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Parallel Data Distribution Management on Shared-Memory
Multiprocessors∗

MORENO MARZOLLA, University of Bologna, Italy
GABRIELE D’ANGELO, University of Bologna, Italy

The problem of identifying intersections between two sets of d -dimensional

axis-parallel rectangles appears frequently in the context of agent-based

simulation studies. For this reason, the High Level Architecture (HLA) spec-

ification – a standard framework for interoperability among simulators –

includes a Data Distribution Management (DDM) service whose responsi-

bility is to report all intersections between a set of subscription and update

regions. The algorithms at the core of the DDM service are CPU-intensive,

and could greatly benefit from the large computing power of modern multi-

core processors. In this paper we propose two parallel solutions to the DDM

problem that can operate effectively on shared-memory multiprocessors.

The first solution is based on a data structure (the Interval Tree) that allows

concurrent computation of intersections between subscription and update

regions. The second solution is based on a novel parallel extension of the Sort

Based Matching algorithm, whose sequential version is considered among

the most efficient solutions to the DDM problem. Extensive experimental

evaluation of the proposed algorithms confirm their effectiveness on taking

advantage of multiple execution units in a shared-memory architecture.

CCS Concepts: • Computing methodologies→Massively parallel and
high-performance simulations; Shared memory algorithms;

Additional Key Words and Phrases: Data Distribution Management (DDM),

Parallel And Distributed Simulation (PADS), High Level Architecture (HLA),
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1 INTRODUCTION
Large agent-based simulations are used in many different areas such

human mobility modeling [36], transportation and logistics [21],

or complex biological systems [6, 33]. While there exist recom-

mendations and best practices for designing credible simulation
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studies [37], taming the complexity of large models remains chal-

lenging, due to the potentially huge number of virtual entities that

need to be orchestrated and the correspondingly large amount of

computational resources required to execute the model.

The High Level Architecture (HLA) has been introduced to par-

tially address the problems above. The HLA is a general architecture

for the interoperability of simulators [2] that allow users to build

large models through composition of specialized simulators, called

federates according to the HLA terminology. The federates interact

using a standard interface provided by a component called Run-

Time Infrastructure (RTI) [1]. The structure and semantics of the

data exchanged among the federates are formalized in the Object

Model Template (OMT) specification [3].

Federates can notify events to other federates, for example to

signal a local status update that might impact other simulators.

Since notifications might produce a significant overhead in terms

of network traffic and processor usage at the receiving end, the RTI

provides a Data Distribution Management (DDM) service whose

purpose is to allow federates to specify which notifications they are

interested in. This is achieved through a spatial public-subscribe

system, where events are associated with an axis-parallel, rectangu-

lar region in d-dimensional space, and federates can signal the RTI

to only receive notifications that overlap one or more subscription

regions of interest.

More specifically, HLA allows the simulation model to define a

set of dimensions, each dimension being a range of integer values

from 0 to a user-defined upper bound. Dimensions may be used as

Cartesian coordinates for mapping the position of agents in 2-D or

3-D space, although the HLA specification does not mandate this.

A range is a half-open interval [lower bound, upper bound) of values
on one dimension. A region specification is a set of ranges, and can be
used by federates to denote the “area of influence” of status update

notifications. Federates can signal the RTI the regions from which

update notifications are to be received (subscription regions). Each
update notification is associated with a update region: the DDM

service identifies the set of overlapping subscription regions, so that

the update message are sent only to federates owning the relevant

subscription.

As an example, let us consider the simple road traffic simulation

model shown in Figure 1 consisting of vehicles managing inter-

sections. Vehicles need to react both to changes of the color of

traffic lights and also to other vehicles in front of them. This can

be achieved using suitably defined update and subscription regions.

Specifically, each vehicle is enclosed within an update region (thick

box) and a subscription region (dashed box), while each traffic light

is enclosed within an update region only. A traffic light is a pure gen-

erator of update notifications, while vehicles are both producers and

consumers of events. Each vehicle generates notifications to signal
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Fig. 1. (Top) Road traffic simulation example. (Bottom) A possible mapping of simulated entities (vehicles and traffic lights) to federates.

a change in its position, and consumes events generated by nearby

vehicles and traffic lights. We assume that a vehicle can safely ignore

what happens behind it; therefore, subscription regions are skewed

towards the direction of motion.

If the scenario above is realized through an HLA-compliant sim-

ulator, entities need to be assigned to federates. We suppose that

there are four federates, F1 to F4. F1, F2 and F3 handle cars, scooters
and trucks respectively, while F4 manages the traffic lights. Each

simulated entity registers subscription and update regions with

the RTI; the DDM service can then match subscription and update

regions, so that update notifications can be sent to interested entities.

In our scenario, vehicles 2, 3 and 4 receive notifications from the

traffic light 8; vehicles 5 and 6 send notifications to each other, since

their subscription and update regions overlap. The communication

pattern between federates is shown in the bottom part of Figure 1.

As can be seen, at the core of the DDM service there is an algo-

rithm that solves an instance of the general problem of reporting

all pairs of intersecting axis-parallel rectangles in a d-dimensional

space. In the context of DDM, reportingmeans that each overlapping

subscription-update pair must be reported exactly once, without

any implied ordering. This problem is well known in computational

geometry, and can be solved either using appropriate algorithms

and/or ad-hoc spatial data structures as will be discussed in Sec-

tion 2. However, it turns out that DDM implementations tend to

rely on less efficient but simpler solutions. The reason is that spa-

tial data structures can be quite complicated, and therefore their

manipulation may require a significant overhead that might be not

evident from their asymptotic complexity.

The increasingly large size of agent-based simulations is posing

a challenge to the existing implementations of the DDM service. As

the number of regions increases, so does the execution time of the

intersection-finding algorithms. A possible solution comes from the

computer architectures domain. The current trend inmicroprocessor

design is to put more execution units (cores) in the same processor;

the result is that multi-core processors are now ubiquitous, so it

makes sense to try to exploit the increased computational power to

speed up the DDM service [25]. Therefore, an obvious parallelization

strategy for the intersection-finding problem is to distribute the

rectangles across the processor cores, so that each core can work

on a smaller problem.

Shared-memory multiprocessors are a family of parallel systems

where multiple processors share one or more blocks of Random

Access Memory (RAM) through an interconnection network (Fig-

ure 2 (a)). A modern multi-core CPU contains multiple independent

execution units (cores), that are essentially stand-alone processors.

Cache hierarchies within each core, and shared by all cores of the

same CPU, are used to mitigate the memory access bottleneck,

known as the memory wall [65].
General-Purpose GPU computing is another realization of the

multi-core paradigm. Graphics Processing Units (GPUs) were origi-

nally intended as specialized devices for producing graphical output,

but have now evolved into general-purpose parallel co-processors.

A high-level overview of a GPU is shown in Figure 2 (b). A GPU

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 00. Publication date: 0.
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Fig. 2. A shared-memory multiprocessor system.

includes a large number of cores that share a common memory,

called device memory. The device memory is physically separate

from the main system RAM, so that programs and data must be

transferred from system RAM to device memory before the GPU

can start execution. At the end of the computation, results need to

be transferred back to system RAM. While a single GPU core is less

powerful than a CPU core, a GPU has more cores than a typical CPU,

and therefore provides a higher aggregate throughput. However,

this comes at a cost: GPU programming is in general more complex

than programming a multicore CPU; additionally, CPUs support

more memory than GPUs, meaning that CPU-GPU communication

might be a bottleneck when processing large datasets. Moreover,

GPUs are based on the Single InstructionMultiple Data (SIMD) para-

digm, where a single instruction stream is executed on multiple data

items. This paradigm is well suited for applications with regular data

access pattern (e.g., linear algebra). Applications with conditional

branches or irregular data access patterns may require consider-

able more effort to be implemented efficiently, but are nevertheless

possible: for example, non-trivial but efficient GPU implementa-

tions of the Time Warp optimistic synchronization protocol [42]

and of the Bellman-Ford shortest path algorithm [19] have been

realized, despite the fact that both fall outside the these application

exhibits regular data access patterns. Finally, it must be observed

that general-purpose GPUs are currently not as ubiquitous as mul-

ticore CPUs, since they are add-on cards that must be purchased

separately.

Shared-memory multiprocessors are interesting for several rea-

sons. first, they are ubiquitous since they power virtually everything

from smartphones and single-board computers up to high perfor-

mance computing systems. Moreover, shared-memory architectures

are in general simpler to program than distributed-memory archi-

tectures, since the latter require explicit message exchanges to share

data between processors. Support for shared-memory programming

has been added to traditional programming languages such as C,

C++ and FORTRAN [24], further reducing the effort needed to write

parallel applications.

Unfortunately, writing efficient parallel programs is not easy.

Many serial algorithms can not be made parallel by means of simple

transformations. Instead, new parallel algorithms must be designed

from scratch around the features of the underlying execution plat-

form. The lack of abstraction of parallel programming is due to

the fact that the user must leverage the strengths (and avoid the

weaknesses) of the underlying execution platform in order to get

the maximum performance. The result is that, while parallel archi-

tectures are ubiquitous – especially shared-memory ones – parallel

programs are not, depriving users from a potential performance

boost on some classes of applications.

In this paper we present two solutions to the DDM problem that

are suitable for shared-memory multiprocessors. The first solution,

called Interval Tree Matching (ITM), is based on the interval tree
data structure, that represents subscription or update regions in

such a way that intersections can be computed in parallel. The

second solution, called Parallel SBM, is a parallel version of Sort-

based Matching (SBM) [52], a state-of-the-art implementation of

the DDM service.

This paper is organized as follows. In Section 2, we review the

scientific literature related to the DDM service and describe in detail

some of the existing DDM algorithms that will be later used in the

paper. In Section 3 we describe the interval tree data structure and

the ITM parallel matching algorithm. In Section 4, we present the

main contribution of this work, i.e., a parallel version of the SBM al-

gorithm. In Section 5 we experimentally evaluate the performance of

parallel SBM on two multi-core processors. Finally, the conclusions

will be discussed in Section 6.

2 PROBLEM STATEMENT AND EXISTING SOLUTIONS
In this paper we address the region matching problem defined as

follows:

Region Matching Problem. Given two sets S = {S1, . . . , Sn } and
U = {U1, . . . ,Um } of d-dimensional, axis-parallel rectangles (also

called d-rectangles), enumerate all pairs (Si ,Uj ) ⊆ S × U such that

Si ∩Uj , ∅; each pair must be reported exactly once, in no particular

order.

Although the HLA specification only allows integer coordinates,

we address the more general case in which the coordinates of the

edges of the d-rectangles are arbitrary real numbers.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 00. Publication date: 0.



00:4 • Moreno Marzolla and Gabriele D’Angelo

Fig. 3. An example of the region Matching Problem in d = 2 dimensions. The list of overlapping (subscription, update) pairs is
{(S1, U1), (S2, U2), (S3, U1), (S3, U2)}

Algorithm 1 Intersect-1D(x ,y)
return x .low ≤ y.high ∧ y.low ≤ x .high

Figure 3 shows an instance of the region matching problem in d =
2 dimensions with three subscription regions S = {S1, S2, S3} and
two update regionsU = {U1,U2}. In this example there are four over-

lapping subscription-update pairs {(S1,U1), (S2,U2), (S3,U1), (S3,U2)}.
The time complexity of the region matching problem is output-

sensitive, since it depends on the size of the output in addition to

the size of the input. Therefore, if there are K overlapping regions,

any region matching algorithm requires time Ω(K). Since there can
be at most n ×m overlaps, the worst-case complexity of the region

matching problem is Ω(n ×m). In practice, however, the number of

intersections is much smaller than n ×m.

One of the key steps of any matching algorithm is testing whether

two d-rectangles overlap. The case d = 1 is very simple, as it reduces

to testing whether two half-open intervals x = [x .low,x .high), y =
[y.low,y.high) intersect; this happens if and only if

x .low < y.high ∧ y.low < x .high

(see Algorithm 1).

The case d > 1 can be reduced to the case d = 1 by observing

that two d-rectangles overlap if and only if their projections along

each dimension overlap. For example, looking again at Figure 3 we

see that the projections of U1 and S1 overlap on both dimensions,

so we can conclude that the regionsU1 and S1 intersect. Therefore,
any algorithm that solves the region matching problem for two

sets of n and m segments in time O (f (n,m)) can be extended to

an O (d × f (n,m)) algorithm for the d-dimensional case, by exe-

cuting the 1-D algorithm on each dimension and computing the

intersection of the partial results
1
. Since the parameter d is fixed

for every problem instance, and much smaller than n orm, it can be

1
The O ((d × f (n,m)) bound holds provided that combining the partial results can

be done in time O (f (n,m)); this is indeed the case for any reasonable f (n,m) using
hash-based set implementations, as we will discuss in Section 5.

treated as a constant so we getO (d × f (n,m)) ⊂ O (f (n,m)). There-
fore, solving the general case is, under reasonable circumstances,

asymptotically not harder than solving the special case d = 1.

In the rest of this section we provide some background on the

region matching problem. We report some known lower bounds

for specific formulations of this problem; we then review some

algorithms and data structures that have been developed in the

context of computational geometry research. Finally, we describe in

details some relevant solutions developed within the HLA research

community: Brute Force Matching (BFM), Grid Based Matching

(GBM), and Sort-based Matching (SBM). Since we will frequently

refer to these algorithms in this paper, we provide all the necessary

details below. A comprehensive review of the d-dimensional region

matching problem is outside the scope of this work, and has already

been carried out by Liu and Theodoropoulos [41] to which the

interested reader is referred.

Lower Bounds. Over time, several slightly different formulations

of the region matching problem have been considered. The most

common formulation is to find all overlapping pairs among a set

of N rectangles, without any distinction between subscription and

update regions. One of the first efficient solutions for this problem

is due to Bentley and Wood [14] who proposed an algorithm for the

two-dimensional case requiring time Θ(N lgN +K), where K is the

cardinality of the result. They proved that the result is optimal by

showing a lower bound Ω(N lgN + K) for this type of problem.

Petty and Morse [50] studied the computational complexity of

the following formulation of the region matching problem: given

an initially empty set R of d-dimensional regions, apply a sequence

of N operations of any of the following types: (i) insert a new region

in R; (ii) delete an existing region from R; (iii) enumerate all regions

in R overlapping with a given test region. They showed that a lower

bound on the computational complexity of this problem isΩ(N lgN )
by reduction to binary search, and an upper bound is O(N 2); the
upper bound can be achieved with the Brute Force algorithm that

we will describe shortly.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 00. Publication date: 0.
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Computational Geometry approaches. The problem of counting

or enumerating intersections among d-dimensional rectangles is of

great importance in computational geometry, and as such received

considerable attention. Existing approaches rely on a combination

of algorithmic techniques such as sorting, searching and partition-

ing [14, 27, 55, 56], and data structures used to speed up various

types of spatial queries (containment, overlap, counting, filtering).

The aforementioned algorithm by Bentley and Wood [14] can re-

port all intersections within a set of N rectangles in timeΘ(N lgN +
K). The algorithm is quite complex and operates in two phases: the

first phase takes care of rectangles whose sides intersect using the

algorithm described in [13]; the second phase takes care of those

rectangles which are contained into another one, using a data struc-

ture called segment tree. While the algorithm is optimal, it cannot be

generalized for the case d > 2 and its implementation is nontrivial.

A simpler algorithm for the case d = 2 has been discovered by

Six and Wood [55]. The algorithm works by sorting the endpoints

of the rectangles along one of the dimensions, and then scanning

the endpoints updating an auxiliary data structure called interval
tree (which, despite the similar name, is not related to the interval

tree that will be described in Section 3). The algorithm by Six and

Wood runs in time Θ(N lgN + K), but is much easier to implement

than Bentley and Wood’s. A generalization for the case d > 2 has

been described in [56] and requires timeO
(
2
d−1n lgd−1 n + K

)
and

space O
(
2
d−1n lgd−1 n

)
.

Edelsbrunner [27] proposed an improved algorithm based on a rec-
tangle tree data structure that can report all intersections among a set

ofN d-rectangles in timeO
(
N lg

2d−3 N + K
)
and spaceO

(
N lg

d−2 N
)
,

thus improving the previous results.

Spatial data structures for the rectangle intersection problem

include the k-d tree [54], the quad-tree [29], the R-tree [31] and

the BSP tree [48]. These data structures use various types of hi-

erarchical spatial decomposition techniques to store volumetric

objects. Spatial data structures are widely used in the context of ge-

ographical information systems, since they allow efficient execution

of range queries, e.g., reporting all objects inside a user-specified

range. However, some of these data structures have been adapted to

solve the DDM problem. For example, Eroglu et al. [28] use a quad-

tree to improve the grid-based matching algorithm used in HLA

implementations.

In [35] the authors propose a binary partition-based matching

algorithm whose aim is to reduce the number of overlap tests that

need to be performed between subscription and update regions.

Experimental evaluation shows that the algorithm works well in

some settings, but suffers from a worst case cost of O(N 2
lgN )

where N is the total number of subscription and update regions.

Geometric algorithms and data structures have the drawback of

being quite complex to implement and, in many real-world situa-

tions, slower than less efficient but simpler solutions. For example,

Petty and Mukherjee [51] showed that a simple grid-based match-

ing algorithm performs faster than the d-dimensional quad-tree

variant from [63]. Similarly, Devai and Neumann [26] propose a

Algorithm 2 BruteForce-1D(S,U)
1: for all subscription intervals s ∈ S do
2: for all update intervals u ∈ U do
3: if Intersect-1D(s,u) then Report(s,u)

Fig. 4. Grid-based matching in d = 2 dimensions.

rectangle-intersection algorithm that is implemented using only ar-

rays and that can enumerate all K intersections among N rectangles

in time O(N lgN + K) time and O(N ) space.

Brute-Force Matching. The simplest solution to the segment in-

tersection problem is the BFM approach, also called Region-Based

matching (Algorithm 2). The BFM algorithm, as the name suggests,

checks all n ×m subscription-update pairs (s,u) and reports every

intersection by calling a model-specific function Report(s ,u) whose
details are not shown.

The BFM algorithm requires time Θ(nm); therefore, it is optimal

only in the worst case, but very inefficient in general. However, BFM

exhibits an embarrassingly parallel structure since the loop itera-

tions (lines 1–3) are independent. Therefore, on a shared-memory

architecture with P processors it is possible to distribute the iter-

ations across the processors; each processor will then operate on

a subset of nm/P intervals without the need to interact with other

processors. The parallel version of BFM requires time Θ(nm/P).

Grid-BasedMatching. TheGBMalgorithm [16, 63] improves over BFM

by trying to reduce the number of pairs that are checked for over-

lap. GBM works by partitioning the domain into a regular mesh of

d-dimensional cells. Each subscription or update region is mapped

to the grid cells it overlaps with. Events generated by an update

region Uj are sent to all subscription regions that share at least one

cell withUj . However, this could generate spurious notifications: for

example, the subscription region S2 in Figure 4 shares the hatched

grid cells withU1, but does not overlap withU1. Spurious notifica-

tions can be eliminated by testing for overlap all subscription and

update regions sharing the same grid cell. Essentially, this is equiv-

alent to applying the brute-force (or any other region matching)

algorithm to the regions sharing the same grid cell [60].

Algorithm 3 shows an implementation of GBM for the case d = 1.

The algorithm consists of two phases. During the first phase (lines 5–

9) the algorithm builds an array G of lists, where G[i] contains the
update regions that overlap with the i-th grid cell. The grid cells

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 00. Publication date: 0.
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Algorithm 3 Grid-1D(S,U)
Require: ncells number of grid cells

1: G ← array[0..ncells − 1] of empty lists

2: lb← minimum of the lower bounds of all intervals in S ∪ U
3: ub← maximum of the upper bounds of all intervals in S ∪ U
4: width← (ub − lb)/ncells
5: for all update regions u ∈ U do ▷ Build the grid

6: i ← ⌊(u .lower − lb)/width⌋
7: while (i < ncells) ∧ (i × width < u .upper) do
8: Add u to the list G[i]
9: i ← i + 1
10: res← ∅
11: for all subscription regions s ∈ S do ▷ Find intersections

12: i ← ⌊(s .lower − lb)/width⌋
13: while (i < ncells) ∧ (i × width < s .upper) do
14: for all update regions u ∈ G[i] do
15: if Intersect-1D(s,u) ∧ (s,u) < res then
16: res← res ∪ (s,u)
17: Report(s,u)

18: i ← i + 1

are determined by first computing the bounding interval [lb, ub) of
all regions in S and U. Then, the bounding interval is evenly split

into ncells segments of width (ub − lb)/ncells so that the i-th grid

cell corresponds to the interval [lb + i × width, lb + (i + 1) × width).
The parameter ncells must be provided by the user.

During the second phase (lines 11–18), the algorithm scans the

list of subscription regions. Each subscription region is compared

with the update regions on the lists of the cells it overlaps with

(line 15). Since subscription and update regions may span more than

one grid cell, the algorithm keeps a set res of all intersections found
so far in order to avoid reporting the same intersection more than

once.

If the regions are evenly distributed, each grid cell will con-

tain n/ncells subscription and m/ncells update intervals on aver-

age. Therefore, function Intersect-1D will be called O(ncells × n ×
m/ncells2) = O(n ×m/ncells) times on average. Initialization of the

arrayG requires timeO(ncells). The upper and lower bounds lb and
ub can be computed in time O(n +m). If the set res is implemented

using bit vectors, insertions and membership tests can be done in

constant time. We can therefore conclude that the average running

time of Algorithm 3 is O(ncells + n ×m/ncells).
The average-case analysis above only holds if subscription and

update regions are uniformly distributed over the grid, which might

or might not be the case depending on the simulation model. For

example, in the presence of a localized cluster of interacting agents,

it might happen that the grid cells around the cluster have a signifi-

cantly larger number of intervals than other cells. Additionally, the

number of cells ncells is a critical parameter. Tan et al. [59] showed

that the optimal cell size depends on the simulation model and on

the execution environment, and is therefore difficult to predict a
priori.
Observe that the iterations of the loop on lines 11–18 are inde-

pendent and can therefore be executed in parallel. If we do the same

Algorithm 4 Sort-Based-Matching-1D(S,U)
1: T ← ∅
2: for all regions x ∈ S ∪ U do
3: Insert x .lower and x .upper in T
4: Sort T in non-decreasing order

5: SubSet← ∅, UpdSet← ∅
6: for all endpoints t ∈ T in non-decreasing order do
7: if t belongs to subscription region s then
8: if t is the lower bound of s then
9: SubSet← SubSet ∪ {s}
10: else
11: SubSet← SubSet \ {s}
12: for all u ∈ UpdSet do Report(s,u)

13: else ▷ t belongs to update region u
14: if t is the lower bound of u then
15: UpdSet← UpdSet ∪ {u}
16: else
17: UpdSet← UpdSet \ {u}
18: for all s ∈ SubSet do Report(s,u)

for the loop on lines 5–9, however, a data race arises since multiple

processors might concurrently update the list G[i]. This problem
can be addressed by ensuring that line 8 is executed atomically, e.g.,

by enclosing it inside a critical section or employing a suitable data

structure for the lists G[i] that supports concurrent appends. We

will discuss this in more details in Section 5. Finally, it is worth

noticing that some variants of GBM have been proposed to combine

the grid-based method with a region-based strategy [17].

Sort-Based Matching. Sort-based Matching [34, 52] is an efficient

solution to the region matching problem in d = 1 dimensions. SBM

scans the sorted list of endpoints of the subscription and update

intervals, keeping track of which regions are active at any point; a

region is active if the left endpoint has been scanned, but the right

endpoint has not. When the right endpoint of a subscription (resp.,

update) region x is encountered, all currently active update (resp.,

subscription) regions are known to overlap with x .
The SBM algorithm is illustrated in Algorithm 4. Givenn subscrip-

tion intervals S andm update intervals U, SBM considers each of the

2× (n +m) endpoints in non-decreasing order; two sets SubSet and
UpdSet are used to keep track of the active subscription and update

regions, respectively, at every point t . When the upper bound of

an interval x is encountered, it is removed from the corresponding

set of active regions, and the intersections between x and every

active region of the opposite kind are reported. Observe that Algo-

rithm 4 never calls the function Intersect-1D to check whether

two regions overlap. Figure 5 illustrates how the SubSet variable is

updated while SBM sweeps through a set of subscription intervals

(update intervals are handled in the same way).

LetN = n+m be the total number of intervals; then, the number of

endpoints is 2N . The SBM algorithm uses simple data structures and

requires O (N lgN ) time to sort the vector of endpoints, plus O(N )
time to scan the sorted vector. During the scan phase, O(K) time is

spent to report all K intersections. The overall computational cost

of SBM is therefore O (N lgN + K).
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Fig. 5. Value assigned by the SBM algorithm to the SubSet variable as the endpoints are swept from left to right.

Li et al. [38] improved the SBM algorithm by reducing the size of

the vectors to be sorted and employing the binary search algorithm

on the (smaller) sorted vectors of endpoints. The execution time is

still dominated by the O (N lgN ) time required to sort the smaller

vectors of endpoints, but the improved algorithm is faster in practice

than SBM due to lower constants hidden in the asymptotic notation.

Pan et al. [49] extended SBM to deal with a dynamic setting where

regions are allowed to change their position or size without the need

to execute the SBM algorithm from scratch after each update.

So far, no parallel version of SBM exists. SBM cannot be easily

parallelized due to the presence of a sequential scan phase that

is intrinsically serial. This problem will be addressed in Section 4,

where a parallel version of SBM will be described.

Parallel algorithms for the region matching problem. So far, only

a few parallel algorithms for the region matching problem have

been proposed. Liu and Theodoropoulos [39, 40] propose a parallel

region matching algorithm that partitions the routing space into

blocks, and assigns partitions to processors using a master-worker

paradigm. Each processor then computes the intersections among

the regions that overlap the received partitions. In essence, this

solution resembles a parallel version of the GBM algorithm.

In [53] the performance of parallel versions of BFM and grid-based

matching (fixed, dynamic and hierarchical) are compared. In this

case, the preliminary results presented show that the parallel BFM

has a limited scalability and that, in this specific case, the hierarchical

grid-based matching has the best performance.

In [43], a parallel ordered-relation-based matching algorithm is

proposed. The algorithm is composed of five phases: projection,

sorting, task decomposition, internal matching and external match-

ing. In the experimental evaluation, a MATLAB implementation is

compared with the sequential SBM. The results show that, with a

high number of regions the proposed algorithm is faster than SBM.

3 PARALLEL INTERVAL TREE MATCHING
In this section we describe the parallel ITM algorithm for solving

the region matching problem in one dimension. ITM [45] is based on

the interval tree data structure. An interval tree is a balanced search

tree that stores a dynamic set of intervals; it supports insertions,

deletions, and queries to get the list of segments that intersect a

given interval q.
Figure 6 shows a set of intervals and their tree representation. The

tree is realized using an augmented AVL tree [7] as described in [23,

Chapter 14.3]. Each node x contains three fields: (i) an interval x .in,

Algorithm 5 Interval-Tree-Matching-1D(S,U)
1: function Interval-Query(node,q)
2: if node = null ∨ node.maxupper < q.lower ∨

node.minlower > q.upper then
3: return
4: Interval-Query(node.left,q)
5: if Intersect-1D(node.in,q) then
6: Report(node.in,q)
7: if q.upper ≥ node.in.lower then
8: Interval-Query(node.right,q)

9: T ← create interval tree for S
10: for all update regions u ∈ U in parallel do
11: Interval-Query(T .root,u)

represented by its lower and upper bounds; (ii) the minimum lower

bound x .minlower among all intervals stored at the subtree rooted

at x ; (iii) the maximum upper bound x .maxupper among all intervals

stored at the subtree rooted at x .
Insertions and deletions are handled according to the normal rules

for AVL trees, with the additional requirement that any update of

the values of maxupper and minlower must be propagated up to the

root. During tree operations, nodes are kept sorted according to the

lower bounds. Since the height of an AVL tree is Θ(lgn), insertions
and deletions in the augmented data structure require O(lgn) time

in the worst case. Creating a new tree with n nodes requires total

time O(n lgn) and space O(n).
Algorithm 5 illustrates how parallel ITMworks. The first step is to

build an interval tree T containing the subscription intervals S (the
details are omitted for the sake of conciseness; Section 5 provides

directions to the source code). Function Interval-Query(T .root,u)
is then used to report all intersections among an update region u
and all subscription intervals stored in T . The procedure is similar

to a conventional binary search tree lookup, using the x .minlower
and x .maxupper fields of every node x to steer the visit away from

irrelevant subtrees. Since each node represents one interval, function

Interval-Query reports each intersection only once.

Asymptotic execution time. An interval tree can be created in

timeO(n lgn) like an ordinary AVL tree. To determine the cost of one

invocation of function Interval-Query we first observe that each

node can be visited at most once per call, soO(n) is an upper bound
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Fig. 6. Interval Tree representation of a set of intervals

on the asymptotic running time of Interval-Query. If region u
overlaps with Ku subscription intervals, then the execution time of

Interval-Query(T .root,u) is also bound by O(Ku lgn); combining

the two bounds we get that one call costsO (min{n,Ku lgn}). Since
function Interval-Query is calledm times (one for each update

region u), the total query time is O (min{m × n,K lgn}), K being

the number of intersections.

Once the tree is built, its structure is never modified. Therefore,

the iterations of the loop on lines 10–11 can be evenly split across P
processors on a shared-memory architecture. The parallel query

time is then reduced by a factor P and becomesO (min{m × n,K lgn}/P).
Observe that Algorithm 5 allows the roles of S and U to be

swapped. This can be helpful if the number of update regionsm is

much lower than the number of subscription regionsm. Ifm ≪ n
it is more convenient to build a tree on U instead than on S, since
the height will be lower. With this optimization we can replace n
withm in the asymptotic query time above.

Different implementations of the interval tree are possible. Prior-

ity search trees [47] support insertion and deletion in time O(lgn),
and can report all K intersections with a given query interval in

time O(K + lgn). While the implementation above based on AVL

trees is asymptotically less efficient, it has the advantage of being

easier to implement since it relies on a familiar data structure. We

have chosen AVL trees over other balanced search trees, such as

red-black trees [30], because AVL trees are more rigidly balanced

and therefore allow faster queries. It should be observed that ITM

is not tied to any specific interval tree implementation; therefore,

any data structure can be used as a drop-in replacement.

Dynamic interval management. An interesting feature of ITM is

that it can easily copewith dynamic intervals. TheHLA specification

allows federates to modify (i.e., move or grow/shrink) subscription

and update regions; the ability to do so is indeed essential in almost

every agent-based simulation model. A subscription region s ∈ S

(resp. u ∈ U) changing its position or size will trigger at most O(m)
(resp. O(n)) new overlaps, so it makes sense to exploit the data

structures already built instead of running the matching phase from

scratch each time.

The interval tree data structure can be used to implement a dy-

namic data distribution management scenario as follows. We can

use two interval trees TU and TS holding the set of update and sub-

scription regions, respectively. If an update regionu ∈ U is modified,

we can identify the Ku subscriptions overlapping with u in time

O (min{n,Ku lgn}) (O (min{n,Ku lgn}/P) if P processors are used)

by repeatedly calling the function Interval-Query on TU . Simi-

larly, if a subscription region s ∈ S changes, the Ks overlaps with s
can be computed in time O (min{m,Ks lgm}) using TU . When a

subscription or update region is modified, the appropriate tree must

be updated by deleting and re-inserting the node representing the

region that changed. These operations require time O(lgn) for the
subscription regions, and O(lgn) for the update regions.

4 PARALLEL SORT-BASED MATCHING
The parallel ITM algorithm from the previous section relies on a data

structure (the interval tree) to efficiently enumerate all intersections

among a set of intervals with a given query interval q. Once built,
the interval tree allows a high degree of parallelism since all update

regions can be compared concurrently with the subscription regions

stored in the tree. ITM can be easily extended to support dynamic

management of subscription and update regions.

We now propose a parallel solution to the region matching prob-

lem based on a novel parallel algorithm derived from SBM. The

parallel version of SBM will be derived incrementally, starting from

the serial version that has been described in Section 2 (Algorithm 4).

As we may recall, SBM operates in two phases: first, a list T of

endpoints of all regions is built and sorted; then, the sorted list is

traversed to compute the values of the SubSet and UpdSet variables,
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Algorithm 6 Parallel-SBM-1D(S,U)
1: T ← ∅
2: for all regions x ∈ S ∪ U in parallel do
3: Insert x .lower and x .upper in T
4: Sort T in parallel, in non-decreasing order

5: Split T into P segments T0, . . . ,TP−1
6: ⟨Initialize SubSet[0..P − 1] and UpdSet[0..P − 1]⟩
7: for p ← 0 to P − 1 in parallel do
8: for all endpoints t ∈ Tp in non-decreasing order do
9: if t belongs to subscription region s then
10: if t is the lower bound of s then
11: SubSet[p] ← SubSet[p] ∪ {s}
12: else
13: SubSet[p] ← SubSet[p] \ {s}
14: for all u ∈ UpdSet[p] do Report(s,u)

15: else ▷ t belongs to update region u
16: if t is the lower bound of u then
17: UpdSet[p] ← UpdSet[p] ∪ {u}
18: else
19: UpdSet[p] ← UpdSet[p] \ {u}
20: for all s ∈ SubSet[p] do Report(s,u)

from which the list of overlaps is derived. Let us see if and how each

step can be parallelized.

On a shared-memory architecture with P processors, building the

list of endpoints can be trivially parallelized, especially if this data

structure is realized with an array of 2 × (n +m) elements rather

than a linked list. Sorting the endpoints can be realized using a

parallel sorting algorithm such as parallel mergesort [22] or parallel

quicksort [61, 64], both of which are optimal. The traversal of the

sorted list of endpoints (Algorithm 4 lines 6–18) is, however, more

problematic. Ideally, we would like to evenly split the list T into P
segments T0, . . . ,TP−1, and assign each segment to a processor so

that all segments can be processed concurrently. Unfortunately, this

is not possible due to the presence of loop-carried dependencies. A
loop carried dependency is a data dependence that causes the result

of a loop iteration to depend on previous iterations. In the SBM

algorithm the loop-carried dependencies are caused by the variables

SubSet and UpdSet, whose values depend on those computed on

the previous iteration.

Let us pretend that the scan phase could be parallelized some-

how. Then, a parallel version of SBM would look like Algorithm 6

(line 6 will be explained shortly). Themajor difference between Algo-

rithm 6 and its sequential counterpart is that the former uses two ar-

rays SubSet[p] and UpdSet[p] instead of the scalar variables SubSet
and UpdSet. This allows each processor to operate on its private

copy of the subscription and update sets, achieving the maximum

level of parallelism.

It is not difficult to see that Algorithm 6 is equivalent to se-

quential SBM (i.e., they produce the same result) if and only if

SubSet[0..P−1] and UpdSet[0..P−1] are properly initialized. Specif-
ically, SubSet[p] and UpdSet[p] must be initialized with the values

that the sequential SBM algorithm assigns to SubSet and UpdSet
right after the last endpoint of Tp−1 is processed, for every p =

1, . . . , P − 1; SubSet[0] and UpdSet[0] must be initialized to the

empty set.

It turns out that SubSet[0..P−1] and UpdSet[0..P−1] can be com-

puted efficiently using a parallel prefix computation (also called par-
allel scan or parallel prefix-sum). To make this paper self-contained,

we introduce the concept of prefix computation before illustrating

the missing part of the parallel SBM algorithm.

Prefix computations. A prefix computation consists of a sequence

of N > 0 data items x0, . . . ,xN−1 and a binary associative opera-

tor ⊕. There are two types of prefix computations: an inclusive scan
produces a new sequence of N data items y0, . . . ,yN−1 defined as:

y0 = x0

y1 = y0 ⊕ x1 = x0 ⊕ x1
y2 = y1 ⊕ x2 = x0 ⊕ x1 ⊕ x2
...

yN−1 = yN−2 ⊕ xN−1 = x0 ⊕ x1 ⊕ . . . ⊕ xN−1
while an exclusive scan produces the sequence z0, z1, . . . zN−1 de-
fined as:

z0 = 0

z1 = z0 ⊕ x0 = x0

z2 = z1 ⊕ x1 = x0 ⊕ x1
...

zN−1 = zN−2 ⊕ xN−2 = x0 ⊕ x1 ⊕ . . . ⊕ xN−2
where 0 is the neutral element of operator ⊕, i.e., 0 ⊕ x = x .

Hillis and Steele [32] proposed a parallel algorithm for computing

the prefix sum ofN itemswithN processors inO(lgN ) parallel steps
and total workO(N lgN ). This result was improved by Blelloch [15]

who described a parallel implementation of the scan primitive of N
items on P processors requiring timeO(N /P + lg P). Blelloch’s algo-
rithm is optimal when N > P lg P , meaning that the total amount

of work it performs over all processors is the same as the (optimal)

serial algorithm for computing prefix sums, i.e., O(N ).
A somewhat simpler algorithm for computing prefix sums of N

items with P processors in timeO(N /P +P) is illustrated in Figure 7;

in the figure we consider the addition operator, although the idea

applies to any associative operator ⊕. The computation involves

two parallel steps (steps 1○ and 3○ in the figure), and one serial step

(step 2○). In step 1○ the input sequence is split across the processors,

and each processor computes the prefix sum of the elements in its

portion. In step 2○ the master computes the prefix sum of the P last

local sums. Finally, in step 3○ the master scatters the first (P − 1)
computed values (prefix sums of the last local sums) to the last (P−1)
processors. Each processor, except the first one, adds (more precisely,

applies the ⊕ operator) the received value to the prefix sums from

step 1○, producing a portion of the output sequence.

Steps 1○ and 3○ require time O(N /P) each, while step 2○ is exe-

cuted by the master in time O(P), yielding a total time O(N /P + P).
Therefore, the algorithm is optimal when N > P2. Since the current
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Fig. 7. Parallel prefix sum computation.

generation of CPUs have a small number of cores (e.g., P ≤ 72

for the Intel Xeon Phi) and the number of regions N is usually

very large, the algorithm above can be considered optimal for any

practical purpose. We remark that the parallel SBM algorithm can

be readily implemented with the tree-structured reduction opera-

tion, and therefore will still be competitive on future generations of

processors with a higher number of cores.

Initialization with prefix computation. We can now complete the

description of the parallel SBM algorithm by showing how the arrays

SubSet[p] and UpdSet[p] can be initialized in parallel. To better

illustrate the steps involved, we refer to the example in Figure 8; in

the figure we consider subscription regions only, since the procedure

for update regions is the same.

The sorted array of endpoints T is evenly split into P segments

T0, . . . ,TP−1 of 2 × (n + m)/P elements each. Processor p scans

the endpoints t ∈ Tp in non-decreasing order, updating four aux-

iliary variables Sadd[p], Sdel[p], Uadd[p], and Udel[p]. Informally,

Sadd[p] and Sdel[p] (resp. Uadd[p] and Udel[p]) contain the end-

points that the sequential SBM algorithm would add/remove from

SubSet (resp. UpdSet) while scanning the endpoints belonging to
segment Tp . More formally, at the end of each local scan the follow-

ing invariants hold:

(1) Sadd[p] (resp. Uadd[p]) contains the subscription (resp. up-

date) intervals whose lower endpoint belongs to Tp , and
whose upper endpoint does not belong to Tp ;

(2) Sdel[p] (resp. Udel[p]) contains the subscription (resp. up-

date) intervals whose upper endpoint belongs to Tp , and
whose lower endpoint does not belong to Tp .

Algorithm 7 ⟨Initialize SubSet[0..P−1] and UpdSet[0..P−1]⟩
1: for p ← 0 to P − 1 in parallel do▷ Executed by all processors

in parallel

2: Sadd[p] ← ∅, Sdel[p] ← ∅, Uadd[p] ← ∅, Udel[p] ← ∅
3: for all points t ∈ Tp in non-decreasing order do
4: if t belongs to subscription region s then
5: if t is the lower bound of Si then
6: Sadd[p] ← Sadd[p] ∪ {s}
7: else if s ∈ Sadd[p] then
8: Sadd[p] ← Sadd[p] \ {s}
9: else
10: Sdel[p] ← Sdel[p] ∪ {s}
11: else ▷ t belongs to update region u
12: if t is the lower bound of u then
13: Uadd[p] ← Uadd[p] ∪ {u}
14: else if u ∈ Uadd[p] then
15: Uadd[p] ← Uadd[p] \ {u}
16: else
17: Udel[p] ← Udel[p] ∪ {u}

▷ Executed by the master only

18: SubSet[0] ← ∅, UpdSet[0] ← ∅
19: for p ← 1 to P − 1 do
20: SubSet[p] ← SubSet[p − 1] ∪ Sadd[p − 1] \ Sdel[p − 1]
21: UpdSet[p] ← UpdSet[p − 1] ∪ Uadd[p − 1] \ Udel[p − 1]

This step is realized by lines 1–17 of Algorithm 7, and its effects are

shown in Figure 8 1○. The figure reports the values of Sadd[p] and
Sdel[p] after each endpoint has been processed; the algorithm does
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Fig. 8. Parallel prefix computation for the SBM algorithm.

not store every intermediate value, since only the last ones (within

thick boxes) will be needed by the next step.

Once all Sadd[p] and Sdel[p] are available, the next step is exe-

cuted by themaster and consists of computing the values of SubSet[p]
and UpdSet[p], p = 0, . . . , P − 1. Recall from the discussion above

that SubSet[p] (resp. UpdSet[p]) is the set of active subscription

(resp. update) intervals that would be identified by the sequen-

tial SBM algorithm right after the end of segmentT0∪ . . .∪Tp−1. The
values of SubSet[p] and UpdSet[p] are related to Sadd[p], Sdel[p],
Uadd[p] and Udel[p] as follows:

SubSet[p] =
{
∅ if p = 0

SubSet[p − 1] ∪ Sadd[p − 1] \ Sdel[p − 1] if p > 0

UpdSet[p] =
{
∅ if p = 0

UpdSet[p − 1] ∪ Uadd[p − 1] \ Udel[p − 1] if p > 0

Intuitively, the set of active intervals at the end of Tp can be com-

puted from those active at the end of Tp−1, plus the intervals that
became active in Tp , minus those that ceased to be active in Tp .
Lines 18–21 of Algorithm 7 take care of this computation; see

also Figure 8 2○ for an example. Once the initial values of SubSet[p]
and UpdSet[p] have been computed, Algorithm 6 can be resumed

to identify the list of overlaps.

Asymptotic execution time. We now analyze the asymptotic ex-

ecution time of parallel SBM. Let N denote the total number of

subscription and update regions, and P the number of processors.

Algorithm 6 consists of three phases:

(1) SortingT in non-decreasing order requires total timeO ((N lgN )/P)
using a parallel sorting algorithm such as parallel merge-

sort [22].

(2) Computing the initial values of SubSet[p] and UpdSet[p]
for each p = 0, . . . , P − 1 requires O (N /P + P) steps using
the two-level scan shown on Algorithm 7; the time could

be reduced to O (N /P + lg P) steps using the tree-structured
scan by Blelloch [15].

(3) Each of the final local scans require O(N /P) steps.
Note, however, that phases 2 and 3 require the manipulation of

data structures to store sets of endpoints, supporting insertions

and removals of single elements and whole sets. Therefore, a sin-

gle step of the algorithm has a non-constant time complexity that

depends on the actual implementation of sets and the number of

elements they contain; this issue will be discussed in more detail in

Section 5. During phase 3 total time O(K) is spent cumulatively by

all processors to report all K intersections.

Some remarks on distributed-memory and GPU implementations.
Although the focus of this paper is on shared-memory architectures,

we provide here some remarks on possible distributed-memory

and GPU implementations of Algorithm 6.

In a distributed-memory system, computing nodes exchange in-

formation through some type of high-performance network con-

nection. It turns out that a distributed-memory implementation of

Algorithm 6 can be realized with minimal modifications. First, a

suitable distributed-memory sorting algorithm (e.g., [57]) can be

used to sort the list of endpoints. Then, the parallel prefix computa-

tion shown in Figure 8 can be realized efficiently since it is based on

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 00. Publication date: 0.



00:12 • Moreno Marzolla and Gabriele D’Angelo

the Scatter/Gather communication pattern [46]. A Scatter operation
allows a single process to send portions of a local array to multiple

destinations, and is executed between steps 2○ and 3○ in Figure 8.

The symmetric Gather allows multiple processes to send portions of

an array to a single destination where they are concatenated; this is

required between steps 1○ and 2○. Since Scatter/Gather primitives

are very useful in many contexts, they are efficiently supported

by software middlewares (e.g., the MPI_Scatter() MPI_Gather()
functions of the Message Passing Interface specification), or directly

at the hardware level [8].

An efficient GPU implementation of Algorithm 6, however, poses

several challenges. Although GPU-based efficient algorithms for

sorting and doing prefix computations are available [12], the data

structure used to represent sets of endpoints must be designed care-

fully. As described earlier in this Section, Algorithm 6 performsΘ(N )
set operations (unions and differences) during the prefix compu-

tation, and therefore the data structure used for representing sets

must be chosen wisely (we will return to this issue in Section 5).

Data structures based on hash tables or trees are problematic on

the GPU, although not impossible [9, 10]. A simpler implementation

of sets using bit vectors appears to be better suited: a bit vector is a

sequence of N bits, where item i is in the set if and only if the i-th
bit is one. Bit vectors allow union, intersection and set difference to

be realized efficiently using nothing more than Boolean operators;

however, bit vectors require considerable amounts of memory if

the number N of items that could be in the set is large. This issue

requires further investigation, and is subject of ongoing research.

5 EXPERIMENTAL EVALUATION
In this section we evaluate the performance and scalability of the

parallel ITM and parallel SBM algorithms, and compare them to

parallel implementations of BFM and GBM. BFM and ITM have been

implemented in C, while SBM and GBM have been implemented in

C++. To foster the reproducibility of our experiments, all the source

code used in this performance evaluation is freely available on the

research group website [4] with a Free Software license.

We used the GNU C Compiler (GCC) version 4.8.4 with the

-O3 -fopenmp -D_GLIBCXX_PARALLEL flags to turn on optimiza-

tion and to enable parallel constructs at the compiler and library

levels. Specifically, the -fopenmp flag instructs the compiler to

handle OpenMP directives in the source code [24], while the flag

-D_GLIBCXX_PARALLEL enables parallel implementations of some

algorithms from the C++ Standard Template Library (STL) to be

used instead of their sequential counterparts (more details below).

OpenMP is an open interface supporting shared memory par-

allelism in the C, C++ and FORTRAN programming languages.

OpenMP allows the programmer to label specific sections of the

source code as parallel regions; the compiler takes care of dispatch-

ing these regions to different threads that can be executed by the

available processors or cores. In the C/C++ languages, OpenMP

directives are specified using #pragma directives. The OpenMP stan-

dard also defines some library functions that can be called by the

developer to query and control the execution environment program-

matically.

The BFM and ITM algorithms are embarrassingly parallel, mean-

ing that the iterations on their main loop (line 1 on Algorithm 2 and

line 10 on Algorithm 5) are free of data races. Therefore, a single

#pragma omp parallel for directive is sufficient to distribute the

iterations of the loops across the processors.

GBM requires more care, as we have already observed in Section 2,

since the first loop (lines 5–9, Algorithm 3) has a data race due to pos-

sible concurrent updates to the list G[i] in line 8. A simple solution

consists on protecting the statement with a #pragma omp critical
directive that ensures that only one thread at a time can modify a

list. However, this might limit the degree of parallelism since two

OpenMP threads would be prevented from updating two different

lists concurrently. To investigate this issue we developed an ad-hoc,

lock-free linked list data structure that supports concurrent append

operations without the need to declare a critical section. Measure-

ments showed that in our experiments the ad-hoc linked list did

not perform significantly better, so we decided to use the standard

std::list container provided by the C++ Standard Template Li-

brary (STL) library [58], and protect concurrent updates with the

OpenMP critical directive.
Our implementation of parallel SBM relies on some of the data

structures and algorithms provided by the C++ STL. Specifically, to

sort the endpoints we use the parallel std::sort function provided

by the STL extensions for parallelism [20]. Indeed, the GNU STL

provides several parallel sort algorithms (multiway mergesort and

quicksort with various splitting heuristics) that are automatically

selected at compile time when the -D_GLIBCXX_PARALLEL compiler

flag is used. The rest of the SBM algorithm has been parallelized

using explicit OpenMP parallel directives.
The Sort-based Matching (SBM) algorithm relies on a suitable

data structure to store the sets of endpoints SubSet and UpdSet
(see Algorithms 6 and 7). Parallel SBM puts a higher strain on this

data structure than its sequential counterpart, since it also requires

efficient support for unions and differences between sets, in addition

to insertions and deletions of single elements.We have experimented

with several implementations for sets: (i) bit vectors based on the

std::vector<bool> STL container; (ii) an ad-hoc implementation

of bit vectors based on rawmemorymanipulation; (iii) the std::set
container, that in the case of the GNU STL is based on Red-Black

trees [11]; (iv) the std::unordered_set container from the 2011

ISO C++ standard, that is usually implemented using hash tables;

(v) the boost::dynamic_bitset container provided by the Boost

C++ library [5]. The most efficient turned out to be the std::set
container, and it has been used in the experiments described below.

Experimental setup. The experiments below have been carried out

on a dual-socket, octa-core server whose hardware specifications are

shown in Table 1. The processors employ the Hyper-Threading (HT)

technology [44]: in HT-enabled CPUs some functional components

are duplicated, but there is a single main execution unit for phys-

ical core. From the point of view of the Operating System (OS),

HT provides two logical processors for each physical core. Studies

from Intel and others have shown that in typical applications HT

contributes a performance boost in the range 16–28% [44]. When

two processes are executed on the same core, they compete for the
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CPU Intel Xeon E5-2640

Clock frequency 2.00 GHz

Processors 2

Cores/proc 8

Total cores 16

Threads/core 2

HyperThreading Yes

RAM 128 GB

L3 cache size 20480 KB

Operating System Ubuntu 16.04.3 LTS

Table 1. Hardware used for the experimental evaluation.

shared hardware resources resulting is lower efficiency than the

same two processes executed on two different physical cores.

The number P of OpenMP threads to use can be chosen either

programmatically through the appropriate OpenMP functions, or

setting the OMP_NUM_THREADS environment variable. In our experi-

ments, P never exceeds the total number of (logical) cores, so that

over-provisioning never happens. By default, the Linux scheduler

spreads processes to different physical cores as long as possible;

only when there are more runnable processes than physical cores

does HT come into effect. All tests have been executed with this

default behavior.

For better comparability of our results with those in the literature,

we consider d = 1 dimensions and use the methodology and parame-

ters described in [52] (a performance evaluation based on real dataset

will be described at the end of this section). The first parameter is

the total number of regions N , that includes n = N /2 subscription
andm = N /2 update regions. All regions have the same length l
and are randomly placed on a segment of total length L = 10

6
. l is

defined in such a way that a given overlapping degree α is obtained,

where

α =

∑
area of regions

area of the routing space

=
N × l
L

Therefore, given α and N , the value of l is set to l = αL/N . The

overlapping degree is an indirect measure of the total number of

intersections among subscription and update regions. While the

performance of BFM and SBM is not affected by the number of inter-

sections, this is not the case for ITM, as will be shown below.We con-

sidered the same values for α as in [52], namely α ∈ {0.01, 1, 100}.
Finally, each measure is the average of 50 independent runs to get

statistically valid results. Our implementations do not explicitly

store the list of intersections, but only count them. We did so to

ensure that the execution times are not affected by the choice of the

data structure used to store the list of intersections.

Wall clock time and Speedup. The firstmetric we analyze is theWall

Clock Time (WCT) of the parallel programs. The WCT includes the

time needed to initialize all ancillary data structures used by each

algorithm (e.g., the time needed to build the interval tree, or to fill

the grid cells), but does not include the time required to randomly

initialize the input regions.

Figure 9(a) shows theWCT for the parallel versions of BFM, GBM,

ITM and SBM as a function of the number P of OpenMP threads,

given N = 10
6
regions and overlapping degree α = 100. The GBM

algorithm requires the user to define the number of grid blocks

(nblocks) to use. This parameter should be carefully chosen since

it affects the algorithm’s performance [59]. We have empirically

determined that the best running time with P = 32 OpenMP threads

with the parameters above is 3000 regions. Dashed lines indicate

when P exceeds the number of physical cores.

We observe that the parallel BFM algorithm is about three orders

of magnitude slower than parallel SBM. This is unsurprising, since

the computational cost of BFM grows quadratically with the num-

ber of regions (see Section 2), while that of SBM and ITM grows

only polylogarithmically. SBM performs better than BFM by almost

two orders of magnitude. ITM is faster than BFM (remember that

Figure 9(a) uses a logarithmic scale), and provides the additional

advantage of requiring no tuning of parameters.

A drawback of GBM is that it requires the number of grid cells

to be defined. The optimal value depends both on the simulation

model and also on the number of OpenMP threads P ; our chosen
value (3000 regions) is optimal for P = 32, but not necessarily for

the other values of P ; indeed, we observe that the execution time of

parallel GBM increases around P = 24; this shows up as a prominent

feature in the speedup graph as explained below.

The relative speedup measures the increase in speed that a par-

allel program achieves when more processors are employed to

solve a problem of the same size. This metric can be computed

from the WCT as follows. Let T (N , P) be the WCT required to pro-

cess an input of size N using P processes (OpenMP threads). Then,

for a given N , the relative speedup SN (P) is defined as SN (P) =
T (N , 1)/T (N , P). Ideally, the maximum value of SN (P) is P , which
means that solving a problem with P processors requires 1/P the

time needed by a single processor. In practice, however, several

factors limit the speedup, such as the presence of serial regions in

the parallel program, uneven load distribution, scheduling overhead,

and heterogeneity in the execution hardware.

Figure 9(b) shows the speedups of the parallel versions of BFM,

GBM, ITMand SBMas a function of the number of OpenMP threads P ;
the speedup has been computed using the wall clock times of Fig-

ure 9(a). Again, dashed lines indicate data points where P exceeds

the number of physical processor cores. The BFM algorithm, despite

being the less efficient, is the most scalable due to its embarrassingly

parallel structure and lack of any serial part. SBM, on the other hand,

is the most efficient but less scalable. SBM achieves a 2.6× speedup

with 16 OpenMP threads. When all “virtual” cores are used, the

speedup grows to 3.6×. The limited scalability of SBM is somewhat

to be expected, since its running time is very small and therefore

the overhead introduced by OpenMP becomes non-negligible.

The effect of HT (dashed lines) is clearly visible in Figure 9(b).

The speedup degrades when P exceeds the number of cores, as can

be seen from the different slopes for BFM on titan. When HT kicks

in, load unbalance arises due to contention of the shared control

units of the processor cores, and this limits the scalability. The

curious “bulge” that appears on the curve is due to some OpenMP

scheduling issues on the machine used for the test, that is based on

a Non Uniform Memory Access (NUMA) architecture [18]. Indeed,
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Fig. 9. Wall clock time and speedup of parallel {BFM, GBM, ITM, SBM} with N = 10
6 regions and overlapping degree α = 100; the GBM algorithm uses 3000

regions. Dashed lines indicate the region where the number of OpenMP threads exceeds the number of (physical) CPU cores.

the bulge appears even if we replace the body of the inner loop of

the BFM algorithm (line 3 of algorithm 2) with a dummy statement;

moreover, the bulge does not appear if we run the BFM algorithm

on a non-NUMA machine.

The speedup of SBM improves if we increase the work performed

by the algorithm. Figure 10(b) shows the speedup of parallel ITM

and SBM with N = 10
8
regions and overlapping degree α = 100;

in this scenario both BFM and GBM take so long that they have

been omitted. The SBM algorithm behaves better, achieving a 7×
speedup with P = 32 threads. The reason of this improvement is that

increasing the amount of work executed by each processor reduces

the synchronization overhead, which is particularly beneficial on

multi-socket NUMA machines.

We have said above that the optimum number of grid cells in

the parallel GBM algorithm depends on the number of OpenMP

threads P . Figure 11 shows this dependency for a scenario with N =
10

6
regions and overlapping degree α = 100. In the figure we report

the WCT as a function of P and of the number of grid cells; for each

value of P we put a red dot on the combination of parameters that

provides the minimum WCT. As we can see, the optimum number

of grid cells changes somewhat erratically as P increases, although

it shows a clear trend suggesting that a larger number of cells is

better for low values of P , while a small number of cells is better

for high values of P . A more precise characterization of the WCT of

the parallel GBM algorithm would be an interesting research topic,

that however falls outside the scope of the present paper.

We now turn our attention on how the WCT changes as a func-

tion of the number of regionsN , and as a function of the overlapping

degree α . We set the number of OpenMP threads to P = 32, the

number of logical cores provided by the test machine. Figure 12(a)

shows the WCT of parallel ITM and SBM for α = 100, by vary-

ing the number of regions N in the range [107, 108]. In this range

both BFM and GBM require a huge amount of time, that is orders

of magnitude higher than those of ITM and SBM, and will therefore

be omitted from the comparison. From the figure we observe that

the execution times of both ITM and SBM grow polylogarithmically

with N , supporting the asymptotic analysis in Section 4; however,

parallel SBM is faster than ITM, suggesting that its asymptotic cost

has smaller constant factors.

In Figure 12(b) we report the WCT as a function of α , for a
fixed N = 10

8
. We observe that, unlike ITM, the execution time

of SBM is essentially independent from the overlapping degree.

Memory Usage. We conclude our experimental evaluation with

an assessment of the memory usage of the parallel BFM, GBM,

ITM and SBM algorithms. Figure 13 shows the peak Resident Set

Size (RSS) of the four algorithms as a function of the number of

regions N and OpenMP threads P , respectively. The RSS is the

portion of a process memory that is kept in RAM. Care has been

taken to ensure that all experiments reported in this section fit

comfortably in the main memory of the available machines, so that

the RSS represents an actual upper bound of the amount of memory

required by the algorithms. Note that the data reported in Figure 13

includes the code for the test driver and the input arrays of intervals.

Figure 13(a) shows that the resident set size grows linearly with

the number of regions N for all algorithms. BFM has the smaller

memory footprint, which is expected since it requires a small bounded

amount of additional memory for a few local variables. On the other

hand, SBM requires the highest amount of memory of the four al-

gorithms, since it allocates larger data structures, namely the list of

endpoints to be sorted, and a few arrays of sets that are used during

the scan phase. In our tests, SBM requires approximately 7 GB of

memory to process N = 10
8
intervals, about three times the amount

of memory required by BFM.

In Figure 13(b) we see that the RSS does not change as the number

of OpenMP threads P increases, with overlapping degree α = 100

and N = 10
6
regions. The anomaly shown by SBM going from P = 1

to P = 2 is due to the OpenMP runtime system.
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Fig. 10. Wall clock time and speedup of parallel {ITM, SBM} with N = 10
8

regions and overlapping degree α = 100. Dashed lines indicate the region
where the number of OpenMP threads exceeds the number of CPU cores,
and therefore HT comes into play.

Performance Evaluation with the Koln Dataset. So far we have

evaluated the DDM implementations using a synthetic workload.

We now complement the analysis by considering a more realis-

tic workload taken from the vehicular mobility research domain.

Specifically, we use the Cologne dataset [62], a realistic (although

synthetic) trace of car traffic in the city of Cologne, Germany. The

complete dataset
2
contains the timestamped positions of more than

700.000 vehicles moving on the greater urban area of Cologne (400

square kilometers) over a period of 24 hours.

We consider a portion of the dataset that includes 541, 222 po-

sitions. The x coordinate of each position is used as the center of

one subscription and one update region; therefore, there are about

2
http://kolntrace.project.citi-lab.fr/koln.tr.bz2, accessed on 2019-03-29
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Fig. 11. Wall clock time of parallel GBM with N = 10
6 regions and overlap-

ping degree α = 100. For each value of the number of OpenMP threads P , a
red dot indicates the number of grid cells minimizing the WCT. Each WCT
is the average of 50 measurements.

N = 10
6
regions overall. The width of each region is set to 100

meters, resulting in approximately 3.9 × 109 intersections.
Figure 14 shows the WCT and speedup of the parallel versions

of the GBM, ITM and SBM algorithms; for GBM we used 3000 grid

cells. As usual, each data point is the average of 50 independent

runs. We observe that the parallel GBM algorithm is the slowest of

the three, while parallel SBM is the fastest by a wide margin (three

orders of magnitude faster than SBM, two orders of magnitude

faster than ITM). Since SBM is very fast on this benchmark, its poor

scalability is caused by the parallelization overhead of OpenMP that

has a higher impact on low wall-clock times.

6 CONCLUSIONS
In this paper we described and analyzed two parallel algorithms for

the region matching problem on shared-memory architectures. The

region matching problem consists of enumerating all intersections

among two sets of subscription and update regions; a region is a

d-dimensional, iso-oriented rectangle. The region matching problem

is at the core of the Data Distribution Management service which is

part of the High Level Architecture.

The region matching problem in d dimensions can be reduced

to the simpler problem of computing intersections among one-

dimensional segments. The first parallel solution to the 1Dmatching

problem, called ITM, is based on an interval tree data structure. An

interval tree is a binary balanced search tree that can store a set of

segments, and can be used to efficiently enumerate all intersections

with a given query segment. Once built, an interval tree can be

efficiently queried in parallel. The second solution is based on a

parallel extension of SBM, a state-of-the-art solution to the DDM

problem.

We have implemented the parallel versions of ITM and SBM us-

ing the C/C++ programming languages with OpenMP extensions.
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Fig. 13. Memory usage (peak resident set size, VmHWM) of parallel BFM, GBM, ITM and SBM with an increasing number of regions (a) or threads (b),
overlapping degree α = 100.

These algorithms have been compared with parallel implementa-

tions of the Brute-Force and Grid-Based matching algorithms. The

results show that the parallel versions of ITM and SBM are orders

of magnitude faster than (the parallel versions of) Brute-Force and

Grid-Based matching. Among the four algorithms considered, par-

allel SBM is the fastest in all scenarios we have examined. The ITM

algorithm, while slower than SBM, can be easily extendable to cope

with dynamic regions since the interval tree allows efficient in-

sertion and deletion of regions. In fact, a version of SBM that can

efficiently handle region updates has already been proposed [49],

but it can not be readily adapted to the parallel version of SBM

discussed in this paper. Developing a parallel and dynamic version

of SBM is the subject of ongoing research.

In this paper we focused on shared-memory architectures, i.e.,

multicore processors, since they are virtually ubiquitous and well

supported by open, standard programming frameworks (OpenMP).

Modern GPUs can be faster than contemporary CPUs, and are in-

creasingly being exploited for compute-intensive applications. Un-

fortunately, the parallel ITM and SBM algorithms presented in this

paper are ill-suited for implementations on GPUs, since they rely

on data structures with irregular memory access patterns and/or

frequent branching within the code. Reworking the implementation

details of ITM and SBM to better fit the Symmetric Multithread-
ing model of modern GPUs is still and open problem that requires

further investigation.
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Fig. 14. Wall clock time and speedup of parallel { GBM, ITM, SBM} with the Koln dataset; the GBM algorithm uses 3000 grid cells. Dashed lines indicate the
region where the number of OpenMP threads exceeds the number of (physical) CPU cores.

A NOTATION
S Subscription set S = {S1, . . . , Sn }
U Update set U = {U1, . . . ,Um }
n Number of subscription regions

m Number of update regions

N Number of subscription and update regions (N = n +m)

Ks N. of intersections of subscription region s with
all update regions (0 ≤ Ks ≤ m)

Ku N. of intersections of update region u with

all subscription regions (0 ≤ Ku ≤ n)
K Total number of intersections (0 ≤ K ≤ n ×m)

α Overlapping degree (α > 0)

P Number of processors

B ACRONYMS
BFM Brute Force Matching

DDM Data Distribution Management

GBM Grid Based Matching

GPU Graphics Processing Unit

HLA High Level Architecture

HT Hyper-Threading

ITM Interval Tree Matching

NUMA Non Uniform Memory Access

OMT Object Model Template

OS Operating System

RSS Resident Set Size

RTI Run-Time Infrastructure

SBM Sort-based Matching

SIMD Single Instruction Multiple Data

STL Standard Template Library

UMA Uniform Memory Access

WCT Wall Clock Time
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