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ABSTRACT 

Dielectric Elastomer Transducers (DETs) represent an emerging technology with great potential for mechatronic 

applications. DETs allow to convert electrical energy into mechanical energy and vice-versa, making it possible to design 

actuators, generators, and sensors. These devices show many advantages like high energy density, silent operations, and 

low cost, but their practical applicability is strongly affected by their reliability and lifetime, which depend on both 

environmental conditions and electro-mechanical loads. Theoretical and experimental studies have recently been initiated 

to investigate the lifetime ranges of such devices for different loading conditions (e.g., mechanical, electrical, electro-

mechanical). At present, the lifetime characterization of DETs has been conducted by means of stochastic models only. In 

principle, a better understanding of electro-mechanical fatigue mechanism of DETs can be obtained through an appropriate 

analysis of their underlying physics. 

In this context, this paper presents a novel modeling approach for electro-mechanical damage evolution of DETs. In order 

to describe the phenomena involved in the damage process in physically consistent way, a free-energy framework is 

adopted. Starting from well-established electro-mechanical free-energy functions, additional variables which account for 

both mechanical and electrical fatigue mechanisms are introduced. Singular models for damage accumulation are 

developed and integrated within the free-energy conservation principle, in order to dynamically simulate the life status of 

the dielectric material when subjected to combined electric and mechanical loads. Finally, the kinetic law for damage 

evolution history due to combination of different failure modes are introduced, and used to assess DETs reliability based 

on experimental observations. 
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1. INTRODUCTION 

Dielectric Elastomers (DEs) are electrostatic devices that can be used as actuators, generators, or sensors. Generally, a 

DET consists of a highly elastic dielectric material sandwiched between compliant electrodes, forming a deformable 

capacitor. When a voltage is established between the two oppositely charged electrodes, an electrostatic stress proportional 

to the square of the electric field, known as the Maxwell stress, is developed in the material. At the same time, if the DET 

is subjected to deformation and then charged/discharged with proper synchronism, it allows to convert mechanical energy 

to electrical energy due to the electrostatic variable capacitance principle 1. Compared to other transduction technologies, 

DEs features include high energy efficiency and power density, large deformations, easy manufacture and integration, low 

cost, good resistance to shocks and corrosion, and silent operation 1–3. Different kinds of applications based on DE 

transducers (DET) have been developed over recent years, including pressure sensors 4, energy generators from natural 

resource as ocean waves 5 and soft actuators for robots 6, to mention a few. 

Recently, commercially available rubber membranes made of silicone elastomer, natural rubber, and styrenic rubber 

demonstrated excellent electromechanical properties for the development of high energy density DET actuators and 

generators. In such applications, DETs are commonly subjected to cyclical electrical and mechanical loading. On the one 

hand, it is desirable to increase the DET electro-mechanical load as much as possible, in order to maximize the performance 

of the system. On the other hand, heavy loading conditions make the transducer highly susceptible to electro-mechanical 



 

 

 

 

 

 

fatigue and degradation. In particular, it is remarked how the performance of DETs are highly dependent on the maximum 

electric field that can be sustained by the elastic dielectric layer before breakdown, commonly referred to as dielectric 

strength. As an example, we report a recent experimental study on DET generators, in which inflatable membranes made 

it possible to consistently convert energy into electricity at an energy density per cycle, which is larger than 150 J/kg for 

silicone elastomers, and larger than 400 J/kg in case of styrenic rubber 5. These experimented performances, however, can 

be sustained for a limited number of cycles only, after which the DET fails irreversibly. To date, very little knowledge is 

available concerning the effects of electro-mechanical loading on the material lifetime, thus making it not possible to find 

an optimal trade-off between performance and reliability in DET systems.  

Among the most extensive research works published on the subject, it is worthwhile mentioning 7, where DE actuators 

made by an acrylic membrane (VHB-4910 by 3M), have been tested demonstrating that the maximum adopted value for 

electric field has a great impact on the device lifetime. Most of earlier literature focused on either mechanical or electrical 

failure modes of elastomeric material. More specifically, different methodologies have been presented in literature to test 

and model the lifetime behavior for elastomeric material under mechanical loading conditions, i.e., 8,9. At the same time, 

most of the works dealing with electrical degradation and breakdown characterization of dielectrics have been developed 

in the context of electric insulator materials, capacitors, and power cable industry. Earlier studies focused on describing 

how electric treeing and conductive paths develop inside an insulator material during system operation, causing a short 

circuit and therefore an electric breakdown 10,11. 

The experience on DETs lifetime tests has shown that if DE specimens are subject to an electric cyclical loading below 

the dielectric strength of the material, above which breakdown appears, the resulting number of cycles to failure will follow 

a stochastic distribution, 7,12,13. From the post-processing analysis of the results, the mean cycles to failure distribution, as 

a function of the electric load level, can be estimated. The closer such a value to the electric breakdown level of the material, 

the less the average number of cycles needed to the failure of the specimen. Generally, if material lifetime is quantified by 

means of this approach, the final output of fatigue tests is the number of cycles to failure. Nevertheless, for DE systems 

the above interpretation is too restrictive, due to the fact that DEs are normally subject to multiple loading inputs at the 

same time (e.g., electrical, mechanical), resulting in different possible failure modes. The standard stochastic procedures 

for data analysis are limited to model the lifetime behavior only from final experimental results. Moreover, they also 

require the availability of large experimental dataset in order to interpolate the different stochastic distribution of every 

combination of loading conditions, each one obtained via a dedicated experimental campaign. Therefore, this process could 

turns out to be highly involved in terms of data collection time and data post-processing.  

In order to overcome this issue and optimize the reliability assessment of DEs, their damage behavior, for both individual 

and coupled electro-mechanic loading, has to be better defined. By properly taking into account the cross correlation events 

between all the inputs in the dielectric material, a more effective prediction of material failure mechanisms can be obtained. 

In this way, a limited set of target experiments are only required to evaluate the lifetime behavior of the DE material under 

a wide range of operating conditions. In this context, the theory of continuum damage model (CDM) has been proposed 
14. This analytical methodology allows to define the damage accumulation process of a system in a physical framework, 

allowing to consistently describe the coupling effect among different damage mechanisms. The output of CDM is the 

evaluation of the damage state inside the dielectric material, which allows to estimate the amount of degradation 

phenomena occurring in the material, e.g., mechanical, electrical. However, we point out that the use of such a framework 

to characterize DET lifetime and damage evolution has not been investigated yet.  

Following the framework outlined in 14, in this work we propose for the first time a CDM model for describing DET 

lifetime. To interpret the material damage mechanisms, two scalar continuum damage variables are defined for the electro-

mechanical state of DEs in a free-energy framework. The damage evolution is then linked to an energy loss rate inside the 

material, in agreement with second principle of thermodynamics. Different assumptions are then performed to reflect 

mechanical, electrical, and coupled electro-mechanical failure mechanisms, by means of physical insights and numerical 

simulations. Based on such assumptions, suitable kinetic laws are then proposed for describing the damage accumulations 

in the material.  

The remainder of this paper is organized as follows. In section 2, the CDM in literature is briefly introduced with an 

example of damage state definition for a general material. In section 3, the developed CDM for mechanical, electrical, and 

electromechanically coupled damage of DETs is presented. A practical method is also presented for estimating the 

maximum number of cycles to failure by means of the developed model. Finally, concluding remarks and future research 

directions are outlined in Section 4. 



 

 

 

 

 

 

2. CONTINUUM DAMAGE MODELLING 

In this section, the standard CDM framework for a generic material is presented. After discussing the idea behind CDM 

from a general perspective, its application to a simple example of mechanic damage on a damaged volume will be 

presented. 

2.1 Continuum damage modelling, general framework 

The basic concepts and details on CDM are discussed, based on the treatment in 14. In CDM theory, each damage 

mechanism is represented via a corresponding state variable. The definition of such damage variables can be rather generic, 

and needs to be associated to a specific physical mechanism. Some representative example, related to mechanical damage, 

are given by ductile and brittle failures, creep and viscoelastic rupture modes, or crack initiation and fatigue behavior. 

To quantify the damage accumulation over time, CDM theory exploits concepts from the thermodynamics of irreversible 

process. We start by considering a generic and reversible thermodynamic process in isothermal condition, the following 

relationship holds as a consequence of the first two laws of thermodynamics 

 ,d dW    (1) 

where d is the infinitesimal change in Helmholtz free-energy density of the system, and dW is the infinitesimal work 

density done on the system. In case N damage mechanisms are occurring, equation (1) needs to be modified as follows  
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where the term YKidDKi are representative for the energy loss due to damage. In particular, each DKi ∈ [0, 1] defines an 

additional independent variable, known as the damage, on which the free-energy explicitly depends. Each DKi can be 

related to a specific failure mechanism. The larger DKi, the more the corresponding damage is accumulated in the system. 

Variables YKi, on the other hand, represents an energy-conjugated variable to DKi, and are commonly referred to as energy 

release rates. Each YKi can be computed from the Helmholtz free-energy, as follows 
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Since DKi are dimensionless variables, YKi can be interpreted as the energy density released by loss of material properties 

when the damage occurs in the volume. Due to the fact that damage is modeled as an irreversible process, each additional 

term in (2) needs to satisfy the following inequality 

 0 0, 1, , .Ki Ki Ki KidD DY Y i N      (4) 

By properly defining an explicit dependency of  on all DKi and the kinetic laws for each KiD , in accordance with physical 

insights and experimental observations, the evolution of system damage based on the loading history can be modeled. 

Possible couplings among different damage phenomena can be represented by making suitable choices for kinetic laws 

KiD .  

2.2 Damage scalar variable for a generic material 

While CDM framework has been presented on a general level in the previous section, a practical example of mechanical 

damage is discussed in this section, following the basis of damage theory from 14. In order to explain how define a scalar 

variable which represents the i-damage state of a material, we consider a representative volume element (RVE) of a 

damaged body, as shown in Figure 1. Such a RVE is sufficiently small so that all its material properties can be considered 

as homogenized variables. Referring only to the mechanical response of the body, it is assumed that the damage generates 

free surfaces of discontinuities, causing different consequences for the mechanic strength and stiffness of the material in 

tension or compression. Thus, if we analyze its intersection face with the plane defined by its normal n, the cross-section 

area will include also the surfaces of damaged volumes. As mentioned before, a scalar variable DK can be associated to 

this mechanism, in such a way it quantifies the health state of the material. In particular, DK can be defined as follows: 
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where δand 
*
K  are the undamaged and damaged RVE parts respectively. The net remaining undamaged volume, i.e., 

K , is obtained as the difference between δand 
*
K . If the RVE is totally undamaged DK is equal to zero, while DK 

is equal to 1 in case the RVE is fully damaged. Within the DK formation, the mechanic response of the system will change 

until critical condition for the material is reached, e.g., the yield stress. Indeed, from a simple force balance on the material 

element, it can be demonstrated that on the cross-section area the real stress generated from a force f1 applied along 

direction 1 is: 
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In (6), 1 and 1  represent the nominal stress computed on the total undamaged nominal area s1 , and the true stress on 

the net undamaged reduced area 1Ks , respectively. Both stresses are caused by the same applied force f1, but are computed 

with respect to a different surface area. As it can be noticed, given the same external force f1, the true stress will be higher 

than the nominal one, because the progressive damage in the material will decrease progressively the net resisting material. 

By considering the entire material body, the damage will propagate on multiple RVEs until a maximum cumulative 

damaged volume will be reached, after which the material could not sustains anymore the applied force. Thus, after such 

level is reached, mechanical rupture of the material will occur due to the fact that the real stress on the damaged area of 

the material will be over the material strength. 

 

Figure 1. (a) Relevant volume element of a generic material. (b) Cross-section area of the damaged RVE with the plane 

defined by its normal n, denoting the presence of irregularities surfaces to interpret the damage state. 

3. DAMAGE MODELLING FOR DE 

The novel application of CDM for describing damage in DEs represents the main objective of this section. At first, 

mechanical and electric damage process are described for DET as singular independent phenomena. In the last part, their 

coupling effects will be analyzed together to describe the total electro-mechanical damage process of DE. In the end, an 

example of lifetime calculation will be presented in order to demonstrate the practical use of the model. 

3.1 Mechanical damage modelling for DE 

In this paragraph, we consider the mechanical damage problem of a DET. In the context of DEs, the CDM can be 

straightforwardly applied to describe the mechanic damage process. A picture of a DE in deformed configuration is shown 

in Figure 2, with respect to a Cartesian reference system. 



 

 

 

 

 

 

 

Figure 2. (a) Dielectric elastomer stretched by a force F1. (b) The cross-section area with the plane of normal n, in order to 

show the possible damage state of the material. 

Since we are focusing on mechanical damage modeling only, we consider that the material can be described by means of 

a Helmholtz free-energy function comprising only a mechanical contribution. Such a free-energy function is denoted as 

ψM. For the implementation of CDM, we will introduce in the free-energy density the mechanic damage state. We start by 

considering an undamaged DET material. Following Figure 2, if a force F1 is applied on a DE along direction 1, the 

differential of the total Helmholtz free-energy M is: 

 1 1,Md F dl    (7) 

with dl1 equal to the deformation along the same direction. We can define the Helmholtz free-energy density M as follows  

 ,M
M 




  (8) 

where  is the volume of undamaged DE material. Note that definition (8) is based on the entire DE volume  rather than 

on the RVE , implying that an average energy density over the entire material is considered. We point out how the 

mechanical response of elastomers is characterized by a nonlinear elastic behavior, with a large deformation range up to 

400% of elongation, 1,15. Such large deformations make it necessary to define the stresses based on current, rather than 

reference geometry. This fact introduces additional nonlinearities in the model. As shown in 16, by defining material 

stretches i and stresses i, i = 1,2,3, the differential mechanic free-energy density of the undamaged DE is equal to 
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If we assume that M = M(), (9) implies that the material principal stretches can be obtained as follows 
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We now consider the situation in which the material undergoes a mechanical damage. In this case, according to the CDM 

theory, (9) is rewritten as follows 

 
3

1

.
1

M M

i

M i i
i

d d Y dD


  


    (11) 

Note that M in (11) is obtained by normalizing the macroscopic M based on the initial DE volume  (see (8)). On the 

other hand, in a mechanically damaged state the volume is defined by already mentioned total damaged volume M , with 

M < . We now define M as the effective Helmholtz free-energy density of the material, given by 
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As for a generic material, also for DEs the mechanical damage can be quantified with a variable representative for the 

isotropic evolution of microdefects and discontinuities over a mesoscopic material volume element. If the DE matter is 

damaged, the cross section area with a cutting plane will include such damaged volumes. These volumes are similar to 

microvoids that nucleate and grow due to the degradation processes, caused by an energy release rate dissipated in the 

material. Thus, as for (5), the definition of mechanical damage is a function of initial and damaged volume according to 

the following equation 

 1 .M
MD


 


  (13) 

By combining (8), (12), and (13),we obtain the following relationship 
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Two energy density functions appear in (14). While M represents the true Helmholtz free-energy density of the material, 

since it is obtained as the macroscopic Helmholtz free-energy divided the actual volume M , M represents an “apparent” 

Helmholtz free-energy density computed on the basis of the original volume . By means of equation (14), we can link 

the two energy functions via the damage DM. The larger DM, the smaller the apparent Helmholtz free-energy density M 

for the same true energy M . This means that if the material is damaged mechanically, an apparent decrease in stored 

energy is deduced if we still use the original volume  for computing M. Since the true material behavior is described by 

M , we can assume that  M M    only, where vector is defined as follows  1 2 3

T
     

Therefore, by combining this assumption with (14), we obtain 

      , 1 .MM MMD D      (15) 

By combining (15) with (11), we obtain the following equations 
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where i  are the true stresses computed on the undamaged area, previously defined by equation (6). The second law of 

thermodynamics, together with (16), implies the following: 

  0 0 0,M M M M MY dD dD D        (17) 

since energy M  is commonly chosen as a non-negative and convex function. Physically, (17) implies that the damage 

can only increase over time. This is consistent with the nature of the phenomenon, due to the fact that the damage is an 

intrinsically irreversible process and material self-healing is not allowed.  

Different approaches have been proposed in literature, to find suitable shapes for the kinetic law of DM. In this work, based 

on experience on fatigue behavior and experimental work on DE lifetime, the kinetic law of damage can be represented by 
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where a1 and a2 are parameters estimated by experimental results and M  is a threshold level for the energy density, below 

which no damage is accumulated. Such an equation is standard for fatigue problem, because is always positive and, most 

importantly, it can be easily compared with lifetime results on a logarithmic scale. The unknown parameters a1 and a2 

characterize the log-linear relation of the data, and need to be tuned via experiments. 

3.2 Electrical damage model for DE 

Whenever a voltage V is applied between the electrodes of a DET, the dielectric material is subjected to an electric loading. 

Under certain conditions, this electric loading could potentially affect the dielectric properties of the material. As already 

discussed, different damage processes can be triggered in the DE, and each one of them could theoretically lead to the 

dielectric breakdown failure mode. This phenomenon can be interpreted as the creation of a conduction path between the 

electrodes that allows to their charges to runaway and flow in the device 11,17. Based on results on electric breakdown for 

dielectric materials, it can be inferred that electric failure occurs in the DET due to the decay of its electrostatic properties, 

in analogy to the mechanic damage accumulation process. Indeed, also in this case, the DE can be subjected to a 

degradation process similar to fatigue behavior as already demonstrated from previous experiments. The electric damage 

accumulation evolves in time until the electric breakdown is established. Nevertheless, the causes and the effects of 

electrical damage have completely different physic reasons with respect to the mechanical one. Whenever a minimum 

conductive path connects the two DE electrodes, electric failure of the system occurs, even though the rest of the matter is 

perfectly undamaged. This is induced by an excessive electrostatic energy density which the DE material cannot absorbs, 

causing local deterioration of its dielectric properties when damage takes place. 

For a generic dielectric system as the DE reported in Figure 3, the vector-valued quantities that characterize the electrostatic 

constitutive relations are polarization P, electrical displacement D, and electric field E. For a linear and isotropic dielectric 

material, these quantities are related by the following equations 

  0 0 0 0, 1 .rE E             P E D E P E E E   (19) 

Additional parameters appearing in (19), i.e., ε0, r, , and E, represent the vacuum permittivity, the relative DE 

permittivity, the total material permittivity, and the electric susceptibility of the material, respectively. For a DE as in 

Figure 3, the electric field is only applied along direction 3, i.e., the direction perpendicular to the electrodes. As a result, 

vectors P, D, and E are defined as follow: 

      3 3 3
0 0 , 0 0 , 0 0 ,

T T T

P D E  P D E   (20) 

where D3 = -f , with f representing the free charges surface distribution over the electrodes due to the imposed voltage, 

and P3 and E3 following from equations (19).  

 

Figure 3. (a) The electric field is a constant electric field in the opposite direction 3, established due to the charge 

distribution over the opposite compliant electrodes. (b) Cross section area where are reported the supposed damaged 

conductive volumes. 



 

 

 

 

 

 

The differential of total electrostatic Helmholtz free-energy E when placing free charges qf on the electrodes of the DE it 

is known to be 

 .E fVd dq    (21) 

Similarly to the mechanical case, equation (21) can be properly normalized by introducing the electrical Helmholtz free-

energy density, as follows 

 .E
E 




  (22) 

By accounting for the non-constant geometry of DEs, and by considering that the electric field and the dielectric 

displacement vectors are nonzero only along direction 3, and by assuming a linear dielectric material, normalization of 

(21) over the volume  implies results in the following 16 
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Terms σE,i appearing in (23) are the diagonal components of the Maxwell stress tensor, due to the fact that the electric field 

E is only in the direction 3 18. It is possible to demonstrate that, for a principal system of coordinates (as in Figure 3), the 

Maxwell stress tensor T is given as follows 
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Under the assumption of linear dielectric, we also have 
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By combining (23) and (25), the linearity between D and E can readily be verified. 

Based on these considerations, a proper scalar variable for electric damage DE has to be define in the CDM framework. In 

analogy with the mechanical case, DE is chosen as the density of conductive material volumes inside the DE which do not 

contribute anymore to the dielectric strength of the media. A depiction of such a behavior is shown in Figure 3 (b). More 

formally, DE is defined as follows 

 ,1 E
ED  




  (26) 

where E  represents the amount of electrically undamaged material volume. Several earlier studies reported that the 

evolution of electrical damage follows electric treeing formation, which propagate according to a stochastic process, see, 

e.g., 10. From literature on electric breakdown failure modes and previous lifetime experiments on dielectric materials, the 

electric damage in a solid material mainly occurs and evolves in the following locations 10,11,17: 

- Where the electric field is above a certain threshold, below which no damage is generated. As consequence, the 

electrostatic energy will modify the dielectric properties of the material, ionizing a RVE where damage appears 

and conferring electric conductive properties. At the breakdown level the failure would be so rapid to be 

considered instantaneous; 

- On the edges of inclusions and defects in the material. As a matter of fact, at these locations an electric field 

concentration factor is established, inducing the initiation and evolution of an electric conductive paths. The 

boundaries of previous damaged conductive volumes appear to be favorite locations for DE initiation, which is a 

reasonable statement that explains the formation of a continuum conductive path. Therefore, the electric 

degradation progress has a favorite gradient direction of evolution; 

- At the electrodes irregularities and borders, i.e., where there is a fringing field effect. Also these locations are 

considered as concentration factor for the electric field, thus the behavior would be as the previous points.  



 

 

 

 

 

 

While for the mechanical damage there are several methods to experimentally verify the undergoing phenomenon, e.g., 

through material Young’s modulus evaluations or through direct micro inspection of cross section areas of the device, for 

the electric damage this is not trivial. Indeed, it would be necessary to determine the effective electric field inside the DE 

matter. This analysis would be too detailed and complicated for the purpose, because it implies to model and compute the 

superposition effects of the electric fields generated from the polarized dipoles, bound or free charges, and other possible 

microscale electric phenomena in the material 18. On the other hand, through the dielectric constitutive equations (19), it 

is possible to analyze the electric effects of damaged zones inside the DE.  

It can be demonstrated, indeed, that the electric field would be distorted only close to the boundaries of the conductive 

path or other inclusions in the matter. For a proper explanation, a simple yet representative example is proposed. We 

consider a DET in steady state conditions as in Figure 3, subjected to a constant level of electric E along direction 3 in the 

presence of a sphere-shape inclusion inside the dielectric material. A schematic depiction is reported in Figure 4.With 

respect to the inclusion volume, three cases are possible:  

I. The inclusion is made of air with its proper permittivity εair, that is lower than the DE permittivity 

II. The inclusion has the same property of the surrounding material, but with higher permittivity εin 

III. The inclusion is an electrical conductor, thus with null internal electric field 

All these situations are illustrated in Figure 4. For the three cases, the problem is solved by calculating the potential V from 

the Laplace equation of the electrostatic system. Successively, the electric field is calculated as the negative gradient of V: 
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Subscripts I to III stand for the three different situations mentioned above. By means of numerical simulations performed 

with COMSOL software, the solution of (27) is computed for the electric field in the described electrostatic problem for 

all the cases of potential distribution. In Figure 4, the contour plots of the electric fields in direction 3 are reported. 

The differences between the cases are due to the effects of the induced charge distributions on the inclusion boundaries. 

In fact, those charge distributions will generate their own electric field, which modifies the external one in the DE matter. 

Moreover, from Figure 4 it can be noted that the larger the permittivity of the spherical inclusion, the more the inclusion 

volume behaves like a conductor. This is consistent with the physical explanation of the phenomenon. In fact, by increasing 

the permittivity ε of a material is equivalent in increasing its electric susceptibility χE and, in turn, its polarization P. 

Therefore, if this locally polarized matter is above a maximum electric strength value, the dielectric saturates and the 

dipoles reach a maximum displacement. As a result, conductivity properties are conferred to the dielectric. This is, indeed, 

the physical explanation behind DE. This deterioration process can be modeled as a gradual phenomenon where portion of 

dielectric material volumes gradually increase their electric susceptibility to finally lose all dielectric properties and became 

a conductor 11,17. All these physical mechanisms support the definition of electric damage as equation (26), in analogy with 

the mechanical damage definition. The larger the electrical damage accumulated in the matter, the larger the amount of 

conductive volume that does not contribute anymore to the electrostatic energy. 

As a consequence, in analogy to the mechanical case, we can define the true electrical Helmholtz free-energy density of 

the damaged material as follows 
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By comparing (22) and (28), and by using the definition in (26), we obtain 
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By considering (29), and by assuming that the true electric energy E  only depends on electrical displacement D, we 

obtain the following 
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Figure 4. The three different cases (I)-(III) of sphere inclusion in a DE with constant electric field, or as a perfect 

conductor. The three column represent different values of internal radius of the sphere. 



 

 

 

 

 

 

Furthermore, in analogy to the mechanical case, we can define a damaged version of equation (23), as follows 
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where YE is an electrical energy release rate. Finally, by combining (30) and (31), we obtain the following expression for 

YE, 
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Since YE in (32) is always negative, in order to satisfy the second law of thermodynamics the rate of change of DE must 

be always positive, as expected. The following model is then proposed for its time evolution 
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Such an equation is similar to (18). Indeed, all the considerations done before are also true for only electric failure lifetime 

behavior, which still follows the classic fatigue degradation process. Thus, also in here the unknown parameters b1 and b2 

need to be estimated from experimental results and characterize the log-linear relation of the data. 

3.3 Coupling effects for electro-mechanical damage model for DE 

So far, the processes of damage evolution have been discussed for the cases in which the DE is subjected to mechanical or 

electrical loading independently. Nevertheless, coupled electro-mechanical effects on DE lifetime have been 

experimentally verified in previous works, such as DE electric breakdown level changes that with different mechanic 

prestretch 19, or different geometric configurations of the compliant electrodes lead to different lifetime values under similar 

test conditions 13. This may introduce cross correlation between the damage kinetic laws (18) and (33), resulting into an 

acceleration (or deceleration) of damage evolution. The free-energy formulation discussed above permits to naturally 

combine mechanical and electrical damage mechanisms in a thermodynamically consistent fashion. In fact, different 

energy functions can be naturally combined together in an additive way, allowing to describe more complex and coupled 

phenomena. This approach has allowed, in the past years, to develop several models of different DET configurations DETs, 

e.g., out-of-plane and in-plane deformation 20,21. Following such references, the constitutive relations of a DET are obtained 

from the total free-energy density of the system. This total Helmholtz free-energy density  can be obtained as the sum of 

a mechanical contribution  and an electrical contribution . By considering the damaged version of free-energy as in 

(15) and (30), we have then 
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We point out how some authors also consider an additional free-energy contribution related to the DE viscoelasticity (e.g., 
16). However, since viscoelasticity mostly affects dynamic applications, it will not be considered in this work. The additive 

decomposition of DE free-energy in (34), permits to combine results obtained in mechanical and electrical cases in a 

complete model. In particular, by combining results in (11) and (31), we have 

 
,

3

3 3

1

.M M E
i E i

i
Ei

i

d d E dD Y dD +Y dD
 









    (35) 

Finally, by combining (34) and (35) with (15) and , we obtain the following 
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In order to describe electro-mechanically coupled damage, we need to find kinetic laws for DM and DE such that the 

following conditions hold 

 0, 0 0 0.M M E E M EY dD Y dD D , D       (38) 

While the combination of mechanical and electrical free-energy has been performed in a straightforward way in (34) and 

(35), the definition of kinetic damage laws need to be properly redefined with respect to (18) and (33), since coupling 

mechanisms have to be accounted as well. To properly select the damage kinetic laws, it is assumed that: 

a) The microvoids that determine DM are essentially air volumes, characterized by a dielectric permittivity different 

from the one of the DE. Therefore, they behave like inclusions with different dielectric properties with respect to 

the surrounding DE media, Figure 4; 

b) The volume of electric conductive inclusions generated while DE occurs do not change the mechanical properties. 

Thus, from a mechanic response point of view, the entire material remains unchanged. 

Regarding the electric effects on the mechanic damage, the Maxwell stress in (24) already explains the influence of the 

electric field on the total stress tensor in DEs. Generally, for an incompressible DET subjected to E, the Maxwell stress 

will reduce the actual stress needed to stretch the material, making it softer. As explained previously, within DE it is implied 

a certain distribution of E, with distorted direction and module with respect to the rest of the dielectric volume. Thus, in 

such cases the DE stiffness will not be uniform in the material but rather dependent on the electric field, producing regions 

inside the material having a different local stiffness. With cyclic electro-mechanic loading of the DETs, such a phenomenon 

could enhance the fatigue of the material. 

Concerning the mechanic effects on the electric damage, the coupled electro-mechanical effect are obtained from 

assumption (a). This case has already been analyzed in the example of an inclusion inside the DE material in Figure 4, 

case (I), i.e., when the permittivity of the inclusion is lower than in the surrounding media (as for air and DE material) the 

distribution of E changes. These phenomena affect both evolution of both DM and DE. 

These assumptions reported above represents some examples of the possible cross-correlation events between the electro-

mechanic loadings upon the damage state of the material. What it can be asses at this stage of experience and model is that 

equations (18) and (33) have to be modified to properly take in account the effects of those phenomena on the dynamics 

of damage evolution. To this end, parameters a1, a2, b1, and b2 can be chosen as functions h1, h2, g1, and g2 which take in 

account these cross effects depending from on the damage states DM and DE and the rate of energy loss. The total electro-

mechanic CDM can be therefore specified as: 
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Model (39) must be in agreement with the thermodynamical conditions in (38). The electro-mechanic effects introduced 

in model through functions h1, h2, g1, and g2 need to be properly mapped based on experimental data with different 

combinations of electro mechanical loading conditions, in agreement with (i)-(iii). If needed, dependency of h2 and g2 on 

the previous damage state can be also implemented. For example, when the DE is subjected to only one kind of load 

condition or in a combination of electro-mechanic loading and one of them is not above the damage threshold, the resulting 

(39) must agree with the models mentioned before, i.e., (18) or (33), to let (i) and (ii) in (39) hold true.  



 

 

 

 

 

 

3.4 Model validation process 

In this section, it is explained how to practically use the model for the evaluation of lifetime and reliability of DE. The 

lifetime of DEs depends on several factors and phenomena, each one having a certain probability of occurrence. This 

means that if several DE samples are tested under the same environmental conditions and electro-mechanical loading, each 

one will exhibit a different number of cycles before failure. The results will follow a certain stochastic distribution which 

is determined by post processing analysis 22. An example of a procedure for estimating parameter from these kind of 

processes is already explained in 13. By using a similar procedure, unknown parameters and functions of the CDM of DEs 

of equation (39) can be estimated. From the kinetic law of damage evolution, a number of cycles to failure Nf can be 

computed, representing an estimation of the mean cycle to failure (MCTF) of the results distribution. For example, for the 

case of electric damage evolution in the equation (39), from the evolution of the damage over time, by considering uniform 

loading applied over the lifetime Tf, by assuming constant cycling rate fc, and under the hypothesis that the g1 and g2 do 

not depends on the number of cycles, Nf is calculated as follows 
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Generally, the experimental comparison between the number of cycles and load inputs experimental results is performed 

in logarithmic scale. If this is the case, the lifetime relation will be the following linear equation, which reminds the classic 

linear logarithmic curve for fatigue problem, with abscissa log(Nf) and ordinate  log
E

Y : 
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By comparing (41) with the experimental results, and by supposing that the phenomenon follows a certain stochastic 

distribution such as a Weibull curve, the unknown parameters can be estimated together with their confidence 13. The form 

of the two unknown functions hi(YM ,YE,) and gi (YM ,YE,), i = 1, 2, will be dependent from the experimental result fitting. 

For example, if there are no correlation effect between electro and mechanic loading in the experiment, the two functions 

will coincide with constant parameters ai and bi. Otherwise, if no linear relationship such as in (41) is observed, hi and gi- 

can be adapted in order to fit the behavior of the experiment as best as possible, e.g., based on universal or linear-in-

parameter approximators. After a proper experimental campaign, these two unknown functions will be totally estimated, 

and the electro-mechanical coupling effects will be fully identified by the model. 

4. CONCLUSION 

This work has presented a continuum electro-mechanical damage model for dielectric elastomer transducers. By extending 

the free-energy framework commonly used for modeling DE systems, a continuous damage model has been developed for 

both mechanic and electric degradation of the transducer. Two scalar variables representing the damage states of such 

dielectric devices have been defined for each loading input, and have been related to corresponding failure mechanisms. 

The kinetic law of their evolution over time has been proposed in agreement with the second principle of thermodynamics. 

Then, the cross correlation phenomenon between the two completely different failure modes have been presented and 

discussed, and a coupled electro-mechanic model has finally been defined. The obtained model will allow to evaluate the 

reliability of DETs still at the design procedure stage, enhancing the industrial application of the technology. In future 

research, the developed model will be validated by means of an extensively experimental campaign. As soon as the model 

will be fully estimated, it will be possible to perform reliability tests for DET regarding the specific application of the 

technology. For example, it will be used to estimate the failure probability of DE devices in several applications, such as 

valves or wave energy generators.  
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