multiple wavefronts
generated by the embedded transducer and scattered by
discontinuities are clearly visible. In the selected frequency
range (75 kHz), two modes (S0 and A0) are generated, but
A0 mode has much greater amplitude than S0 mode.

Wavefield data can be analyzed in time and frequency
domains28 or by using multiscale representations30. Time
slice images, waveform envelopes, accumulated kinetic
energy31,32, and standing wave filtering33, are useful features
to highlight the characteristics of the inspected medium and
the presence of defects. For example, Fig.2 (c) shows that
the processing of wavefield acquisitions can be adopted to
highlight the position of the defect29,34,35.

In recent work36, an improved imaging method was
developed to obtain accurate results of localization and sizing
damages in metallic plates and composite laminates. Kudela
et al.37 studied the relation between impact energy and BVID
detectability, wavenumber adaptive image filtering.
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Figure 2. (a) Sketch of a setup constituted by a simple aluminum plate with a clamped mass, (b) Snapshot at t = 98µs of the
measured ultrasonic wavefield; (c) damage image generated by computing the maximum value of the wavenumber-domain filtered
signal, as suggested in 29. The white dot circle represents the actual position of the clamped mass.

Figure 3. Jittered sampling of the measurement region: the
black dots represent the scan points obtained by regularly
subsampling the x1 − x2 space; their position is then randomly
perturbed (red circles) to define the new scan points with
coordinates xu1 and xu2.

Compressive sensing theory
In this work, CS is used as a mean to reconstruct wavefield
images from a small number of undersampled data and
accelerate the data acquisition process. The CS theory38

states that, under specific conditions, a signal s ∈ Rn

can be reconstructed from a linear combination of random
measurements y ∈ Rm.

The measurements y can be expressed as the result of a
vector-matrix product:

y = Φs (1)

where Φ ∈ Rm×n is the measurement matrix, and m is the
number of measurements, which can be much smaller than
the dimension of the signal (m << n).

In this work, we follow the mathematical notation adopted
in11: s is the wavefield signal acquired (after averaging)
in HR; n1, n2 and n3 are the number of scan points in
the x1 and x2 coordinates (i.e. the spatial grid), and the
number of samples in the time axis, respectively. Therefore,
the dimension of the signal s sampled according to the full
grid is n = n1 × n2 × n3.

In order to reduce the number of acquisition points
in space, and consequently the acquisition time, Φ acts
as a subsampling operator, more specifically, the jitter
subsampling operator presented in39 can be adopted. Such
subsampling is based on the definition of an equispaced
undersampled grid of scan points which are subsequently
perturbed (see Fig. 3).

The signal s can be recovered from the compressed
measurements y, if it has a sparse representation in some
model basis Ψ ∈ Rn×n, as following:

s = Ψα (2)

Furthermore, the downsampling measurement matrix Φ
has to be incoherent with the model basis Ψ40. This means
that µ ∼ 1, µ being the measure of the largest correlation
between any two elements of Φ and Ψ:

µ(Φ,Ψ) =
√
n max

˜16i,j6n
|〈ϕi, ψj〉| , (3)

where ϕi, ψj are the rows of Φ and the columns of Ψ,
respectively, and µ ∈ [1,

√
n].

Many CS recovery algorithms have been proposed to find
the coefficients α and consequently recover the signal s,
such as the so called Orthogonal Matching Pursuit (OMP)41,
or Iterative Hard Thresholding (IHT)42, and Iterative Soft
Thresholding (IST)43.

When the measurements corrupted by noise and data are
not exactly sparse, the signal is still compressible, and can be
recovered by solving a `1-norm minimization problem (Basis
Pursuit Denoising44). In this work, an l1-minimizer based
on the spectral projection gradient algorithm (SPGL1)45 was
adopted.

Three undersampling cases were considered. These three
values are representative of a medium (50% of retained scan
points), consistent (33%) and very consistent (10%) spatial
grid undersampling. These percentages are referred to as
Compression Rates (CRs) of the reconstructed wavefield.

The time waveforms associated to the retained scan points
provide the input wavefield data to the CS reconstruction
based on the l1-minimization. Fourier (2D, 3D) exponentials
have been used to generate the sparsifying model bases
Ψ. Detailed analysis of these representation domains are
presented in10. The following section presents how image
recovery can be improved by combining the CS recovery
with conventional or deep NNs.

Single image super-resolution
Super-resolution (SR)46 refers to the task of restoring HR
images from LR observations, such as those resulting from
compressed acquisitions. Depending on the number of input
low resolution images, the SR can be divided into Single
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Figure 4. Overview of the SRCNN scheme for HR image reconstruction.

Image Super-Resolution (SISR) and Multi-Images Super
Resolution (MISR)47. SISR has typically higher efficiency
than MISR48. Super-resolution algorithms can be roughly
divided into: i) interpolation-based methods such as bicubic
interpolation49, ii) reconstruction-based methods which are
typically very efficient and fast50,51,52.

Super-resolution convolutional neural network
Among learning based methods, the one based on SRCNN
was the first which was applied in wavefield imaging26. In
this work, we have compared the results achievable with
this method with the deep learning strategies which will be
introduced in the following subsection. The architecture of
the SRCNN is shown in Fig. 4. As can be seen, SRCNN is
a 3-layer CNN. The tasks performed by these three layers
are: patch extraction and representation, non linear mapping,
and reconstruction, respectively. The patch extraction and
representation layer extracts patch from the LR input image
and compute the following mapping function F :

F1(Y) = max(0,W1 ∗Y +B1) (4)

where Y , W1, B1, f1 and n1 represent the LR image, the
applied filters, the biases, the filter size, and the number
of filters respectively. More specifically, W1 corresponds to
n1 filters, whose size is f1×f1, being f1 the spatial size
of a filter. Following22. The output is thus composed of n1
feature maps, and B1 is an n1-dimensional vector.

As can be seen in Fig. 4, in this work, the input to SRCNN
is made of the wavefields recovered from the CS procedure,
and acquired with different compression rates (50%, 33%
and 10%). Moreover, the CS-recovered images have been
cropped into a set of fsub × fsub-pixel sub-images, to further
expand the training set.

The middle layer involves a non-linear mapping, which
maps the feature vectors in F1 non-linearly to another set
of feature vectors (F2). The operation of middle layer is as
follows:

F2(Y) = max(0,W2 ∗ F1(Y) +B2) (5)

where W2 is an array of n2 filters whose size is n1× f2×f2,
and B2 is an n2-dimensional vector.

Finally, the reconstruction layer generates the final HR
image. The operation of the last layer is as follows:

F (Y) = W3 ∗ F2(Y) +B3 (6)

W3 has a size of n2×f3×f3, and B3 is a vector. In this work,
n1=64, f1=9, n2=32, f2=5, f3=5.

The SRCNN scheme is first used in a training phase with
a training dataset for estimating its parameters, and then in a
validation phase, with a testing dataset. In the training phase,
the network parameters Θ = W1,W2,W3, B1, B2, B3 are
estimated. This is achieved through minimizing the error
between the reconstructed images F (Yi; Θ) and original high
resolution image X . The error function E is given by the
mean squared error:

E(Θ) =
1

n

n∑
i=1

‖F (Yi; Θ)−Xi‖2 (7)

where n is the number of training images, Xi is a set of
HR images, and Y i is the set of their corresponding LR
images22.

In the testing phase, image quality metrics are used to
assess the recovery performance of the HR image for LR
cases not included in the training dataset.

Very-deep super resolution
To further improve the reconstruction accuracy, a VDSR
architecture was evaluated in this work. Deep structured
learning53 is a branch of machine learning algorithms
based on directly learning diverse representations of data.
Deep learning has shown superiority over conventional
machine learning algorithms in computer vision19 and
speech recognition54 tasks. Most modern deep learning
models are based on NNs. Very deep models used in SISR
tasks are usually referred to as VDSR models55.

As shown in Fig. 5, the VDSR adopted in this work has 20
layers which is consequently much deeper compared with
SRCNN which only had 3 layers. As suggested in56, all
kernel sizes are set equal to 3×3. In the SRCNN, the HR
image is generated directly from the learned features. In the
VDSR, the neural network performs a residual-learning, in
the sense that the output of the NN is an image which should
be added to the original LR image Y to produce the estimated
HR one (X̂).

Defining a residual image R = Y −X , the error function
becomes:

E(Θ) =
1

2
‖R− FR(Y )‖2 (8)
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Table 1. Geometrical features of the aluminum (AL) and carbon fiber reinforced polymer (CFRP) structures

Category Features Thickness (mm) Size (mm) Illustration

Aluminum plate Simple 2 mm 610×610

Aluminum plate Hole and defect 3 mm 620×620

Aluminum plate T-spar Species Change 610×610

Aluminum plate Rivet 2 mm 620×620

CFRP plate Simple 3 mm 500×500

CFRP plate Thickness variation Taper angle 500×500

CFRP plate T-spar Species Change 620×620

CFRP plate Curved 3 mm 510×510

Figure 5. Overview of the VDSR scheme for HR image reconstruction.

where FR(X) is the network prediction of the residual. Thus,
the network is learning the residual error between the output
(HR image) and input (LR image). The VDSR network used
in this work takes the CS recovered images as LR input.
More specifically, the original full grid training images are
reconstructed by using CS technique with different CRs and
using Fourier exponentials as sparsifying basis.

Experimental validation

Training and testing of SRCNN and VDSR
In this work, the training of the SRCNN was performed
based on the open-source package Caffe57. Two different
training datasets were considered:

• a Non-Wavefield Images or NWI dataset constituted
by 652 heterogeneous images including photos of
people, animals, cities and more, joining the General-
10058, the 91-image59, and the ImageNet datasets60;
• and a Wavefield Images or WI dataset, having the same

cardinality as the first one, but constituted of actual

guided ultrasonic wavefield images (size equal to 509
× 509 pixels.)

Our aim was to show how the type and number of training
cases affect the performance of the HR image recovery.

The wavefield images were collected with a SLDV in
a large number of different setups and on a dense grid
of points to generate HR images. The excitation signal
was a sinusoidal burst (central frequency equal to 75kHz)
applied to a circular piezoelectric transducer (10 mm in
diameter) and bonded on the surface of the plates. Averaging
and post-processing procedures were employed to extract
displacement images with high signal to noise ratios. Some
sample training images are depicted in Fig. 6, while materials
and geometries of the test structures are reported in Table I.
As can be seen, the dataset includes both aluminum (AL)
and carbon-fiber reinforced polymer (CFRP) plates, with
irregularities such as thickness variations, T-spars and rivets.
On the whole, the WI dataset contains 326 cases in which the
presence of anomalies was simulated with magnets (20mm in
diameter) and 326 cases of undamaged structures.
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Figure 6. Examples of guided ultrasonic wavefield images related to Aluminum and CFRP plates setups which
were used to train the SRCNN and VDSR. Plate features and mass positions (dotted circles) have been highlighted.

In the training phase of the SRCNN scheme, the original
full wavefield images are subdivided in 32×32 pixel sub-
images. In total, 177687 sub-images were used in the training
phase. The LR samples were generated from the HR ones
by applying the CS recovery to subsampled versions of the
original images. More specifically, the downsampling was
achieved with the jittered method described in10.

Finally, we have tested the wavefield data recovery with
VDSR55 trained using the same wavefield images used for
the SRCNN scheme. Differently from SRCNN, VDSR patch
size is 41×41 pixels, while the batch size is equal to 64. The
network was then trained using the MATLAB Deep Learning
Toolbox, using the same configuration parameters adopted
in55. Moreover, gradient clipping was adopted to prevent
gradient explosions and speed up the training.

Quantitative validation
To quantitatively evaluate the reconstructed super-resolution
images, we have computed two types of image quality
metrics: Peak signal-to-noise ratio (PSNR)61 and structural
similarity index (SSIM)62.

The PSNR is defined as follows:

PSNR(x, x̂) = 10log
Nmax

MSE
(9)

where Nmax is the maximum pixel value and (MSE)
is Mean-Square-Error of the pixels between the original
full wavefield image and its reconstruction from the LR
observation. A high PSNR value means high quality
recovery. Obviously, the maximization of PSNR implies the
minimization of MSE as objective function.

The SSIM62 was used to measure the similarity between
the original wavefield and the HR recovered one:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c1)
(10)

where µx , µy , σx , σy and σxy are the local means,
standard deviations, and cross-covariance for images x and
y. c1 = (k1L)2 , c2 = (k2L)2 , and L are the dynamic range,
k1 = 0.01 , and k2 = 0.03 .

Results and discussion
In this section, results of the recovery of HR images by
means of CS and NN are presented to assess qualitatively and
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Figure 7. Wavefield images recovered for the simple CFRP plate using various methodologies; (a) sketch of the setup and original
wavefield image; (b) images recovered uniquely with the CS procedure for CRs:50%, 33% and 10%; (c) images recovered with the
CS and SRCNN; (c) images recovered with the CS and VDSR.

Table 2. The results of PSNR using CS and NN methods trained by Non Wavefield Images (NWI) and Wavefield Images (WI), and
the results of PSNR using bicubic method trained by Wavefield Images (WI).

HR recovery CR=50 [%] CR=33 [%] CR=10 [%]
Curved CFRP Simple AL Curved CFRP Simple AL Curved CFRP Simple AL

CS 42.65 43.05 41.40 40.61 35.22 27.88
CS+SRCNN (NWI) 42.97 43.19 41.79 40.63 36.00 29.56
CS+SRCNN (WI) 43.96 43.45 43.42 40.65 36.83 30.22
Bicubic+VDSR (WI) 43.81 42.54 42.17 40.50 36.82 34.36
CS+VDSR (WI) 44.87 45.57 43.50 41.62 37.15 34.60

quantitatively the performance of the proposed methodology
as a function of CR and NN characteristics. It must be
clarified that the images used in this assessment do not
belong to the training dataset. In addition, the combination
of the conventional Bicubic interpolation with NN was
evaluated, to quantify the advantage brought by the adoption
of CS schemes.

The qualitative performance of the CS recovery combined
with SRCNN and VDSR can be observed in Figs. 7 and
8 for the two specific test cases of a curved CFRP plate
and an aluminum plate, respectively. In particular, it can be
observed how the image recovered with the combination of
CS and VDSR is very similar to the original HR wavefields

in both cases, even for very low CRs. The improvement with
respect to the pure CS recovery is quite evident, especially
by focusing on the details, as those shown in Figs. 9 and 10.

Figs. 11 and 12 present the comparison in terms of the
SSIM achieved with the CS recovery and the training of
the SRCNN and VDSR schemes with varying CRs. SSIM
values are computed for the wavefield images relative to
the aluminum and CFRP plates shown in Figs. 7 and 8.
The results show that the value of SSIM of the recovered
wavefield image trained by VDSR network is significantly
higher in all the considered cases. Also clearly visible is
the beneficial effect brought by the adoption of the WI
dataset with respect to the results achieved by using the
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Figure 8. Wavefield images recovered for the simple aluminum plate with a clamped mass using various methodologies; (a) The
schematic of plate and original wavefield image; (b) images recovered uniquely with the CS procedure for CRs:50%, 33% and 10%;
(c) images recovered with the CS and SRCNN; (c) images recovered with the CS and VDSR.

Figure 9. (a) HR wavefield image acquired in the simple CFRP plate; (b) CS recovery (CR= 50%); (c) recovered image achieved
by combining CS and VDSR.

Figure 10. (a) HR wavefield image acquired in the simple aluminum plate with a clamped mass; (b) CS recovery (CR= 33%); (c)
recovered image achieved by combining CS and VDSR.
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Figure 11. Comparison of the SSIM between the training
models with WI and NWI datasets and the CS technique for an
aluminum plate with CR=10%, 33% and 50%.

Figure 12. Comparison of the SSIM between the training
models with WI and NWI datasets and the CS technique for a
CFRP plate with CR=10%, 33% and 50%.

Figure 13. Training of SRCNN with the wavefield images (WI)
dataset for a curved CFRP plate.

NWI dataset. Table 2 shows that similar trends are obtained
by quantifying the effectiveness of the different HR image
recovery methods in terms of PSNR. As shown in this
Table and in Figs. 11 and 12, the combination of CS
and VDSR(WI) demonstrated a performance superior with
respect to all the other combinations (including the Bicubic
interpolation with VDSR(WI)) in all the considered CRs
cases for both plates.

Figure 14. Comparison of the SSIM between the CS, the
SRCNN scheme, and the VDSR scheme for all the considered
cases in the testing dataset with CR=10%, 33% and 50%. In the
boxplot representation, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most
extreme data points.

Figure 15. Comparison of the PSNR between the CS, the
SRCNN scheme, and the VDSR scheme for all the considered
cases in the testing dataset with CR=10%, 33% and 50%. In the
boxplot representation, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most
extreme data points.

To better illustrate the importance of the size of the
training dataset in the recovery performance, we have
reported in Fig. 13 the PSNR as a function of the dataset
cardinality. It can be observed how the cardinality of the
dataset improves the performance.

The performance of the different HR image recovery
schemes was then quantified on a large testing dataset. As
already mentioned, the images used for the evaluation of
recovery performances are different from the ones used in
the NN training. More specifically, 273 wavefield images,
randomly selected among those acquired on the setups
shown in Table 1, were used for training, quantitative
testing and validation. Such images were down-sampled with
different CR ratios.
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Figs. 14 and 15 represent the box plot of the SSIM and
PSNR in all the considered dataset for: i) CS; ii) SRCNN
trained using NWI; iii) SRCNN trained using WI, and VDSR
trained using WI. As can be seen, the highest quality HR
recovery in terms of SSIM and PSNR is achieved with
the VDSR scheme. The mean and the standard error of
PSNR of the CS-VDSR (WI) method is 41.21 and 1.65 dB,
respectively. This performance is significantly higher than
that of the CS-SRCNN (WI) scheme (39.75 ± 2.00 dB).

From these results, it can be clearly observed that VDSR
outperforms SRCNN. This is achieved thanks to the deeper
neural network. Besides, residual learning networks, when
used in SR tasks, have been proved to possess better
visual performance and Peak Signal to Noise Ratio (PSNR)
performance63,64. It is also worth nothing that, since deep-
learning has recently prospered, many new learning-based
algorithms can be used in SISR to replace VDSR, such as
VGG55, ResNet65 and GAN66.

Conclusions

HR wavefield scans convey important information about
the health status of the inspected structures. However, the
acquisition of these images is typically a slow process. For
this reason there is a growing interest in finding solutions
for speeding up the measurements. One possible solution is
based on the reduction of the number of scan points and on
the subsequent recovery of the HR image by means of CS
procedures. Unfortunately, the quality of this reconstruction
method degrades rapidly as the reduction of the scan points
becomes more consistent. To counteract this degradation, in
this paper, we have investigated the use of SR techniques
based on the training of NNs. In particular, we demonstrated
two main new findings:

• The training should be performed based on a
sufficiently large and comprehensive dataset of
wavefield images rather than recurring to conventional
image datasets.
• Deep networks have clearly superior performance with

respect to shallow neural networks.

Experimental results demonstrate that the proposed
methodology can be applied in a variety of structural
components to reduce acquisition time and achieve high
similarity to the HR images, even when we retain just the
10% of the original scan points.

Future work will investigate: i) The possibility to apply
the CS algorithm to raw SLDV data (without averaging);
ii) the possibility to exploit this imaging methodology
to characterize defects; iii) alternative Deep Learning
architectures; iv) the benefit brought by further increasing
the number of wavefield images in the training phase with
different setups or excitation frequencies. Indeed, it is a well-
known fact that deep learning strongly benefits from training
on big data. Moreover, the results need to be confirmed in
additional cases in order to have a better assessment of the
performance, given the vast number of applications which
can be targeted by this inspection method.

Acknowledgements

The authors would like to acknowledge the contribution from the
Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Consortium for Research and Innovation in
Aerospace in Quebec (CRIAQ) for providing the funding for the
design and manufacturing of the test structures.

References

1. Swartz RA, Jung D, Lynch JP et al. Design of a wireless
sensor for scalable distributed in-network computation in a
structural health monitoring system. In Proceedings of the 5th
International Workshop on Structural Health Monitoring. pp.
12–14.

2. Mei H, Haider MF, Joseph R et al. Recent advances
in piezoelectric wafer active sensors for structural health
monitoring applications. Sensors 2019; 19(2): 383.

3. Sikdar S and Banerjee S. Structural Health Monitoring
of Advanced Composites Using Guided Waves: Online
Monitoring of Defects/Discontinuities in Advanced Composite
Structures Using Ultrasonic Guided Waves and PZTs. LAP
LAMBERT Academic Publishing, 2017.

4. Rose JL. A baseline and vision of ultrasonic guided wave
inspection potential. Journal of pressure vessel technology
2002; 124(3): 273–282.

5. Lowe M and Cawley P. Long range guided wave inspection
usage–current commercial capabilities and research directions.
Department of Mechanical Engineering, Imperial College
London, London 2006; : 1–40.

6. Lamb H. On waves in an elastic plate. In Proceedings of
the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 93. The Royal Society, pp. 114–
128.

7. Staszewski W, Lee B, Mallet L et al. Structural health
monitoring using scanning laser vibrometry: I. lamb wave
sensing. Smart Materials and Structures 2004; 13(2): 251.

8. Michaels TE, Michaels JE, Thompson DO et al. Application
of acoustic wavefield imaging to non-contact ultrasonic
inspection of bonded components. In AIP Conference
Proceedings, volume 820. pp. 1484–1491.

9. Testoni N, De Marchi L and Marzani A. Detection and
characterization of delaminations in composite plates via air-
coupled probes and warped-domain filtering. Composite
Structures 2016; 153: 773–781.

10. Di Ianni T, De Marchi L, Perelli A et al. Compressive
sensing of full wave field data for structural health monitoring
applications. IEEE transactions on ultrasonics, ferroelectrics,
and frequency control 2015; 62(7): 1373–1383.

11. Esfandabadi YK, De Marchi L, Testoni N et al. Full wavefield
analysis and damage imaging through compressive sensing in
lamb wave inspections. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control 2017; 65(2): 269–280.

12. Harley JB and Moura JM. Sparse recovery of the multimodal
and dispersive characteristics of Lamb waves. The Journal of
the Acoustical Society of America 2013; 133(5): 2732–2745.

13. Sabeti S, Leckey CA, De Marchi L et al. Sparse wavenumber
recovery and prediction of anisotropic guided waves in
composites: A comparative study. IEEE transactions on
ultrasonics, ferroelectrics, and frequency control 2019; .

14. Alguri KS and Harley JB. Transfer learning of ultrasonic
guided waves using autoencoders: A preliminary study. In

Prepared using sagej.cls



Esfandabadi et al 11

AIP Conference Proceedings, volume 2102. AIP Publishing,
p. 050013.

15. Mesnil O and Ruzzene M. Sparse wavefield reconstruction and
source detection using compressed sensing. Ultrasonics 2016;
67: 94–104.

16. Perelli A, Di Ianni T, Marzani A et al. Model-based
compressive sensing for damage localization in lamb wave
inspection. IEEE transactions on ultrasonics, ferroelectrics,
and frequency control 2013; 60(10): 2089–2097.

17. Figueiredo MA, Nowak RD and Wright SJ. Gradient projection
for sparse reconstruction: Application to compressed sensing
and other inverse problems. IEEE Journal of selected topics in
signal processing 2007; 1(4): 586–597.

18. Ma S, Yin W, Zhang Y et al. An efficient algorithm for
compressed mr imaging using total variation and wavelets. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on. IEEE, pp. 1–8.

19. Krizhevsky A, Sutskever I and Hinton GE. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems. pp. 1097–
1105.

20. Duan G, Hu W and Wang J. Research on the natural
image super-resolution reconstruction algorithm based on
compressive perception theory and deep learning model.
Neurocomputing 2016; 208: 117–126.

21. Bora A, Jalal A, Price E et al. Compressed sensing using
generative models. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, pp.
537–546.

22. Dong C, Loy CC, He K et al. Image super-resolution using
deep convolutional networks. IEEE transactions on pattern
analysis and machine intelligence 2016; 38(2): 295–307.

23. Xie J, Xu L and Chen E. Image denoising and inpainting
with deep neural networks. In Advances in neural information
processing systems. pp. 341–349.

24. Xu L, Ren JS, Liu C et al. Deep convolutional neural network
for image deconvolution. In Advances in Neural Information
Processing Systems. pp. 1790–1798.

25. Siu WC and Hung KW. Review of image interpolation
and super-resolution. In Signal & Information Processing
Association Annual Summit and Conference (APSIPA ASC),
2012 Asia-Pacific. IEEE, pp. 1–10.

26. Park B and Sohn H. Reconstruction of laser ultrasonic
wavefield images from reduced sparse measurements using
compressed sensing aided super-resolution. In AIP Conference
Proceedings, volume 1806. AIP Publishing, p. 030003.

27. Schmidhuber J. Deep learning in neural networks: An
overview. Neural networks 2015; 61: 85–117.

28. Michaels TE, Michaels JE and Ruzzene M. Frequency–
wavenumber domain analysis of guided wavefields. Ultrason-
ics 2011; 51(4): 452–466.
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