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Rest-to-Rest Trajectory Planning for
Underactuated Cable-Driven Parallel Robots

Edoardo Idà, Tobias Bruckmann and Marco Carricato, IEEE Senior Member

Abstract—This paper studies the trajectory planning for
underactuated cable-driven parallel robots (CDPRs) in the case
of rest-to-rest motions, when the motion time and the path
geometry are prescribed. For underactuated manipulators, it
is possible to prescribe a control law only for a subset of the
generalized coordinates of the system. However, if an arbitrary
motion is prescribed for a suitable subset of these coordinates,
the constraint deficiency on the end-effector motions leads to
the impossibility of bringing the system at rest in a prescribed
time. In addition, the behavior of the system may not be stable,
that is, unbounded oscillatory motion of the end-effector may
arise. In this paper, we propose a novel trajectory-planning
technique that allows the end-effector to track a constrained
geometric path in a specified time, and allows it to transition
between stable static poses. The design of such a motion is based
on the solution of a Boundary Value Problem, formulated as
the problem of finding a solution to the differential equations
of motion, with constraints on position and velocity at start
and end times. To prove the effectiveness of such a method,
the trajectory planning of a 6-Degree-of-Freedom spatial CDPR
suspended by 3 cables is investigated. Trajectories of a reference
point on the moving platform are designed so as to ensure
that the assigned path is tracked accurately and the system is
brought to a static condition in a prescribed time. Experimental
validation is presented and discussed.

Index Terms—Cable-driven parallel robots, Underconstrained
robots, Underactuated robots, Trajectory planning

I. INTRODUCTION

CABLE-DRIVEN parallel robots (CDPRs) employ cables
in place of rigid-body links in order to control the

end-effector (e-e) pose. Cables are attached to the end-
effector in a parallel topology and are coiled on servo-
controlled winches. A CDPR is underactuated if the number
of actuators employed for the control of the e-e is less
then the number of its degrees of freedom (DoFs). This
means that only a sub-set of the generalized coordinates
of the e-e can be directly controlled, while the others are
determined by the system dynamics. An underactuated
CDPR is always underconstrained, namely the dimension
of the constraint space spanned by passive and active
constraints acting on the e-e is smaller than six [2], so that
the e-e preserves some degrees of freedom once actuators
are locked. In some cases, a completely actuated CDPR may
be underconstrained, because either some cables become
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slack during operation [3] or active cables are mounted on
movable shuttles [4], [5].

The use of underactuated CDPRs, equipped with a limited
number of cables, is justified in several applications, in
which the task to be performed requires a limited num-
ber of controlled freedoms or a limitation of mobility is
acceptable in order to enhance accessibility or decrease
complexity. While a rich literature is available describing
fully and overconstrained CDPRs, concerning kinematics
[6], [7], workspace [8]–[13], dynamics [14]–[19],cable mod-
elling [20] and interference [21], little research has been
conducted on underactuated ones, mainly focusing on
specific applications [22], [23] or kinematics [3], [24], [25].

A major challenge in the analysis of underactuated sys-
tems is the trajectory planning for point-to-point motions.
This problem has been addressed in the past especially in
the case of completely actuated CDPRs. Most notably, in
[14]–[19] the dynamics of completely actuated CDPRs was
exploited in order to compute dynamically feasible trajec-
tories, extending outside their static workspace. When the
CDPR is underconstrained but fully actuated (as in [4], [5]),
the system is flat [26], and the trajectory planning problem
is completely algebraic [5]. Instead, for a generic under-
actuated (and thus inherently underconstrained) CDPR,
different techniques must be employed. These character-
istics lead to the impossibility of bringing the platform
to rest once the transition from the starting point to the
ending point is completed, and possibly to the generation
of unbounded oscillatory motion of the end-effector.

In [27], a pendulum-like robot was proposed, consisting
of a point mass suspended by a single cable. In order for this
system to move outside a straight vertical line and perform
point-to-point motions, non zero initial condition must be
provided. A planar 3-DoF CDPR suspended by 2 cables
was proposed in [28]: the authors were able to generate
point-to-point e-e movements outside the static workspace,
by exploiting harmonic motion laws for the cable lengths;
however, they were not able to impose constraints on the
path to follow or on the transition time. An input-shaping
filtering technique was then proposed in [29] for a planar
CDPR and in [30] for a spatial model. Generic trajectories
were proposed for which the platform oscillations were
notably reduced, but not eliminated, even in a simulation
environment, mainly due to the approximation of the robot
natural frequency used in the input shaper. Moreover, the
nature of the input shaping filter does not allow precise
tracking of geometrical paths to be achieved, since the
nominal path is modified by the filter. Our objective is
to develop a trajectory-planning method suitable for a
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Figure 1. Geometry of the cable-driven robot

stationary setpoint transition, when both the transition path
for a suitable subset of the generalized coordinates of the e-
e and the transition time are assigned. A stationary setpoint
transition refers to a point-to-point motion of the platform
that is performed between two static equilibrium poses.
In the preliminary conference version of this paper [1],
we proposed a novel technique to specify a constrained
path for a subset of the generalized coordinates of a 3-DoF
planar system; this path can be tracked in a specified time
and allows the platform to transition between static poses.
The novel contributions of this enhanced version are: (i) the
extension of the method to a generic underactuated 6-DoF
spatial CDPR, whose dynamic model is more complex, due
to the presence of a larger number of uncontrollable e-e
motions and the presence of swivel pulleys, which have a
significant influence on the manipulator dynamics; (ii) the
introduction of additional details regarding the formulation
and the solution of the planning problem in Sections IV-B
and IV-C; (iii) the experimental validation of the method on
a 6-DoF spatial prototype.

The outline of the paper is as follows. Sections II and III
present, respectively, the extended kinematic model of the
cable transmission, accounting for swivel-pulley kinematics,
and the dynamic model of the mobile platform. Section
IV proposes a generic trajectory-planning method that is
based on the solution of the BVP arising from the platform
dynamics. In Section V, the implementation of such a
method is proposed in the case of a spatial robot, and the
results of experimental tests on a prototype are presented
and discussed. Finally, in Section VI, conclusions are drawn.

II. KINEMATIC MODEL

A. Finite Kinematics

A CDPR consists of a mobile platform coupled to the
base by n cables, which can be coiled and uncoiled by
motorized winches. If n is less than the dimension of the
motion space h (h = 3 for planar motions and h = 6 for
spatial motions), then the CDPR is underactuated. In the
following, Ox y z is an inertial frame, whereas P x ′y ′z ′ is a
mobile frame attached to the moving platform, whose pose

Figure 2. Geometry of the swivel pulley

is described by the position vector p of P , and the rotation
matrix R (Fig. 1). R is parametrized by the Euler angles
ε= [φ,θ,χ]T according to the x y z convention, namely:

R(φ,θ,χ) = Rx (φ)Ry (θ)Rz (χ) (1)

where Rx ,Ry and Rz are elementary rotation matrices about
x, y and z axes. The platform generalized coordinates are
q = [p,ε]T .

The i-th cable, modelled as massless and inextensible, is
guided into the workspace by a swivel pulley [7], [31], and
it is attached to the platform at point Ai (Figs. 1, 2)1. G is
the platform center of mass. If the coordinates of G and Ai

in the mobile frame are described by vectors P r′ and P a′
i ,

their coordinates in the inertial frame are:

r = p+ r′ = p+R P r′ (2)

ai = p+a′
i = p+R P a′

i (3)

The i-th swivel pulley has center Ci , radius ri , and
is mounted on a hinged support, whose swivel axis zi is
tangent to the pulley (Fig. 2). The fixed point Di where the
i-th cable enters the pulley’s groove is on the zi -axis. Its
position vector in Ox y z is di . It is convenient to define an
additional fixed reference frame Di xi yi zi attached to Di ,
whose orientation in Ox y z is described by the (constant)
rotation matrix Ri = [xi yi zi ]. The i-th cable exit point
from the pulley groove is denoted by Bi , whereas the vector
Ai−Bi , which is tangent to the pulley, is ρi . Pulley kinematic
modelling has a significative impact in both the kinematics
and the dynamics of the CDPR platform, since it accounts
both for the varying amount of cable that is wrapped onto
the pulley and for the variation of the cable exit point
positions. Although pulley kinematics may have a limited
impact on the finite kinematics of the experimental setup

1In the prototype used for the experimentation discussed in Section V,
each cable is attached to the platform by means of a custom-made light-
weight universal joint centered in Ai , which ensures that the cable axis
precisely passes through a fixed point on the platform. Moreover, winches
are grooved so that cable spiralling is eliminated and the transmission ratio
between the motor angle and the cable length is approximately constant.
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discussed in Section V2, it has a relevant influence on its
differential kinematics (the magnitude of the acceleration
of point P on the e-e may vary up to 50% if no pulley
transmission is considered). Furthermore, the variation of
the cable exit points modifies the direction of the cable
tensions that are acting on the platform. The kinematics of
swivel pulleys was studied in [7], [31] and additional refer-
ences can be found in [32]. The implementation included
in our model is presented in the following.

If friction in the pulley hinge is negligible, the line
through Ai and Bi and the zi -axis must be coplanar, due
to the rotational equilibrium of the pulley around zi . As
a consequence, the unit vector ki along zi and vector
ρi completely define the pulley plane. If σi is the angle
between the coordinate plane xi zi and the pulley plane
(Fig. 2), the unit vector wi perpendicular to the latter is:

wi =−sinσi ii +cosσi ji = ki × (ai −di )

‖ki × (ai −di )‖ (4)

where ii , ji and ki are unit vectors along axes xi , yi and zi .
It can be easily shown that:

σi = atan2
[
(ai −di ) · ji , (ai −di ) · ii

]
(5)

In addition, the unit vector ui from Di to Ci (perpendic-
ular to both ki and wi ) is (Fig. 2):

ui = ci −di

‖ci −di‖
= cosσi ii + sinσi ji (6)

If ψi ∈ (−π,π) is the angle between ui and bi −ci (Fig. 3),
then:

bi −ci = ri (cosψi ui + sinψi ki ) (7)

and also, due to the closure of polygon O Ai Bi Ci Di :

ri (cosψi ui + sinψi ki ) = ai −ρi − ri ui −di (8)

By taking the dot product of both sides of Eq. (8) with the
unit vector (cosψi ui +sinψi ki ), and imposing the perpen-
dicularity condition between ρi and bi −ci , we obtain:

ri = (ai − ri ui −di ) · (cosψi ui + sinψi ki ) (9)

and hence:

cosψi [(ai −di ) ·ui − ri ]+ sinψi (ai −di ) ·ki − ri = 0 (10)

By expressing sinψi and cosψi as functions of
ti = tan(ψi /2), Eq. (10) can be written as:

(1− t 2
i )[(ai −di ) ·ui − ri ]+2ti (ai −di ) ·ki − (1+ t 2

i )ri = 0 (11)

which yields:

t 2
i −2

(ai −di ) ·ki

(ai −di ) ·ui
ti + 2ri

(ai −di ) ·ui
−1 = 0 (12)

Equation (12) provides two angles, which define the two
points of intersection of the two tangent lines to the pulley
passing through Ai . In our case, we are only interested in

2It is worth pointing out that any industrial implementation of cable
robots will likely use larger pulley radii than the ones adopted in our
implementation, since the ratio of pulley radius to cable radius must be
as large as possible in order to guarantee an acceptable lifetime of the
cable, thus increasing the effects of pulley kinematics.

Figure 3. Front view of the Swivel Pulley

the greater angle, because the cable is wrapped clockwise
on the pulley from the frame to the platform, namely:

ψi = 2atan

[
(ai −di ) ·ki

(ai −di ) ·ui
+

+
√

1− 2ri

(ai −di ) ·ui
+

( (ai −di ) ·ki

(ai −di ) ·ui

)2
]

(13)

Finally, vector ρi can be computed from Eq. (8) as:

ρi = ai −di − ri [(1+cosψi )ui + sinψi ki ] (14)

and thus (Fig. 3):

‖ρi‖ =ρi · (sinψi ui −cosψi ki ) =
= (ai −di ) · (sinψi ui −cosψi ki )− ri sinψi (15)

In the end, the geometrical constraint that the i-th cable
imposes on the platform is:

ρT
i ρi − [li − ri (π−ψi )]2 = 0 (16)

where li is the i-th total cable length, comprising the
rectilinear cable length ‖ρi‖ and the wrapped cable lengthÚBi Di .

B. Infinitesimal Kinematics

The velocity and acceleration of G and Ai are:

ṙ = ṗ+ω× r′ (17)

ȧi = ṗ+ω×a′
i (18)

r̈ = p̈+α× r′+ω× (ω× r′) (19)

äi = p̈+α×a′
i +ω× (ω×a′

i ) (20)

where ω and α are the angular velocity and acceleration of
the platform, respectively. The angular velocity is linearly
dependent on the Euler angles derivatives ε̇, namely:

ω= H(ε)ε̇=
1 0 sθ

0 cφ −sφcθ
0 sφ cφcθ

 ε̇ (21)

where cx = cos x and sx = sin x. Accordingly, the angular
acceleration can be calculated as:

α= Hε̈+ Ḣε̇ (22)

The rate of change of the pulley-plane orientation can be
computed from Eqs. (4),(5) and (6). Indeed, since:

ẇi =−σ̇i ui , u̇i = σ̇i wi (23)
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taking the dot-product of wi with ai −di and differentiating
with respect to time yields, after some rearrangement:

σ̇i = wi · ȧi

ui · (ai −di )
(24)

The rate of change of the cable orientation ψi in the
pulley plane can be obtained by differentiating Eq. (10) with
respect to time. Taking advantage of Eqs. (15) and (23), ψ̇i

can thus be expressed as:

ψ̇i = (cosψi ui + sinψi ki ) · ȧi

‖ρi‖
(25)

The rate of change of ρi can be obtained by differenti-
ating Eq. (14) w.r.t. time, namely:

ρ̇i = ȧi − ri [σ̇i (1+cosψi )wi − ψ̇i (sinψi ui −cosψi ki )] (26)

where the velocity ȧi is in Eq. (18).
Finally, differentiating Eq. (16) w.r.t. time yields:

2ρT
i ρ̇i −2[li − ri (π−ψi )](l̇i + ri ψ̇i ) = 0 (27)

Substituting Eqs. (26) and (21) in Eq. (27) provides the
relationship between the cable system kinematics and the
end-effector twist v = [ṗT ωT ]T , or the generalized velocity
q̇ = [ṗT ε̇T ]T . It can be shown by computation that:

Jv v = Jq q̇ = Jl l̇ (28)

where the i-th rows of matrices Jv ,Jq and Jl are:

Jv,i =
[
ρT

i −ρT
i ã′

i

]
(29)

Jq,i =
[
ρT

i −ρT
i ã′

i H
]

(30)

Jl ,i =
[
01 · · · 0i−i li − ri (π−ψi ) 0i+1 · · · 0n

]
(31)

l̇ = [l̇1, . . . , l̇n]T is a n-dimensional array containing the time
derivative of cable lengths, and ã′

i is the skew-symmetric
representation of the vector product, namely a′

i×= ã′
i .

III. DYNAMIC MODEL

The dynamic model of the CDPR emerges from the
differential equation of the platform dynamics, subject to
the constraints imposed by cables.

If fG and mG are the resultant external force and mo-
ment about G , the force and moment equilibria about the
reference point P yield:

mr̈− fG − fC = 0 (32)

IGα+ω× (IGω)+mr′× r̈− (mG + r′× fG )−mC = 0 (33)

where m is the platform mass, P IG is the inertia matrix
of the platform about G in the P x ′y ′z ′ coordinate system,
and IG = R P IG RT is the platform inertia matrix in the fixed
system Ox y z. Vectors fC and mC are the resultant forces
and moments of all forces transmitted by the cables to the
mobile platform. If Ti is the tension force in the i-th cable
and τi = Ti /‖ρi‖, then:[

fC

mC

]
=−JT

v τ (34)

where τ= [τ1, . . . ,τn]T .

Equations (32) and (33) can be expressed in compact
form as (see Appendix A):

Mq̈−s−Bτ= 0 (35)

where:

M =
[

mI3 −mr̃′H
−mHT r̃′T HT IP H

]
(36)

IP = IG −mr̃′r̃′ (37)

B =−JT
q (38)

s =
[

m(r̃′Ḣ+ ω̃r̃′H)ε̇+ fG

HT [−(IP Ḣ+ ω̃IP H)ε̇+mG + r̃′fG ]

]
(39)

and I3 is the 3×3 identity matrix.
In the case of an underactuated system, the generalized

coordinates can be partitioned in n actuated coordinates
qa and λ = h − n unactuated coordinates qu , depending
on the task that the platform is required to perform. The
actuated coordinates qa can be fully assigned, whereas the
unactuated ones qu will be determined by the dynamics of
the system. According to the aforementioned partition, Eq.
(35) can be rewritten as:[

Maa Mau

Mua Muu

][
q̈a

q̈u

]
−

[
sa

su

]
−

[
Ba

Bu

]
τ= 0 (40)

We can then isolate q̈u as:

q̈u = M−1
uu(su +Buτ−Mua q̈a) (41)

Substituting q̈u in the remaining relations of Eq. (40) yields
the normalized cable tensions as functions of the imposed
motion profile qa(t ), thus allowing slackness avoidance to
be verified as:

τ= (Ba −Mau M−1
uu Bu)−1µ (42)

where:

µ= (Maa −Mau M−1
uu Mua)q̈a +Mau M−1

uu su −sa (43)

From an analytical standpoint, we can substitute Eq. (42)
in (41) and obtain a completely differential system in the ac-
tuated and unactuated coordinates. This system represents
the second-order non-holonomic constraint, also known
as the internal dynamics, arising from the underactuated
nature of the system [33].

IV. REST-TO-REST TRAJECTORY PLANNING

System theory defines the problem of rest-to-rest trajec-
tory planning for an underactuated mechanical system as a
transition problem between stationary setpoints [34]. Such
a transition has been proven to be possible [35], in most
cases, if the system undergoes an additional pre-actuation
or post-actuation phase, that is, if the system is actuated
when t < 0, t > T (where T is the transition time) or both.
However, this leads to a theoretical impossibility of bringing
the system at rest in a predefined time. In addition, a pre-
cise path tracking can not be ensured, as the uncontrolled
coordinates behavior cannot be predicted, possibly leading
the system to instability (i.e. to an oscillatory behavior),
thus strongly limiting practical applications.
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In [36], a new method was proposed for the trajectory
design of Single-Input Single-Output (SISO) systems. The
same approach was extended to Multi-Input Multi-Output
(MIMO) systems in [37], and later to systems performing
not only single transitions, but also cyclic tasks [38]. These
methods ensure that the system is brought to a stationary
position in a prescribed time T , but the nominal trajectory
of the actuated coordinates undergoes a substantial modifi-
cation. This is often not desirable (when not dangerous) in
industrial applications involving robots, because of possible
interference with obstacles.

In this section, the novel trajectory planning method
introduced in [1] is explained in detail. This method avoids
a geometric modification of the path that the actuated
coordinates are supposed to track, focusing instead on a
specific design of the motion law that describes how these
coordinate evolve along the path itself. The design of such
a motion law relies on the solution of a BVP, formulated
as the problem of finding a solution to the differential
equation (41), with constraints on position and velocity at
start and end times. A heuristic solution strategy for the
specific BVP at hand is proposed in Section IV-C.

A. Formulation of the Problem

When planning the trajectory of a completely-actuated
manipulator, we may define both the geometric path of
a reference point on the end-effector and the orientation
of the latter. If the end-effector is underactuated, however,
only a subset qa of its generalized coordinates may be
assigned. It is convenient to consider a parametric repre-
sentation of the path to track, such as qa = qa(u(t )). We
refer to the parameter u(t ) as the motion law, which is a
function of time, with initial and final conditions u(0) = 0
and u(T ) = 1. The composition (qa ◦u) = qa(u(t )) is what is
usually referred to as the trajectory.

A variety of methods may be employed to design the
motion law. In the case of a completely or redundantly
actuated manipulator the problem of a stationary set point
change only requires the solution of a system of linear
equations emerging from the fulfilment of some boundary
conditions and the necessity of a continuous and differen-
tiable function. Polynomial motion laws are often sufficient
to satisfy start- and end-point conditions. An easy way
to devise such polynomials is to use so-called transition
polynomials [39] of degree 2r +1:

u(t ) =
2r+1∑

i=r+1
ai

( t

T

)i
, t ∈ [0,T ] (44)

where coefficients ai ’s do not depend on the task at hand
and are given by:

ai = (−1)i−r−1(2r +1)!

i · r !(i − r −1)!(2r +1− i )!
(45)

with (if r ≥ 2):

2r+1∑
i=r+1

ai = 1,
2r+1∑

i=r+1
i ai = 0,

2r+1∑
i=r+1

i (i −1)ai = 0 (46)

The index r stands for the maximum order of derivation
up to which the continuity of the polynomial is required.

This approach is rarely sufficient for rest-to-rest motions
if the system is underactuated, because it does not take
into account the internal dynamics (cf. Eq. (41)). In fact,
depending on the inertial effect caused by the geometric
path and the chosen motion law, the uncontrolled coordi-
nates qu may not reach a stationary condition when the
end point is attained.

In order to achieve the desired result, the nonholonomic
constraint in Eq. (41) must be considered in the planning
phase. The stationary conditions on qu in the start- and
end-points can be regarded as boundary conditions (BCs)
for the differential equation (41), thus leading to a BVP.
This problem has generally no solution when both the path
qa(u) and the motion law u(t ) are assigned. On the other
hand, if modifications of u(t ) are allowed, the problem may
admit a solution.

In order to numerically solve the differential equation
(41), we first express it in state form:

x =
[

qu

q̇u

]
(47)

ẋ =
[

q̇u

M−1
uu(su +Buτ−Mua q̈a)

]
= f(x,qa , q̇a , q̈a) (48)

where τ is given by Eq. (42).
For a rest-to-rest trajectory planning, BCs are:

x(0) =
[

qu(qa(0))
0

]
:= x0, x(T ) =

[
qu(qa(T ))

0

]
:= xT (49)

where [qa(0)T qu(qa(0))T ]T and [qa(T )T qu(qa(T ))T ]T are
stable equilibrium configurations of the system, that can
be obtained as in [3], [24], [25].

Equation (48) has dimension 2λ and can only match 2λ
out of the 4λ BCs established in (49). One way to provide a
solution to the problem is to consider 2λ additional scalar
parameters κ1, . . . ,κ2λ (called free parameters), so that qa =
qa(κ, t ). The BVP with free parameters becomes then:{

ẋ = f
(
x(κ, t ),qa(κ, t ), q̇a(κ, t ), q̈a(κ, t )

)
x(0) = x0, x(T ) = xT

(50)

The solution of (50) is a set
{
κ,x(κ, t )

}
, where the vector

of free parameters κ ∈R2λ is calculated so as the BC in Eq.
(50) are satisfied.

B. Modification of the Motion Law

In the case of a constrained trajectory geometric path, the
motion law is the only element that can undergo a modifi-
cation, that is, qa = qa(u(κ, t )) [40]. One way to design such
a modified motion law u, so that the actuated coordinates
can meet the start and end conditions prescribed by the
task, is to consider the composition (u◦γ)(κ, t ) = u(γ(κ, t )),
now expressed as:

u(γ(κ, t )) =
2r+1∑

i=r+1
aiγ

i (κ, t ) (51)

γ(κ,0) = 0, γ(κ,T ) = 1, ∀κ ∈R (52)
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where ai is still expressed as in (45) and the function γ(κ, t )
is continuous and differentiable up to the second order.

For the purpose of this article, r = 3, so that continuity
of jerk can be imposed in the start and end positions, and
any discontinuity in the cable tensions τ can be (at least
theoretically) avoided. In this way, we try to eliminate a
different potential source of residual oscillations.

As an example, γ(κ, t )3 may be intuitively designed as a
polynomial of order 2λ+1:

γ(κ, t ) =αt +
2λ+1∑
i=2

κi−1t i , α= 1−∑2λ+1
i=2 κi−1T i

T
(53)

Accordingly, the time derivative of the actuated coordinates
can be expressed as:

q̇a = ∂qa

∂u

∂u

∂γ

∂γ

∂t
= q′

au∗γ̇ (54)

where (·)′ denotes the partial derivative with respect to u
and (·)∗ the partial derivative with respect to γ. The second-
order time derivative is hence:

q̈a = q′′
a(u∗γ̇)2 +q′

a(u∗γ̈+u∗∗γ̇2) (55)

It should be noted that, as long as conditions (52) are
satisfied and r ≥ 2, no other conditions have to be imposed
on γ(κ, t ). In fact, q̇a(κ,T ) = 0 and q̈a(κ,T ) = 0 is ensured
for any κ by u∗(γ(κ,T )) = 0 and u∗∗(γ(κ,T )) = 0. Other
formulations for either γ(κ, t ) or the whole u(κ, t ) may
be employed in order to achieve similar results. From
a practical point of view, though, the choice of γ(κ, t )
can affect the convergence rate and speed of the solution
algorithm described in Section IV-C. In addition, depending
on the specific formulation of γ(κ, t ), it may not be easy
to determine an initial guess for κ, which is needed in the
numerical solution of Eq. (50).

C. Solution of the BVP with Free Parameters

Free parameters κ can be found as a consequence of
the numerical solution of the BVP expressed by Eq. (50).
A number of algorithms are proposed in the literature and
even implemented in commercial softwares, such as the
bvp4c and bvp5c routines available in any MATLAB dis-
tribution [41]. These algorithms are finite-difference codes
that implement a collocation formula [42] and, thus, require
a suitable set-up in order to work efficiently and find a
solution within a reasonable tolerance. However, even in
this case, there is still no guarantee of success.

During our simulation campaign, we were not able to
solve problem (50) by employing these standard methods,
thus we heuristically formulate the problem as a combi-
nation of an Initial Value Problem (IVP) followed by the
solution of a system of nonlinear equations. This approach
is similar to a classic iterative shooting method [42], which is

3A general formulation for γ(k, t ) is given by:

γ(κ, t ) = t

T

[(
1− t

T

)
h(κ, t )+1

]
where h(κ, t ) is any continuous and differentiable function up to the
second order.

a state-of-the-art method for the solution of standard BVPs
without free parameters: at each iteration of the algorithm,
the value of the free parameters is modified instead of the
problem initial conditions. For any assigned κ, let x(κ, t )
be the solution of the IVP defined by:{

ẋ = f
(
x(κ, t ),qa(κ, t ), q̇a(κ, t ), q̈a(κ, t )

)
x(0) = x0

(56)

In general, for an arbitrary κ, x(κ, t ) does not meet the
end-point condition in Eq. (50), namely x(T ) 6= xT . Consider
then the nonlinear equation in the unknown κ defined by:

F(κ) = x(κ,T )−xT = 0 (57)

A solution for equation (57) may be found by the following
iterative procedure:

0) assign κi for i = 0, e.g. κi = 0, and establish an
adequately small tolerance ζ ∈R;

1) evaluate x(κi ,T ) as the end-point of the solution
x(κi , t ) of the IVP (56).

2) If ‖F(κi )‖ ≤ ζ,
{
κi ,x(κi , t )

}
is a solution of the BVP

(50), otherwise set κi+1 =κi + J−1
F (κi )F(κi ) and repeat

the iteration.

JF (κ) = ∂F/∂κ is the Jacobian of Eq. (57) with respect
to κ and it can be approximated by finite differences at
every iteration. Finite-difference Jacobian can be efficiently
computed by using several parallel threads. However, due
to the iterative and approximated nature of the algorithm,
the maximum computational time cannot be predicted in
advance. Accordingly, this algorithm is not suitable for real-
time computation, and has to be employed offline. In our
simulations, the algorithm has proven to be sub-linearly
convergent in the case it is started from a generic initial
guess for κ.

Once a solution
{
κ,x(κ, t )

}
is found, the trajectory

qa(κ, t ) may be computed, and the cable total length is
found according to Eq. (16) as:

li (t ) =
√
ρT

i ρi + ri (π−ψi ), i = 1, . . . ,n (58)

No explicit constraints on cable tensions or motor torques
are considered in this work other than positive cable
tensions, which are verified during the integration of eq.
(56) via Eq. (42)4. In addition, it should be noted that the
assigned transition time T cannot be arbitrarily low. It is
outside the scope of this paper to determine an optimal
transition time for assigned set-points. However, in all
simulations and experiments conducted with the prototype
described in Section V, we heuristically determined that
a transition time resulting from an average speed of the
platform reference point of approximatly 1m/s between
assigned set-points always results in a solution of (57) with
positive tensions in all cables.

4While iteratively solving Eq. (57), the IVP (56) is integrated at each step,
and the values of τ(t ) are calculated by Eq. (42) for an assigned κi . In the
case a negative value of one tension is determined, the IVP integration is
re-initialized with a different value of κi
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Figure 4. Prototype overview.

Figure 5. Prototype swivel pulleys.

V. EXPERIMENTAL VALIDATION

The trajectory-planning methodology considered in this
paper has been implemented in a MATLAB code. For every
desired s-th transition between stationary set points, the
inputs needed by the trajectory-planner are:

• the transition time s T ;
• the transition set-points (namely s−1qa and s qa);
• the transition geometric path parametrization s qa(u);

After the solution of the problem defined by Eq. (50), the
outputs of the planning routine are:

• the array of free parameters sκ;
• the actuated and unactuated coordinates, that is, s qa(t )

and s qu(t ) for t ∈ [0, s T ];
• the subsequent cable lengths s li (t )(i = 1, · · · ,n) for

t ∈ [0, s T ], determined by (58).

In the following, two scenarios will be addressed: i ) a
6-DoF spatial CDPR actuated by 3 cables whose reference
point must track consecutive line segments; i i ) the same
spatial robot as in case (i ) whose reference point must track
consecutive circular arcs.

In the preliminary conference version of this paper [1]
our trajectory-planning method was tested on a 3-DoF
planar CDPR actuated by 2 cables. The kinematics and
dynamics of such a robot are greatly simplified by the
planar motion (and thus by the limited available freedoms)
and by fixed cable exit points from the frame. This leads
to a very fast and easier solution of the BVP defined by

Table I
ACTUATION UNIT PROPERTIES

i 1 2 3

di [m]

 0.160

−0.835

−0.025


 2.175

0.180

−0.035


 0.260

1.290

−0.043


ri [m] 0.025 0.025 0.025

P a′i [m]

 0

−0.267

0.270


 0.231

0.133

0.270]


−0.231

0.133

0.270


xi j −i −j

yi −i −j i

zi k k k

Table II
PLATFORM PROPERTIES

m [Kg] IG [Kg ·m2] P r′ [m]

8

0.14 0 0

0 0.14 0

0 0 0.216


 0

0

0.182



Eq. (50). The details of the model and the experimental
results are available in [1]. They are not reported here
due to space limitations, since they do not add anything
particularly relevant to what will be presented for the spatial
robot. The geometrical and inertial properties of the 6-
DoF spatial prototype are summarized in Tables I and II,
where i = [1;0;0]]T , j = [0;1;0]T and k = [0;0;1]T . The robot
platform and swivel pulleys are portrayed in Figs. 4 and 5.

The platform reference point P will transit and rest in
4 set-points. The stationary (stable) poses of the platform,
evaluated as in [3], [24], [25], are:

0q =



1.596
0.183
−1.300
−0.050
−0.603
−0.575


1q =



1.165
0.211
−0.900
−0.005
−0.210
−0.556


2q =



0.587
0.222
−1.300
0.009
0.255
−0.562


3q =0 q

and the transition times are:

1T = 1.5 s 2T = 1.5 s 3T = 2 s

Each transition is separated from the next one by a pause of
5 s, so that potential residual oscillations of the platform can
be highlighted. "Rest-to-Rest" (RTR) trajectories, designed
according to our approach, are compared with "Standard"
(STD) trajectories, which are defined such as:

κ= 0, γ(κ, t ) = t

T
(59)

In this case, the end-effector orientation is estimated by
forward integration of Eq. (56) and the cable lengths by Eq.
(58). It should be noted that the uncontrolled coordinates
qu(t ) of the e-e, and thus the lengths of the cables, are
generally different for distinct values of κ. Because of this,
the equilibrium poses of the e-e in the STD and RTR cases
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RTR
STD

(a) First cable

RTR
STD

(b) Second cable

RTR
STD

(c) Third cable

Figure 6. Actuator position set-points for RTR and STD trajectories, in the case of linear paths. Transitions between set-points are delimited by vertical
dashed lines

Figure 7. Straight line paths.

will also be different. In order to be able to compare differ-
ent subsequent trajectories, STD cable lengths were quasi-
statically varied during the pause time in order to match
the RTR ones, and thus have the same start configuration.
For the transitions considered in this paper, the difference
between them is in the order of some millimiters, so that
this procedure does not amplify residual oscillations (as
it can be see in Fig. 8 and 13, where the procedure was
simulated).

1) Straight Line Trajectories: In the first example, the
set-points are connected by linear paths (Fig. 7). The s-th
transition is parametrized as:

s p(u) = s−1p+ ( s p− s−1p)u (60)

By employing the method outlined in Section IV-C, the
solution of the BVP defined by Eq. (50) for s = 1,2,3 is found
starting from an initial guess κ= 06×1 in averagely 1.5min
by using a MATLAB implementation installed on a Windows
10 PC, with a 7th generation Intel I7 CPU and 16 Gb of RAM.
The results are summarized in Eq. (61) and Figs. 6 and 8:

1κ=



−14.006
41.906
−67.565
60.146
−27.779

5.195


2κ=



−12.278
38.731
−66.101
61.907
−29.927

5.827


3κ=



−4.204
8.826

−10.157
6.559
−2.234
0.312

 (61)

In order to verify the effectiveness of the proposed tra-
jectory planning, no feedback on the platform actual pose

was used to stabilize or correct the end-effector position
and orientation during experimental testing. A visual result
of the experimentation can be found in the video file
attached to this paper. Quantitative results regarding the
end-effector pose can be found in Fig. 9. Since no external
measurement system, such as a laser tracker, was available
in our laboratory during the experimental campaign, an
indirect approach was used. Angles σ1, σ2 and σ3 were
measured by incremental encoders attached to the swivel
pulleys’ axes. By employing such measurements and the
commanded cable lengths, the pose of the platform was
estimated making use of a direct kinematic algorithm that
employs additional cable orientation measurements [43].

This approach does not allow the platform pose to be
inferred with a high precision during a dynamic motion
(on the one hand, cables can slightly oscillate in the
grooves of their pulleys due to clearance; on the other,
pulleys swivel with some lag compared to the theoretical
kinematic model, mainly due to friction in the mechanical
transmission chains). However, it provides a simple means
to effectively compare RTR and STD trajectories. It is ap-
parent that, though the actuator set-points are very similar
for both trajectories, the results in terms of end-effector
pose are significantly different. The difference in the global
motion of the platform can be explained, in general, by
considering that limited difference in the position set-points
may be associated with large difference in their higher
order derivatives, which play a key role in the dynamics
of the system. STD trajectories display residual oscillations
which are damped over time by dissipative effects and a
slight drift in the e-e coordinates, which may be attributed
to cables oscillating into the pulley grooves. On the other
hand, RTR trajectories results do not show any significant
oscillation in the measurements provided by our feedback
system (Figs. 10a and 10b show an enhanced view of
the most critical oscillations observed during experiments,
for 8s < t < 13s). We can clearly see that both position
and angular e-e coordinates remain constant after the end
of the second transition when RTR trajectories are used.
The video of the experimentation also displays little to
no oscillation left after RTR transitions. The small residual
swinging of the platform at the end of transitions is due to
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RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 8. Computed end-effector pose for RTR and STD trajectories, in the case of linear paths. Transitions between set-points are delimited by vertical
dashed lines

RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 9. Measured end-effector pose for RTR and STD trajectories, in the case of linear paths. Transitions between set-points are delimited by vertical
dashed lines

minor-importance phenomena that are not included in the
dynamic model, such as clearance, elasticity, friction, etc.

Also, it can be noted from the planning results (Figs. 6a
and 6c) that, in the first transition, the slope of the cable

commanded length in the RTR case is steeper compared
to the one of the STD case. Even though the encoder
measurement of our prototype motors show no tracking
error, frictional effects in the cable transmission could have
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RTR
STD

(a) End-effector reference position

RTR
STD

(b) End-effector Euler angles

Figure 10. Enhanced view of most critical measured oscillations during linear paths.

Figure 11. Circular geometric paths.

led to delays in the actual uncoiling process, thus result-
ing in a slight modification of the cable effective length
during experiment. In addition, a steeper slope means that
higher frequency responses of the mechanical system can
be excited, such as cables axial vibrations, that were not
considered in this work. These effects could have had an
impact on the limited oscillation that can be observed in
the video file attached. The second and third transitions
required more limited slope changes for cable lengths in the
RTR case compared to STD trajectories, and no detectable
oscillations appear in the platform during experiments.

2) Circular Arc Trajectories: In the second example, cir-
cular geometric paths connecting the set-points are consid-
ered. The s-th transition is parametrized by the parametric
equation of a circular arc passing through 3 points:

s p(u) = c+ rc xc cos[ s−1β+ ( sβ− s−1β)u]+
+ rc yc sin[ s−1β+ ( sβ− s−1β)u] (62)

where c is the center of the circle passing through 3 points
0p, 1p and 2p, rc is its radius, zc is a unit vector normal
to the circle plane, xc = (0p−c)/‖0p−c‖, and yc = zc ×xc . In

addition, angle sβ is defined as:

sβ= arccos

[
( s p−c) · ( 0p−c)

r 2
c

]
rad (63)

The solution of the BVP defined by Eq. (50) for s = 1,2,3
is found starting from an initial guess κ= 06×1 in averagely
2min and the results are summarized in Eq. (64) and Fig.
12 and 13:

1κ=



−4.403
13.032
−23.118
22.991
−11.721

2.386


2κ=



−18.691
61.437

−107.706
102.695
−50.163

9.812


3κ=



−3.924
8.662

−10.559
7.231
−2.606
0.384

 (64)

It can be noted in the planning results that in the first
transition the slope of the cable commanded lengths is
less steep for RTR trajectories than for STD ones, and the
transition occurs smoothly without any oscillation left. The
contrary occurs in the second and the third transition.
In the second one (Figs. 12a to 12c), this fact results
in a very quick final movement that excites axial vibra-
tions in cables, which are rapidly damped out, but cause
a limited oscillatory behavior (this phenomenon can be
clearly observed in the attached video file at 1min40s).
Still, the amplitude of these oscillations is not detected
by the feedback measurement system, whereas the wide
oscillations in the STD case are apparent. The third and last
transitions, in the STD case, display one dangerous effect:
the possibility of an unstable behavior of the e-e due to
the lack of constraint (namely, the unactuated DoFs evolve
with no predetermined boundaries). While transitioning,
the platform uncontrolled orientation (see Fig. 14) was
rapidly changing, almost leading the platform to tip over.
In the RTR case, instead, the platform slightly oscillates
during the transition, and arrives at the rest position with
a very limited residual oscillation (Figs. 15a and 15b show
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RTR
STD

(a) First cable

RTR
STD

(b) Second cable

RTR
STD

(c) Third cable

Figure 12. Actuator position set-points for RTR and STD trajectories, in the case of circular paths. Transitions between set-points are delimited by
vertical dashed lines

RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 13. Computed end-effector pose for RTR and STD trajectories, in the case of circular paths. Transitions between set-points are delimited by
vertical dashed lines

an enhanced view of the most critical oscillations observed
during experiments, for 8s < t < 13s).

It is clear from the results presented in this section that
the e-e may be brought to rest after a transition from one
set-point to another only by an accurate trajectory planning
that takes into account the internal dynamics of the system.

VI. CONCLUSION

This paper presented the trajectory planning for under-
actuated CDPRs in the case of rest-to-rest motions when
the motion time and the path geometry are prescribed.
If an arbitrary motion is prescribed for a suitable subset
of the end-effector coordinates, the constraint deficiency
on the end-effector motions leads to the impossibility of
bringing the system at rest in a prescribed time. In addition,
an unbounded oscillatory motion of the end-effector may

arise. After formulating the problem as a boundary value
problem (BVP) with free parameters, a solution technique
was proposed and implemented for offline planning. The
actuated cable lengths resulting from planning were used as
position set-points for the actuators of a CDPR prototype in
experiments. Numerical and video results, showing different
implications of the proposed technique with respect to a
standard planning, were provided and discussed. Experi-
mental results are satisfactory, even without a closed-loop
control on the platform pose in the Cartesian space, and
have indicated possible ways to improve such planning
methodology, from both a modeling and a practical im-
plementation point of view. In the future, elastic effects
and explicit limits on cable tensions and accelerations
(resulting from safety requirements and motor dynamics)
will be included in the planning algorithm, since they



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 14. Measured end-effector pose for RTR and STD trajectories, in the case of circular paths. Transitions between set-points are delimited by
vertical dashed lines

RTR
STD

(a) End-effector reference position

RTR
STD

(b) End-effector Euler angles

Figure 15. Enhanced view of most critical oscillations during circular paths.

can practically limit the implementation of the method
proposed in this paper. In addition, some components of
our prototypes will be engineered so as to provide better
adherence to the mathematical model used for planning. In
the end, the possibility of a closed-loop feedback control of
the platform pose will be addressed in order to provide
a comprehensive solution for the dynamic operation of
underactuated CDPRs.

APPENDIX

END-EFFECTOR DYNAMIC EQUATIONS

Consider Eqs. (32) and (33), which are reproposed here-
after for the sake of convenience:

mr̈− fG − fC = 0 (65)

IGα+ω× (IGω)+mr′× r̈− (mG + r′× fG )−mC = 0 (66)

Substituting the expression of r̈ given in Eq. (19) in Eqs.
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(65) and (66) yields, respectively:

mp̈−mr′×α−mω× (r′×ω)− fG − fC =0 (67)

IGα−mr′× (r′×α)+mr′× p̈+ω× (IGω)+
−mr′× [ω× (r′×ω)]− (mG + r′× fG )−mC =0 (68)

Since:

r′× [ω× (r′×ω)] =ω× [r′× (r′×ω)] (69)

Eq. (68) can be also written as:

IGα−mr′× (r′×α)+mr′× p̈+
+ω× [IGω−mr′× (r′×ω)]− (mG + r′× fG )−mC = 0 (70)

By introducing:

IP = IG −mr̃′r̃′ (71)

and recalling Eqs. (21) and (22), Eqs. (67) and (70) can be
rewritten in matrix form as:

mp̈−mr̃′Hε̈−m(r̃′Ḣ+ ω̃r̃′H)ε̇− fG − fC = 0 (72)

−mr̃′T p̈+ IP Hε̈+ (IP Ḣ+ ω̃IP H)ε̇

−mG − r̃′fG −mC = 0 (73)

namely (cf. Eq. (34)):

M′q̈−s′+ JT
v τ= 0 (74)

where:

M′ =
[

mI3 −mr̃′H
−mr̃′T IP H

]
(75)

s′ =
[

m(r̃′Ḣ+ ω̃r̃′H)ε̇+ fG

−(IP Ḣ+ ω̃IP H)ε̇+mG + r̃′fG

]
(76)

However, matrix M′ is not symmetric, and this could lead
to numerical difficulties. We can overcome this obstacle by
pre-multiplying Eq. (74) by:

H′ =
[

I3 03

03 HT

]
(77)

where 03 is the 3×3 zero matrix, finally obtaining:

Mq̈−s−Bτ= 0 (78)

where:

M = H′M′, s = H′s′, B =−H′JT
v =−JT

q (79)
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