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Abstract  
Monitoring the upper arm propulsion is a crucial task for 
swimmer performance. The swimmer indeed can produce 
displacement of the body by modulating the upper limb 
kinematics. The present study proposes an approach for 
automatically recognize all stroke phases through three-
dimensional (3D) wrist’s trajectory estimated using inertial 
devices. Inertial data of 14 national-level male swimmer were 
collected while they performed 25 m front-crawl trial at intensity 
range from 75% to 100% of their 25 m maximal velocity. The 3D 
coordinates of the wrist were computed using the inertial sensors 
orientation and considering the kinematic chain of the upper arm 
biomechanical model. An algorithm that automatically estimates 
the duration of entry, pull, push, and recovery phases result from 
the 3D wrist’s trajectory was tested using the bi-dimensional (2D) 
video-based systems as temporal reference system. A very large 
correlation (r = 0.87), low bias (0.8%), and reasonable Root Mean 
Square error (2.9%) for the stroke phases duration were observed 
using inertial devices versus 2D video-based system methods. 
The 95% limits of agreement (LoA) for each stroke phase 
duration were always lower than 7.7% of cycle duration. The 
mean values of entry, pull, push and recovery phases duration in 
percentage of the complete cycle detected using 3D wrist’s 
trajectory using inertial devices were 34.7 (± 6.8)%, 22.4 (± 
5.8)%, 14.2 (± 4.4)%, 28.4 (± 4.5)%. The swimmer’s velocity and 
arm coordination model do not affect the performance of the 
algorithm in stroke phases detection. The 3D wrist trajectory can 
be used for an accurate and complete identification of the stroke 
phases in front crawl using inertial sensors. Results indicated the 
inertial sensor device technology as a viable option for swimming 
arm-stroke phase assessment. 
 
Key words: Swimming propulsion; hand kinematic; 
underwater; swimming technique; inertial sensor. 

 
 

Introduction 
 

The upper body actions in front crawl produce the major 
contribution to forward displacement (Gatta et al., 2012). 
More specifically, the arm-stroke technique is a key factor 
for the improvement of swimmer performance using the 
hand as thrust (Rouboa et al. 2006). Indeed, the arm-stroke 
cycle in front crawl is typically segmented into four phases 
(entry; pull; push; recovery) using the hand position 
relative to the swimmer's body or to the water surface as 
identification of the distinct phases (Chollet et al., 2000; 
Keskinen and Komi, 1993). The duration of the different 

arm-stroke phases varies from one swimmer to another and 
many investigations showed that swimmers adjust the time 
spent in each of the stroke phases to achieve performance 
objectives (Keskinen and Komi, 1993). In particular, the 
entry phase duration has the larger variation among the 
stroke phases due to the swimmer specialization (McCabe 
et al., 2011). Moreover, the thrust performance of the 
swimmer also depends on the timing between the actions 
of the hands, namely inter-limb coordination. The arm-
stroke phases identification also allows to characterize the 
coordination model of the swimmer: Chollet et al. (2000) 
assessed inter-arm coordination in front crawl, using an 
index of coordination (IdC) which quantifies the time gap 
between two propulsive arm actions. 

The three-dimensional (3D) video-based is the most 
used technique for both motion analysis of the swimmer's 
hand (Cesaracciu et al., 2011; Samson et al., 2015a) and 
stroke phases detections (Psycharakis and Sanders, 2010).  
Despite the reliability and validity, this method presents 
some limitations that force the coach to prefer the most 
accessible 2D video-analysis (Mooney et al., 2016): the 
costs of the cameras are expensive; the automatic process 
of data acquisition is very complex (Ceccon et al., 2013); 
data processing requires long time procedure, limiting the 
direct feedback and the swimmer's learning (Magalhaes et 
al, 2015); the water environment negatively affects the 
signal accuracy (Cortesi et al., 2014; Gourgoulis et al., 
2008). To overcome the limitations of video-based motion 
analysis in sport, modern wearable technologies have 
introduced an alternative approach based on inertial and 
magnetic measurement units (IMMUs). IMMUs have 
small size, transmit data wireless, perform short-time 
analysis, do not require complex calibrations and can be 
worn easily. The IMMUs can analyze and monitor the 
whole swimming trial continuously without specified 
spatial limitation, a typical feature of the video analysis. 
The specificity of water leads to a spontaneous emergence 
of movements to satisfy the surrounding constraints that 
concurrently create positive (propulsion) and negative 
(drag) effects on the performance. The continuous 
manipulation of these constraints could lead new 
functional adaptations of swimming and the variability of 
the movements could be useful for the performance 
through circular relationships between perception and 
action (Guignard et al., 2017). Thus, IMMUs may allow to 
collect additional information on the variability of 
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swimmer’s coordination dynamics and on the swimmers’ 
adaptability to surrounding constraints. For these reasons, 
in the last ten years some research groups have directed the 
scientific interest on the biomechanical analysis of the 
swimmer using IMMUs (Guignard et al., 2017, Camomilla 
et al., 2018). Considering the detection of the stroke phases 
through IMMUs, Dadashi et al. (2013) and Callaway 
(2015) proposed two algorithms based on the angular 
velocity of the forearm and on the body roll position, 
respectively. Despite their validity reported by comparison 
against a gold standard video-based system, the angular 
velocity method could be critical for the stroke phase 
detection. The entry start event was indeed identified and 
described in conjunction with video analysis. Moreover, 
additional swimming stroke configurations like different 
velocities or expertise of participants should be explored 
using the angular velocity method. According to Chollet et 
al. (2000), the detection of the starting events for each 
stroke phase could be identified by the hand spatial 
position. Therefore, the 3D underwater motion analysis 
using IMMUs technology based on spatial position could 
increase and complete the amount of information available 
for the swimmer stroke analysis, especially in terms of 
intra-cyclic stroke variability and stroke-by-stoke 
variability. 

As the literature suggests, we hypothesized that the 
hand position could lead to more accurate stroke phases 
detection in swimming and consider specific swimmer 
technique. Considering the accuracy of the wrist joint 
angles estimated using IMMUs and the encumbrance of a 
sensor on the hand (Fantozzi et al., 2016), the mid-point 
between radial and ulna styloids can be considered the 
closest point to the hand estimated with sufficient 
reliability and with a minimal burden for the swimmer. 
Since the decisive improvement offered by the IMMUs is 
to assess the swimming motion continuously, the aim of 
the present study is to propose and to validate a novel 
approach for automatic stroke phase detection based on 3D 
wrist trajectory in front crawl swimming using IMMUs. 
 
Methods 

 
Participants and design 
The experimental protocol was divided into two phases: i) 
the validation of the 3D wrist trajectory estimation in front-
crawl swimming simulated on land using multiples 
IMMUs and ii) the validation of stroke phases temporal 
estimation through 3D wrist trajectory in front-crawl 
swimming in aquatic environment. The validation was 
performed using video analyses as gold standard: 3D 
spatial reconstruction and temporal events were considered 
in phase A and B, respectively.  

Fourteen national-level male swimmers 
participated in the study (23.2 ± 2.8 years of age; 76.7 ± 
7.6 kg of body mass; 1.81 ± 0.07 m of stature); at the time 
the experiments were performed, the weekly training 
duration of the swimmers was 15 ± 3 h per week. Short-
course 25 m personal front-crawl best times were 11.3 ± 
0.2 s. All fourteen participants took part to the stroke phase 
detection validation in swimming, while only five 

completed the 3D swimming wrist trajectory validation in 
simulated swimming. 

The project was approved by the local University  
Ethics committee and conducted according to the ethical 
standards of the Declaration of Helsinki. All participants 
provided written informed consent to participate in the 
study. 

 
3D wrist trajectory validation in simulated swimming 
Each of the five swimmers involved performed a 20 
seconds trial of front-crawl simulated swimming with a 
stroke rate like swimming motion (between 30 to 60 
cycles/min). The swimmers were asked, lying on a swim 
bench, to swim as they would have done in a swimming 
pool. 150 complete front crawl arm-stroke cycles were 
collected corresponding to the right and left strokes of the 
five swimmers involved. 

Data collection was performed using an IMMUs 
system (APDM Opals, 5 units, including tri-axial 
accelerometers (±6 g), tri-axial gyroscopes (± 2000°/s) and 
tri-axial magnetometers (±6 gauss) each, weight <25g 
(with battery), 128 Hz, internal storage 8Gb) together with 
a stereophotogrammetric system (BTS SMART-DX 7000, 
7 cameras, 250 Hz) resampled at 128 Hz. Data acquired 
with both systems were filtered and an isolated explosive 
flexion/extension of the elbow carried out before each trial 
was performed for time synchronization between the two 
methods. The zero-crossing acceleration of the 
sensors/markers on the wrist was used as the 
synchronization frame. To compare kinematic data 
estimated, 5 clusters (four 10-mm markers and one IMMU 
attached onto a rigid light-weighted wooden plate) were 
built and firmly fixed onto the swimmer body segments. 
Anatomical system calibrations (Cappozzo et al., 1995) for 
humerus epicondyles and forearm styloids of both limbs 
were performed, while additional markers were placed 
directly on the thorax anatomical landmarks (incisura 
jugularis, xiphoid process, seventh cervical vertebrae, and 
eighth thoracic vertebrae). The gleno-humeral position 
with respect to the thorax anatomical reference system 
(Cutti et al., 2008) was computed using the regression 
equation described by Murray (1999). 

The 3D coordinates of the wrist were computed 
considering the kinematic chain of three rigid body 
segments of the upper limb (thorax, upper-arm, forearm, 
not including the hand).  Body segments orientation was 
estimated applying a protocol adapted and validated for 
swimming (Cutti et al., 2008; Fantozzi et al., 2016). Body 
segments length was calculated considering the anatomical 
landmarks positions measured in the static calibration trial: 
incisura jugularis and gleno-humeral position for the 
thorax, gleno-humeral position and mid-point between the 
humerus epicondyles for the upper-arm, and mid-point 
between the humerus epicondyles and mid-point between 
the styloids for the forearm. Thus, a rigid body roto-
translation was applied recursively from the thorax to the 
wrist.  

Three different wrist trajectories were computed 
through: 1) 3D marker-based stereophotogrammetry 
system (MBS) considered as the gold standard; 2) 
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stereophotogrammetric data applying the kinematic chain 
model (KMS); and 3) IMMUs data applying the same 
model (3DIMMU). Specifically, IMMUs data were ob-
tained processing raw accelerometers, gyroscopes and 
magnetometers data with Madgwick algorithm to obtain 
the 3D IMMUs orientation and applying the kinematic 
chain model described above (Fantozzi et al., 2016). The 
wrist trajectories were computed in the thorax anatomical 
reference system (Z axis was pointing caudally, X axis 
pointing to the left of the participant, and Y axis pointing 
cranially forwards in the swimming direction).  
 

 
 

 
 

 
 

Figure 1. IMMUs positioning used for the validation of stroke 
phases temporal estimation in water are shown. 

 
Stroke phase detection validation in swimming 
Fourteen participants performed 25 m front-crawl trial in a 
25 m indoor swimming pool: eight of them at the intensity 
of 75% of their maximal velocity (V75%), and six of them 
at the 100% (V100%). Overall, 146 swim strokes were 
available after data collection that arise to the right strokes 
and left strokes of the fourteen swimmers involved (mean 
of 5 ± 1 swim strokes per swimmer). Since the first and the 
last stroke cycles of each trial are usually conditioned by 
the start and finish patterns, they were excluded in the fol-
lowing analysis. Before the second session, the swimmers 
completed a 20-minute warm-up period and performed an 
all-out 25 m front-crawl trial wearing IMMUs to become 

familiar with the test and to measure the maximal velocity. 
With the aim to measure the split time, the all-out 25 m 
were videotaped with a camera (GoPro Hero 4, California, 
USA) recording at 50Hz and full HD resolution (1920 x 
1080 pixel) by an operator that followed the swimmer 
throughout the entire trial along the side of the pool. The 
maximal velocity was obtained from the distance and the 
25-m split times. The swimmer was instructed to perform 
an in-water start and to have a free choice of underwater 
phase length. Five IMMUs were first calibrated, then in-
serted in round plastic waterproofed boxes, and finally 
fixed to the swimmer body segments (thorax, upper-arms, 
and fore-arms, Figure 1) by means of adhesive tape/spray 
and elastic bands.  

The same arm-stroke phases classification of Chol-
let et al. (2000) adopted in previous research with IMMUs 
(Dadashi et al., 2013) and detailed in Figure 2 was used. 
The duration of the propulsive phase is the sum of pull and 
push phases, whereas the duration of the non-propulsive 
phase is the sum of entry and catch phase and recovery 
phase. 

The duration of each phase was expressed as a per-
centage of the complete stroke cycle duration. Arm coordi-
nation was quantified using the IdC of Chollet et al. (2000). 
The IdC was calculated as the average time lag between 
tPULL in the first right arm stroke and tRECOVERY of the first 
left arm stroke, and between the tPULL in the second left arm 
stroke and tRECOVERY in the first right arm stroke. When a 
lag time occurred between the propulsive phases of the two 
arms, the stroke coordination was called ‘catch-up' (IdC 
<0%). When the propulsive phase of one arm started when 
that of the other arm ended, the coordination was called 
‘opposition' (IdC = 0%). When the propulsive phases of the 
two arms overlapped, the coordination was called ‘super-
position' (IdC >0%). The average index of coordination 
was calculated by the wrist instants detected through 
3DIMMU algorithm for all the swim strokes available and 
expressed as a percentage of the mean duration of the 
stroke. Four randomized participants were included in the 
IdC calculations for each velocity. 

To automatically recognize the front-crawl stroke 
phases through 3DIMMU, an algorithm for the detection 
of the previously defined arm stroke phases events (tENTRY, 

tPULL, tPUSH and tRECOVERY) was developed. As first step, the 
algorithm computes the wrist exit instants, tRECOVERY, ap-
plying the method described in Dadashi et al. (2013) as the 
maximal   of   θFS(t),   the   angle   between   the   forearm  

 
 

 

 
 

Figure 2. Arm stroke phases in front-crawl (classification proposed by Chollet et al., 2000) and graphical presentation of ref-
erence system axes.  
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and sacrum anterior-posterior axes, computed from the ori-
entation of  the  IMMUs  positioned  on  the respective 
body segments. For the identification of tENTRY, tPULL and 
tPUSH, the 3D wrist coordinates were preliminary 5 Hz low-
pass filtered using a zero phase shift, 2nd order Butterworth 
digital filter. Between each couple of consecutives tRECOV-

ERY, i.e. tRECOVERY(i) and tRECOVERY(i+1), the maximum values 
of the wrist y-coordinate and of its 1st order derivative, 
namely y-linear velocity, were found. Starting from the 
maximum y-velocity toward the maximum y-coordinate 
instant, the tENTRY was identified as the first frame where 
wrist y-velocity was lower than a threshold (60 cm/s), 
which meant that the wrist was slowing down. Thus, tENTRY 
corresponded to the instant where the wrist completed the 
backward/forward deceleration during the recovery phase. 
After tENTRY, the wrist reaches the maximum y coordinate 
and then it starts the pull phase through an acceleration in 
backward direction. Therefore, the tPULL was identified as 
the first frame where the wrist y-velocity was lower than a 
threshold (-50 cm/s), starting from the maximum toward 
the tRECOVERY(i+1), which meant that the wrist was accelerat-
ing in backward direction. Finally, the push phase started 
where the wrist entered to the transversal plane crossing the 
shoulders that corresponds to the maximum wrist depth in 
water (Riewald and Rodeo, 2015). Then, tPUSH was identi-
fied as the frame between tPULL and tRECOVERY(i+1), where the 
wrist z-coordinate reached the minimum value. The two 
thresholds were calculated by minimizing the RMSE of the 
Entry and Catch, Pull, Push and Recovery percentage ob-
tained comparing IMMU and the gold standard (TLC). As 
first phase, the threshold values were varied with a step of 

20 cm/s between -80cm/s and 80cm/s. Once the value with 
lower RMSE was selected, it was varied with a step of 
2cm/s in a range of ± 10 cm/s. The value with lower RMSE 
was selected as the threshold value. The two threshold val-
ues (60 cm/s for tEntry and -50 cm/s for tPULL) were selected 
considering trials performed with both 75% and 100% of 
intensity. In Figure 3 an example of the 3D wrist coordi-
nates during front-crawl swimming with all the detected 
start events of arm-stroke phases is shown. 

In order to evaluate the error induced by measure-
ment of the body segments, we performed a sensitivity 
analysis varying of ± 1.5 and ± 3 cm the length of upper-
arm and forearm for one participant during real swimming 
(Stagni et al., 2006). For each combination of the modified 
length, we have computed the RMSE of the entry and 
catch, pull, push and recovery percentage obtained from 
the comparison with the real body segment lengths. 
To compare and validate the duration of the front-crawl 
stroke phases with a gold standard (TLC), three underwater 
cameras (GoPro Hero 4, California, USA) recording at 
50Hz and full HD resolution (1920 x 1080 pixel), were 
placed perpendicular to the swimmer’s direction on a sag-
ittal view at 0.70 m under the water surface. More specifi-
cally, to record the swimmers between the 8th and 23th me-
ter after the start the 3 cameras were placed each one at a 
distance of 5 m. An underwater LED lights tube visible by 
all the cameras was used to synchronize the system. For 
data synchronization, the first frame when the LEDs were 
switched on was used to determine the zero time of the 
video recordings. A rapid bump hit with a finger on the 
sensor and recorded by the camera was used to synchronize 

 

 

 

 
 

      Figure 3. A typical result of arm-stroke phase detection based on the proposed algorithm is illustrated. 
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the video analysis with IMMUs. No spatial calibration was 
performed since it was not required for a temporal analysis. 
The arm-stroke phase events were detected using the mo-
tion analysis software Kinovea (Charmant & Contrib., 
France) by 2 expert operators (more than 50 hours of expe-
rience) to ensure a reliable technique. To evaluate the re-
peatability of the measure, the first operator repeated the 
video-analysis five times (intra-operator variability) and 
the second one was asked to perform the same video-anal-
ysis (inter-operator variability). Repeatability test to com-
pute the stability of the stroke phases detection using video 
analysis showed nearly perfect ICC values of 0.91 and 0.93 
for inter-operator variability and intra-operator variability, 
respectively. Repeatability tests showed high agreement 
for different operators and between the same operator. 

 

Statistical analysis 
As first, the normality distribution of residuals and the ho-
mogeneity of variances have been confirmed using 
Shapiro-Wilk and Levene tests respectively.  

In order to quantify the true positive rate and the 
true negative rate in the detection of stoke cycle, sensitivity 
and specificity were computed comparing 3DIMMU with 
gold standard. 

Regarding to the 3D wrist trajectory, the precision 
and accuracy of 3DIMMU algorithm in comparison to 
MBS and KMS methods were determined by the correla-
tion analyses for the x, y, z components of the wrist trajec-
tories. RMSE, 90% percentile of absolute error, 3D mean 
distance and normalized Pairwise Variability Index (nPVI, 
Sandnes and Jian, 2004) were used to analyze the average 
difference between the signals. Agreement of 3DIMMU 
trajectories with MBS and KMS trajectories was also cal-
culated applying Bland–Altman analysis, showing the 
mean of the differences of measurements. 

Regarding the stroke phases detection, one-way 
ANOVA for each stroke phase was employed to compare 
the absolute error between 3DIMMU and TLC methods, 
across the two velocity groups (75% and 100% of their per-
sonal best time). The precision and accuracy of our algo-
rithms in comparison with the 2D video-based analysis, 

were determined by the correlation analyses, Bland-Alt-
man plots and RMSE. Repeatability for stroke phases de-
tection algorithm was expressed by the interclass correla-
tion coefficient (ICC) across the stroke cycles of each par-
ticipant. The ICC was also used to compute the stability of 
the stroke phases detection using video analysis (inter- and 
intra-operator variability). The correlation magnitude was 
assessed using the usual scale (0.1, 0.3, 0.5, 0.7 and 0.9 for 
low, moderate, high, very high and nearly perfect, respec-
tively) proposed by Hopkins et al. (2009). Following the 
suggestions of McGinley et al. regarding the acceptable 
limits of reliability for all possible clinical applications of 
optokinetic devices analysing 3D kinematic gait, the angu-
lar error of 2° or less was considered to be good reproduci- 
bility and angular differences between 2° and 5° consid-
ered reasonable reproducibility.  

All statistical tests were performed using the soft-
ware SPSS version 20.0 (SPSS, Chicago, IL, USA) and 
Microsoft Excel 2010, where p = 0.05. 

 
Results 
 
3D wrist trajectory validation in simulated swimming 
Both sensitivity and specificity result to be equal to 1, that 
means that all and only the real stroke cycles were detected 
by the algorithm. 

An example of the average right wrist trajectory of 
a single participant and overall statistic results of the com-
parison of the methods for computing the wrist trajectories 
are illustrated in Figure 4. Comparing the two estimated 
wrist trajectories (KMS and 3DIMMU) with those meas-
ured by the gold standard (MBS), similar and shifted pat-
terns were observed. The shift in the patterns caused not 
negligible RMSEs and not negligible 3D mean distance be-
tween the trajectories. Despite that, the results showed a 
correlation magnitude nearly perfect (see Table 1). Figure 
5 shows the temporal data series of the average right wrist 
trajectories of a single participant obtained by MBS, KMS 
and IMMUs methods.  

 
 

 

 
 

Figure 4. Results of sagittal, back and top views of the three mean trajectories of the right wrist of a single participant: the 
trajectories directly measured with marker-based stereophotogrammetry system (MBS, black line); the trajectories estimated 
from stereophotogrammetric data applying the kinematic chain model (KMS, dark grey line); the trajectory estimated from 
inertial sensors data applying the same model (IMMU, bright grey line). 
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Table 1. Statistical comparison of the results obtained by proposed methods: the trajectories directly measured with marker-
based stereophotogrammetry system (MBS); the trajectories estimated from stereophotogrammetric data applying the kine-
matic chain model (KMS); the trajectory estimated from inertial sensors data applying the same model (3DIMMU). 

 MBS vs KMS MBS vs 3DIMMU KMS vs 3DIMMU 
RMSE (cm) 4.5 7.7 6.6 
90% percentile of absolute error (cm) 6.9 12.4 10.3 
Correlation (r) 0.99 0.94 0.93 
Absolute Bias (cm) -1.6 -2.9 -1.3 
3d mean distance (cm) 7.8 (±1.7) 13.0 (±4.5) 10.8 (±3.2) 
nPVI 0.53 (±0.51) 0.79 (±0.57) 0.26 (±0.26) 

 
 

 
 

 
 

Figure 5. Temporal data series of the average right wrist trajectories of a single participant obtained 
by MBS (black line), KMS (dotted black line) and IMMUs (grey line) methods. 

 
Stroke phases detection validation in swimming 
The ICC value across the different stroke cycles for the 
stroke phases detection was always above 0.90. This result 
indicated the good repeatability of the stroke phases detec-
tion algorithm. The sensitivity analysis performed to eval-
uate the error introduced by an inaccurate measurement of 
body segment lengths, reveals a maximum RMSE of 2%. 

Stroke durations percentage of the entry and catch, 
pull, push and recovery phases for V75% and V100% us-
ing 3DIMMU were 36.7 (± 8.2)%, 21.8 (± 6.9)%, 13.2 (± 
2.8)%, 28.5 (± 4.3)% and 32.4 (± 3.6)%, 22.9 (± 4.4)%, 
15.3 (± 6.1)%, 28.3 (± 5.3)%, respectively. One-way ANO-
VAs revealed no significant differences in absolute error 
due to testing procedure (3DIMMU versus TLC) between 
velocity groups (p = 0.074, 0.554, 0.323 and 0.320 for en-
try and catch, pull, push and recovery phases, respectively). 

On average over the four participants, V75% swim-
mers adopted a catch-up pattern of coordination, with a 
mean index of coordination of -16.8 (± 3.9%). A relative 
opposition was noted in the V100% swimmers, with an in-
dex of coordination close to zero (-2.8 ± 1.8%, from –4.2 
± 1.5% to 0.5 + 1.8%). The increase of velocity from V75% 
to V100% was associated with a switch from catch-up to 
opposition coordination mode.  

The mean (±SD) values of the entry and catch, pull,  

push and recovery phases duration in percentage of the 
complete cycle detected using 3DIMMU versus TLC for 
the whole group were 34.7 (± 6.8)%, 22.4 (± 5.8)%, 14.2 
(± 4.4)%, 28.4 (± 4.5)% and 33.9 (± 6.8)%, 21.8 (± 6.0)%, 
14.5 (± 4.2)%, 29.8 (± 5.5)%, respectively. 3DIMMU high-
lighted low bias (0.8%, 0.6%, 0.5%, 1.4%), reasonable 
RMS error (2.9%, 2.8%, 2.3%, 3.5%) and very large cor-
relation (r = 0.91, r = 0.89, r = 0.86, r = 0.81) for entry and 
catch, pull, push and recovery phases, respectively.  

The agreement between stroke phase detection in 
percentage of the complete cycle estimated by TLC and 
3DIMMU is reported in Figure 6. The 95% limits of agree-
ments (LoA) for the duration of entry and catch, pull, push 
and recovery phases were always lower than 7.7% of cycle 
duration showed then a good agreement between the two 
methods. 

 
Discussion 
 
An algorithm for automatic complete stroke phase detec-
tion based on the 3D wrist trajectory using IMMUs was 
proposed and validated with respect to video analysis. A 
first analysis revealed both sensitivity and specificity equal 
to 1 in the detection of the stroke cycles. A very large mean 
correlation  (r  = 0.87),  low  bias  (mean  0.8%)  and  LoA  
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Figure 6. Bland–Altman plots representing mean (x-axis) and difference (y-axis) between the values of stroke phase detection 
in percentage of the complete cycle estimated by 2D video analysis (TLC) and 3D wrist trajectory using inertial sensor devices 
(IMMU). The solid and dotted lines represent the ± 1.96 SD limits of agreement and the mean, respectively. 
 
(7.7%), and reasonable RMS error (mean 2.9%) for the 
stroke phases duration were observed. The swimmer’s ve-
locity and arm coordination model do not affect the perfor-
mance of the algorithm in stroke phases detection. The re-
sults support the use of wearable IMMUs for automatic 
temporal phase detection based on 3D wrist trajectory in 
front crawl swimming. 

 

3D wrist trajectory validation in simulated swimming 
3D underwater motion analysis supports the quantitative 
evaluation of the swimmer performance, disclosing the po-
tentiality to improve the movement pattern efficiency of the 
athletes and their results during competition. In this study, 
the accuracy of the wrist’s coordinates estimation com-
puted using IMMUs was assessed in simulated swimming 
(dry-land condition) through a comparison with stereopho-
togrammetric system and a very similar but shifted patterns 
of the wrist trajectory were observed. The statistical results 
of the present study regarding the absolute spatial position 
of the wrist showed critical errors for the hand trajectory 
estimation: a more specific kinematics chain model of the 
upper limbs is requested if the 3D coordinates of the wrist 
are the main topic of the study. However, the identification 
of the entry, the maximum depth, the exit and the backward 
movements of the wrist are related to the wrist trajectory 
and not only to the absolute spatial position of the wrist 
with respect to the trunk. A nearly perfect correlation sug-
gests that the 3D wrist trajectory can be used for an accu-
rate identification.  

The 3D wrist trajectory has been previously esti-
mated using different techniques such as stereophotogram-
metry (Silvatti et al., 2013; Samson et al., 2015b) and com-
putational fluid dynamics analysis (Cohen et al., 2015). As 
no data were available, no quantitative comparison could 
be performed.  

To date, only one study estimated the 3D wrist tra-
jectory using IMMUs (Nakashima et al., 2010). The 
method exploited a single unit of accelerometer and gyro-
scope positioned on the wrist and a distance error of 50mm 
was measured on a single subject. These results are con-
sistent to that found in the present study. However, the 
method proposed by Nakashima relied on the video-based 
analysis for the assessment of initial direction of the sens-
ing unit and cannot be defined as solely IMMU based. 

 

Stroke phases detection validation in swimming 
The accuracy and precision of the proposed algorithm to 
detect the stroke phases was tested using a 2D video-based 
system as gold standard. The mean difference between in-
ertial and motion analysis systems was always lower than 
7.7% of cycle duration in detecting the start events of each 
phase. The error and mean bias found indicate the 3D tra-
jectory computed using IMMUs as a viable option for 
swimming arm-stroke phase assessment. The swimmer’s 
velocity variation and relative arm coordination model 
seem to have no influences in the detections of stroke 
phases. Then, the changes of spatiotemporal parameters of 
the stroke (stroke rate and length) due to the increase of 
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swimming velocity (Craig et al., 1985) did not affect the 
accuracy and precision of the proposed algorithm. Further-
more, the arm-stroke phases structure and the upper limp 
coordination model were stable when increase of velocity 
occurred from submaximal to maximal velocity, as showed 
previously by Dadashi et al., (2016) in recreational swim-
mers. 

The entry phase points out the beginning of the un-
derwater stroke of the arm in a front crawl. Many authors 
have reported the leading role of this phase in order to pre-
pare the following propulsive phase and decrease the drag 
during the stroke (Samson et al., 2015b; Toussaint et al., 
2000). The validation of hand entry in water was performed 
using IMMUs applying an approach completely independ-
ent from the video-analysis in no simulated front-crawl 
swimming. Furthermore, the detection of this latter arm 
stroke instant is carried out without using video-based sys-
tem making our process of stroke phase detection inde-
pendent to video analysis. The entry phase duration in per-
centage of the complete cycle was very similar to the val-
ues reported in a previous study for submaximal intensities 
in front-crawl, as well as for all the stroke phases detected 
in this study (McCabe and Sanders, 2012).  

The percentage duration of the stroke phases was in 
line with previous findings (Millet et al., 2002; McCabe et 
al., 2011). Generally, skilled swimmers have been charac-
terized by shorter pull and longer push phases. The national 
level of the participants of this study could be the major 
causes of the discrepancy between the higher results for the 
pull and push phases in Dadashi’s study (2016) where well-
trained and recreational swimmers were involved. 

Considering the errors in identifying the stroke 
phases through IMMUs, comparable results were found 
with respect to Dadashi’s study (2013) and Callaway’s 
study (2015), despite the different methods used. As previ-
ous highlighted for the stroke detection using video analy-
sis (Cortesi et al., 2012; McCabe et al., 2011) and as sug-
gested by Mangia et al. (2017), the identifications of the 
starting events for each stroke phase throughout wrist po-
sition was found to be a robust method for the detection of 
all arm-stroke phases in front-crawl. The proposed algo-
rithm was found to be robust with respect to the body seg-
ment length measures, with RMSE in line with the accu-
racy of the proposed algorithm. For these reasons, we be-
lieve that the error in measuring the lengths of the body 
segments does not affect the performance of the algorithm. 

Regarding the transferability of the proposed algo-
rithm to the swimmer’s population, the different arm coor-
dination analyzed in this study shows a transition from 
catch-up model to opposition model between 75% and 
100% of maximal velocity, in agreement with the results of 
Seifert et al. (2010). Then, the proposed algorithm seems 
to be not influenced by the arm coordination model and 
swimmer’s velocity, as well as completely independent 
from the video-analysis. 

 
Limitations, future directions and practical applications 
Although the validity of the algorithms for stroke phase de-
tection was demonstrated in the present study, improve-
ment of the accuracy regarding spatial position is needed 

for future analysis of wrist kinematic parameters. Compar-
ing the two 3D wrist trajectories estimated using the kine-
matic model chain with those measured by the gold stand-
ard, similar but shifted patterns were observed. This shift-
ing error can be largely explained by the rigid body model 
assumption that could be critical for the thorax segment 
particularly during swimming. A possible solution could 
be taking into account the motion of the gleno-humeral 
joints adding an IMMU on the scapula. However, this so-
lution would be in contrast with the wearability and drag 
enhancement (Gatta et al., 2015) of the system. The deci-
sion of performing a 3D wrist trajectory validation not di-
rectly in water environment is due to the less accurate 3D 
tracking process due to bubbles and water turbulences. The 
biomechanical model does not consider the hand segment, 
to ensure the stability of the IMMUs measurements and to 
not compromise the hand water sensibility of the swimmer. 
However, if the limits on the accuracy of the wrist joint 
angular estimation will be overcome, the inclusion in the 
biomechanical model of the hand could increase the relia-
bility of our detection. In this latter case the model will be 
more comprehensive since the propulsive forces of swim-
mer depend strongly on the hand orientation. 

The obtained accuracy can be considered sufficient 
to satisfy the coaches and athletes training purposes. In-
deed, this information can be used for quantitative stroke 
analysis of the arm action during training session and for 
movement features extraction of both left and right arms 
independently. The intra-cyclic stroke variability and 
stroke-by-stoke variability of the arm stroke phases can be 
analyzed by the coaches using IMMU wearable easily and 
completely independent from the video-analysis, and that 
not require complex setting. The coach may utilise the IM-
MUs in daily or weekly routine as quantitative analysis ap-
proaches to assess continuously the arm-stroke motion. In 
a training context, the intra-trial and intra-laps variability 
analysis of the stroke phases duration and IdC could pro-
vide useful information to assess the swimmer’s adapta-
tions to event constraints and the potential influence of 
these fluctuations on the action economy and movements 
self-organization (Simbaña Escobar et al, 2018). In this re-
gard, the applicability of the proposed algorithm in the 25 
m pool is restricted comparing to 50 m pool: the high fre-
quency of occurrence of non-detected cycles (first and last 
cycle of each lap) could affect the total number of data as-
sessed. This limitation leads directly to a practical sugges-
tion to the use of 50 m pool when the aim is the acquisition 
of a substantial number of stroke cycles. 

Future methodological perspectives will include the 
reduction of the number of IMMU units to improve the 
wearability of the system, a full-automatic algorithm for 
the identification of the stroke phases without a fixed 
thresholds values for the tENTRY and tPULL events, and dedi-
cated calibration trials (Roetenberg et al., 2009) for remov-
ing manual body segment measures. Regarding the appli-
cations, the arm-stroke phase structure in a population pre-
senting different levels of expertise will be investigated. 
Subsequently, the four competitive swimming styles and 
the effect of fatigue/exercise duration on stroke phases 
structure could be explored using the same methodological  
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criteria.  
  

Conclusion 
 
The validity of the proposed approach to detect all stroke 
phases through wrist spatial position in front crawl using 
IMMUs is here demonstrated by the comparison with 
video-based analysis. The strong correlation founded with 
the gold standard explains the similarity among the wrist 
trajectories patterns. The 3D wrist trajectory can be used 
for an accurate and complete identification of the stroke 
phases in front crawl using IMMUs. The results indicated 
the 3D trajectory computed using IMMUs as a viable op-
tion for swimming arm-stroke phases complete assess-
ment. 
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Key points 
 
 Inertial sensors technology is a viable option for 

swimming arm-stroke phase assessment 
 Similar but shifted wrist 3D trajectory were observed 

between inertial and video analysis 
 Inertial technology for wrist trajectory is independent 

from video analysis 
 The identification of the entry arm-stroke phase could 

be performed using the wrist trajectory computed 
through IMMUs 
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