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Rate of convergence for Wong-Zakai-type

approximations of Itô stochastic differential equations

Bilel Kacem Ben Ammou∗ Alberto Lanconelli†

Abstract

We consider a class of stochastic differential equations driven by a one di-

mensional Brownian motion and we investigate the rate of convergence for Wong-

Zakai-type approximated solutions. We first consider the Stratonovich case, ob-

tained through the point-wise multiplication between the diffusion coefficient and

a smoothed version of the noise; then, we consider Itô equations where the diffu-

sion coefficient is Wick-multiplied by the regularized noise. We discover that in

both cases the speed of convergence to the exact solution coincides with the speed

of convergence of the smoothed noise towards the original Brownian motion. We

also prove, in analogy with a well known property for exact solutions, that the so-

lutions of approximated Itô equations solve approximated Stratonovich equations

with a certain correction term in the drift.

Key words and phrases: stochastic differential equations, Wong-Zakai theorem, Wick
product

AMS 2000 classification: 60H10; 60H30; 60H05

1 Introduction and statement of the main results

From a modeling point of view, the celebrated Wong-Zakai theorem [24],[25] provides
a crucial insight in the theory of stochastic differential equations. It asserts that the
solution {X(n)

t }t∈[0,T ] of the random ordinary differential equation

dX
(n)
t

dt
= b(t, X

(n)
t ) + σ(t, X

(n)
t ) · dB

(n)
t

dt
, (1.1)

where {B(n)
t }t∈[0,T ] is a suitable smooth approximation of the Brownian motion {Bt}t∈[0,T ],

converges in the mean, as n goes to infinity, to the solution of the Stratonovich stochastic
differential equation (SDE, for short)

dXt = b(t, Xt)dt+ σ(t, Xt) ◦ dBt. (1.2)
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At a first sight, it may look a bit surprising the fact that the sequence {X(n)
t }t∈[0,T ] does

not converge to the Itô’s interpretation of the corresponding stochastic equation, i.e.

dXt = b(t, Xt)dt+ σ(t, Xt)dBt. (1.3)

What makes the sequence {X(n)
t }t∈[0,T ] prefer to converge to the Stratonovich SDE (1.2)

instead of the Itô SDE (1.3) is the presence of the point-wise product · appearing in (1.1)
between the diffusion coefficient σ and the smoothed noise. In fact, Hu and Øksendal
[14] proved, when the diffusion coefficient is linear, that the solution of

dY
(n)
t

dt
= b(t, Y

(n)
t ) + σ(t)Y

(n)
t ⋄ dB

(n)
t

dt
, (1.4)

where ⋄ stands for the Wick product, converges as n goes to infinity to the solution of
the Itô SDE

dYt = b(t, Yt)dt+ σ(t)YtdBt. (1.5)

Along this direction, Da Pelo et al. [5] introduced a family of products interpolating be-
tween the point-wise and Wick products and proved convergence for Wong-Zakai-type
approximations toward stochastic differential equations where the stochastic integrals
are defined via suitable evaluation points in the Riemann sums.
Approximation procedures based on Wong-Zakai-type theorems have attracted the at-
tention of several authors. First of all, Stroock and Varadhan [22] proved the multidi-
mensional version of the Wong-Zakai theorem. Then, generalizations to SDEs driven
by different type of noises and to stochastic partial differential equations have been the
most investigated directions. For instance, Konecny [17] proved a Wong-Zakai-type the-
orem for one-dimensional SDEs driven by a semimartingale, Gyon̈gy and G. Michaletzky
[6] considered δ-martingales while Naganuma [20] examined the case of Gaussian rough
paths. In the theory of stochastic partial differential equations, Hairer and Pardoux [9]
proved a version of the Wong-Zakai theorem for one-dimensional parabolic nonlinear
stochastic PDEs driven by space-time white noise utilizing the recent theory of regular-
ity structures; Brezniak and Flandoli [2] proved almost sure convergence to the solution
to a Stratonovich stochastic partial differential equation; Tessitore and Zabczyk [23] ob-
tained results on the weak convergence of the laws of the Wong-Zakai approximations
for stochastic evolution equations. We also mention that Londono and Villegas [19] pro-
posed to use a Wong-Zakai type approximation method for the numerical evaluation of
the solutions of SDEs.
The aim of the present paper is to compare the rate of convergence for approximations
of Stratonovich and Itô quasi-linear SDEs and to investigate whether the connection
between exact solutions of the two different interpretations can be restored for the cor-
responding approximating sequences (see the discussion after Corollary 1.6 below).

We remark that the rate of convergence for Wong-Zakai approximations, in the
Stratonovich case, has been already investigated by other authors. We recall Hu and
Nualart [13] dealing with almost sure convergence in Hölder norms; Hu, Kallianpur and
Xiong [12] studying approximations for the Zakai equation and Gyongy and Shmatkov
[7] and Gyongy and Stinga [8] treating general linear stochastic partial differential equa-
tions. We also refer the reader to the book by Hu [11] where Wong-Zakai approximations
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are considered in the framework of Euler-Maruyama discretization schemes.We will dis-
cuss in Remark 1.4 below the details of the comparison between our convergence rate
for Stratonovich equations and the one in [11].

While Wong-Zakai-type theorems for Stratonovich SDEs have been largely investi-
gated, approximations for Itô SDEs are very rare in the literature. In fact, as the paper
by Hu and Øksendal shows, to recover the Itô interpretation of the SDE one has to deal
with the Wick product and in most cases this multiplication is not easy to handle. This
is the reason why we focus on equations with linear diffusion coefficient (it is in fact not
known whether the fully non linear version of (1.4) admits a solution [14]). Nevertheless,
to find the speed of convergence of the approximation to the solution of the Itô equation,
we had to utilize some tools from the Malliavin calculus (see Lemma 3.5 below). The
present paper can be considered as a continuation of the work presented in Da Pelo et
al. [5], where the issue of the rate of convergence has not been studied.
To state our main results we briefly describe our framework. Let (W,A, µ) be the classi-
cal Wiener space over the time interval [0, T ], where T is an arbitrary positive constant,
and denote by {Bt}t∈[0,T ] the coordinate process, i.e.

Bt : W → R

ω 7→ Bt(ω) = ω(t).

By construction, the process {Bt}t∈[0,T ] is, under the measure µ, a one dimensional Brow-
nian motion. We now introduce a smooth (continuously differentiable) approximation of
{Bt}t∈[0,T ] by means of a kernel satisfying certain technical assumptions. In the sequel,
the symbol |f | will denote the norm of f ∈ L2([0, T ]) while ‖X‖p will denote the norm
of X ∈ Lp(W,µ) for any p ≥ 1.

Assumption 1.1 For any ε > 0 let Kε : [0, T ]
2 → R be such that

• the function t 7→ Kε(t, s) belongs to C1([0, T ]) for almost all s ∈ [0, T ];

• the functions s 7→ Kε(t, s) and s 7→ ∂tKε(t, s) belong to L2([0, T ]) for all t ∈ [0, T ].

Moreover, we assume that

lim
ε→0+

sup
t∈[0,T ]

|Kε(t, ·)− 1[0,t](·)| = 0 (1.6)

and

M := sup
ε>0

sup
t∈[0,T ]

|Kε(t, ·)| < +∞.

Now, if we let

Bε
t :=

∫ T

0

Kε(t, s)dBs, t ∈ [0, T ],

and recall that Bt =
∫ T

0
1[0,t](s)dBs, then Assumption 1.1 implies that {Bε

t }t∈[0,T ] is a
continuosly differentiable Gaussian process and that Bε

t converges to Bt in L2(W,µ)
uniformly with respect to t ∈ [0, T ]. In fact, condition (1.6) is equivalent to

lim
ε→0+

sup
t∈[0,T ]

‖Bε
t − Bt‖2 = 0.
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Therefore, we deal with a quite general class of smooth approximations of the Brownian
motion {Bt}t≥0. In the sequel we will be studying SDEs of the type (1.5) both in the
Stratonovich and Itô senses. We now state the assumptions on the coefficients b and σ
which are supposed to be valid for the rest of the present paper.

Assumption 1.2 There exist two positive constants C1 and C2 such that for all t ∈
[0, T ] and x, y ∈ R one has

|b(t, x)− b(t, y)| ≤ C1|x− y| and |b(t, x)| ≤ C2(1 + |x|). (1.7)

Moreover, the function σ belongs to L∞([0, T ]).

For f ∈ L2([0, T ]) we denote

E(f) := exp

{
∫ T

0

f(s)dBs −
1

2

∫ T

0

f 2(s)ds

}

and we call it stochastic exponential. The set {E(f), f ∈ L2([0, T ])} turns out to be total
in Lp(W,µ) for any p ≥ 1. Given f, g ∈ L2([0, T ]), the Wick product of E(f) and E(g) is
defined to be

E(f) ⋄ E(g) := E(f + g).

This multiplication can be extended by linearity and density to an unbounded bilinear
form on a proper subset of Lp(W,µ)× Lp(W,µ) (see Holden et al. [10] and Janson [15]
for its connection to Itô-Skorohod integration theory). For g ∈ L2([0, T ]) we also define
the translation operator Tg as the operator that shifts the Brownian path by the function
∫ ·

0
g(s)ds; more precisely, the action of Tg on stochastic exponentials is given by

TgE(f) := E(f) · exp{〈f, g〉}.

where 〈·, ·〉 denotes the inner product in L2([0, T ]) (see Holden et al. [10] and Janson
[15] for details).
We are now ready to state the first two main theorems of the present paper. The proofs
are postponed to Section 2 and Section 3, respectively.

Theorem 1.3 Let {Xt}t∈[0,T ] be the unique solution of the Stratonovich SDE

dXt = b(t, Xt)dt+ σ(t)Xt ◦ dBt, t ∈]0, T ] X0 = x (1.8)

and for any ε > 0 let {Xε
t }t∈[0,T ] be the unique solution of

dXε
t

dt
= b(t, Xε

t ) + σ(t)Xε
t ·

dBε
t

dt
, Xε

0 = x. (1.9)

Then, for any p ≥ 1 there exists a positive constant C (depending on p, |x|, T , C1, C2

and M) such that for any q greater than p

sup
t∈[0,T ]

‖Xε
t −Xt‖p ≤ C · Sq

(

sup
t∈[0,T ]

|Kε(t, ·)− 1[0,t](·)|
)

(1.10)

where

Sq(λ) := λ exp
{

qλ2
}

+ exp{λ2/2} − 1, λ ∈ R (1.11)
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Remark 1.4 In Theorem 11.6 of [11] it is proved that

∥

∥

∥
sup

t∈[0,T ]

|Xπ
t −Xt|

∥

∥

∥

p
≤ Cp,T (log |π|)2|π|

1
2
+ 1

log |π| (1.12)

where π is a partition of the interval [0, T ], |π| denotes the mesh of the partition π and
{Xπ

t }t∈[0,T ] stands for the solution of

dXπ
t

dt
= b(t, Xπ

t ) + σ(t, Xπ
t ) ·

dBπ
t

dt
,

with {Bπ
t }t∈[0,T ] being the polygonal approximation of {Bt}t∈[0,T ] associated to the par-

tition π. The above result is stated and proved for general nonlinear systems of SDEs
driven by a multidimensional Brownian motion. Moreover, the topology utilized in (1.12)
is stronger than the one in (1.10) (where the supremum is outside of the Lp(W,µ)-norm).
It is not difficult to see that the polygonal approximation {Bπ

t }t∈[0,T ] is included in the
family of approximations {Bε

t }t∈[0,T ] considered in the present paper (the parameter ε
reduces to the mesh of the partition |π|) and in that case we get

sup
t∈[0,T ]

‖Bπ
t − Bt‖2 = sup

t∈[0,T ]

|K|π|(t, ·)− 1[0,t](·)| = C
√

|π|.

Substituting in (1.10) we obtain

sup
t∈[0,T ]

‖Xπ
t −Xt‖p ≤ C · Sq(C

√

|π|)

which behaves like
√

|π| for |π| going to zero. A comparison with (1.12) shows that
Theorem 1.3 provides a highest rate of convergence, at the price of a weaker topology
and more restrictive conditions on the class of the SDEs considered.
The result and proof of Theorem 1.3 are however necessary for the comparison proposed
in the present paper.

Theorem 1.5 Let {Yt}t∈[0,T ] be the unique solution of the Itô SDE

dYt = b(t, Yt)dt+ σ(t)YtdBt, t ∈]0, T ] Y0 = x (1.13)

and for any ε > 0 let {Y ε
t }t∈[0,T ] be the unique solution of

dY ε
t

dt
= b(t, Y ε

t ) + σ(t)Y ε
t ⋄ dBε

t

dt
, Y ε

0 = x. (1.14)

Then, for any p ≥ 1 there exists a positive constant C (depending on p, |x|, T , C1, C2

and M) such that for any q greater than p

sup
t∈[0,T ]

‖Y ε
t − Yt‖p ≤ C · Sq

(

√
2 sup
t∈[0,T ]

|Kε(t, ·)− 1[0,t](·)|
)

where S is the function defined in (1.11).
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Corollary 1.6 In the notation of Theorem 1.3 and Theorem 1.5, we have for any p ≥ 1
that

lim
ε→0+

sup
t∈[0,T ]

‖Xε
t −Xt‖p = lim

ε→0+
sup

t∈[0,T ]

‖Y ε
t − Yt‖p = 0

where both limits have rate of convergence of order

sup
t∈[0,T ]

|Kε(t, ·)− 1[0,t](·)| as ε tends to zero.

Proof. It follows from

lim
λ→0+

Sq(λ)

λ
= 1. (1.15)

for all q ≥ 1.

It is well known (see for instance Karatzas and Shreve [16]) that the Itô SDE (1.13) can
be reformulated as the Stratonovich SDE

dYt =

(

b(t, Yt)−
1

2
σ(t)Yt

)

dt+ σ(t)Yt ◦ dBt, t ∈]0, T ] Y0 = x. (1.16)

The next theorem provides a similar representation for the approximated Itô equation
(1.14) in terms of a suitable approximated Stratonovich equation. The proof can be
found in Section 4.

Theorem 1.7 For any ε > 0 let {Y ε
t }t∈[0,T ] be the unique solution of

dY ε
t

dt
= b(t, Y ε

t ) + σ(t)Y ε
t ⋄ dBε

t

dt
, Xε

0 = x.

Then, for any t ∈ [0, T ] we have

Y ε
t = T−Kε(t,·)S

ε
t , (1.17)

where {Sε
t }t∈[0,T ] is the unique solution of

dSε
t

dt
= b(t, Sε

t ) +
1

2

d|Kε(t, ·)|2
dt

· Sε
t + σ(t)Sε

t ·
dBε

t

dt
, Sε

0 = x.

The paper is organized as follows: Section 2 and Section 3 are devoted to the proofs of
Theorem 1.3 and Theorem 1.5, respectively. Both sections also contain some preliminary
results and estimates utilized in the proofs of the main results, which are divided in two
major steps. Section 4 contains two different proofs of Theorem 1.7, the second one
being a direct verification of the identity (1.17).
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2 Proof of Theorem 1.3

2.1 Auxiliary results and remarks: Stratonovich case

The proof of Theorem 1.3 will be carried for the simplified equation where b does not
depend on t and σ is identically equal to one. Straightforward modifications will lead to
the general case.
The existence and uniqueness for the solutions of (1.9) and (1.8) follow, in view of
Assumption 1.1 and Assumption 1.2, by standard results in the theory of stochastic and
ordinary differential equations. We also refer the reader to Theorem 5.5 in [5] for a proof
using the techniques adopted in this paper. To ease the notation we define

Eε(t) := exp{δ(−Kε(t, ·))} and E0(t) := exp{δ(−1[0,t](·))}.

Here and in the sequel the symbol δ(f) stands for
∫ T

0
f(s)dBs. We begin by observing

that (see the proof of Theorem 5.5 in [5]) the solution {Xε
t }t∈[0,T ] from Theorem 1.3 can

be represented as

Xε
t = Zε

t ·Eε(t)
−1

where

dZε
t

dt
= b(Zε

t · E−1
ε (t)) ·Eε(t), Zε

0 = x.

The same holds true for {Xt}t∈[0,T ]; more precisely,

Xt = Zt · E0(t)
−1

where

dZt

dt
= b(Zt · E−1

0 (t)) · E0(t), Z0 = x.

Moreover, we have the estimates

|Zε
t | ≤ |x|+

∫ t

0

|b(Zε
s · Eε(s)

−1) · Eε(s)|ds

≤ |x|+
∫ t

0

C2

(

1 + |Zε
s · Eε(s)

−1|
)

· Eε(s)ds

= |x|+
∫ t

0

C2Eε(s)ds+

∫ t

0

C2|Zε
s |ds

≤ |x|+
∫ T

0

C2Eε(s)ds+

∫ t

0

C2|Zε
s |ds.

By the Gronwall inequality,

|Zε
t | ≤

(

|x|+
∫ T

0

C2Eε(s)ds

)

eC2t.

This shows that for any q ≥ 1 we have the bound
∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Zε
t |
∥

∥

∥

∥

∥

q

≤
(

|x|+
∫ T

0

C2‖Eε(s)‖qds
)

eC2T
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=

(

|x|+
∫ T

0

C2 exp
{q

2
|Kε(s, ·)|2

}

ds

)

eC2T

≤
(

|x|+ C2T exp

{

q

2
sup

s∈[0,T ]

|Kε(s, ·)|2
})

eC2T . (2.1)

To prove Theorem 1.3 we need the following estimate which is of independent interest.

Proposition 2.1 Let f, g ∈ L2([0, T ]). Then, for any p ≥ 1 we have

‖ exp{δ(f)} − exp{δ(g)}‖p ≤ CSp(|f − g|)

where

Sp(λ) := λ exp
{

pλ2
}

+ exp{λ2/2} − 1, λ ∈ R

and C is a constant depending on p and |g|.

Proof. The proof involves few notions of Malliavin calculus. We refer the reader
to the books of Nualart [21] and Bogachev [1]. Let f ∈ L2([0, T ]) and p ≥ 1; then,
according to the Poincaré inequality (see Theorem 5.5.11 in Bogachev [1]), we can write

‖ exp{δ(f)} − 1‖p ≤ ‖ exp{δ(f)} − E[exp{δ(f)}]‖p + |E[exp{δ(f)}]− 1|
= ‖ exp{δ(f)} − exp{|f |2/2}]‖p + exp{|f |2/2} − 1

≤ C(p)
∥

∥|D exp{δ(f)}|L2([0,T ])

∥

∥

p
+ exp{|f |2/2} − 1

= C(p)
∥

∥| exp{δ(f)}f |L2([0,T ])

∥

∥

p
+ exp{|f |2/2} − 1

= C(p)|f |‖ exp{δ(f)}‖p + exp{|f |2/2} − 1

= C(p)|f | exp
{p

2
|f |2
}

+ exp{|f |2/2} − 1

where D denotes the Malliavin derivative and C(p) is a positive constant depending only
on p. Therefore, for any f, g ∈ L2([0, T ]) and p ≥ 1 we have

‖ exp{δ(f)} − exp{δ(g)}‖p = ‖ exp{δ(g)} (exp{δ(f − g)} − 1) ‖p
≤ ‖ exp{δ(g)}‖2p‖ exp{δ(f − g)} − 1‖2p
≤ ep|g|

2 (C(2p)|f − g| exp
{

p|f − g|2
}

+ exp{|f − g|2/2} − 1
)

≤ CSp(|f − g|)

where we utilized the Hölder inequality.

2.2 Proof of Theorem 1.3

The proof is divided in two steps.

Step one: We prove that for any p ≥ 1 there exists a positive constant C (depending
on p, |x|, T , C1, C2 and M) such that for any q greater than p

∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Zε
t − Zt|

∥

∥

∥

∥

∥

p

≤ C · Sq

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

(2.2)
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We begin by using the equations solved by Zε
t and Zt and the assumptions on b to get

|Zε
t − Zt| =

∣

∣

∣

∫ t

0

b(Zε
sEε(s)

−1)Eε(s)ds−
∫ t

0

b(ZsE0(s)
−1)E0(s)ds

∣

∣

∣

≤
∣

∣

∣

∫ t

0

b(Zε
sEε(s)

−1)Eε(s)− b(ZsE0(s)
−1)Eε(s)ds

∣

∣

∣

+
∣

∣

∣

∫ t

0

b(ZsE0(s)
−1)Eε(s)− b(ZsE0(s)

−1)E0(s)ds
∣

∣

∣

≤
∫ t

0

|b(Zε
sEε(s)

−1)− b(ZsE0(s)
−1)|Eε(s)ds

+

∫ t

0

|b(ZsE0(s)
−1)||Eε(s)− E0(s)|ds

≤
∫ t

0

C1|Zε
sEε(s)

−1 − ZsE0(s)
−1|Eε(s)ds

+

∫ t

0

C2(1 + |ZsE0(s)
−1|)|Eε(s)− E0(s)|ds

≤ C1

∫ t

0

|Zε
sEε(s)

−1 − ZsEε(s)
−1|Eε(s) + |ZsEε(s)

−1 − ZsE0(s)
−1|Eε(s)ds

+C2

∫ t

0

(1 + |Zs|E0(s)
−1)|Eε(s)−E0(s)|ds

= C1

∫ t

0

|Zε
s − Zs|ds+ C1

∫ t

0

|Zs||Eε(s)
−1 −E0(s)

−1|Eε(s)ds

+C2

∫ t

0

(1 + |Zs|E0(s)
−1)|Eε(s)−E0(s)|ds

≤ C1

∫ t

0

|Zε
s − Zs|ds+ C1

∫ T

0

|Zs||Eε(s)
−1 − E0(s)

−1|Eε(s)ds

+C2

∫ T

0

(1 + |Zs|E0(s)
−1)|Eε(s)− E0(s)|ds

= Λε + C1

∫ t

0

|Zε
s − Zs|ds

where

Λε := C1

∫ T

0

|Zs||Eε(s)
−1 − E0(s)

−1|Eε(s)ds

+C2

∫ T

0

(1 + |Zs|E0(s)
−1)|Eε(s)−E0(s)|ds.

By the Gronwall inequality we deduce that

|Zε
t − Zt| ≤ Λεe

C1t, t ∈ [0, T ]

and hence for p ≥ 1 the inequality
∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Zε
t − Zt|

∥

∥

∥

∥

∥

p

≤ eC1T‖Λε‖p.
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We now estimate ‖Λε‖p by writing Λε = Λ1
ε + Λ2

ε where

Λ1
ε := C1

∫ T

0

|Zs||Eε(s)
−1 − E0(s)

−1|Eε(s)ds

and

Λ2
ε := C2

∫ T

0

(1 + |Zs|E0(s)
−1)|Eε(s)−E0(s)|ds.

Applying the triangle and Hölder inequalities we get

‖Λ1
ε‖p ≤ C1

∫ T

0

‖|Zs||Eε(s)
−1 −E0(s)

−1|Eε(s)‖pds

≤ C1

∫ T

0

‖Zs‖p1‖Eε(s)
−1 − E0(s)

−1‖p2‖Eε(s)‖p3ds

where p1, p2, p3 ∈ [1,+∞[ satisfy 1
p1

+ 1
p2

+ 1
p3

= 1
p
. From the estimate (2.1) and the

identity

‖Eε(s)‖p3 = exp
{p3
2
|Kε(s, ·)|2

}

we can write

‖Λ1
ε‖p ≤ C

∫ T

0

‖Eε(s)
−1 − E0(s)

−1‖p2ds

where C denotes a positive constant depending on C1, C2, |x|, T , p and M (in the sequel
C will denote a generic constant, depending on the previously specified parameters,
which may vary from one line to another). Moreover, employing Proposition 2.1 with
f(·) = Kε(s, ·) and g(·) = 1[0,s](·) we conclude that

‖Λ1
ε‖p ≤ C

∫ T

0

Sp2(|Kε(s, ·)− 1[0,s](·)|)ds

≤ C · Sp2

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

. (2.3)

Note that for any p ≥ 1 the function λ 7→ S(λ) is increasing on [0,+∞]. Let us now
consider Λ2

ε; if we apply one more time the triangle and Hölder inequalities, then we get

‖Λ2
ε‖p ≤ C2

∫ T

0

‖(1 + |Zs|E0(s)
−1)|Eε(s)−E0(s)|‖pds

≤ C2

∫ T

0

‖1 + |Zs|E0(s)
−1‖q1‖Eε(s)− E0(s)‖q2ds

≤ C2

∫ T

0

(1 + ‖|Zs|E0(s)
−1‖q1)‖Eε(s)− E0(s)‖q2ds

where q1, q2 ∈ [1,+∞[ satisfy 1
q1
+ 1

q2
= 1

p
. We observe that

1 + ‖|Zs|E0(s)
−1‖q1 ≤ 1 + ‖Zs‖r1 · ‖E0(s)

−1‖r2 (2.4)
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where 1
q1

= 1
r1
+ 1

r2
and that, according to estimate (2.1), the right hand side of (2.4) is

bounded uniformly in s ∈ [0, T ] by a constant C depending on C1, C2, |x|, T , p and M .
Therefore,

‖Λ2
ε‖p ≤ C · Sq2

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

. (2.5)

Here we utilized Proposition 2.1 with f(·) = −Kε(s, ·) and g(·) = −1[0,s](·). Finally,
combining (2.3) with (2.5) we obtain

∥

∥

∥

∥

∥

sup
t∈[0,T ]

|Zε
t − Zt|

∥

∥

∥

∥

∥

p

≤ C · Sp

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|2
)

.

Step two: We prove that for any p ≥ 1 there exists a positive constant C (depending
on p, |x|, T , C1, C2 and M) such that for any q greater than p

sup
t∈[0,T ]

‖Xε
t −Xt‖p ≤ C · Sq

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

We first note that

Xε
t −Xt = Zε

t · Eε(t)
−1 − Zt · E0(t)

−1

= Zε
t · Eε(t)

−1 − Zε
t · E0(t)

−1 + Zε
t ·E0(t)

−1 − Zt · E0(t)
−1

= Zε
t · (Eε(t)

−1 − E0(t)
−1) + (Zε

t − Zt) · E0(t)
−1.

Now we take p ≥ 1 and apply the triangle and Hölder inequalities to get

‖Xε
t −Xt‖p ≤ ‖Zε

t ‖p1 · ‖Eε(t)
−1 −E0(t)

−1‖p2 + ‖Zε
t − Zt‖q1 · ‖E0(t)

−1‖q2

where 1
p
= 1

p1
+ 1

p2
= 1

q1
+ 1

q2
. From estimate (2.1) we know that ‖Zε

t ‖p1 is bounded

uniformly in t ∈ [0, T ] for any p1 ≥ 1 while Proposition 2.1 ensures that

‖Eε(t)
−1 − E0(t)

−1‖p2 ≤ CSp2

(

|Kε(t, ·)− 1[0,t](·)|
)

with a constant independent of t ∈ [0, T ]. Moreover, inequality (2.2) from Step one gives
for r > q1

‖Zε
t − Zt‖q1 ≤ C · Sr

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

These last assertions imply

sup
t∈[0,T ]

‖Xε
t −Xt‖p ≤ C · Sq

(

sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

The proof is complete.
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3 Proof of Theorem 1.5

3.1 Auxiliary results and remarks: Itô case

The proof of Theorem 1.5 will be carried for the simplified equation where b does not
depend on t and σ is identically equal to one. Straightforward modifications will lead to
the general case. To ease the notation, we denote for t ∈ [0, T ]

Eε(t) := E(−Kε(t, ·)) = exp

{

δ(−Kε(t, ·))−
1

2
|Kε(t, ·)|2

}

and

E0(t) := E(−1[0,t]) = exp

{

δ(−1[0,t](·))−
t

2

}

.

The existence and uniqueness for the solutions of (1.14) and (1.13) can be found in
Theorem 5.5 from [5]. There it was observed that the solution {Y ε

t }t∈[0,T ] of (1.14) can
be represented as

Y ε
t = V ε

t ⋄ Eε(t)⋄−1

where

dV ε
t

dt
= b

(

V ε
t ⋄ (Eε(t))⋄−1

)

⋄ Eε(t), V ε
0 = x (3.1)

while the solution {Yt}t∈[0,T ] of (1.13) can be represented as

Yt = Vt ⋄ E0(t)⋄−1

where

dVt

dt
= b

(

Vt ⋄ (E0(t))⋄−1
)

⋄ E0(t), V0 = x. (3.2)

Here, for f ∈ L2([0, T ]) the symbol E(f)⋄−1 stands for the so called Wick inverse of E(f)
which, in this particular case, coincides with E(−f). The next lemma will serve to write
equations (3.1) and (3.2) in a Wick product-free form.

Lemma 3.1 If F ∈ Lp(W,µ) for some p > 1 and Ψ : R → R is measurable and with at
most linear growth at infinity, then for all h ∈ L2([0, T ]) we have:

Ψ (F ⋄ E(h)) ⋄ E(−h) = Ψ
(

F · E(−h)−1
)

· E(−h).

Proof. We apply twice Gjessing’s lemma (see Holden et al. [10]) to get:

Ψ (F ⋄ E(h)) ⋄ E(−h) = Ψ (T−hF · E(h)) ⋄ E(−h)

= Th (Ψ(T−hF · E(h))) · E(−h)

= Ψ (F · ThE(h)) · E(−h)

= Ψ
(

F · E(−h)−1
)

· E(−h).
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Here we utilized the identities

ThE(h) = E(h) exp
{
∫ T

0

h(s)2ds

}

= exp

{
∫ T

0

h(s)dBs +
1

2

∫ T

0

h(s)2ds

}

= E(−h)−1.

The proof is complete.

Therefore, by Lemma 3.1 we can rewrite equation (3.1) as

dV ε
t

dt
= b

(

V ε
t · (Eε(t))−1

)

· Eε(t)

and equation (3.2) as

dVt

dt
= b

(

Vt · (E0(t))−1
)

· E0(t)

since, as we mentioned before,

Eε(t)⋄−1 = E(Kε(t, ·)) and E0(t)⋄−1 = E(1[0,t](·)).
The following two propositions are the stochastic exponential’s counterparts of Propo-
sition 2.1.

Proposition 3.2 Let f, g ∈ L2([0, T ]). Then, for any p ≥ 1 we have

‖E(f)− E(g)‖p ≤ C · Sp(|f − g|)
where, as before,

Sp(λ) = λ exp
{

pλ2
}

+ exp{λ2/2} − 1, λ ∈ R

and C is a constant depending on p and |g|.

Proof. Let f ∈ L2([0, T ]) and p ≥ 1; then, according to the Poincaré inequality
(see Theorem 5.5.11 in Bogachev [1]), we can write

‖E(f)− 1‖p ≤ C(p)
∥

∥|DE(f)|L2([0,T ])

∥

∥

p

= C(p)
∥

∥|E(f)f |L2([0,T ])

∥

∥

p

= C(p)|f |‖E(f)‖p

= C(p)|f | exp
{

p− 1

2
|f |2
}

where D denotes the Malliavin derivative and C(p) is a positive constant depending only
on p. Therefore, for any f, g ∈ L2([0, T ]) and p ≥ 1 we have

‖E(f)− E(g)‖p = ‖E(g) ⋄ (E(f − g)− 1) ‖p
≤ ‖E(

√
2g)‖p‖E(

√
2(f − g))− 1‖p

≤ e(p−1)|g|2C(p)|f − g| exp
{

(p− 1)|f − g|2
}

≤ CSp(|f − g|)
where we utilized an inequality for the Wick product from Da Pelo et al. [4].
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Proposition 3.3 Let f, g ∈ L2([0, T ]). Then, for any p ≥ 1 we have

‖E(f)−1 − E(g)−1‖p ≤ C · Sp(
√
2|f − g|)

where C is a constant depending on p and |g|.

Proof. Denote by Γ(1/
√
2) the bounded linear operator acting on stochastic

exponentials according to the prescription

Γ(1/
√
2)E(f) := E(f/

√
2).

This operator coincides with the Ornstein-Uhlenbeck semigroup {Pt}t≥0 for a proper
choice of the parameter t (see Janson [15] for details) and therefore it is a contraction
on any Lp(W,µ) for p ≥ 1. Moreover, by a direct verification one can see that

E(f)−1 = Γ(1/
√
2) exp{−δ(

√
2f)}. (3.3)

Hence, we can write

‖E(f)−1 − E(g)−1‖p = ‖Γ(1/
√
2) exp{−δ(

√
2f)} − Γ(1/

√
2) exp{−δ(

√
2g)}‖p

≤ ‖ exp{−δ(
√
2f)} − exp{−δ(

√
2g)}‖p.

Therefore, by means of Proposition 2.1 we can conclude that

‖E(f)−1 − E(g)−1‖p ≤ ‖ exp{−δ(
√
2f)} − exp{−δ(

√
2g)}‖p

≤ C · Sp(
√
2|f − g|).

Remark 3.4 The idea of the proof of the previous proposition, and in particular identity
(3.3), is inspired by the investigation carried in Da Pelo and Lanconelli [3], where a new
probabilistic representation for the solution of the heat equation is derived in terms of
the operator Γ(1/

√
2) and its inverse.

3.2 Proof of Theorem 1.5

As before, we divide the proof in two steps.

Step one: We prove that for any p ≥ 1 there exists a positive constant C (depending
on p, |x|, T , C1, C2 and M) such that for any q greater than p

∥

∥

∥

∥

∥

sup
t∈[0,T ]

|V ε
t − Vt|

∥

∥

∥

∥

∥

p

≤ C · Sq

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

. (3.4)

The proof can be carried following the same line of the proof of Step one of Theorem
1.3; we have simply to replace {Zt}t∈[0,T ] and {Zε

t }t∈[0,T ] with {Vt}t∈[0,T ] and {V ε
t }t∈[0,T ],

respectively. Moreover, the exponentials {Eε(t)}t∈[0,T ] and {E0(t)}t∈[0,T ] have to be re-
placed by {Eε(t)}t∈[0,T ] and {E0(t)}t∈[0,T ], respectively. The estimate (2.1) changes to

∥

∥

∥

∥

∥

sup
t∈[0,T ]

|V ε
t |
∥

∥

∥

∥

∥

q

≤
(

|x|+ C2T exp

{

q − 1

2
sup

s∈[0,T ]

|Kε(s, ·)|2
})

eC2T .
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We remark that for all r ≥ 1 we have

‖Eε(t)‖r = exp
{r

2
|Kε(s, ·)|2

}

while

‖Eε(t)‖r = exp

{

r − 1

2
|Kε(s, ·)|2

}

and ‖Eε(t)−1‖r = exp

{

r + 1

2
|Kε(s, ·)|2

}

.

Moreover, we utilize Proposition 3.2 and Proposition 3.3 with f(·) = Kε(s, ·) and
g(·) = 1[0,s](·) instead of Proposition 2.1.

Step two: We prove that for any p ≥ 1 there exists a positive constant C (depending
on p, |x|, T , C1, C2 and M) such that for any q greater than p

sup
t∈[0,T ]

‖Y ε
t − Yt‖p ≤ C · Sq

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

We first note that

Y ε
t − Yt = V ε

t ⋄ Eε(t)⋄−1 − Vt ⋄ E0(t)⋄−1.

To ease the readability of the formulas we will adopt, only for this part of the proof, the
notation

Ẽε(t) := Eε(t)⋄−1 and Ẽ0(t) := E0(t)⋄−1.

Then, by mean of Gjessing’s Lemma we have

Y ε
t − Yt = V ε

t ⋄ Ẽε(t)− Vt ⋄ Ẽ0(t)
= V ε

t ⋄ Ẽε(t)− V ε
t ⋄ Ẽ0(t) + V ε

t ⋄ Ẽ0(t)− Vt ⋄ Ẽ0(t)
= T−Kε(t,·)V

ε
t · Ẽε(t)− T−1[0,t](·)V

ε
t · Ẽ0(t) + (V ε

t − Vt) ⋄ Ẽ0(t)
= T−Kε(t,·)V

ε
t · Ẽε(t)− T−Kε(t,·)V

ε
t · Ẽ0(t) + T−Kε(t,·)V

ε
t · Ẽ0(t)

−T−1[0,t](·)V
ε
t · Ẽ0(t) + (V ε

t − Vt) ⋄ Ẽ0(t)

= T−Kε(t,·)V
ε
t ·
(

Ẽε(t)− Ẽ0(t)
)

+
(

T−Kε(t,·)V
ε
t − T−1[0,t](·)V

ε
t

)

· Ẽ0(t)

+T−1[0,t](·) (V
ε
t − Vt) · Ẽ0(t)

= F1 + F2 + F3

where we set

F1 := T−Kε(t,·)V
ε
t ·
(

Ẽε(t)− Ẽ0(t)
)

F2 :=
(

T−Kε(t,·)V
ε
t − T−1[0,t](·)V

ε
t

)

· Ẽ0(t)

and

F3 := T−1[0,t](·) (V
ε
t − Vt) · Ẽ0(t).

Hence, for any p ≥ 1 we can write

‖Y ε
t − Yt‖p ≤ ‖F1‖p + ‖F2‖p + ‖F3‖p.
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We recall (see Theorem 14.1 in Janson [15]) that for any g ∈ L2([0, T ]) the linear
operator Tg is bounded from Lq(W,µ) to Lp(W,µ) for any p < q. Therefore, by the
Hölder inequality and Proposition 3.2 we deduce

‖F1‖p =
∥

∥

∥
T−Kε(t,·)V

ε
t ·
(

Ẽε(t)− Ẽ0(t)
)
∥

∥

∥

p

≤
∥

∥T−Kε(t,·)V
ε
t

∥

∥

q1
·
∥

∥

∥
Ẽε(t)− Ẽ0(t)

∥

∥

∥

q2

≤ C ‖V ε
t ‖r ·

∥

∥

∥
Ẽε(t)− Ẽ0(t)

∥

∥

∥

q2

≤ C · Sq2

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

where p < q1 < r, C is a constant depending on the parameters appearing in the
statement of the theorem and 1

p
= 1

q1
+ 1

q2
. The term ‖F3‖p is treated similarly with the

help of inequality (3.4). Let us now focus on ‖F2‖p. We first observe that

‖F2‖p =
∥

∥

∥

(

T−Kε(t,·)V
ε
t − T−1[0,t](·)V

ε
t

)

· Ẽ0(t)
∥

∥

∥

p

≤
∥

∥

∥
T−Kε(t,·)V

ε
t − T−1[0,t](·)V

ε
t

∥

∥

∥

q
·
∥

∥

∥
Ẽ0(t)

∥

∥

∥

r
.

According to Theorem 14.1 in Janson [15] the map TgX is jointly continuous in the
variables (g,X) from L2([0, T ]) × Lq(W,µ) to Lp(W,µ) for p < q. Therefore, the first
term in the last member of the previous inequality tends to zero as ε → 0+. However,
we need to know the speed of such convergence. The following lemma will help us in
this direction.

Lemma 3.5 For any X ∈ D
1,q and h ∈ L2([0, T ]) with |h| < δ one has

‖ThX −X‖p ≤ C|h|‖X‖D1,q

where p < q and C depends on δ, p and q.

Proof. Since the linear span of the stochastic exponentials is dense in Lp(W,µ)
and in D

1,q, we will prove the lemma for X =
∑n

j=1 αjE(fj) where α1, ..., αn ∈ R and

f1, ..., fn ∈ L2([0, T ]). By the mean value theorem we can write for θ ∈ [0, 1] that

Th

n
∑

j=1

αjE(fj)−
n
∑

j=1

αjE(fj) =
n
∑

j=1

αjE(fj)
(

e〈h,fj〉 − 1
)

=

n
∑

j=1

αjE(fj)eθ〈h,fj〉〈h, fj〉

= TθhDh

n
∑

j=1

αjE(fj)

where Dθh stands for the Malliavin derivative in the direction θh. We now take the
Lp(W,µ) norm to get

∥

∥

∥

∥

∥

Th

n
∑

j=1

αjE(fj)−
n
∑

j=1

αjE(fj)
∥

∥

∥

∥

∥

p

=

∥

∥

∥

∥

∥

TθhDh

n
∑

j=1

αjE(fj)
∥

∥

∥

∥

∥

p
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≤ C(h)

∥

∥

∥

∥

∥

Dh

n
∑

j=1

αjE(fj)
∥

∥

∥

∥

∥

q

≤ C(h)|h|

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

D
n
∑

j=1

αjE(fj)
∣

∣

∣

∣

∣

L2([0,T ])

∥

∥

∥

∥

∥

∥

q

≤ C(h)|h|
∥

∥

∥

∥

∥

n
∑

j=1

αjE(fj)
∥

∥

∥

∥

∥

D1,q

.

We now continue the analysis of the term
∥

∥

∥
T−Kε(t,·)

V ε
t − T−1[0,t](·)V

ε
t

∥

∥

∥

q
.

It is not difficult to see that Assumption 1.2 implies that for any ε > 0 and t ∈ [0, T ]
the random variable V ε

t belongs to D
1,q for all q ≥ 1. Moreover, the D

1,q-norm of
V ε
t is bounded uniformly with respect to ε (observe that Vt, which corresponds to the

case ε = 0, is related to an Itô type SDE which possesses the required smoothness).
Therefore,

∥

∥

∥
T−Kε(t,·)V

ε
t − T−1[0,t](·)V

ε
t

∥

∥

∥

q
=

∥

∥

∥
T−1[0,t](·)

(

T1[0,t](·)−Kε(t,·)V
ε
t − V ε

t

)
∥

∥

∥

q

≤ C
∥

∥

∥
T1[0,t](·)−Kε(t,·)V

ε
t − V ε

t

∥

∥

∥

r

≤ C|Kε(t, ·)− 1[0,t](·)|‖V ε
t ‖D1,r .

for r > q. Combining all the estimates above we conclude

‖Y ε
t − Yt‖p ≤ ‖F1‖p + ‖F2‖p + ‖F3‖p

≤ C

(

Sq

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

+ |Kε(t, ·)− 1[0,t](·)|
)

≤ C

(

Sq

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

+ sup
t∈[0,T ]

|Kε(t, ·)− 1[0,t](·)|
)

≤ CSq

(

√
2 sup
s∈[0,T ]

|Kε(s, ·)− 1[0,s](·)|
)

.

The proof of Theorem 1.5 is now complete.

4 Proof of Theorem 1.7

We first note that the solution {At}t∈[0,T ] of

dAt

dt
= b(At) + At · g(t) A0 = x,

where g : [0, T ] → R is a continuous function, can be represented as

At = Gt · exp
{
∫ t

0

g(s)ds

}

(4.1)
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where {Gt}t∈[0,T ] solves

dGt

dt
= b

(

Gt · exp
{
∫ t

0

g(s)ds

})

· exp
{

−
∫ t

0

g(s)ds

}

. (4.2)

Moreover, recalling the argument from the previous section, we know that the solution
{Y ε

t }t∈[0,T ] of (1.14) can be represented as

Y ε
t = V ε

t ⋄ Eε(t)⋄−1

where

dV ε
t

dt
= b

(

V ε
t · (Eε(t))−1

)

· Eε(t).

Since by definition

(Eε(t))−1 = exp

{
∫ T

0

Kε(t, s)dBs +
1

2
|Kε(t, ·)|2

}

= exp

{

Bε
t +

1

2
|Kε(t, ·)|2

}

= exp

{
∫ t

0

(

dBε
s

ds
+

1

2

d|Kε(s, ·)|2
ds

)

ds

}

a comparison with (4.1) and (4.2) shows that, by choosing

g(t) =
1

2

d

dt
|Kε(t, ·)|2 +

dBε
t

dt
,

we can write
V ε
t = Sε

t · Eε(t)
where {Sε

t }t∈[0,T ] is the process defined in the statement of Theorem 1.7. Therefore,

Y ε
t = V ε

t ⋄ Eε(t)⋄−1

= (Sε
t · Eε(t)) ⋄ Eε(t)⋄−1

= T−Kε(t,·) (S
ε
t · Eε(t)) · Eε(t)⋄−1

= T−Kε(t,·)S
ε
t · T−Kε(t,·)Eε(t) · Eε(t)⋄−1

= T−Kε(t,·)S
ε
t · exp

{

−
∫ T

0

Kε(t, s)dBs −
1

2
|Kε(t, ·)|2 + |Kε(t, ·)|2

}

· Eε(t)⋄−1

= T−Kε(t,·)S
ε
t .

Here, in the third equality, we utilized Gjessing Lemma. The proof of Theorem 1.7 is
complete.

4.1 Alternative proof

We are now going to prove a technical result of independent interest that will be
used to obtain a different and more direct proof of Theorem 1.7.

Proposition 4.1 Let {Xt}t∈[0,T ] be a stochastic process such that:

18



• the function t 7→ Xt is differentiable

• the random variable Xt belongs to Lp(W,µ) for some p > 1 and all t ∈ [0, T ].

If the function h : [0, T ]2 → R is such that

• for almost all s ∈ [0, T ] the function t 7→ h(t, s) is continuously differentiable

• for all t ∈ [0, T ] the functions h(t, ·) and ∂th(t, ·) belong to L2([0, T ])

then

d

dt
(Th(t,·)Xt) = Th(t,·)

dXt

dt
+ Th(t,·)Xt ·

∫ T

0

∂th(t, s)dBs

−Th(t,·)Xt ⋄
∫ T

0

∂th(t, s)dBs.

Proof. To simplify the notation we set

δ(h(t, ·)) :=
∫ T

0

h(t, s)dBs and δ(∂th(t, ·)) :=
∫ T

0

∂th(t, s)dBs.

According to Gjessing Lemma we know that

Th(t,·)Xt ⋄ E(h(t, ·)) = Xt · E(h(t, ·))

or equivalently,

Th(t,·)Xt = (Xt · E(h(t, ·))) ⋄ E(−h(t, ·)). (4.3)

We now use the chain rule for the Wick product to get

d

dt
(Th(t,·)Xt) =

d

dt
(Xt · E(h(t, ·))) ⋄ E(−h(t, ·)) + (Xt · E(h(t, ·))) ⋄

d

dt
E(−h(t, ·))

=

(

dXt

dt
· E(h(t, ·))

)

⋄ E(−h(t, ·)) +
(

Xt ·
d

dt
E(h(t, ·))

)

⋄ E(−h(t, ·))

+ (Xt · E(h(t, ·))) ⋄
d

dt
E(−h(t, ·))

=

(

dXt

dt
· E(h(t, ·))

)

⋄ E(−h(t, ·))

+

(

Xt · E(h(t, ·)) ·
d

dt

(

δ(h(t, ·))− 1

2
|h(t, ·)|2

))

⋄ E(−h(t, ·))

+ (Xt · E(h(t, ·))) ⋄ E(−h(t, ·)) ⋄ d

dt
δ(−h(t, ·))

Observe that according to identity (4.3) we can write

(

dXt

dt
· E(h(t, ·))

)

⋄ E(−h(t, ·)) = Th(t,·)
dXt

dt
.
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Therefore, the last chain of equalities becomes

d

dt
(Th(t,·)Xt) = Th(t,·)

dXt

dt
+ (Xt · E(h(t, ·)) · (δ(∂th(t, ·))− 〈h(t, ·), ∂th(t, ·)〉)) ⋄ E(−h(t, ·))
−Th(t,·)Xt ⋄ δ(∂th(t, ·))

= Th(t,·)
dXt

dt
+ Th(t,·) (Xt · (δ(∂th(t, ·))− 〈h(t, ·), ∂th(t, ·)〉))

−Th(t,·)Xt ⋄ δ(∂th(t, ·))

= Th(t,·)
dXt

dt
+ Th(t,·)Xt · Th(t,·)(δ(∂th(t, ·))− 〈h(t, ·), ∂th(t, ·)〉)

−Th(t,·)Xt ⋄ δ(∂th(t, ·))

= Th(t,·)
dXt

dt
+ Th(t,·)Xt · δ(∂th(t, ·))− Th(t,·)Xt ⋄ δ(∂th(t, ·)).

The proof is complete.

By means of Proposition 4.1, we are now able to prove identity (1.17) from Theorem
1.7 via a direct verification. More precisely, let {Sε

t }t∈[0,T ] be the process in the statement
of Theorem 1.7. Then, using equation (1.16) we get

d

dt
T−Kε(t,·)S

ε
t = T−Kε(t,·)

dSε
t

dt
− T−Kε(t,·)S

ε
t ·
∫ T

0

∂tKε(t, s)dBs

+T−Kε(t,·)S
ε
t ⋄
∫ T

0

∂tKε(t, s)dBs

= T−Kε(t,·)

(

b(Sε
t ) +

1

2

d

dt
|Kε(t, ·)|2 · Sε

t + Sε
t ·

dBε
t

dt

)

−T−Kε(t,·)S
ε
t ·

dBε
t

dt
+ T−Kε(t,·)S

ε
t ⋄

dBε
t

dt

= b
(

T−Kε(t,·)S
ε
t

)

+
1

2

d

dt
|Kε(t, ·)|2 · T−Kε(t,·)S

ε
t

+T−Kε(t,·)S
ε
t ·
(

dBε
t

dt
−
∫ T

0

∂tKε(t, s)Kε(t, s)ds

)

−T−Kε(t,·)S
ε
t ·

dBε
t

dt
+ T−Kε(t,·)S

ε
t ⋄

dBε
t

dt

= b
(

T−Kε(t,·)S
ε
t

)

+ T−Kε(t,·)S
ε
t ⋄

dBε
t

dt
.

This is imply that {T−Kε(t,·)S
ε
t }t∈[0,T ] solves equation (1.14).
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