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Abstract

We present a machine-learning (ML) approach for estimating galaxy cluster masses from Chandra mock images.
We utilize a Convolutional Neural Network (CNN), a deep ML tool commonly used in image recognition tasks.
The CNN is trained and tested on our sample of 7896 Chandra X-ray mock observations, which are based on 329
massive clusters from the IllustrisTNG simulation. Our CNN learns from a low resolution spatial distribution of
photon counts and does not use spectral information. Despite our simplifying assumption to neglect spectral
information, the resulting mass values estimated by the CNN exhibit small bias in comparison to the true masses of
the simulated clusters (−0.02 dex) and reproduce the cluster masses with low intrinsic scatter, 8% in our best fold
and 12% averaging over all. In contrast, a more standard core-excised luminosity method achieves 15%–18%
scatter. We interpret the results with an approach inspired by Google DeepDream and find that the CNN ignores
the central regions of clusters, which are known to have high scatter with mass.
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1. Introduction

Galaxy clusters are gravitationally bound systems that
contain hundreds or thousands of galaxies in dark matter halos
of mass M1014 . They are massive and rare, and their
abundance is sensitive to the underlying cosmological model.
Utilizing cluster abundance as a cosmological probe requires a
large cluster sample with a well-defined selection function, a
way to connect observations to the underlying dark matter, and
an understanding of the scatter in the mass-observable
relationship.

A number of mass proxies can be derived from X-ray
observations of galaxy clusters. X-ray cluster observations
probe a portion of the baryonic component of clusters—the hot
intracluster medium—which emits X-ray radiation primarily
through bremsstrahlung. Hydrodynamical simulations (Nelson
et al. 2014b; Hahn & Angulo 2016; Le Brun et al. 2017; Barnes
et al. 2018; McCarthy et al. 2018) can be used to model
observable-mass relations in clusters.

Cluster luminosity (LX) is correlated with mass, and excising
the inner R0.15 c500» reduces scatter further due to variations in
the core properties (Maughan 2007; Mantz et al. 2018). The
global temperature (kT) relates to cluster mass through the
virial theorem, scaling with mass as a power law (e.g., Arnaud
et al. 2005). For long exposures of bright, low-redshift clusters,
it is possible to access luminosity and spectral cluster profiles,
leading to tighter mass-observable relationships. Hydrostatic
mass estimates can be calculated from temperature and density
gradients (Vikhlinin et al. 2005) and the product of spectral
temperature (TX) and gas mass (Mg) denoted YX, is a very low-
scatter mass proxy, with intrinsic scatter of ≈5%–7%
(Kravtsov et al. 2006). However, the hydrostatic mass
estimates are known to be biased (e.g., Nagai et al. 2007),

and it is one of the primary sources of systematic uncertainties
in the cluster-based cosmological measurements (Planck
Collaboration et al. 2016b).
A number of other physical processes impact X-ray based

cluster mass estimates, including nonthermal pressure (Lau
et al. 2009; Nelson et al. 2014a), gas clumping (Nagai &
Lau 2011), temperature inhomogeneities (Rasia et al. 2014),
and cluster dynamical state (Ventimiglia et al. 2008; Marrone
et al. 2012). Calculable morphological parameters correlate
with dynamical state, including surface brightness concentra-
tion (e.g., Santos et al. 2008), centroid shift (e.g., Rossetti et al.
2016), and morphological composite parameters (e.g., Rasia
et al. 2013). These suggest that cluster observables are tied to
mass in a complex way that may be exploited to reduce scatter
and improve individual cluster mass estimates.
In addition to affecting mass estimate errors, a cluster’s

dynamical state influences the probability that the cluster will
be observed. Sunyaev–Zeldovich (SZ; Sunyaev & Zeldovich
1972)—selected samples preferentially have more disturbed
clusters (Planck Collaboration et al. 2011), while X-ray-
selected samples have a higher fraction of relaxed clusters
(Eckert et al. 2011). If the fractions of relaxed and disturbed
systems in cluster samples are not well known, this may
introduce a bias (Randall et al. 2002).
Machine learning (ML) offers a number of tools that can be

used to untangle subtle signals and extract complicated
correlations. ML has been utilized in astronomy and cosmology
for classification tasks such as labeling galaxy morphology
(Banerji et al. 2010; Dieleman et al. 2015; Domínguez Sánchez
et al. 2018), identifying transient types (Goldstein et al. 2015),
identifying the presence or absence of lensing signals in images
(Lanusse et al. 2018), categorizing the type of sources driving
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reionization (Hassan et al. 2019), and estimating photometric
redshifts (Pasquet et al. 2019). ML has also been used for
astronomical and cosmological regression tasks, for example,
reducing errors in cluster dynamical mass measurements
(Ntampaka et al. 2015, 2016; Ho et al. 2019), determining
the duration of reionization (La Plante & Ntampaka 2018), and
producing tighter cosmological parameter constraints with
mock catalogs (Gupta et al. 2018).

Because ML has been successful in harnessing complicated
correlations in other astronomical applications, they may be
useful in using subtle signals in X-ray images to improve mass
estimates. One class of ML algorithms that has had much
success in image-based tasks are Convolutional Neural
Networks (CNNs; e.g., Fukushima & Miyake 1982; LeCun
et al. 1999; Krizhevsky et al. 2012; Simonyan & Zisserman
2014). CNNs have many hidden layers, often pairing layers of
convolution and pooling to extract features from the input
images. They require very little preprocessing of the input
images because the network learns the convolutional filters
necessary to extract relevant features. See Schmidhuber (2015)
for a review of deep neural networks.

We present a method for predicting cluster masses from
decreased-resolution Chandra mock X-ray images that utilizes
a CNN. We describe the mock observations in Section 2.1 and
the CNN method and architecture in Section 2.2. We show the
resulting mass predictions in Section 3, interpret the model in
Section 4, and conclude in Section 5.

2. Methods

2.1. Mock Chandra Observations

2.1.1. IllustrisTNG Clusters

A sample of simulated clusters is drawn from the IllustrisTNG
cosmological hydrodynamical simulation (Marinacci et al. 2018;
Naiman et al. 2018; Nelson et al. 2018; Pillepich et al. 2018a;
Springel et al. 2018). IllustrisTNG uses an updated galaxy
formation model (Weinberger et al. 2017; Pillepich et al. 2018c)
to overcome many of the physical limitations of the previous
Illustris model (Vogelsberger et al. 2013, 2014a, 2014b; Genel
et al. 2014; Torrey et al. 2014; Nelson et al. 2015). The suite of
IllustrisTNG simulations assumes a ΛCDM cosmology with
parameters consistent with Planck Collaboration et al. (2016a).
With a simulated cubic volume of 300Mpc on a side, TNG300 is
the largest of the suite, making it ideal for studying rare and
massive clusters. Furthermore, the simulation is performed at
an unprecedented resolution, with baryonic mass resolution of

M7.6 106´  (Nelson et al. 2018).
We select 329 massive clusters within a mass range of

M500c=1013.57 to M500c=1015.06 from the TNG300 simula-
tion, using the Friends-of-Friends (FoF) “group” (Davis et al.
1985) halos from the z=0 snapshot. While an arbitrary
spherical overdensity halo definition may include particles not
linked within this FoF group, we are interested in predicting
M500c and the associated R500c is small enough that all gas
within this radius also should be found in the FoF group. Every
gas cell associated with each group is included, so that all of the
substructures associated with each cluster are used in the
computation of the X-ray emission.

2.1.2. pyXSIM

Our mock X-ray observations of the IllustrisTNG cluster sample
are produced using the pyXSIM10 (ZuHone et al. 2014) and
SOXS11 software packages. pyXSIM is an implementation of
the PHOX algorithm (Biffi et al. 2012, 2013). Large photon
samples are initially built in pyXSIM from the 3D distributions
of density, temperature, and metallicity from the IllustrisTNG
data for each cluster using an APEC emission model (Foster
et al. 2012), assuming a redshift of z=0.05. Only particles
with kT>0.1 keV that are not forming stars are used in the
construction of the photon samples. These samples are then
projected along each of the x-, y-, and z-axes of the simulation
box, and foreground galactic absorption is applied to each
sample assuming the wabs (Morrison & McCammon 1983)
model with a value of N 4 10 cmH

20 2= ´ - for each cluster.
Each photon sample is then convolved with an instrument

model for Chandra’s ACIS-I detector using the SOXS package.
We assume a simplified representation of the ACIS-I detector,
with a 20′ square field of view without chip gaps and 0 5
pixels. At our cluster sample redshift, R500c extends beyond the
20′ square field of view of the detector for clusters with mass
M M10c500

13.8 . Rather than producing a tiled Chandra
image that fully contains R500c, we opt to use mock cluster
observations that could be achieved from a single pointing. The
point-spread function (PSF) is Gaussian-shaped with FWHM
0 5, and the effective area and spectral response are taken from
the Cycle 19 aimpoint response files (ARF and RMF) and
assumed to be the same across the entire detector. The built-in
models for the ACIS-I particle background and the galactic
foreground included with SOXS were also applied.12 We
integrate each observation for 100ks.

2.1.3. Image Preprocessing

Because the ML tool described in Section 2.2 is not invariant
under image rotation,13 we augment the data set with 90°
rotations as well as reflections along the vertical and horizontal
axes (as in, e.g., Cabrera-Vives et al. 2017). The three 2D
projections, two axial reflections, and four possible 90°
orientations result in 24 images for each unique cluster. All
24 images of each unique cluster are assigned to one of 10
groups, called folds. The clusters are ordered by mass and
cyclically assigned to folds so that each fold has approximately
the same mass function.
Each mock Chandra event file is degraded in spatial resolution

to a 128×128 “postage stamp” image over the broad energy
band of 0.5–7 keV. The decreased resolution has two advantages:
it decreases computation time and it also decreases the effects of
the nonuniform distortion of the Chandra PSF. Moving to a
lower resolution reduces the effects of the nonuniform PSF in a
real observation, making it unnecessary to model it precisely.
Example images of a representative sample of 16 clusters
spanning the mass range are shown in Figure 1. The final catalog
is comprised of 24 decreased-resolution Chandra images of each
of 329 unique IllustrisTNG clusters, totaling 7896 Chandramock
observations.

10 http://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/
11 http://hea-www.cfa.harvard.edu/~jzuhone/soxs/
12 http://hea-www.cfa.harvard.edu/~jzuhone/soxs/users_guide/
background.html
13 Rotationally invariant CNNs are an area of active research, see, for example,
Dieleman et al. (2015) and Worrall et al. (2017).
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2.2. Convolutional Neural Networks

CNNs (Fukushima & Miyake 1982; LeCun et al. 1999;
Krizhevsky et al. 2012) are a class of feed-forward ML
algorithms that are commonly used in image recognition tasks.
They use pairs of convolutional filters and pooling layers to
extract meaningful patterns from the input image, and can be
used for both classification and regression tasks. Because the
network learns the convolutional filters, CNNs require very
little preprocessing of the input images.

The CNN is implemented in Keras (Chollet 2015) with a
Tensorflow (Abadi et al. 2016) backend. Our CNN architecture
is based loosely on a simplified version of Simonyan &
Zisserman (2014) with fewer hidden layers; it is shown in
Figure 2. The model is implemented with sequential layers as
follows:

1. 3×3 convolution with 16 filters.
2. 2×2, stride-2 max pooling.
3. 3×3 convolution with 32 filters.

Figure 1. Sample of 16 of the 7896 mock X-ray cluster observations created with pyXSIM software applied to the IllustrisTNG cosmological hydrodynamical
simulation. The mock observations emulate 100 ks Chandra observations that have been degraded to 128×128 postage stamp images for one broad (0.5–7 keV)
energy band; shown are the number of photons, N, in each pixel for this mock observation. Each unique cluster in the simulation is used to produce 24 mock images
according to the data augmentation scheme described in Section 2.1.
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4. 2×2, stride-2 max pooling.
5. 3×3 convolution with 64 filters.
6. 2×2, stride-2 max pooling.
7. Global average pooling.
8. 10% dropout.
9. 200 neurons, fully connected.
10. 10% dropout.
11. 100 neurons, fully connected.
12. 20 neurons, fully connected.
13. Output neuron.

We use a root-mean-squared loss function and the Adam
Optimizer (Kingma & Ba 2014) with learning rate reduced to
half of the default value (lr=0.0005).

In our model, feature extraction is performed by three pairs
of 3×3 convolutional filters coupled with 2×2 stride-2 max
pooling layers (e.g., Riesenhuber & Poggio 1999). These are
followed by a global average pooling layer (Lin et al. 2013)
and three fully connected layers with rectified linear unit
(ReLU, Nair & Hinton 2010) activation. A 10% dropout after
two fully connected layers prevents overfitting (Srivastava et al.
2014).

For the task of regressing a single parameter, we use an
architecture with one output neuron. This output neuron gives a
continuous-valued label (regression) rather than a class
probability (classification). We select the mean-squared loss
function for this regression task. Our model has 58,437 tunable
parameters; because of the global average pooling layer that
compresses the information into 64 neurons, the number of
tunable parameters is invariant to changes to the input image
resolution.

We use the 128×128 images as input and train the model
to predict Mlog c500( ) from these images. We perform a 10-fold
cross-validation, dividing the sample into a training set that
comprises 80% of the images, a validation set that comprises
10% of the images, and a test set of the remaining 10% of the
images. Every rotation, axial flip, and line-of-sight view of a
single cluster is assigned to only one of these sets; a cluster is
never used, for example, to train a model and subsequently test
it. The training set is used to train the model to minimize a
mean squared error loss function, the validation set is used to
assess the stopping criteria, and the mass predictions for the test
set are reported. We cycle through the data assignments to the
train, validation, and test folds until the masses of all clusters
have been predicted.

Stopping criteria are implemented to converge on models
that, when applied to the validation set, are low scatter, low
bias, and have no catastrophic outliers. The mass residual, δ, is

defined as

M Mlog log . 1predicted trued º -( ) ( ) ( )

We consider the training of the CNN to have converged when the
following three criteria are met: maximum absolute value of mass
residual is less than 0.3, absolute value of median residual error is
less than 0.02, slope of the best-fit line ofMtrue versusMpredicted is
greater than 0.9. For several folds, these three criteria were not
met, so the model at the 400th training cycle, or “epoch,” is used.
In most cases, the training converged within 150 epochs. We
emphasize that these criteria are applied to the validation set and
these criteria may not be descriptive of the test set.

3. Results

The mass predictions for all 10 folds are shown in Figure 3.
Vertical streams of points show the mass estimates for each of
the 24 images of each cluster. The results show a tendency to
predict toward the mean, evident in the overprediction of low
mass clusters and the underprediction of high mass clusters.
When applying this method to a sample of observed clusters,
one would create a training catalog that extends beyond the
estimated mass range of the test catalog to mitigate this issue.
A PDF of mass errors is shown in Figure 4. The 10-fold

distribution is fit to a Gaussian with width σ=0.051 dex
(corresponding to a 11.6% scatter) and a small negative bias
given by the mean μ=−0.022 dex. In practice, the train set

Figure 2. Architecture of the Convolutional Neural Network (CNN) used in this analysis. Our network utilizes three convolutional and pooling layers for feature
extraction and three fully connected layers for parameter estimation.

Figure 3. Predicted mass as a function of true mass. The distribution has low
intrinsic scatter (11.6%) and a small negative bias (−0.022 dex). The tendency
to predict toward the mean—overpredicting low mass clusters and under-
predicting high mass clusters—can be mitigated by carefully curating a training
set that extends well beyond the mass range of test clusters.
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should extend well beyond the estimated mass range of test
clusters, using the model to make predictions for clusters at the
middle mass region to mitigate the effects of bias to the mean.
In the mass range M14.0 log 14.5c500< <( ) , the 10-fold
distribution is well-described by a Gaussian with width
σ=0.41 dex, 9.6% scatter, and bias μ=−0.036 dex.

The initial random state of a CNN can affect the solution
upon which it converges, and so it is informative not
only to evaluate the 10-fold mean, but also to evaluate the
best-fit fold. For the full mass range, the best-fit fold has a
width σ=0.033 dex, 7.7% scatter, and bias μ=−0.027 dex.
In the mass range M14.0 log 14.5c500< <( ) , the best-fit
fold has a width σ=0.025 dex, 5.7% scatter, and bias
μ=−0.021 dex.

Putting this intrinsic scatter in context, luminosity (LX)-based
methods with excised cores typically have errors in the 15%–

18% range (Maughan 2007; Mantz et al. 2018), while methods
that utilize well-sampled clusters with high spatial and spectral
resolution, such as a YX approach, yield 5%–7% intrinsic scatter
(Kravtsov et al. 2006). A straightforward power-law scaling
relation relating mass to core-excised luminosity of the
IllustrisTNG cluster sample recovers the approximate expected
scatter: 14.6% when the outer aperture has a modest 3% error
with R500, and 22.2% when the outer aperture has a 5%
error with R500. See A. Pop et al. (2019, in preparation),
for more information on the IllustrisTNG cluster sample
scaling relations.

Here, we have used low resolution spatial information with
no spectral data and have achieved a >20% improvement over
a global luminosity approach. In practice, a single, low-scatter
model could be selected for an application of this method,
implying that an improvement closer to 50% is possible.

As larger cosmological hydrodynamical simulations with
more massive clusters become available, the scatter and bias
of mass predictions may also be reduced by training on a

cluster sample with a flat mass function (as is used in
Ntampaka et al. 2015) that more accurately describes the high
mass cluster population.

4. Interpreting the Model with DeepDream

CNNs are notoriously difficult to interpret. To understand the
method, we use an approach inspired by DeepDream.14 Google
DeepDream uses gradient ascent applied to the input image
pixels, asking the question “What changes in the input image
will result in a significant change in the classification of this
image?” Often, DeepDream is used to change the classification
of a picture or photograph. Our implementation differs in that
our model regresses an output mass label, so we will be
asking “What changes in the input cluster image will result in a
mass change of this image?”15

We define our loss function as the value of the final neuron
output (the cluster mass) and compute the gradient of the input
image with respect to this loss. The gradient is a 128×128
single-color image and is calculated by finding the changes
needed in each of the 16,384 pixels to maximize the cluster
mass. It is the change to the input image that maximizes the
loss function, in other words, adding the gradient to the input
image results in a cluster that the trained CNN model interprets
as being more massive.
Adding the image gradient can introduce nonphysical

properties to the image, including pixels with noninteger and
negative photon counts. To correct for this, we impose
physically motivated constraints on the input image plus
gradient: pixels with negative photon counts are set to 0 and
pixels with noninteger values are rounded to the nearest
integer. It should be noted that these physically motivated
constraints do not significantly affect the CNN’s prediction of
the new cluster mass, nor do they significantly affect the plots
or results presented here.
Figure 5 shows two sample clusters, including the input

image, the gradients, and the updated cluster images for two
iterations of this process. The trained model typically adds
photons outside of ≈0.2 R500c but ignores the core region of the
cluster that is known to have large scatter with cluster mass
(Maughan 2007; Mantz et al. 2018).
Figure 6 shows the fractional photon change, N ND , for a

representative sample of clusters. This is given by the ratio of
photons in the iterated image (original image plus gradient) to
the photons in the original image. The two-dimensional result
is binned by radius. The CNN ignores the central ≈0.2 R500c of
the cluster, typically adding photons outside of this region. In
the second iteration, photons are added even further from the
cluster center. This tool tends not to add photons near the edge
of images, suggesting that some edge effects come into play.
One notable exception is shown in the bottom panel of

Figure 5 and highlighted in Figure 6. In this case, the CNN
adds photons near the core region. Further inspection of this
cluster reveals two bright, off-center pixels above and to the
right of the cluster center. The CNN incorrectly interprets this
bright region as the cluster core, perturbing the image by
adding photons surrounding it. These bright photons likely
originated from nonphysical, high-density, ionized cold

Figure 4. PDF of mass error (blue solid) given by M Mlog logpredicted true( )– ( ).
The full sample error distribution best-fit Gaussian (green dash) has standard
deviation σ=0.051 dex (11.6% intrinsic scatter) and mean μ=−0.022 dex.
The best-fit fold has a width σ=0.033 dex (7.7% intrinsic scatter) and mean
μ=−0.027 dex (pink solid and purple dash). Core-excised LX-based methods
that use a single measure of cluster luminosity typically achieve a 15%–18%
scatter (red band), while the YX technique, which requires the full spatial and
spectral observation, can yield a tighter 5%–7% scatter. Our CNN approach
uses low resolution spatial information to improve mass estimates over one
based on a single summary parameter, LX.

14 https://ai.googleblog.com/2015/07/deepdream-code-example-for-
visualizing.html
15 For more details on visualizing filters of CNNs implemented in Keras, see
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html.
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particles that are not easily filtered out. In analysis of real
Chandra observations, point sources like these would be
removed in preprocessing. When applying the CNN mass
estimate method to a sample of observed clusters, our
interpretation may be useful in identifying, categorizing, and
understanding outliers such as this cluster.

Our data-driven model, calibrated on a simulation, has
achieved small bias and scatter without invoking assumptions

about hydrostatic equilibrium or hydrostatic mass bias. The
model has learned to excise cores, ignoring the region of the
cluster most directly affected by feedback physics, which is
difficult to model. Although the global intercluster medium
profiles are relatively unaffected by still poorly understood
cluster core physics (Sembolini et al. 2016), IllustrisTNG-
calibrated mass estimates will depend on the physics of cluster
outskirts (see Walker et al. 2019 for a recent review).
Encouragingly, IllustrisTNG clusters recover the expected
X-ray scaling relations (A. Pop et al. 2019, in preparation)
and metallicity profiles (Vogelsberger et al. 2018), suggesting
that the outskirts of these simulated clusters are in good
agreement with observed clusters. To confirm that no
significant bias is introduced by the gas physics modeling,
weak lensing mass estimates of a well-studied cluster sample
can provide an important cross-check.

5. Conclusion

We have presented a method for inferring cluster masses
from Chandra mock observations of galaxy clusters. The mock
observations are built from 329 massive clusters within a mass
range of M 10c500

13.57= to M500c=1015.06 from the TNG300
simulation. The mass proxy uses a CNN with three pairs of
convolutional and pooling layers followed by three fully
connected layers. The model is trained to learn cluster mass
from a low spatial resolution, single-color X-ray image. Our
approach shows that a low resolution X-ray image of a galaxy
cluster can be used to predict the mass with low scatter (12%)
and low bias (−0.02 dex) without invoking assumptions about
the hydrostatic mass bias.
The scatter may improve as larger simulations become

available, providing catalogs that better sample the high mass
region of the halo mass function. Ultimately, this method may

Figure 5. Top panel: a typical cluster’s evolution over two iterations in the
DeepDream-inspired tool for interpreting the CNN. Top row: the original input
image ( Nlog( )) of the cluster (left) is perturbed through two iterations (center
and right) to increase the apparent cluster mass. Middle row: changes in photon
count (ΔN) for each iteration (center and right) shows that the CNN tends to
add photons roughly in a ring between 0.15 R500c (solid circle) and 1.0 R500c

(dashed circle). Bottom row: dark pixels show the regions for which there is a
small photon change ( N N 2%D ). Bottom panel: same as top panel, but for
one notable cluster for which the CNN misidentifies the cluster core above and
to the right of the true cluster core. This is highlighted in the bottom right
image, where an off-center circular region has small photon count change.

Figure 6. Fractional change in photons (ΔN/N) as a function of projected
distance from the cluster center (R/R500c) for a representative sample of
clusters for the DeepDream interpretation of the trained CNN. The first
iteration (solid red) adds photons beyond ≈0.2 R500c, while the second
iteration (blue dotted) increases the photon count at larger radii. This suggests
that the CNN has learned to excise cores, which have been shown to have large
scatter with M500c. One notable exception (green solid and dotted) is the cluster
highlighted in the bottom panel of Figure 5. The gradients for this cluster have
an empty region near the cluster’s off-center bright region; this cluster is
discussed in more detail in Section 4. Interpretation tools such as the one
presented here can be used to understand the features used by a CNN to regress
cluster mass.

6

The Astrophysical Journal, 876:82 (7pp), 2019 May 1 Ntampaka et al.



be trained on simulations to predict the masses of Chandra-
observed clusters.

ML tools are commonly viewed as black boxes that produce an
answer without an interpretation, and it can be particularly
difficult to glean a physical understanding from deep learning
methods. We aim to remedy this by studying our trained model
with an approach inspired by Google DeepDream. We calculate a
gradient necessary to perturb an input cluster image so that the
trained CNN will increase the mass estimate. We find that the
trained CNN is most sensitive to photons from the cluster outskirts
and ignores the inner (R R0.2 c500 ) regions of the cluster, in
agreement with what has been found by more conventional
statistical analyses of galaxy clusters. The method can be useful in
providing a physical interpretation of the features of the cluster
sample that are relevant for predicting masses from X-ray images.

As new, large cluster samples become available, new data-
driven methods will need to be developed to take advantage of
these data sets. For example, the upcoming eROSITA mission
(Merloni et al. 2012) is estimated to find ≈93,000 galaxy clusters
with masses larger than h M1013.7 1-

 (Pillepich et al. 2012,
2018b). New tools, such as the CNN-based mass proxy presented
here, can be useful in analyzing and understanding large
observational data sets. Utilizing CNNs to infer X-ray masses of
the eROSITA cluster sample, however, will require a much larger
training sample of simulated images spanning a wide dynamic
range in cluster mass. As bigger simulated cluster catalogs
become available, CNNs may prove to be a powerful tool for
analyzing and understanding large cluster observations.

We thank Dominique Eckert, Melanie Fernandez, Sheridan
Green, François Lanusse, Paul La Plante, Juneri Oliva, Kun-Hsing
Yu, and Javier Zazo for their helpful feedback on this project.
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