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Abstract

We propose a model of aging and health deficit accumulation model with an infinite

time horizon and a steady state of constant health. The time of death is uncertain

and endogenous to lifestyle and health behavior. This setup can be conceptualized

as a strive for immortality that is never reached. We discuss adjustment dynamics

and show that the new setup is particularly useful to understand aging of the oldest

old, i.e. of individuals for which morbidity and mortality have reached a plateau. We

then show how the existence of a steady state can be used to perform comparative

dynamics exercises analytically. As an illustration we investigate the effects of more

expensive health investment and of advances in medical technology on optimal short

run and long run health behavior.
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The Universal Declaration of Human Rights does not say humans have

‘the right to life until the age of ninety’.

It says that every human has a right to life, period.

That right isn’t limited by any expiry date.

(Yuval Noah Harari, 2016)

1 Introduction

Human life is finite but the time of death is unknown. In this paper we build on this fact

to investigate a theoretical model of aging where mortality is stochastic and endogenously

affected by individual behavior and lifestyle. We show that this scenario can be conveniently

formalized as an infinite time horizon problem in which human life is conceptualized as a

process where a state of constant health is a meaningful long run goal. We use this setup

to study the determinants of aging and longevity and to explain the observed aging of the

oldest old, i.e. of individuals for which morbidity and mortality have reached a plateau.

We then propose a method to investigate how exogenous shocks affect health behavior over

the life cycle.

Any discussion of the determinants and limits of human aging makes sense only with the

notion of aging as a biological (or physiological) phenomenon. While chronological aging

is given by passing calendar time, biological aging is defined as the intrinsic, cumulative,

progressive, and deleterious loss of function (Arking, 2006). In contrast to chronological

aging, biological aging is modifiable. It could be slowed down and perhaps, eventually,

abandoned (Jones and Vaupel, 2017). A plausible and straightforward measure of biological

aging has been established in gerontology by the so called frailty index, also known as the

health deficit index. The measure has been developed by Mitnitski and Rockwood (2001,

2002) and it has by now been used in hundreds of gerontological studies. The health deficit

index simply computes the relative number of health conditions that an individuals has

from a (long) list of potential conditions. As the index rises, the individual is viewed

as increasingly frail, and in this sense physiologically older.1 There exist a strong positive

association between the health deficit index and mortality (Rockwood and Mitnitski, 2007).

While human aging, perhaps until recently, has been regarded as inevitable, the speed

1Originally, the methodology was established by Mitnitski, Rockwood, and coauthors as the frailty

index. Newer studies use also the term health deficit index (e.g. Mitnitski and Rockwood, 2016), which

seems to be a more appropriate term when the investigated population consists to a significant degree of

non-frail persons. See Searle et al. (2008) for details on the construction of the health deficits index.
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of this process is not immutable. The accumulation of health deficits can be influenced by

health investments and health behavior. This idea has been formalized in health economics

by Dalgaard and Strulik (2014). The literature building on the Dalgaard and Strulik (2014)

model rules out the existence of a steady state of infinite life by imposing appropriate

parameter restrictions (on, for example, the power of medical technology in repairing health

deficits). Income-constrained individuals are assumed to maximize the value of life given

that survival beyond a certain maximum number of health deficits is impossible. In this

setup it is shown that health deficits optimally increase in a quasi-exponential way and

the mortality- or hazard-rate also increases in such a quasi-exponential way, akin to the

Gompertz (1825) law of mortality. This predicted pattern on health deficits and mortality

is sketched by solid lines in Figure 1.

health deficits

age

mortality rate

age

Figure 1: Stylized life cycle trajectories for health deficit accumulation (left) and mortality rate (right).

Solid lines: standard model; dashed lines: existence of steady state.

In this paper we show that health deficit accumulation and mortality follow a decidedly

different life cycle trajectory when a steady state of constant health exists. Instead of

growing exponentially these trajectories follow an s-shaped (or convex-concave) pattern;

they increase in middle age and level off in old age, as shown by dashed lines in Figure 1.

It is a well established fact that the quasi-exponential increase of mortality is only a good

approximation for ages below about 90. For the oldest old, the increase of mortality slows

down and reaches a plateau for supercentenarians, i.e. individuals above age 110 (Horiuchi

and Wilmoth, 1998; Maier et al., 2010; Barbi et al., 2018). When the rate of mortality and

health deficits stabilize at a constant level, individuals converge towards a state where they

are no longer aging in physiological terms. In the model of health deficit accumulation,
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such a slowdown is impossible if there exists no steady state. In this paper we consider the

existence of a steady state and show that the health deficit model is capable of producing a

slowdown in aging, described by adjustment dynamics along the stable saddlepath towards

the steady state. Along the adjustment path, health deficit accumulation slows down by

increasing investment in health maintenance and repair.

It should be emphasized that our model does not imply immortality. In fact, people

accumulate health deficits as in the conventional model (Dalgaard and Strulik, 2014) and

their life expectancy is finite and, given a reasonable calibration of the survival function,

in line with current observations. The innovation is that human aging does no longer

inevitably end in death at some finite age. Instead, motivated by the advancements in

medical technology, individuals rationally believe that aging-related health deficits can be

repaired such that the state of ”negligible senescence”(Finch, 2009) becomes a desirable

goal. It is supported by recent research in gerontology and biodemography showing that the

limits to life expectancy are broken (Oeppen and Vaupel, 2002) and that human life span

is not immutable but in fact increasing over time (Wilmoth and Robine, 2003; Strulik and

Vollmer, 2013). While few scholars agree with de Grey (2013) and Kurzweil and Grossman

(2010), who envision human immortality for the near future, many have abandoned the

belief that there exists necessarily a “capital T ” beyond which human life extension is

impossible (e.g. Vaupel, 2010; Kontis et al., 2017; Sinclair and LaPlante, 2019).

As discussed in Dalgaard and Strulik (2014), the health deficit model is particularly well

suited for investigating aging and longevity. In the health deficit model, health deficits,

if unremedied by health maintenance and repair, accumulate approximately at a constant

rate. This explosive growth of deficits (at the force of aging µ) captures the gerontological

notion of biological aging as the cumulative, progressive, and deleterious loss of bodily

function (Arking, 2006). This process is endogenous to a person’s behavior because it

can be slowed down by a healthy lifestyle and by investing in health. We formalize this

consideration by assuming that the probability of dying has both an endogenous and an

exogenous component. The former operates through the accumulation of health deficits,

while the latter depends on factors, such as the mere passing of time, that cannot be

influenced by the individual.

As observed in the literature, different assumptions regarding terminal conditions have

marked implications on optimal behavior (Forster, 2001). Yet, there is still no consensus on

the appropriate terminal condition to be used. Since life is empirically finite, most models

on aging and longevity consider a finite time horizon, either by assuming that the moment
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of death is given, or endogenously chosen by the agent. In both cases this implies assuming

that the agent knows with certainty the exact moment of death (Ehrlich and Chuma, 1990;

Eisenring, 1999; Forster, 2001; Dalgaard and Strulik, 2014). Our approach shows that, even

if life is empirically finite, since the moment of death is uncertain, a terminal condition to

be fulfilled at infinity can be appropriate and theoretically-grounded.

Our results show how a rational and forward-looking individual optimally adjusts her

lifestyle to exploit the intertemporal tradeoffs between health, consumption and the proba-

bility of dying. A major advantage of our model is that it allows for a convenient analytical

investigation of the factors affecting human aging and longevity. In this respect, we con-

tribute to the literature on dynamic optimization models, which typically assesses the

impact of policies and shocks either through phase diagram analysis or through numerical

simulations (Oniki, 1973; Ehrlich and Chuma, 1990; Eisenring, 1999; Forster, 2001; Kuhn

et al., 2015). In particular, our results could be useful when the problem involves more

than one state variable (in which case phase diagram analysis could be applied only under

specific assumptions), or when numerical simulations are too computationally demanding.

Our approach can be considered a complement to the comparative dynamics analysis pro-

posed in Caputo (1990,1997) and in Dragone and Vanin (2015), which focus on the response

of the steady state, and it can in principle be applied to any intertemporal behavior for

which aiming at a stationary state is a meaningful goal. Our formulas to perform compar-

ative dynamics analysis are obtained for a general survival function and a general utility

function.

To study the optimal response of behavior and health to exogenous shocks, we focus

on two different time-horizons: the response of behavior ”on impact”, i.e. the impulse

response at the time of the shock, and the long run effect on individual choices and health.

The distinction between short and long run response emphasizes that a forward-looking

individual, when taking into account the effects of current behavior on future expected

utility, may respond differently over different time horizons, even when preferences are

stable and time-consistent.

As an illustration, we apply our method for comparative dynamics to investigate how

the cost of health investment and the state of medical technology affect behavior and

health, both on impact and in the long run. We show that, when the cost of repairing

health deficits increases, biological aging will be faster. On impact, health investment will

be lower, but it will be higher in the long run. On the contrary, with more efficient medical

technology, biological aging will be slower. On impact, health investment will be higher (if
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medical technology is good enough), but it will be lower in the long run. In both cases the

behavioral responses in the short run and in the long run will be of opposite sign.

The paper is organized as follows. In the next section we provide an introduction to

the framework of health deficit accumulation and the evolution of health deficits across age

and time. In Section 3 we set up the health deficit model with endogenous mortality. In

Section 4 we provide the general formulas to perform comparative dynamics analysis in

the short and in the long run. In Section 5 we consider two examples: a rise in the cost

of health and an improvement in medical technology. In the latter case, we consider both

a sudden one-off technological improvement, as well as an extended version of the basic

model which accounts for constant medical progress. Section 6 concludes.

2 Health Deficits Across Age and Time

We measure biological aging by the accumulation of health deficits with age. A straight-

forward metric for health deficits is the health deficit index, also known as frailty index,

developed by Mitnitski and Rockwood (2001, 2002). The health deficit index as a metric of

health, aging, and morbidity has been used by hundreds of studies in gerontology and med-

ical science and it slowly gains importance in economics as well (Abeliansky and Strulik,

2018a,b; Hosseini et al., 2019). The index measures the relative number of health deficits

that a person has out of a sufficiently long list of potential aging-related health deficits

(see Searle et al., 2008, for methodological background). The health deficit index is an

excellent predictor of mortality such that chronological age adds insignificant explanatory

power when added to the regression (Rockwood and Mitnitski, 2007). It is an encompass-

ing measure of the state of health that has a foundation in the reliability theory of human

aging (Gavrilov and Gavrilova, 1991). A great advantage of the measure is that it can be

compared across populations and over time (Mitnitski et al., 2005).

As humans get older they develop more health deficits such that there exists a strong

quasi-exponential association between age and the health deficit index, akin to the Gompertz-

Makeham law of mortality (Mitnitski and Rockwood, 2002, Abeliansky and Strulik, 2018a).

This means that health deficits D accumulate according to Ḋ = µ(D−E), in which µ is the

natural force of aging and E is a stand-in for factors that slow down health deficit accumu-

lation (as, for example, health investments). For E = 0 health deficits grow exponentially.

On average, health deficits increase by 3 to 4 percent per year but the individual-specific

accumulation of health deficits depends on healthy behavior and access to medical technol-
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ogy. Later born generations develop health deficits more slowly because they benefit more

from improvements in medical technology (broadly defined, i.e. including also the diffu-

sion of knowledge about certain health behavior). Abeliansky and Strulik (2019) showed a

steady decline of health deficits such that for every year of later birth, younger generations

experience 1.4-1.5 percent less health deficits than earlier born generations. This trend has

been found to be remarkably stable across countries and over time (i.e. over the range of

the study’s sample from birth year 1918 to birth year 1965).
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Figure 2: Average health deficits by age. Panel A: solid (blue) line: Women born 1930, dashed (red)

line: women born 1960. Panel B: solid (blue) line: Men born 1930, dashed (red) line: men born 1960.

Source: Abeliansky and Strulik (2019).

Figure 2 illustrates the benchmark results for men and women from Abeliansky and

Strulik (2019). Solid (blue) lines show the health deficits predicted for the specific age

for average Europeans born 1930 and dashed (red) lines show predictions for the cohort

born 1960.2 At any age, the later born cohort exhibits substantially fewer health deficits.

Moreover, the difference between early and late born individuals increases with age, which

means that the slope of health deficit accumulation becomes flatter. The results show that

human aging has been substantially delayed in the period considered. For example, the

level of health deficits experienced at age 65 by individuals born 1930 is predicted to be

2The estimates are based on a panel of 14 European countries (Austria, Belgium, Czech Republic,

Denmark, France, Germany, Greece, Ireland, Italy, Netherlands, Poland, Spain, Sweden, and Switzerland)

and five waves of the SHARE data set, an index based on 38 health deficits, and individuals aged 50 to

85. Similar results were obtained without the upper age restriction but health deficit accumulation for

the oldest old is less well approximated by the quasi-exponential law of health deficit accumulation, a

phenomenon to which we return later in this paper.
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experienced at about age 80 by individuals born 1960. The continuous slowdown of health

deficit accumulation over time is reminiscent of Oeppen and Vaupel’s (2002) finding of a

continuous increase of best-performance life expectancy by about a quarter of a year per

year of birth from 1840 to 2000.

If the slowdown of health deficit accumulation continues due to future medical progress,

it becomes eventually possibly to break the exponential accumulation of deficits with age

and the possibility of a steady state of constant health emerges. At the steady state, the in-

evitably arising physiological damage due to human metabolism is continuously repaired by

health care investments such that the life cycle trajectory of deficit accumulation becomes

essentially flat. As discussed in the Introduction, if and in particular when such a scenario

becomes reality is highly debated among gerontologists and other natural scientists. In any

case, however, it is an interesting research question whether and how the possibility of a

steady state will affect life cycle behavior. Here, we take a first step in this direction by

investigating an environment in which such a steady state of negligible senescence exists

but is attained only asymptotically. Compared to optimistic scenarios that envision future

immortality for everyone (as in Kurzweil and Grossman, 2010) this is a relatively mild

modification of the status quo. It means that negligible senescence emerges as a reasonable

goal, which is, however, never reached.

Aging as the accumulation of health deficits has been integrated into economic life cycle

theory by Dalgaard and Strulik (2014) and refined towards a stochastic conceptualization of

death by Strulik (2015b). So far, however, the analysis of the health deficit model focussed

on parameter constellations such that a non-negative steady state is either non-existent or

globally unstable. Optimal lifetime trajectories thus end when a feasible maximum of health

deficits has been developed. In the stochastic version (Strulik, 2015b) this means that there

exists an upper bound of health deficits at which individuals die with certainty, S(D) = 0.

Here, we show that an interior saddlepoint stable steady state exists if the parameters

governing medical technology are favorable enough. This feature fundamentally changes

adjustment dynamics. Formally, individuals no longer solve a free terminal time problem

(when to die) but converge along the stable manifold towards the steady state. The unique

trajectory towards the steady state is qualitatively different to all other life cycle paths since

all other paths eventually diverge at increasing speed from the steady state. In contrast to

the so far available theory, which focused on increasing age profiles for health deficits and

health expenditure, the presence of a steady state generates convergence of health deficits

and health expenditure towards constants. This paper explores the comparative dynamics
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when such a plateau exists. While we have emphasized that this proposes a life cycle model

for the future, it is interesting to see that such a plateau is already discernable today for

health behavior and outcomes of the oldest old in a population. De Nardi et al. (2016)

observe that, for elderly Americans, health expenditure net of nursery care does no longer

rise with age for ages above 85. Manton et al. (2008) and Barbi et al. (2018) argue that

mortality rates stabilize at a high level for ages above 100. These phenomena cannot be

explained by the so far available health deficit models. They require the existence of an

approachable steady state.

3 A model of endogenous aging with uncertain life-

time

3.1 The model

Consider an agent whose health condition is represented by the number of health deficits

accumulated over lifetime. The process of health deficits accumulation depends on the

stock of health deficits D and on medical care h at time t,

Ḋ = f (D (t) , h (t)) . (1)

The accumulation of health deficits is faster when health deficits are large (fD (D, h) > 0),

and it is slower when the agent buys medical care (fh (D, h) < 0). As motivated in Section

2 and discussed in detail by Dalgaard and Strulik (2014), the accumulation of health deficits

is well represented by the quasi-exponential function,

f (D (t) , h (t)) = µ [D (t)− a− A (h (t))γ] , (2)

Parameter µ > 0 represents the natural force of aging, a ≥ 0 is a measure of the repairing

rate of the body (absent any medical care) and A and γ reflect the state of medical tech-

nology. The parameter A > 0 captures the general efficiency of medical care in the repair

of health deficits, while γ ∈ (0, 1) captures the degree of decreasing returns of medical care.

Note that, if the level of deficits were low enough, i.e. D (t) < a, then the body would be

able to repair its health deficits even in absence of health investment and there would be

no “natural aging”. To avoid this trivial situation, we assume that the initial condition

D (0) is larger than a.
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Besides spending income on final goods and health care, individuals may save or borrow

at a net interest rate r. The individual takes all prices as exogenously given. The law of

motion for individual wealth k is thus given by

k̇ (t) = rk (t) + Y − c (t)− ph (t) , (3)

where k is capital, r is the interest rate, Y is income and c is a composite good whose price

is normalized to one. The price of medical care is p, and it includes the cost of medicines,

as well as the opportunity cost of health investment.

At time t0, the agent’s problem is to choose consumption and medical care over her life-

time. In a deterministic environment this amounts to consider the following intertemporal

utility function: ∫ T

t0

e−ρtU (c (t)) dt, (4)

where U (c) is the instantaneous utility function, ρ is the discount rate due to individual

impatience, and T is the age at death. As in Hall and Jones (2007), we normalize utility

after death to zero. This implies that individuals with positive utility from consumption

experience a positive value of life. They thus desire a long life and have no incentive

to minimize the length of their life.3 The age at death T could be determined ex-ante,

as usually in macroeconomic life cycle models of generational accounting (e.g. Erosa and

Gervais, 2002), or it could be endogenously determined by individual choices, as in most life

cycle models in health economics (e.g. Grossman, 1972; Ehrlich and Chuma, 1990; Kuhn

et al., 2015).

Here we consider a third alternative, where the age at death T is unknown, but can

still be influenced through individual behavior. The stochastic nature of death has been

investigated within the health deficit framework by Strulik (2015b). The main difference

to that study, Dalgaard and Strulik (2014), and all other previous studies of human aging

in a life cycle model is that we allow for and focus on the existence of a steady state of

health deficits Dss that is biologically feasible, i.e. Dss < Dmax. Accordingly, death is

conceptualized as a stochastic event, which occurs when either the individual is hit by a

stochastic adverse shock, or when health deficits reach a biological maximum level Dmax.4

3As usual, the utility function is strictly increasing and concave in consumption. Our results qualitatively

hold also if the health condition has a utility and a productivity value (Grossman, 1972). Here we neglect

these channels and focus on the role of health deficits in affecting the probability of dying.
4There exists a logically upper bound D = 1 (100% of health deficits have been accumulated) for the

health deficit index. However, the empirical literature has found that individuals typically do not survive

beyond D = 0.7 (see Rockwood and Mitnitski, 2006; Hubbard et al., 2013).
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To account for the stochastic nature of death, in the proceeding we consider the following

survival function

S (D (t) , t) = s (t)S (D (t)) = e−qtS (D (t)) . (5)

Function S (D (t) , t) provides the conditional probability (as of time zero) to die at age

t when D health deficits are accumulated. The health-dependent component S (D) is

equal to one in absence of health deficits (S (0) = 1) and equal to zero when the biological

maximum level is reached (S (D) = 0 for D ≥ Dmax). It is non negative, continuous, and

strictly decreasing in the relevant range (i.e. S(D) > 0, SD(D) < 0 for D ∈ (0, Dmax).

As more health deficits are accumulated the probability decreases. The multiplicative

specification allows to disentangle the hazard function Γ ≡ −∂ logS (·) /∂t in two compo-

nents,

Γ = q + Z (D) Ḋ. (6)

where q = −St (·) /S (·) > 0 and Z (D) ≡ −SD (·) /S (·) > 0. The term q sums up the role of

environmental factors and individual characteristics that are out of the control of the agent.

It does not depend on health deficits and it can be considered as the exogenous component

of the hazard rate. In contrast, the second component Z (D) Ḋ does not explicitly depend

on time and can be considered as endogenous.

3.2 Solving the model

Under the hypothesis of uncertain time of death, the agent chooses the path of consumption

and medical care that solves the following problem

max
c,h

Eg
[∫ T

0

e−ρtU (c (t)) dt

]
(7)

k̇ (t) = rk (t) + Y − c (t)− ph (t) (8)

Ḋ (t) = µ [D (t)− a− A (h (t))γ] (9)

k (0) = k0, D (0) = D0 > a. (10)

As suggested by Yaari (1965), the expected intertemporal utility function 7 can be con-

veniently transformed into a more treatable intertemporal expected utility function which

weighs the instantaneous utility function by the individual survival probability.5 Accord-

ingly, the objective function of the agent from time t0 onwards can be written as (see the

5Age 0 should be conceptualized as real age 20 since, by assumption, individuals are ”born” as young

adults. Consistent with the literature, the time arguments used to denote the state variables D (t) and

k (t) and the control variables h (t) and c (t) should be interpreted as time labels. In the proceeding these
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Appendix for details)

V (t0) = Eg
[∫ T

t0

e−ρtU (c (t)) dt

]
=

∫ ∞
t0

e−(ρ+q)tS (D)U (c (t)) dt. (11)

Equation 11 represents the expected value of life of the agent. The goal of the agent is to

maximize it under 8 to 10.

The corresponding current-value Hamiltonian function is:

H = S (D)U (c) + λḊ + ηk̇, (12)

where λ = λ (t) and η = η (t) are the costate variables associated with the dynamics of

health deficits and capital, respectively.

The associated first order conditions are (omitting the arguments henceforth):

h∗ : Hh = 0 ⇔ λγµAhγ−1 = −pη (13)

c∗ : Hc = 0 ⇔ SUc = η. (14)

Note that η > 0 and λ ≤ 0. The above conditions are also sufficient if the (Mangasarian)

concavity condition is satisfied:

Φ ≡ S2
DU

2
c − (SUcc)USDD < 0. (15)

Since S > 0 and Ucc < 0, concavity requires USDD < 0. This is an interesting necessary

condition, as it allows for two possible cases. If the utility function has positive values,

the Mangasarian conditions require survival functions that are concave. This occurs, for

example, when U = c1−σ

1−σ + b and σ < 1, or σ > 1 and b large enough, and S = 1−D2. If,

instead, the utility function would exhibit negative values (e.g. U = c1−σ

1−σ + b when σ > 1

and b = 0), then survival function were required to be convex (say, S = e−D). A negative

utility function, however, means that individuals prefer being dead (associated with zero

utility) to living (which yields negative utility). For this reason, we focus on the case where

the utility function has positive values and the deficit-dependent component of the survival

function is concave, so that the condition USDD < 0 is satisfied in the relevant range. A

concave survival function appears also to be more plausible than a convex one. The concave

time labels will be omitted to simplify the notation. We assume that the accumulated wealth becomes

an unintended bequest when the individual dies. Yaari (1965)’s transformation implicitly relies on the

assumption that the individual is risk neutral with respect to the length of life. See Bommier (2006) for

an analysis with preferences over the length of life.
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function reflects that additional health deficits have a small effect on survival when the level

of health deficits is low and a large effect when many deficits are present. This means it

captures the feature of “compression of morbidity” (Fries, 1980) since for most individuals

the greatest decline in health is experienced chronologically close to death.6

Note that condition 13 does not hold if medical care is completely ineffective in repairing

health deficits (A = 0). In fact, in this case investment in medical care would be nil

and health deficits would inevitably accumulate (see eq. 9). This process of progressive

senescence ends when the maximum biological level D = Dmax is reached (or the agent is

hit by an adverse shock, which occurs with probability e−qt).

When instead medical care is effective (A > 0), the agent can invest in health repair to

slow down health deficit accumulation, eventually reaching a state of negligible senescence

where health deficits no further accumulate. For this scenario, the evolution of optimal

behavior, health deficits, and capital is described by the following system of differential

equations:

ḣ =
h

1− γ

[
r − µ− γµA

p

U (c)

Uc (c)
Z (D)hγ−1

]
(16)

ċ = − Uc (c)

Ucc (c)

[
r − ρ− q −Z (D) Ḋ

]
(17)

Ḋ = µ (D − a− Ahγ) (18)

k̇ = rk + Y − ph− c (19)

Equations 16 and 17 represent the Euler equations of medical care and consumption, re-

spectively, and they describe how the optimal choices of the agent change as function of the

primitives of the model. With respect to the literature where the time of death is known,

note that the endogenous hazard rate Z > 0 affects both the dynamics of medical care and

consumption.

To characterize the optimal path of consumption and health care over the agent’s life-

time, it is necessary to determine the steady states where consumption, health care, health

deficits, and capital are constant. Although the steady state will only be reached for t→∞,
it is a meaningful goal if the survival function S is defined over an infinite time horizon.

Such an assumption, however, is not restrictive: in the survival literature, which typically

employs functions such as the exponential, the Weibull, and the Gompertz-Makeham dis-

tributions, the standard is to assume that surviving at very old ages is possible, but very

6For completeness, the conditions for existence and stability of a steady state in the case where U < 0

are reported in Appendix 7.3.
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unlikely. In other words, we take into account the (almost trivial) insight from gerontology

that “however old we are, our probability to die within the next hour is never equal to one”

(Jacquard, 1982).7 Accordingly, the realistic scenario of a finite but uncertain lifetime is

equivalent to assume that people face no predetermined time of death. Hence the following

Remark applies:

Remark 1 If the time of death is uncertain at all t, making plans for the future is always

optimal.

The above Remark implies that it is optimal to make plans for the future as if there is

a possibility that the time of death is infinitely far away (although death will surely occur

in finite time). This fundamentally changes the nature of the optimization problem, which

is no longer a free terminal time problem (of when to die) but the solution of adjustment

dynamics towards a state of constant health. We show below that it leads to fundamen-

tally different predictions. In particular, adjustment dynamics towards a steady state are

characterized by survival probability, health deficits, and health expenditure reaching a

plateau whereas if a steady state does not exist, survival probability, health deficits, and

health expenditure, increase exponentially with age for all ages until death. The existence

of a steady state allows to apply a new analytical method to obtain individual responses to

parameter changes (like prices of medical care or medical technology) at the steady state

and off the steady state. The feature that we can investigate adjustment dynamics off

the steady state is particularly useful for the problem at hand because, we argue, (most)

individuals are far off the steady state of constant health. Moreover, as we show below, the

model predicts a qualitative difference between short- and long-run responses to shocks.

For example, the model predicts that, as a response to a price increase of medical care,

medical expenditure declines in the short run and increases in the long run. In order to

obtain a conclusive picture on the impact of price changes it is thus essential to investigate

both short-run and long-run adjustment dynamics.

Using an approach often adopted in life cycle models, in the proceeding we assume q =

7All standard survival functions imply that, in principle, infinite life is allowed for, although it is likely

that such an event will occur with negligible probability. In addition to this mathematical and rather

obvious argument, from a more philosophical viewpoint one could claim that the fact that we have never

observed a human being living forever does not mean, per se, that human beings cannot reach immortality.

In fact, it is possible that we have not observed any human being living forever just because it is a very

unlikely event.
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r− ρ.8 The main consequence of this choice is that the Euler equation 17 for consumption

depends only on the elasticity of intertemporal substitution −Uc/(cUcc), on the endogenous

hazard rate Z(D) and on the dynamics of health deficits:

ċ

c
=

Uc
cUcc
Z (D) Ḋ. (20)

Note that, since Uc/(cUcc) < 0 and Z (D) > 0, consumption decreases (increases) when

health deficits increase (decrease).

Since equations 16 to 19 potentially allow for multiple steady states, we must establish

conditions under which they are appropriate end-points of the optimal consumption and

medical care paths.

We first consider existence of internal steady states, i.e. steady states in which the

level of health repair and health deficits is positive, which we denote as states of negligible

senescence:

Proposition 1 Consider the endogenous aging problem 7 to 10 and r = q + ρ. A steady

state of negligible senescence (hss, Dss, css, kss) satisfies

hss =

[
γµAZ (Dss)

pUc (css)

U (css)

(r − µ)

] 1
1−γ

(21)

r = q + ρ (22)

Dss = a+ A (hss)γ (23)

kss =
1

r
(phss + css − Y ) (24)

where hss, css > 0 and Dss ∈ (a,Dmax).

The restrictionDss < Dmax ≤ 1 distinguishes our paper from the literature (e.g. Strulik,

2015b). It highlights the existence of a state of negligible senescence that the individual will

eventually reach by optimally investing in health and slowing down the process of health

deficit accumulation.9

8In the literature on partial equilibrium life cyle models of intertemporal behavior it is common to focus

on an analogue condition (r = ρ). This implies focusing on Frisch demand functions where the marginal

utility of wealth is constant (see, e.g. Grossman, 1972, Heckman, 1974, 1976, Becker and Murphy, 1988,

Ried, 1998, and eq. 38 in the Appendix). This allows to abstract from the dynamics originated by changes

in individual wealth. Here we follow a similar approach.
9A corner steady state where health investment is nil and the individual remains in the best state of

health (D = a) always exists. If the corner solution has saddle point stability, and if the financial resources

available to the individual are large enough, it is admissible and reachable. If instead the corner steady

state is unstable (as in the parametric configurations used in the examples of this paper), it is never reached

unless D0 = a.
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For later reference, observe that the requirement of a positive level of health deficits

repair, hss > 0, implies the following:

Corollary 1 r > µ is a necessary condition for a steady state of negligible senescence to

exist.

Note that r > µ is a necessary but not sufficient condition for the existence of a state of

negligible senescence. The sufficient condition additionally requires that Dss < Dmax.10 If

the steady state exists, it is a meaningful long run goal if there exists a path of investment

(and consumption) trajectories that allows reaching it. Formally, this requires assessing

the asymptotic stability of the steady state and computing the determinant |J ss| of the

Jacobian matrix associated to the dynamic system 16, 18 and 19. This amounts to checking

the sign of:

|J ss| = µr (r − µ) (1−K) where K = − AγhγΦ

(1− γ)SUSDUcc
> 0. (25)

When |J ss| is negative, the steady state is a saddle point, which means that there exists

an optimal path of consumption and medical care that allows reaching a state of negligible

senescence. If, instead, |J | is positive, the steady state is unstable and therefore not

reachable.

Proposition 2 Consider r > µ and a steady state of negligible senescence. The steady

state is a saddle point if and only if K > 1.

We thus arrive at two qualitatively different cases of human aging: progressive senes-

cence and negligible senescence. These cases are illustrated in Figure 3. The difference

between the two panels is the level of medical technology A, which is lower in panel (a).

All parameter values of the numerical example are listed below the Figure. The interest

rate r is set to 6 percent, close to the estimated average of the real interest rate over the last

century (Jorda et al., 2019) and the natural rate of aging is set to 3 percent, close to em-

pirical estimates of the rate of aging (Mitnitski et al., 2002; Abeliansky and Strulik, 2018).

The value of the elasticity of intertemporal substitution is close to unity as suggested by

Chetty (2006), implying that the utility function is close to logarithmic, as it is set in many

calibration studies of dynamic models. The value of the exogenous probability of death has

10Existence and saddle point stability of a state of negligible senescence is possible if one allows for utility

functions to be negative. In such a case, as shown in the Appendix, the necessary condition for existence

is the opposite, i.e. r < µ.
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been proposed in calibrations of the perpetual youth model (Farmer, 2018). The implied

value of the time preference, of four percent, is in an empirical plausible range and supports

constant lifetime consumption, in line with empirical results on the age-consumption profile

of childless households (Browning and Ejrnaes, 2009). Other parameter values, however,

have no empirical justification. In particular, the medical parameter values γ and A are

much higher than those calibrated by Dalgaard and Strulik for an application of the health

deficit model for an average U.S. American in the year 2000 (where the steady state of

negligible senescence is unstable). The required high values for the medical parameters are

the main reason why we consider our approach as a “life cycle model for the future”. Our

ignorance about medical technology (or income) in the future prevents a full calibration of

the model for, for example, a representative American. We thus modestly address these

numerical representations of the model as examples or illustrations.

Panel (a) in Figure 3 shows a scenario of progressive senescence, which results when a

steady state of negligible senescence does not exist or is unstable and thus unreachable. As

shown by the thick line, the path of health deficits increases over time until it eventually

hits the upper bound D = Dmax.

Panel (b) shows the case in which a state of negligible senescence exists and is a sad-

dlepoint and thus reachable. Notice from 25 that this case comes into existence when the

level of medical technology A becomes sufficiently large. In principle, the steady state

can be approached from below or from above, depending on the initial level of deficits.

The case that better describes aging and health expenditure along the human life cycle

begins with initially low health deficits (of a young agent). Facing low deficits, the agent

spends most income on consumption goods, and little on medical care. This slows down

the process of deficit accumulation, although it does not reverse it. Deficits accumulate

over time progressively affecting the trade-off between consumption and medical care. As

a consequence, as the individual ages, medical care progressively increases, first at a slow

rate, and subsequently at a faster rate. When the level of health deficits further increases

and approaches the steady state, medical care reaches a plateau level. At the steady state

of negligible senescence, health deficits, the hazard rate and medical care level out. This

pattern is also shown, as a function of calendar time, by the solid lines of Figures 5 and

6. The predicted pattern of medical care expenditure and biological aging is remarkably

consistent with the observed patterns of increasing budget shares for medical care over the

lifetime (Banks et al, 2016), which reach a plateau at high ages above 85 (de Nardi et al.,

2016), and with the evidence on the dynamics of hazard rates observed in supercentenar-
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Figure 3: Progressive and negligible senescence: phase diagrams. Panel (a): Health investment

increases over time until health deficits eventually hit the maximum sustainable level Dmax. Panel (b):

Health investment increases over time until reaching a stationary level of health deficits. Thick blue

lines: optimal medical care; Thin black lines: nullclines ḣ = Ḋ = 0. For this and the subsequent figures

U (c) = c(t)1−σ

1−σ + b for the utility of consumption and S(D) = 1+α
1+αeφD

for biological aging, with µ = 3
100 ,

r = 3
50 , q = 1

50 , ρ = 1
25 , p = 1, Y = 1, σ = 9

10 , γ = 24
25 , α = 1

100 , φ = 4, η = 2, a = 0, b = 0, Dmax = 1 .

For panel (a): A = 1
4 ; for panel (b): A = 1

2

ians (Barbi et al., 2018). In particular, note that our model of deficit accumulation with

uncertain lifetime does not change the main predictions from the standard health deficit

model that medical care increases with age, a prediction in line with observable life time

pattern of medical care (e.g. Dalgaard and Strulik, 2014; Schünemann et al., 2017). The

main difference is that the realistic uncertain lifetime assumption allows to better capture

some end-of-life patterns that are empirically observed, in which medical care, consumption

and hazard rates reach a plateau in the long run.

The second approaching path depicted in panel (b) of Figure 3 is characterized by

an agent beginning her life being very unhealthy. In such a case, the level of health

deficits is larger than the steady state level, and it is necessary to reverse the process of

biological aging by spending most income on medical care and very little on consumption.

In terms of predictions, this would produce an odd pattern: medical care levels are so

high (and effective) that the process of biological aging is reversed and, despite the agent

becoming chronologically older, her body becomes biologically ’younger’. This paradoxical

result of decreasing health deficits and decreasing medical care is typically not observed,
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but it is a theoretical possibility that can emerge under the non trivial assumptions that

the medical technology is advanced enough and that there are no economic constraints,

including liquidity constraints.

The two simulated scenarios depicted in Figure 3 differ by the choice of the efficiency

parameter A. Progressive senescence results when A is low, while negligible senescence is

possible when A is high enough. This allows to highlight a direct path to life extension,

which is heavily discussed in medical science and gerontology: improvements in the repair

of health damages, achieved, for example, through elimination of damaged cells, telomerase

reactivation, or mitophagy (the removal of damaged mitochondria). While these therapeu-

tic strategies are not yet fully developed, it is likely that they will be available at some

point in the future. In section 5.3 we explore this possibility considering a scenario in which,

starting from a low level of medical efficiency, medical technology improves over time until

negligible senescence becomes feasible. This approach is consistent with the finding that

medical research on aging advanced greatly over the last 20 years. The biological mecha-

nisms of health deficit accumulation are now well understood and for most of the gateways

of bodily decay solutions have been suggested and explored in animal studies (See Lopez-

Otin et al., 2013, for a detailed discussion). The observation that natural scientists started

to envision the postponement of aging by health interventions, has motivated us to explore

the economic theory of health deficit accumulation in this direction.

4 Comparative dynamics: Formulas to compute the

response on impact and in the long run

In the previous section we have shown the conditions under which planning over a long

(eventually infinite) time horizon is meaningful. In this Section we show how to perform

comparative dynamics using our model of endogenous aging with uncertain lifetime. We

consider an unexpected permanent shock on a generic parameter ω and we investigate how

medical care and consumption are affected by changes in the economic and technological

environment.

A considerable advantage of our model is that it allows to study the determinants of

longevity analytically, without resorting to numerical simulations. Hence we can provide

general formulas for (i) the impulse response, i.e. the short run response of medical care at

the time of the shock, for given health condition D = D0, and (ii) the long run response,
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i.e. the change in the steady state medical care and health deficit accumulation.

To derive the change in medical care and the level of deficits at the steady state, we

implement the comparative dynamics procedure described in Dragone and Vanin (2015).

Essentially, it requires applying the implicit function theorem to the system of equations

16 to 18. Recall that J is the Jacobian matrix associated to 16 to 18 and define

Jh,ω ≡


∂ḣ
∂ω

∂ḣ
∂k

∂ḣ
∂D

∂k̇
∂ω

∂k̇
∂k

∂k̇
∂D

∂Ḋ
∂ω

∂Ḋ
∂k

∂Ḋ
∂D

 , JD,ω ≡


∂ḣ
∂h

∂ḣ
∂k

∂ḣ
∂ω

∂k̇
∂h

∂k̇
∂k

∂k̇
∂ω

∂Ḋ
∂h

∂Ḋ
∂k

∂Ḋ
∂ω

 . (26)

After a permanent shock on a general parameter ω, the steady state level of medical

care and health deficits change as follows (see Dragone and Vanin, 2015):

Lemma 2 (Long run response) After an unexpected permanent change in parameter ω,

the long run medical care and level of deficits change as follows:

hssω = −|Jh,ω|
|J |

, Dss
ω = −|JD,ω|

|J |
, (27)

where the determinants |J |, |Jh,ω| and |JD,ω| are computed at the steady state before the

shock takes place.

Given that |J | is negative because of saddlepoint stability, the sign of the response of

the steady state to a change in ω depends on the sign of the numerator of the two equations

in 27. As shown in the following sections, this task can be carried out easily. Assessing the

impulse response to a shock is more complicated, as in principle it requires knowing the

explicit expression of the policy function directed toward the steady state. Unless under

special circumstances, this expression is generally not available, which may explain why

impulse response analysis to shocks is often conducted through numerical simulations.

In the following Proposition we show that a numerical approach is not necessary to

study impulse response functions, as analytical sufficient conditions can be provided. The

advantage of our approach is that it does not require explicit knowledge of the saddle path

in closed form, nor it needs numerical simulations. In the realistic case where the initial

level of deficits is lower than the long-run level, the following holds:

Proposition 3 (Impulse response) After an unexpected permanent change in parame-

ter ω, the impulse response of medical care h0
ω is:

h0
ω = hssω − xDss

ω −
∫ Dss

D0

∂

∂ω

(
dĥ

dD

)
dD. (28)
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where x is the linearized slope of the policy function at the steady state and dĥ
dD

is the slope

of the policy function along the path to the steady state.

The following Corollary describes sufficient conditions under which a non-ambiguous

prediction on the impulse response can be made.

Corollary 2 (Sufficient conditions) On impact, after an exogenous permanent shock:

• Medical care increases if hssω − xDss
ω > 0 and ∂

∂ω

(
dĥ
dD

)
< 0 for all D ∈ (D0, D

ss) ;

• Medical care decreases if hssω − xDss
ω < 0 and ∂

∂ω

(
dĥ
dD

)
> 0 for all D ∈ (D0, D

ss).

Proposition 3 shows that assessing the impulse response of medical care to a parameter

change essentially requires knowing three bits of information: how steady state medical

care and health deficits respond to the shock, and how the slope of the policy function

changes. Information on the response of the steady state is obtained using Proposition

2; while information on the policy function is obtained by exploiting the time-elimination

method presented in Barro and Sala-i-Martin (1995). Essentially, it requires taking the

ratio ḣ/Ḋ using equations 16 and 18, and studying how the ratio changes when ω increases

(see the Appendix for details).

To understand equation 28, consider the simple case in which the steady state does not

change when perturbing ω. In such a case, the first two terms are zero. Hence, if medical

care becomes, say, more sensitive to changes in health deficits after the shock (i.e. the

policy function becomes more steep), on impact medical care is predicted to decrease.

Figure 4 shows the general case in which also the steady state shifts. The overall

response on impact is described by the vertical jump from the original saddle path (in

blue) to the new one (in red), as represented by the vertical distance between points A

and B. The impulse response depends on three terms. The first term hssω is the change in

medical care at the steady state (vertical distance between S ′ and G). The second term

xDss
ω represents how steady state medical care changes as a consequence of a change in the

steady state deficits (vertical distance between point G and H).11 The net effect of the first

and second term, represented by the vertical distance HS ′, describes the effect of the shock

on the extensive margin. The third term
∫ Dss
D0

∂
∂ω

(
dĥ
dD

)
represents the impact of the shock

11Point G is obtained by multiplying the change in the steady state level of deficits and the slope x of

the original policy function at the original steady state.
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on the intensive margin. Formally, it is described as the cumulative change in the slope

of the policy function over the interval [D0, Dss], and it can be computed as the difference

between two medical care ”gaps”. The first gap is FC, which measures the medical care

gap over the interval [D0, Dss] after the shock has occurred. The second gap is SE, which

measures the medical care gap over the interval [D0, Dss] before the shock has occurred.

x

A

B

S

S'

D0 Dss

h0

hss

C

E

F

G

H

.

Figure 4: Response of medical care to an exogenous shock. A: Initial point A; Original

steady state S; New steady state S′. Response on impact: Vertical distance AB; Response

of steady state medical care: vertical distance GS′; Response of steady state health deficits:

horizontal distance SG.

5 Studying the determinants of longevity

In the proceeding we study how two key determinants of longevity affect medical care

choices and the accumulation of health deficits. The first key determinant is the price (p)

of health care, which allows highlighting the role of a change in the relative price of medical

care with respect to consumption. The second one is the productivity (A) of medical care

in slowing down the process deficit accumulation. We will first consider the impact of

a one-off improvement in medical technology, and then consider an augmented model in

which medical technology is expected to improve over time and make negligible senescence

becomes feasible.
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5.1 Increasing medical care costs

In the following we consider the case in which medical care becomes more expensive. All

statements will be reversed in sign in case medical care becomes cheaper. Using the formulas

presented in the previous Section, the following holds for any utility function and survival

probability:12

Proposition 4 If medical care becomes more costly, medical care will be lower on impact,

but higher in the long run. Over the lifetime biological aging will be faster.
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Figure 5: More expensive medical care. Solid lines: initial time trajectories; Dashed lines: new time

trajectories after the price shock (from p = 1 to p = 1.1). Left panels: shock when young, central panels:

shock when middle-aged, right panels: shock when old. Parameters and functional forms as for Figure 3.

Adjustments after a price change can be decomposed into an immediate response as

jump from the old to the new saddlepath and a movement along the new saddlepath towards

12We consider the case in which the initial level of deficits is low and an internal steady state of negligible

senescence exists.
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the new steady state (see Figure 5). It is intuitive that individuals respond immediately

to increasing health care prices by demanding less health care. However, when individuals

demand less health care, they accumulate more health deficits and converge to a steady

state where health deficits are larger such that they demand more health care in the long-

run. Proposition 4 states that this is generally the case. The intuition is that health deficits

are self-productive (Dragone and Vanin, 2015), which means that an increase in deficits

speeds up the accumulation of further deficits. The immediate response to increasing health

care prices is to demand less health care. However, when individuals demand less health

care, they accumulate more health deficits and converge to a steady state where health

deficits are larger, such that in the long-run they demand more health care.

As an illustration of the results of Proposition 4, Figure 5 depicts the effect of 10%

increase in the cost of medical care (from p = 1 to p = 1.1) in three different scenarios:

when the agent is young, middle-aged or old (or, more precisely, when she has few, some,

or many deficits). With respect to Figure 3, now all graphs are represented as functions of

chronological age. This allows to emphasize that, although calendar and biological aging

(i.e. the level of health deficits accumulated at a certain age) are positively correlated, they

do not coincide, as shown in the panels in the last row .

In all scenarios, on impact medical care drops as a response to the higher price of medical

care, while consumption is not affected (since it depends only on the current level of health

deficits). As a consequence of the initial period of reduced health care, health deficits

accumulate at a faster rate. Over time, this will also drive medical care to increase and

consumption to decrease. In fact, the effects of more expensive medical care are persistent,

and the initially lower level of medical care is not compensated as the agent ages. Over the

long run the agent will still aim at a steady state of constant health-deficits and health care,

but such steady state features a higher level of deficits, it requires more health care, and it

is associated with a higher endogenous hazard rate and lower expected utility S(D)U(c).

Although the short and long run qualitative response is similar in all three scenarios,

the magnitude of the short run response of medical care differs: it is smaller when the agent

is young, and larger when she is old. This is not due to wealth or income considerations,

which are ruled out by the Frisch compensation, but due to the fact that optimal medical

care is more sensitive to the accumulation of deficits at higher level of deficits (see Figure 3).

Despite these quantitative differences in immediate response depending on age, individual

arrive at the same steady state. This implies that the price shock has about the same con-

sequences on health deficits in old age, irrespective of whether it was experienced in young,
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middle or old age. These results illustrate that it is important to consider and disentangle

short- and long-run responses on price shocks and they demonstrate the usefulness of the

here proposed method of analysis.

5.2 Improvements in medical technology

We next discuss the comparative dynamics of an improvement of medical technology. For-

mally, this can be investigated by considering the effect of an increase in A or in γ. The

former term refers to the general power of medical care in maintaining and repairing the

human body, while the latter one determines the degree of decreasing returns of health

care. In the following Proposition and in Figure 6 we focus on a one-shot increase in A.

We will then consider an augmented version of the model and allow for medical technology

to constantly improve over time.

Proposition 5 Suppose medical technology is good enough, γ > γA. After a positive shock

on medical technology, medical care will be higher on impact, but it will be lower in the long

run. Over the lifetime, biological aging will be slower.

Figure 6 shows the adjustment paths corresponding to an improvement in medical

technology. Similar to the case of a price shock, the qualitative response of medical care

does not depend on the timing of the technological shock. The magnitude of the short

run response depends on age: it is larger when the agent is old and has more deficits, and

smaller for the young and healthy agent. For an intuition of the adjustment dynamics it

may be helpful to recall that health deficits are a (slow-moving) state variable. At the point

of time when the individual experiences a positive shock of health technology, the state of

health is given and the individual responds to the improved efficiency of health care by

increasing medical care in the short run. The short run complementarity between medical

technology and medical care allows to persistently slow down the accumulation of deficits.

In the long run, both medical care and the level of deficits will be lower than they would be

without the technological improvement, and consumption will be higher. As consumption

will be higher and deficits lower at each point in time after the technology improvement,

the value of life increases.
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Figure 6: Better medical technology. Solid lines: initial time trajectories; Dashed lines: new time

trajectories after the technological improvement (from A = 0.5 to A = 0.55). Left panels: shock when

young, central panels: shock when middle-aged, right panels: shock when old. Parameters and functional

forms as for Figure 3.

5.3 Constant progress in medical technology

A crucial feature of the model presented in the previous sections is that medical technology

needs to be powerful enough to obtain a steady state of negligible senescence. We now

consider the case in which current medical technology is not yet sufficient to sustain a state

of negligible senescence but individuals can foresee that it will constantly improve over

time. Suppose, for example, that future medical efficiency will evolve over time according

to the following equation:

Ȧ = g
(
Â− A

)
, (29)

where Â is an upper bound for medical efficiency and the parameter g ∈ (0, 1) controls

the rate of medical progress. Let Ā denote the threshold level for medical technology

26



t
0.25

0.30

0.35

0.40

0.45

0.50

Medical technology A

t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Health deficits D

t

0.5

1.0

1.5

2.0

Medical care

t

0.30

0.35

0.40

0.45

Consumption

Figure 7: Constant medical progress. When medical technology is not efficient enough, progressive

senescence results, as described by the dashed (red) trajectories of health deficits and medical care. The

solid blue line represents the case in which, starting from a progressive senescence scenario (A0 = 1
4 ),

medical progress is expected to improve until negligible senescence becomes feasible (Â = 1
2 ). The two

scenarios have the same initial values of deficits, consumption and medical technology. Parameters and

functional forms as for Figure 3, g = 1
5 , Â = 1

2 .

above which a steady state of negligible senescence exists. The problem sketched above is

captured by the initial condition A(0) < Ā < Â, i.e. the initial medical technology is too

low to guarantee a steady state of negligible senescence, but it will improve over time until

eventually getting to a state where negligible senescence can be maintained.

Accordingly, we augment the endogenous aging problem 7 to 10 with dynamics of

medical progress 29. We consider the case r > µ, i.e. the case in which a saddle point

stable steady state can emerge, and we discuss the features of the solution by way of

a numerical example. In Figure 7, solid lines show the predicted time path of medical

technology, health deficits, medical care, and consumption for evolving medical technology.

For comparison, dashed lines show the solution of the same model for constant technology,

A = A0 for all t (this case corresponds to the one depicted in panel (a) of Figure 3). In this

case, there is no reachable steady state of negligible senescence and the problem requires

the transversality conditions to be fulfilled at finite time T̄ , when the agent dies. Thus,

27



dashed lines represent a solution of the original health deficit model (Dalgaard and Strulik,

2014; Strulik, 2015b).

When medical technology stays constant, health expenditure increases steeply, as pre-

dicted by the Dalgaard-Strulik model (lower left panel in Figure 7). Despite these health

investments, health deficits accumulate with increasing age in a quasi-exponential way

since medical technology is not good enough to stop the accumulation process (upper right

panel). The dashed time series end when health deficits reach the maximum sustainable

limit at Dmax and death is inevitable (although for most individuals death has stochastically

occurred before).

When medical technology is expected to improve over time and to eventually reach Â,

the individual knows that she needs to invest heavily in her health in order to increase

the probability to be still alive when the steady state of negligible senescence comes into

existence. In mid-age the agent thus invests more in health (lower left panel) although

medical technology is already much more efficient than the constant technology (upper left

panel). Eventually, spending as well as health deficit accumulation (upper right panel) slow

down and reach a plateau, as discussed for the benchmark model in the previous sections.

6 Conclusion

In this paper we have discussed optimal life cycle medical care in a model where individuals

do not know, nor plan, when they are going to die. Formally, we have shown that this can

be modeled by allowing infinite life to be a meaningful goal. While humankind had always

longed for transcending death, for most time in history these aspirations were confined to

religious beliefs and the afterlife. Now, in the 21st century, income and medical progress

have advanced far enough that natural scientists as well as philosophers discuss for the

first time seriously the possibilities and consequences of an infinite life on earth (Harari,

2016). Naturally, it are wealthy entrepreneurs who have the least problems in imagining

and aspiring (infinite) life extension, see Friend (2017). Here we integrated into a simple

life cycle model a gerontologically founded law of motion of human aging and showed that

a reachable steady state of infinite life requires that the rate of health deficit accumulation

falls short of the interest rate and that medical technology is good enough. The simple

model allows to assess the steady state’s characteristics and comparative dynamics analyt-

ically. We used this feature to discuss impulse responses to advances in medical technology

and increasing health care costs.
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The model conceptualizes biological aging as the accumulation of health deficits. Ad-

justment dynamics towards a steady state of constant health, Dss > D(0), are characterized

as the continuous repair of health deficits resulting from “natural aging”. This view is in

contrast to the conventional model of health capital accumulation (Grossman, 1972) but in

line with the notion of aging in modern gerontology. Our model with endogenous survival

probability model differs from the “perpetual youth” model of conventional macroeco-

nomics (Yaari, 1965) where people do not age and death occurs because of age-unrelated

background mortality. Our approach differs also from the conventional modeling of aging in

health economics where people either inevitably die by a finite T at the latest, or inevitably

live forever. In the standard model of health capital accumulation (Grossman, 1972) there

always exists a steady state of constant health such that individuals inevitably live for-

ever (Strulik, 2015a). The reason is that for a given rate of health capital depreciation δ,

individuals in bad health lose relatively little health, i.e. their health depreciation δH is

low when health capital H is low. This creates an equilibrating force and convergence to

a steady state of constant health. Typically, the health capital literature imposes a finite

time horizon T and thus enforces a finite life. In the health deficit model of Dalgaard and

Strulik (2014) a steady state of constant health exists not always but only for a favorable

constellation of parameters such as medical technology. So far, the health deficit literature

has focused on parameter constellations where the steady state does not exist and thus, by

design, it has also assumed a finite life.

In contrast, optimistic scholars such as de Grey (2013) conceptualize medical geron-

tology as the endeavor to repair bodily deficits, which, once it succeeds sufficiently well,

will end aging. Here we have proposed a simple model that integrates these ideas into an

economic life cycle theory for the future.
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7 Appendix

7.1 Transforming the objective function

To transform the expected intertemporal utility function into an intertemporal expected

utility function, exploit the definition of the expectation operator and the resulting double

integral:

Eg
[∫ T

0

e−ρtU (c) dt

]
=

∫ ∞
0

g (D,T )

(∫ T

0

e−ρtU (c) dt

)
dT

=

∫ ∞
0

e−ρtU (c)

(∫ ∞
t

g (D,T ) dT

)
dt

=

∫ ∞
0

e−ρtS (D, t)U (c) dt (30)

7.2 Proof of Proposition 1

When S (D, t) = e−qtS (D) , the agent’s objective function can be written as∫ ∞
0

e−(ρ+q)tS (D)U (c) dt.

We can therefore construct the associated current-value Hamiltonian function is:

H = S (D)U (c) + λḊ + ηk̇, (31)

where λ = λ (t) and η = η (t) are the costate variables associated with the dynamics

of health deficits and capital, respectively. The corresponding necessary conditions for an

internal solution read as (subscripts denote partial derivatives, the arguments are henceforth

omitted):

h∗ : Hh = 0 ⇔ λγµAhγ−1 = −pη (32)

c∗ : Hc = 0 ⇔ SUc = η, (33)

with η > 0 and λ ≤ 0. Concavity of the Hamiltonian function requires Ucc < 0, SDD < 0

and

Φ ≡ S2
DU

2
c − SUUccSDD < 0. (34)

Hence USDD < 0 is required for concavity.

For later reference, note that

∂c∗

∂D
= −SD

S

Uc
Ucc

= Z Uc
Ucc

(35)
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where

Z (D (t) , t) ≡ −SD (·)
S (·)

= −SD
S

> 0 (36)

From the first order conditions 32 and 33 we obtain the optimal value of medical care h

and consumption c as functions of the state variables, the costate variables and the survival

probability. Note that both optimal medical care and consumption do not directly depend

on capital, but they depend on its evolution through the shadow price η > 0. The necessary

conditions for the costate dynamics are

λ̇ = λ (ρ+ q)−HD = (ρ+ q − µ)λ− SDU (37)

η̇ = η (ρ+ q)−Hk = (ρ+ q − r) η (38)

plus the transversality condition limt→∞H (t) = 0. Differentiating 32 and 33 with respect

to time, and using 37 and 38 yields:

ḣ =
h

1− γ

(
r − µ− γµAhγ−1

p

U

Uc
Z
)

(39)

ċ = − Uc (c)

Ucc (c)

[
ρ+ q − r −ZḊ

]
(40)

Ḋ = µ (D − a− Ahγ) (41)

k̇ = rk + Y − ph− c. (42)

Using the definitions of exogenous and endogenous hazard rate the above system can equiv-

alently written as

ḣ =
h

1− γ

(
r − µ− γµA

p

U

Uc
Zhγ−1

)
(43)

ċ = − Uc
Ucc

(
r − ρ− q −ZḊ

)
(44)

Ḋ = µ (D − a− Ahγ) (45)

k̇ = rk + Y − ph− c, (46)

In the steady state(s) the above equations are equal to zero. Since γµA
p

U
Uc
Zhγ−1 > 0, a

necessary condition for an internal steady state to emerge is r > µ (eq. 43). Note also

that, when health deficits are constant over time (Ḋ = 0), then equation 44 is zero only

if r = ρ + q. In a macroeconomic framework one can reasonably assume that the interest

rate is a function of k, in which case the steady state is reached when r (k) = ρ+ q (as in a

Ramsey model). To retain the microeconomic flavour of this paper, we assume r = ρ + q.

As a consequence, the dynamics of consumption is determined by the dynamics of D, i.e.
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ċ = Uc
Ucc

(ZḊ), and the determinant of the following Jacobian matrix, when computed at

the steady state, is:

J0 =


∂Ḋ
∂D

∂Ḋ
∂k

∂Ḋ
∂h

∂Ḋ
∂c

∂k̇
∂D

∂k̇
∂k

∂k̇
∂h

∂k̇
∂c

∂ḣ
∂D

∂ḣ
∂k

∂ḣ
∂h

∂ḣ
∂c

∂ċ
∂D

∂ċ
∂k

∂ċ
∂h

∂ċ
∂c

 (47)

=


µ 0 −Aµγ (hss)γ−1 0

0 r −p −1

− γ
1−γ

A(hss)γµ
p

U
Uc
ZD 0 1

1−γ

(
r − µ− A(hss)γ−1µγ2

p
U
Uc
Z
)

A(hss)γµγ
p(1−γ)

UUcc−U2
c

U2
c
Z

µZ Uc
Ucc

0 (Ahγ−1µγ) Uc
Ucc
Z 0


However, the determinant of the above Jacobian is nil (|J0| = 0). Hence we exploit the

fact that consumption tracks health deficits to reduce the dimensionality of the problem.

Replacing c∗ = C (D) in 43, 45 and 46 yields:

Ḋ = µ (D − a− Ahγ) (48)˜̇k = rk + Y − ph− C (D) (49)˜̇h =
h

1− γ

(
r − µ− γµA

p

U (C (D))

Uc (C (D))
Zhγ−1

)
(50)

Note that, since there are three equations and four variables (h, c,D and k) , the steady

state of the Frisch problem is in principle indeterminate. This can be solved by assuming

that assets go to some non negative value in the infinite limit. Under this assumption it

is possible to pin down the life-cycle budget constraint (or, equivalently, η) and the steady

state value can be uniquely determined.

To obtain the steady state, set Ḋ = ˜̇k = ˜̇h = 0. When µ > r, there exists no internal

steady state. When instead µ < r, steady states can exist, depending on the functional

specifications and parameters. When an internal steady state exists, checking for sad-

dle point stability requires computing the 3 × 3 Jacobian matrix J at the steady state.

Exploiting the definitions of Φ and Z (eqs. 34 and 36) implies:

J =


∂Ḋ
∂D

∂Ḋ
∂k

∂Ḋ
∂h

∂
˜̇
k

∂D
∂
˜̇
k
∂k

∂
˜̇
k
∂h

∂
˜̇
h

∂D
∂
˜̇
h
∂k

∂
˜̇
h
∂h



=


µ 0 −Aγhγ−1µ

− Uc
Ucc
Z r −p

−Aγhγµ
1−γ

Φ
pS2UcUcc

0 1
1−γ

(
r − µ− Aµγ2hγ−1U

pUc
Z
)
 . (51)

32



The associated determinant is

|J | = rµ

1− γ

(
r − µ− AhγΦ− SUSDUcc

pS2UcUcc
Aµγ2hγ−1

)
. (52)

For saddlepoint stability, |J | < 0 must hold at the steady state. Replacing h = hss from

(21) and manipulating (52) yields

|J ss| = µr (r − µ) (1−K) (53)

where

K = − AγhγΦ

(1− γ)SUSDUcc
> 0 (54)

Hence |J ss| < 0 if and only if K > 1. When this is the case, the steady state is saddle point

stable and one eigenvalue associated with the 3×3 Jacobian matrix J ss, denoted with ε, is

negative. Let (x1, x2, x3) be the associated eigenvector at the steady state. Then the slope

of the policy function in the (D, h) space, in the neighborhood of the steady state, is

x ≡ x1

x3

=
µ− ε
γµA

(hss)1−γ > 0. (55)

This completes the proof of Proposition 1.

Note that expression 53 can be used to determine zones in the (D, h) space where an

internal steady state, if it exists, is saddle point stable (|J ss| < 0) . In the text and in

section 5.3 we refer to the role of medical technology A. Solve |J ss| = 0 for A and let Ā

be the largest of the two roots (the smaller root is negative). Then one can establish that

|J ss| < 0 if A > Ā.

7.3 Existence and stability of internal steady states for a negative

utility function

In the main text we normalize the utility after death to zero and consider the case of positive

utility values. However, existence of a steady state of negligible senescence is possible also

when U is negative. In fact, from (60), condition hss > 0 implies the following

Corollary 3 U (css) (r − µ) > 0 is a necessary condition for a steady state of negligible

senescence to exist.

Hence, with negative utility a necessary condition to hold is µ > r, which is the opposite

condition with respect to the case of positive utility. Suppose a steady state exists. It is

saddle point stable if

|J ss| = µr (r − µ) (1−K) < 0. (56)
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When U < 0, then K < 0 (see eq. 54) and the above condition is always satisfied. Hence

the following holds:

Proposition 6 Consider U < 0. If µ > r and conditions (21) to (24) hold, a steady state

of negligible senescence exists and is always saddle point stable. If µ < r, no steady state

of negligible senescence exists.

To sum up, the case in which the utility function has negative values is compatible with

existence of a reachable state of negligible senescence. This requires the force of aging being

larger than the interest rate (µ > r) and, for concavity to hold, a convex survival function,

so that U (c)SDD (D) < 0.

7.4 Proof of Proposition 3

To assess the impulse response to a generic parameter change, i.e. how the optimal path

of medical care ĥ leading to the steady state changes when the parameter ω changes, we

proceed in three steps.13 First, recall that the path of both optimal medical care and

optimal consumption converging to the steady state is in principle a function of the two

state variables D and k. Due to the Frisch compensation, however, ĥ depends on the state

variable variable D only, as it can be appreciated from inspection of 43. Using Taylor’s

rule to approximate the policy function in the neighborhood of the steady state, one can

write

ĥ (D) = hss + (D −Dss)x (57)

where x, defined in 55, is the slope in the (D, h) space of the eigenvector computed at the

steady state and associated with the negative eigenvalue of the Jacobian matrix (Dragone

and Vanin, 2015). From 55 and 26 it follows that

∂ĥ (Dss)

∂D
= x > 0. (58)

Second, using the time-elimination method (Barro, Sala-i-Martin, 1995), the slope of an

optimal trajectory in the phase diagram can be computed from the optimal dynamics of h

and D,
ḣ

Ḋ
=

dh
dt
dD
dt

=
dh

dD
. (59)

13Throughout the paper we maintain the assumption that the policy function is differentiable with

respect to the parameter of interest. This assumption turns out to be satisfied as there are no jumps in

the optimal path to the steady state.
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Graphically, this method allows studying the slope of the vectors represented in the phase

diagram. Hence, studying how this slope changes when perturbing parameter ω, i.e.
∂
∂ω

(
dh
dD

)
, provides qualitative information on how the slope of the optimal path changes

when ω changes. The result will depend on which portion of the phase diagram is con-

sidered. Since we are interested in the optimal path leading to the steady state, we will

restrict our attention to the portion of the phase diagram that contains the policy function

ĥ = ĥ (D) .

Third, the policy function ĥ = ĥ (D) must satisfy the following expression,

hss = h0 +

∫ Dss

D0

dĥ

dD
dD, (60)

where h0 is the optimal medical care when D = D0 and dĥ (D) /dD is the slope of the policy

function for each D along the optimal path starting at D0 and ending in Dss. Denote with

h0
ω the response on impact of the optimal medical care when parameter ω unexpectedly and

permanently changes, and take the derivative of 60 with respect to the generic parameter

ω. Applying Leibniz’s rule yields

hssω = h0
ω +Dss

ω

dĥ

dD |D=Dss

+

∫ Dss

D0

∂

∂ω

(
dĥ

dD

)
dD. (61)

Replacing dĥ/dD = x in the second term of 61 and rearranging yields Proposition 3.

7.5 Solution using a CES utility function

Using a CES utility function

U (c) =
c (t)1−σ

1− σ
+ b for σ 6= 1, (62)

and the survival function

S(D) =
1 + α

1 + αeφD
, (63)

the optimal agent’s choices are

h∗ =

(
−µγA

p

λ

η

) 1
1−γ

(64)

c∗ =

(
1

η

1 + α

1 + αeφD

) 1
σ

. (65)
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When c = c∗ and h = h∗, the optimal dynamics are

ḣ =
h∗

1− γ

(
r − µ− Aµγc∗ (h∗)γ−1

p (1− σ)

αφeφD

1 + αeφD

)
(66)

ċ = −c
∗

σ

αφeφD

1 + αeφD
Ḋ (67)

Ḋ = µ (D − a− A (h∗)γ) (68)

k̇ = rk + Y − ph∗ − c∗. (69)

Internal steady states satisfy the following conditions:

hss =

[
p (1− σ)

Aµγcss
1 + αeφD

ss

αφeφDss
(µ− r)

] 1
γ−1

(70)

css =

(
1

η

1 + α

1 + αeφDss

) 1
σ

(71)

Dss = a+ A (hss)γ (72)

kss =
1

q + ρ
(phss + css − Y ) . (73)

7.6 Proof of Proposition 4

Using 26 we can compute the long run change in medical care and deficits as follows

∂hss

∂p
b(hss,Dss) = −rµ

2Z
p2|J |

γ

1− γ
U

Uc
A (hss)γ > 0 (74)

∂Dss

∂p
b(hss,Dss) = γA (hss)γ−1 ∂h

ss

∂p
> 0. (75)

Exploiting the fact that x = µ−ε
γµA

(hss)1−γ > 0 yields the value of the first two terms of

equation 28

hssp − xDss
p b(hss,Dss) = −εµrZ

p2|J |
γ

1− γ
U

Uc
A (hss)γ < 0. (76)

The integrand of the third term of equation 28 is

∂

∂p

(
dĥ

dD

)
=

∂

∂p

(
ḣ

Ḋ

)
=

µZ
p2Ḋ

γ

1− γ
U

Uc
Ahγ > 0. (77)

Since Ḋ > 0 when D0 < Dss, the above expression is positive. Hence, using equation 28,

the sign of h0
p is negative.
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7.7 Proof of Proposition 5

Using 26 we can compute the long run change in medical care and deficits as follows

hssA b(hss,Dss) = −rµ
2Z

p2|J |
γ

1− γ
U

Uc
A (hss)γ > 0 (78)

Dss
A b(hss,Dss) =

µ (r − µ) r

(1− γ) |J |
(hss)γ < 0. (79)

Since x > 0, the following holds:

hssA − xDss
A > 0. (80)

To assess the change in the slope of the policy function compute

∂

∂A

(
dĥ

dD

)
=

∂

∂A

(
ḣ

Ḋ

)
=

µ(
Ḋ
)2

(1− γ)

hp (r − µ)Uc − (D − a)µγUZ
pUc

hγ, (81)

whose sign is in general ambiguous. Defining

γ̄A =
(r − µ)hp

(D − a)µZ
Uc
U
> 0 (82)

then one can rewrite 81 as

∂

∂A

(
dĥ

dD

)
= − µ (r − µ)

(Ḋ)2 (1− γ)

γ − γA
γA

hγ+1. (83)

If γ > γ̄A, then ∂
∂A

(
dĥ
dD

)
< 0 and the sign of h0

A is positive.

Alternatively, 81 can be written as

∂

∂A

(
dĥ

dD

)
=

µ (r − µ)

(Ḋ)2 (1− γ)

π − πA
π

hγ+1 (84)

where π = cUc/U > 0 denotes the elasticity of consumption and

πA =
c (D − a)µγZ
hp (r − µ)

> 0 (85)

Hence, an alternative sufficient condition for ∂
∂A

(
dĥ
dD

)
< 0 (and, consequently, h0

A > 0) is

that the elasticity of consumption is lower than πA.
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