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Guess Who's Coming:

Runtime Inclusion of Participants in

Choreographies?

Maurizio Gabbrielli1, Saverio Giallorenzo2, Ivan Lanese1, and Jacopo Mauro2

1 University of Bologna and Focus Team INRIA
2 University of Southern Denmark

Abstract. In Choreographic Programming, a choreography speci�es in
a single artefact the expected behaviour of all the participants in a
distributed system. The choreography is used to synthesise correct-by-
construction programs for each participant.

In previous work, we de�ned Dynamic Choreographies to support the
update of distributed systems at runtime.

In this work, we extend Dynamic Choreographies to include new partic-
ipants at runtime, capturing those use cases where the system might be
updated to interact with new, unforeseen stakeholders. We formalise our
extension, prove its correctness, and present an implementation in the
AIOCJ choreographic framework.

Keywords: Choreographic programming · Adaptation of distributed
systems · Dynamic inclusion of new software components.

1 To go or not to go . . . almost an introduction

�Would you go to Padova?� Bob asked while typing on his old computer.
�Well, it depends� answered Alice, without stopping to stare at the paper on

her desk. She was puzzled by the proof she was reading. The more she was going
deep into it, the less she was convinced about its correctness.

�Depends on what?�
�Oh, on many factors: time and e�ort required, money, you know, the usual

things . . . I don't understand how it's been possible to publish this proof. It's
completely hand-waved! And you know what the author told me when I met him
at a conference in Jerusalem? He said that the proof was not accurate because
. . . we're not mathematicians but computer scientists! Can you believe that?
Computer scientists . . . then, my dear hand-waver, what is computer science? A
branch of astrology or, perhaps, by any chance, something that happens to use
also math?� Alice was getting visibly nervous about that paper and its author.
The questions from Bob did not help in relaxing her.

? Research partially supported by the EU H2020 RISE programme under the Marie
Skªodowska-Curie grant agreement No 778233.



�Hum, let's try this package� mumbled Bob after a short silence �this should
�x these nasty Latex problems . . . I believe everything in Padova is pretty stan-
dard. Nothing sensationally di�erent from other places. So all in all those factors
you mentioned do not help in the decision.�

�Then, perhaps, it could be worth considering if you really want to go there.
I mean, of course it could be nice, but is it really necessary?� commented Alice.

�Indeed, that is the right question. Is it necessary, or perhaps could one avoid
it? Perhaps one could do something else or go to some other place. All in all,
there are many places in Italy . . . it's a really di�cult choice.�

The conversation continued for a while, with Alice and Bob working at their
own desks. Then, the door of the o�ce slammed open. �Guess who's coming!�
shouted Charlie entering the room �How are things going? How many papers
have you written in the last week?�

Charlie was the kind of o�ce-mate who continuously asks questions. Always
anxious about his performance, compared to the ones of his colleagues. He was
a nice guy, and often his questions raised interesting problems. However, when
he was at the o�ce, it was simply impossible to do serious technical work.

�What are you talking about? Some new full abstraction proof?� pressed
Charlie.

Alice raised her head, stretched her legs, looked for a while out of the window,
and then answered �Oh, nothing serious, we are talking about going to Padova.�
Bob was ba�ed: �Well, if you allow me, my dear, it's a serious matter. It's
actually quite important for my life!�

�Come on Bob, it's just a trip. Moreover, I was not invited to Padova. So, all
in all, it's not nice of you to ask me all these questions!�

Bob stopped typing on his computer. He sat still for a few seconds. Then, he
slowly turned his head towards Alice. He was genuinely surprised. He was used
to some strange remarks from Alice but this time she was beyond her standards.

�Why in the world should they invite you to Padova, Alice!? You have already
accepted a position at the University of Genova. Of course the University of
Padova did not consider you.�

�Position? University? Wait a minute! What are you talking about? Work
has nothing to do with this trip to Padova. It's just a trip to go and visit that
exhibition George has been talking about for months. He could have invited me
too . . . but that's OK, after all I've a lot of work to do in these days, so, no
problem, really, no problem� replied Alice.

Bob's head was spinning �Exhibition? Why in the universe should I go and
visit an exhibition in Padova? And why should I ask your opinion about going to
an exhibition? I was talking about accepting or not a position at the University
of Padova, that's what I was talking about!� Silence fell like a hammer.

�Well colleagues,� broke Charlie �see how my simple question has solved a
problem that otherwise could have lasted, unresolved, for hours? It was a kind
of deadlock! So both of you owe me a beer. See you!� And with the usual slam
of the door Charlie exited the room leaving Alice and Bob speechless.

�



In the story above, the reader might have recognised Catuscia, who played the
role of Alice. Indeed this is a true anecdote, dating back to the Pisa times �some�
years ago. Also the story about the wrong proof is true, but we leave to the reader
the task of �nding out who the author of the proof was (di�cult) or guess the
identity of Bob (easy). Charlie also corresponds to a real person, even though his
character was changed a bit for narrative reasons. And, yes, George is . . . George!

At the time of this story choreographic languages had not been invented
yet, however, in our opinion, the story has four morals: i) formalising conver-
sations among computer scientists, as if they were distributed applications, can
sometimes be useful; ii) allowing the inclusion of new participants at runtime, in-
teracting in unforeseen ways, can also be useful; iii) as a consequence of i) and ii)
dynamic choreographic languages with runtime inclusion of new participants�as
presented in this paper�can be useful not only for computer applications, but
also for computer scientists; iv) most importantly, never, ever, ask a question to
Catuscia if she is working on a proof!

2 Introduction

Today, applications are often distributed and involve multiple participants which
interact by exchanging messages. Programming the intended behaviour of such
applications requires understanding how the behaviour of a participant program
combines with that of others, to produce the global behaviour of the applica-
tion. There is a tension between the global desired behaviour of a distributed
application and the fact that it is programmed by developing local programs.
Choreographic Programming [1,2] provides a good trade-o� by allowing develop-
ers on the one hand to program the global behaviour directly and, on the other
hand, to automatically generate the local programs that implement the global
behaviour. As an example, consider the following choreography that describes
the behaviour of an application composed of one client and one seller:

1 product@client = getInput( "Insert product name" );
2 quote: client( product ) -> seller( order )

The execution starts with an action performed by the client: an input request
to the local user (line 1). The semicolon at the end of the line is a sequential
composition operator, hence the user input should complete before execution
proceeds to line 2. Then, a communication between the client and the seller

takes place: the client sends a message and the seller receives it.
This code speci�es the global behaviour and can be compiled automatically

into two di�erent local programs, one for the client and one for the seller.
Choreographies avoid by construction the presence of common errors like

communication deadlocks and message races and are therefore useful to im-
plement correct distributed systems [3]. Moreover, as testi�ed by the dynamic
choreographic language AIOCJ [2], choreographies can be extended to support
the adaptation of running distributed applications. This is indeed an important
task for the development of modern cloud native applications since, due to the



widely adoption of DevOps techniques for Continuous Integration and Contin-
uous Deployment [4,5,6], the entire application needs to be updated, upgraded
with new features, or patched guaranteeing no downtimes.

AIOCJ proposes a general mechanism to structure application updates. In-
side applications, blocks of code delimited by scopes may be dynamically replaced
by new blocks of code, called updates.

For instance, consider the previous example and assume that the interaction
between the client and seller may change. This is enabled by replacing the
second line with the following code.

scope @client{
quote: client( product ) -> seller( order ) }

In essence, a scope is a delimiter that de�nes which part of the application
can be updated. Each scope identi�es a coordinator of the update (client in
this case). The coordinator is the participant responsible for ensuring that the
distributed adaptation of the code within the scope, if and when needed, is
performed successfully. The code change is speci�ed by program rules that target
the desired scope. For instance, assuming that the seller requires not only the
name of the product but also the customer location to make a targeted o�er,
the previous code can be changed by applying the following rule.

rule { do {
loc@client = getInput( "Insert your location" );
quote: client( product + loc ) -> seller( order ) }

}

Notably, rules can be de�ned and inserted in the system while it is running,
without downtimes. At a choreographic level, updates are applied atomically to
all the involved participants. The AIOCJ framework guarantees that the compi-
lation and the application of the adaptation rules generate correct behaviours,
avoiding the inconsistencies typical of distributed code updates.

While AIOCJ [2] provides a safe and reliable mechanism to adapt the code
of running applications, it has one major weakness: it does not support the
introduction of new participants at run time. Unfortunately, due to the change
of business or legal needs, the need to introduce another entity (e.g., auditing
program, logging system) that interacts with an existing and running system
may arise.

In this work, we address this issue by proposing an extension of the Dy-
namic Choreographic AIOCJ framework which allows AIOCJ rules to add new
participants to the choreography. In particular:

� we formalise the extension of AIOCJ rules to add new participants;
� we prove that the extension with new participants satis�es the properties
of deadlock freedom and (for �nite traces) of correctness of compilation and
adaptation;

� we extend the AIOCJ development and deployment framework to support
the addition of new participants.



Structure of the paper. To exemplify the approach we start by presenting in
Section 3 a simple use case. In Section 4 we formalise the extension proving that it
preserves the correctness properties. In Section 5 we present the implementation
strategy. Section 6 discusses related work and Section 7 draws some concluding
remarks.

3 A client-seller use case

In this section we present a simple use case exemplifying how new participants
can be added at run time.

For simplicity, we consider a client-seller system for online shopping where
the client sends messages to the seller that processes them and returns an answer
to the client. Originally the program performs just this activity. Unfortunately,
due to legislation changes, the requests by the client could go towards an auditing
process and therefore they must be logged by an independent authority. Hence,
logging can not be performed by the seller but requires a new and dedicated
service, physically deployed in a location di�erent from the seller one.

Adaptation is performed in two stages:

1. when writing the original AIOCJ program, one should foresee which parts
of the code could be adapted in the future (but not which new behaviour
will be required by the adaptation), and enclose them into scopes;

2. while the AIOCJ program is running, one should write adaptation rules to
introduce the desired new behaviour.

1 product@client = getInput( "Insert product name" );
2 request: client( product ) -> seller ( order );
3 scope @seller{
4 // process the order and compute result , here XXX
5 result@seller = "XXX";
6 response: seller( result ) -> client ( result )
7 }

Let us suppose that the main deployed and running application was created
by using the choreographic program above. The original programmer foresaw
the possibility that the code run by the seller to compute the answer could be
subject to changes. For this reason, the code at lines 4-6, where the answer is
computed and sent back to the client, is enclosed in a scope.

To enforce the new legislation, the seller now needs to log all the incoming
requests from the client. The logging entity is a new participant in the choreog-
raphy. Using the extension for AIOCJ that we propose, the rule triggering the
adaptation can be written as shown in Listing 1.1

The rule introduces a new participant (also called a role) logger by using
the keywords newRoles (line 4). New roles in AIOCJ rules are di�erent from roles
previously involved in the target AIOCJ program (if needed they are renamed to
avoid clashes of names) and take part to the choreography only while the body



1 rule {
2 include log from "socket :// localhost :8002"
3 include getTime from "socket :// localhost :8003"
4 newRoles: logger
5 location@logger: "socket :// independent_autority.com :8080"
6 on {} // applicability conditions , irrelevant in this example
7 do {
8 log: seller( order ) -> logger( entry );
9 {
10 time@logger = getTime ();
11 _@logger = log( time + ": " + entry )
12 } | {
13 // process the order and compute result , here XXX
14 result@seller = "XXX";
15 response: seller( result ) -> client ( result )
16 }}
17 }

Listing 1.1. Adaptation rule adding new role.

of the rule executes. As for normal roles, the URI of new roles is declared using
the keyword location (line 5). In this particular case we suppose that the code
will be deployed at the location reachable at URL independent_autority.com
on port 8080.

Lines 2-3 de�ne two external services log and getTime that are used, respec-
tively, to store a message in the database and to get the current time. These two
services are supposed to be available on the facility where the logger code will
run. The new code, as speci�ed in lines 8-15, requires the server to send relevant
information on each transaction to the logger (in parallel to the answer to the
client). In particular, the server computes a timestamp for each request (line 10)
and logs the transaction information together with the timestamp (line 11).

To conclude this section, we remark that for presentation purposes the run-
ning example uses only a limited subset of the AIOCJ functionalities not includ-
ing, e.g., the mechanism for �ne-grained rule applicability (provided by the on

block) which can be used to specify when and whether a rule applies to a given
scope. We refer the reader to [7,2] for further details and to the AIOCJ website3

for the full code of the example (choreography and rule) and the executable
programs generated by their compilation.

4 Theoretical Model

In this section, we give a brief overview of the theory of Dynamic Choreogra-
phies [2] and we present the changes needed to support the inclusion of new roles
in runtime updates. For the sake of presentation we do not report all the formal

3 http://www.cs.unibo.it/projects/jolie/aiocj_examples/external_roles.html

independent_autority.com
http://www.cs.unibo.it/projects/jolie/aiocj_examples/external_roles.html


de�nitions detailed in [2], but we just give a general intuition of the theory pre-
sented in [2] focusing only on the formalisation of our extension. We also prove
that some correctness results from [2] are preserved by the extension.

A graphical representation explaining the key elements of Dynamic Chore-
ographies is depicted below.

DIOC program
projection

=============⇒


DPOC program1

· · ·
DPOC programn

From the left, we have DIOC, which stands for Dynamic Interaction-Oriented
Choreographies. This is the high-level language that programmers use to specify
the behaviour of the whole distributed system and models the one we have used
in the code snippets in the previous sections. It will be presented in Section 4.1.
The second element is the projection procedure which transforms a DIOC into a
set of executable programs, one for every participant in the DIOC code. Since the
extension in this paper does not a�ect the projection from [2], we just illustrate
the intuition behind it in Section 4.3. Finally, we have the target language of
the projection, DPOC, standing for Dynamic Process-Oriented Choreographies.
DPOC is a calculus inspired by process calculi like the π-calculus and CCS, and it
is equipped with primitives for runtime code update. It is designed as a common
abstraction for real languages (C, Java, Python) to make the theory more general
avoiding to target a speci�c language. DPOC is presented in Section 4.2.

4.1 Dynamic Interaction-Oriented Choreographies

We start by presenting the language to program applications, called DIOC.
DIOCs rely on a set of Roles, ranged over by R,S, . . . , to identify the par-

ticipants in the choreography. Each role has its own local state. Roles exchange
messages over labels, called operations and ranged over by o. We require expres-
sions, ranged over by e, to include at least values, belonging to a set Val ranged
over by v, and variables, belonging to a set Var ranged over by x,y, . . . . DIOC
processes are ranged over by I, I ′, . . .. We present below the DIOC production
rules.

I ::= | o : R(e)→ S(x) (interact) | x@R = e (assign) | I; I ′ (seq)

| if b@R {I} else {I ′} (cond) | scope @R {I} (scope) | I|I ′ (par)

| while b@R {I} (while) | 0 (end) | 1 (skip)

Interaction o : R(e)→ S(x) means that role R sends a message on operation
o to role S. The sent value is obtained by evaluating expression e in the local
state of R (evaluation of expressions is always atomic) and it is then stored in the
local variable x of S. Assignment x@R = e assigns the evaluation of expression
e in the local state of R to its local variable x. Processes I; I ′ and I|I ′ denote
the standard sequential and parallel composition of processes. The conditional
if b@R {I} else {I ′} and the iteration while b@R {I} are guarded by the evaluation



of the boolean expression b in the local state of R. The construct scope @R {I}

delimits a subterm I of the DIOC process that may be updated in the future. In
scope @R {I}, role R is the coordinator of the update, which ensures that either
none of the participants update, or they all apply the same update. Finally, 1
de�nes a DIOC process that can only terminate while 0 represents a terminated
DIOC. The latter is needed for the de�nition of the operational semantics and
not intended to be used by the programmer. We call initial a DIOC where 0

never occurs.

DIOC processes I execute within a DIOC system 〈Σ, I, I〉, which pairs them
with a global state Σ (disjoint union of the local states) and a set of available
updates I, i.e., a set of DIOCs that may replace scopes. Set I may change at
runtime. The semantics of DIOC systems is de�ned in terms of a labelled tran-

sition system (LTS) of the shape 〈Σ, I, I〉 µ−→ 〈Σ ′, I ′, I ′〉 where we use µ to range
over the labels. Notably, changes of set I are visible in the labels, thus allowing
to track or restrict the set of available updates if needed.

To support inclusion of new roles in DIOCs we need to change one rule in
their semantics, namely rule bDIOC |Upe (reported below). As done in [2], we
annotate the scope (as well as other constructs) with an index i ∈ N.4 The only
requirement over annotated DIOCs is that indexes within the same program
must to be distinct.

To apply an update, we need to make sure that the roles marked as new in
the update are not present in the running DIOC. While in principle one could
consider as new all roles not present in the target scope, in practice one needs
to declare the location only for new roles, hence they need to be distinguished.
For this reason, from now on updates include a set of roles expected to be new.
Thus, we introduce function newRoles that, given an update, returns the set of
new roles. Function newRoles is similar to function roles (cf. [2]), which instead
extracts the set of roles present in a given DIOC I.

We report below the form of rule bDIOC |Upe used by our extension.

I ′ ∈ I roles(I ′) \ newRoles(I ′) ⊆ roles(I) I ′′ = fresh(I ′)

connected(I ′) freshIndexes(I ′)

〈Σ, I, i: scope @R {I}〉
I ′′
−−−→

〈
Σ, I, I ′′

〉 bDIOC |Upe

First, condition I ′ ∈ I selects an update in the set of updates. Then, condition
roles(I ′)\newRoles(I ′) ⊆ roles(I) ensures that roles which are not declared as new
were already present in the scope. This weakens the condition roles(I ′) ⊆ roles(I)
in [2], which required all roles to be already present in the scope. The update
which is actually applied (and advertised in the label of the transition), I ′′, is
obtained by renaming new roles so that they are fresh for the whole DIOC.
Renaming is performed by function fresh that generates new names for roles

4 Annotated DIOC constructs are useful in the de�nition of the projection and the
related proofs to avoid interference between di�erent constructs.



w.r.t. the whole DIOC. 5 Finally, the predicate connected(I ′) checks that the
DIOC is well formed while the predicate freshIndex(I ′) checks that there are
no interaction interferences between the rule and the original DIOC. We refer
to [2] for the detailed description of both the predicates, since their behaviour
is orthogonal to the addition of new roles.

4.2 Dynamic Process-Oriented Choreographies

DPOC is the abstract and formally de�ned language used as target by the pro-
jection function. Hence, this is the language of the programs that implement the
DIOC speci�cation.

DPOCs include processes, ranged over by P,P ′, . . ., describing the behaviour
of participants. A process P for DPOC role R executing in a local state Γ is
denoted as (P, Γ)R. A collection of executing processes for di�erent roles is a
Network, ranged over by N, N ′. Finally, a DPOC system is a DPOC network
equipped with a set of updates I, namely a pair 〈I,N〉.

Like in DIOCs, DPOC processes communicate over operations o. Among all
the communications, there are some auxiliary ones that the projection uses to
implement the synchronisation mechanisms needed to realise the global chore-
ography. We use o∗ to range over auxiliary operations and o? to range over both
normal and auxiliary operations.

Following [2], for technical reasons, DPOC constructs are annotated using
indexes i, ι ∈ N. Indexes are also used to disambiguate operation names. The
syntax of DPOCs is the following.

P ::= ι: i.o? : x from R (receive)
| ι: i.o? : e to R (send)
| ι: i.o∗ : X to R (send-up)
| ι: x = e (assign)
| i: while b {P} (while)

| i: if b {P} else {P ′} (cond)
| ι: scope @R {P} roles {S} (coord)
| ι: scope @R {P} (scope)

| ι: spawn @R {P} (spawn)

| P;P ′ (seq)
| P | P ′ (par)
| 1 (skip)
| 0 (end)

X ::= no | P N ::= (P, Γ)
R

| N ‖ N ′

DPOC processes include the action of receiving a message written as ι : i.o? :
x from R and meaning that a message from role R is received on a speci�c
operation i.o? (either normal or auxiliary) and the value stored in variable x.
Similarly, the send action ι: i.o? : e to R sends the value of an expression e to
operation i.o? of role R. DPOC o�ers also a higher-order send action that instead
of sending a value sends a process. This operation, written as ι : i.o∗ : X to R,
means that the higher-order argument X is sent to role R and is used to distribute
the updated code. In particular, X may be either the new DPOC process P

5 A compositional formalisation of function fresh would require to check freshness at
all the steps of the derivation of the transition, to avoid name clashes with roles
which are not in the scope but only in the context. To simplify the presentation,
here we assume that function fresh has access to the set of roles of the whole DIOC.



that R has to execute or a token no notifying that no update is needed and
the execution can continue with the pre-existing code. Processes also feature
assignment ι: x = e of the value of expression e to the variable x.

As standard for process calculi, P;P ′ and P|P ′ denote the sequential and
parallel composition of P and P ′. DPOC processes also include conditionals
i : if b {P} else {P ′} and loops i : while b {P}. We also have the process
1 that can only successfully terminate, and the terminated process 0. Pecu-
liar for DPOC is instead the scope constructor for delimiting a block of code.
There are two versions of it: one for the process leading the possible adaptation
and one for a process involved in the adaptation but not leading it. Construct
ι: scope @R {P} roles {S} de�nes a scope with body P and set of participants S,
and may occur only inside role R, which acts as coordinator of the update. The
shorter version ι: scope @R {P} is used instead inside the code of some role R1,
which is not the coordinator R of the update. The di�erence is due to the fact
that the coordinator R needs to know the set S of involved roles to be able to
send to them their updates.

All these constructs were already present in the original DPOC described

in [2]. For our extension, we introduce only the new construct ι: spawn @R {P} ,

which indicates the runtime creation of a new role R running behaviour P.

The semantics of DPOCs is de�ned in terms of a labelled transition system
composed of two layers. One is the semantics of DPOC roles, which speci�es the

local actions of each process and has the shape (P, Γ)R
δ−→ (P ′, Γ ′)R. The second

is the semantics of DPOC systems, which de�nes how roles interact with each

other and has the shape 〈I,N〉 η−→ 〈I ′,N ′〉.
We now present the changes introduced in the semantics of DPOCs to sup-

port runtime role inclusion. We updated three rules and introduced two new
ones. We start describing the revised rule bDPOC |Lead-Upe, which de�nes the
semantics of the process coordinating the update in the case where an update
takes place. Main novelties are: i) it supports the application of updates with
roles not present in the body of the scope and ii) it includes in the behaviour
of the coordinator the spawn instructions needed to create the new participants
(if any) present in the rule. Below, we use greyed-out circled number to ease the
description of the reductum.

Q = newRoles(I) roles(I) \Q ⊆ S connected(I) freshIndexes(I)

(i: scope @R {P} roles {S}, Γ)
R

I−→

1O
∏
Rj∈Q

i: spawn @Rj {i: scope @R {1}};

2O
∏

Rj∈ (S ∪Q) \ {R}

i: i.sb∗i : π(I,Rj) to Rj;

3O π(I,R);
4O

∏
Rj∈ (S ∪Q) \ {R}

(
i: i.se∗i : _ from Rj

)
, Γ


R

bDPOC |Lead-Upe



As done in bDIOC |Upe for DIOCs, in the updated version of bDPOC |Lead-Upe
we make sure that the roles included in an update which are not new (i.e.,
not contained in Q) are already present in the scope (i.e., contained in S). We
also check that the update satis�es the predicates connected and freshIndexes.
In DIOCs, rule bDIOC |Upe also α-converts new roles to ensure their freshness.
In DPOCs the same conversion is performed at the level of DPOC networks, in
rule bDPOC |Lift-Upe, described at the end of this section.

In the reductum of rule bDPOC |Lead-Upe, described below, π is the process-
projection function (see Section 4.3, cf. [2]) that generates the code from chore-
ography I for role R. In the reductum, �rst 1O the coordinator requires the
creation of all the new roles. All new spawned roles have the same behaviour
i: scope @R {1}, which means that, when started, the new roles wait to receive
from the coordinator of the update the code they need to execute (exactly as
the old roles do when reaching a scope). Then, 2O the coordinator sends, using
a high-order communication on auxiliary operation sb∗i , the new code that the
other roles need to execute. After having updated all the coordinated roles, 3O
also the coordinator executes its own part of the update π(I,R). Finally 4O the
coordinator waits for a message from each role involved in the update to make
sure that the updated code has been completed.

To support the spawn construct, we de�ne its semantics at the level of DPOC
roles with the two rules denoted bDPOC |Spawne and bDPOC |NewRolee. The former
triggers the spawn at the level of DPOC roles, while the latter creates the new
role at the level of DPOC systems.

(i: spawn @R ′ {P}, Γ)
R

R
′{P}−−−→ (1, Γ)

R

bDPOC |Spawne

N
R

′{P}−−−→ N ′

〈I,N〉 τ−→ 〈I,N ‖ (P, Γ0)R′〉
bDPOC |NewRolee

Note that new roles are paired with an empty state Γ0.
To complete the update on the semantics of DPOCs, we need to revise the

original lifting rule to avoid capturing the new label R ′{P}, which is instead
handled by rule bDPOC |NewRolee.

N
δ−→ N ′ δ 6∈ {I, R ′{P} }

〈I,N〉 δ−→ 〈I,N ′〉
bDPOC |Lifte

Finally, we need to change rule bDPOC |Lift-Upe to perform the α-conversion
of role names. Note that, while the rule selects I ′ ∈ I as the DIOC update,
reductions happen on its α-converted version I.

I ′ ∈ I N
I−→ N ′ I = fresh(I ′)

〈I,N〉 I−→ 〈I,N ′〉
bDPOC |Lift-Upe



4.3 Projection

Given a DIOC program, the projection function proj returns a DPOC network
(i.e., a combination of interacting DPOC processes) that implements the seman-
tics of the originating DIOC program. Each process is obtained by projecting
the DIOC behaviour on a speci�c role using the process projection function π.
Since spawn constructs are introduced during the execution of scopes, there was
no need to extend the original de�nition of the projection function.

For the sake of presentation here we provide just an example of application
of the projection, referring the interested reader to [2] for the full de�nition. In
particular, in the following we show the application of π to DIOC interactions.
Function π, given an annotated DIOC process and a role R, returns a DPOC
process for role R. Below, in case 1O the input role is the sender R1 and π returns
the corresponding send action (indexed by i and on operation i.o) towards the
receiver R2. Case 2O is complementary to 1O for the reception while case 3O
produces 1, i.e., the role has no part in the interaction and skips that action.

1O π( i: o : R1(e)→ R2(x),R1 ) = i: i.o : e to R2

2O π( i: o : R1(e)→ R2(x),R2 ) = i: i.o : x from R1

3O π( i: o : R1(e)→ R2(x),R
′ ) = 1 if R ′ 6∈ {R1,R2}

4.4 Example of projection and adaptation

To better clarify how our framework works, we provide here a minimal example
of the projection and the adaptation step for an excerpt of the use case in
Section 3, where the new role logger enters the choreography upon adaptation.
We start by annotating the code from Section 3, to be able to project it since
the projection function requires well-annotated DIOCs. For brevity, we consider
the excerpt from lines 3�7 where the seller role coordinates the adaptation of
the scope. We monotonically annotate every instruction starting from 1. This
results in the well-annotated DIOC below.

1: scope @seller{

2: result@seller = "XXX";
3: response : seller(result)→ client(result)}

From the annotated DIOC, the projection generates two DPOC processes,
one for the seller and one for the client. We report below the projection on the
seller, together with a step derived using rule bDPOC |Lead-Upe, where new role
logger enters the system. In the projection of the program, for simplicity, we
omit the indexes that pre�x the operations. On the left, we show the DPOC
code that is obtained by projecting the previous choreography on the seller role.
On the right, we present the DPOC process of the seller after the adaption step
which applies the rule in Listing 1.1, whose body is denoted in the following by
I.



1: scope @seller{

result = "XXX";
response : result to client

} roles { client }

I−→

1: spawn @logger{1 : scope@seller{1}};
{1: sb∗1 : π(I, client) to client |

1: sb∗1 : π(I, logger) to logger};
π(I, seller);
{1: se∗1 : _ from client |

1: se∗1 : _ from logger}

As can be seen, the projection of a DIOC scope is a DPOC scope. If no
adaptation rule is applied, the body of the scope is executed, hence the seller

simply computes the answer storing it in its variable result and then sends it to
the client. If, instead, an adaptation rule is applied, the seller �rst spawns new
roles (if any) found in the adaptation rule. In the case of the adaptation rule in
Listing 1.1, the only new role is logger. Once spawned, the logger executes the
code scope@seller{1}. Hence, the logger waits to get from the seller the code to
be executed. It is up to the seller, as leader of the adaptation, to send the new
code, obtained from the body of the adaptation rule using the π operator, to
both the client and the logger. This is done by performing the communications
on operations 1: sb∗1. Then, the seller executes its own adapted code π(I, seller).
When the seller terminates the execution of its adapted code, it waits for all
the led roles to notify that they also terminated the execution of their adapted
code (this is done by communications on operations 1: se∗1) before starting to
execute the rest of the choreography.

4.5 Properties

Our model, extended to support the inclusion of new roles in runtime updates,
preserves the correctness properties of [2]. In particular, we will show in The-
orem 1 that a DIOC system and its projection are weak trace equivalent (for
�nite traces), that is they have the same behaviour up to internal τ actions and
communications on auxiliary operations. As shown in [2], this property implies
deadlock freedom, which is indeed formalised by requiring �nite internal traces
(an internal trace is obtained by removing all transitions with label I from a
trace) to end with

√
.

De�nition 1 (DIOC traces). A (strong) trace of a DIOC system 〈Σ1, I1, I1〉
is a sequence (�nite or in�nite) of labels µ1,µ2, . . . such that there is a sequence

of DIOC system transitions 〈Σ1, I1, I1〉
µ1−→ 〈Σ2, I2, I2〉

µ2−→ . . . .
A weak trace of a DIOC system 〈Σ1, I1, I1〉 is a sequence of labels µ1,µ2, . . .

obtained by removing all silent labels τ from a trace of 〈Σ1, I1, I1〉.

De�nition 2 (DPOC traces). A (strong) trace of a DPOC system 〈I1,N1〉
is a sequence (�nite or in�nite) of labels η1,η2, . . . with

ηi ∈ {τ,o? : R1(v)→ R2(x),o
∗ : R1(X)→ R2(),

√
, I,no-up, I}

such that there is a sequence of transitions 〈I1,N1〉
η1−→ 〈I2,N2〉

η2−→ . . . .
A weak trace of a DPOC system 〈I1,N1〉 is a sequence of labels η1,η2, . . . ob-
tained by removing all the labels corresponding to auxiliary communications, i.e.,



of the form o∗ : R1(v) → R2(x) or o∗ : R1(X) → R2(), and the silent labels τ,
from a trace of 〈I1,N1〉.

DPOC traces do not allow send and receive actions. Indeed these actions rep-
resent incomplete interactions, thus they are needed for compositionality reasons,
but they do not represent relevant behaviours of complete systems. Note also
that these actions have no correspondence at the DIOC level, where only whole
interactions are allowed.

De�nition 3 (Finite trace equivalence). Two DIOC systems, or two DPOC
systems, or a DIOC and a DPOC system are �nite (weak) trace equivalent i�
their sets of �nite (weak) traces do coincide.

Lemma 1 (Projection preserves weak traces [2, Corollary 7.5]).
Consider the semantics without new roles. For each initial, connected DIOC
process I, each state Σ, each set of updates I, the DIOC system 〈Σ, I, I〉 and the
DPOC system 〈I, proj(I,Σ)〉 are weak trace equivalent.

We now show that a similar result holds in the system with new roles. We will
show this only for �nite traces. We conjecture that this holds also for in�nite
traces, however, while the proof for �nite traces can be done using the result in
[2, Corollary 7.5] as a black box, we have not been able to do the same for in�nite
traces. The alternative of redoing all the proofs in [2, Corollary 7.5] (including
the preliminary results therein) is beyond the scope of this paper. This last
option would also allow us to prove race freedom and orphan message freedom.

Theorem 1 (Projection preserves �nite weak traces, with new roles).
For each initial, connected DIOC process I, each state Σ, each set of updates I,
the DIOC system 〈Σ, I, I〉 and the DPOC system 〈I, proj(I,Σ)〉 are �nite weak
trace equivalent.

Proof (sketch). For each �nite weak trace we provide a translation from the
DIOC I generating it to a DIOC I ′ where the same �nite weak trace does not
require new roles. We show that I and I ′ are �nite weak trace equivalent, and
the same holds for their projections. Hence, given a �nite weak trace of I, I ′

also has it. Thanks to Lemma 1 this means that the projection of I ′ has the
trace thus implying that the trace also belongs to the traces of the projection of
the original system I. Dually, given a �nite weak trace of the projection of the
original system I, then the projection of I ′ has it thus implying that I ′ and I

have the same trace.
Let us consider a �nite �xed weak trace. It is clear that the trace uses only a

�nite amount of new roles. The translation takes a DIOC I with these new roles
and replaces each scope scope @R {I} with

scope @R {if false@R {
∏
R′

unused@R ′ = 0} else {1}; I}

where the product stands for n-ary parallel composition, and ranges over all new
roles that are created by instantiating the considered scope in the trace under
analysis. Variable unused is an unused variable.



The evaluation of the conditional always selects the else branch, hence it
only causes one additional τ step. Apart from this, DIOC I and its translation
generate the same traces. Also, the trace under analysis can be generated by the
new DIOC without the need for dynamically generating new roles.

Let us now consider the projections. The projection of I does not have the
auxiliary steps needed for the conditional (a τ to evaluate the guard and some
auxiliary communications and τ steps to notify the result of the evaluation to
all the involved roles), and has some additional τ steps to spawn the new roles.
However, these are all auxiliary steps, hence the weak traces do coincide. ut

We remark that even if the proof above relies on the system without new
roles, this does not mean that the two systems are equivalent. Indeed, the proof
requires one system without new roles for each possible trace, hence in�nitely
many of them. One single system with new roles captures all these behaviours.

Finally, we note that the DIOC and DPOC are not image-�nite [8]. Indeed,
both of them allow for changing in an arbitrary way the set of available updates
in one step. Hence, each system can have an in�nite amount of successors. If we
allow only for a �nite number of rules at a time, given that the evaluation of
expressions is deterministic, the system becomes image-�nite and therefore the
(in�nite) weak trace equivalence can be derived directly from the �nite weak
trace equivalence [8].

5 Implementation

In this section we overview the components and functionalities of the AIOCJ
runtime support and present the main design and implementation choices made
to support the inclusion of new roles in choreographies.

AIOCJ is a framework that allows the development of choreographies and
update rules that can be projected to runnable and deployable distributed pro-
grams. To improve usability, as exempli�ed in Section 3, the AIOCJ syntax used
to de�ne the choreographies is not the formal DIOC one, but an embellished ver-
sion. The target language for the projection function is Jolie [9]. This language,
often used to develop microservices [10], was adopted because it o�ers program-
ming primitives very close to the DPOC ones, thus making the de�nition of the
projection function easier.

The basic AIOCJ runtime support includes three kinds of components: the
Adaptation Manager, the Rule Server, and the Environment. These components
are depicted as rectangles in Fig.1. Additionally, to support inclusion of new
roles at runtime, we introduced a new component, called the Role Supporter;
depicted in Fig.1 as a rectangle with a darker colour.

All runtime support components are optional, meaning that an AIOCJ chore-
ography without adaptation scopes does not need the presence of any of the
runtime support components to execute. When scopes are present, the only
mandatory component is the Adaptation Manager that interacts with the pro-
jected code to �nd possible applicable rules and retrieve their code. In turn, the
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Fig. 1. AIOCJ components. Left and right, choreographic artefacts. Centre, executable
components: projected roles (hexagons) and runtime support programs (rectangles).

Adaptation Manager works as registry for Rule Servers, which store the adap-
tation rules. Every time a new set of adaptation rules is projected with AIOCJ,
the AIOCJ compiler synthesises a new Rule Server that contains the executable
code corresponding to the projection of the body of the rule on each participant
occurring there. A Rule Server registers to the Adaptation Manager, making its
rules available.

When managing an adaptation step, the Adaptation Manager invokes the
registered Rule Servers to check which rules are applicable. If at least one rule is
applicable, the Adaptation Manager selects one and obtains the code update for
the selected rule. Since in AIOCJ applicability conditions of rules may refer to
properties of the execution environment (e.g., time, temperature), the AIOCJ
runtime o�ers an Environment service that stores and publishes data on the
status of the execution environment.

The Role Supporter component, as the name entails, supports the deployment
of new roles. New roles are meant to add a new participant into a pre-existing
choreography accessing new functionalities and useful, e.g., for system integra-
tion and evolution [11]. A Role Supporter component has to be deployed in the
premises of the location of each new participant. The deployment information
that is abstracted away in DIOCs, is instead explicitly de�ned in AIOCJ rules.
New roles are marked with the keyword newRoles. Their location is stated using
the syntax shown at line 5 of Listing 1.1 (location@logger:"...").

The protocol to coordinate the instantiation of new roles is depicted in Fig. 2.
The protocol starts with the request made by an adaptation leader (R1) to the
Adaptation Manager 1O. After receiving the request, the Adaptation Manager
contacts its registered Rule Servers to look for applicable rules 2O. If there is
an adaptation rule that is applicable, the Rule Servers �nd it 3O. Now, if the
selected rule contains new roles, the Rule Server checks if the new roles can be
deployed (i.e., there are Role Supporters available at the locations of the new
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roles).6 Assuming new roles are needed, at step 4O the Rule Server contacts
the interested Role Supporters and invokes the instantiation of dedicated new
roles (e.g., R11 . . .Rmj). The new roles are instantiated at step 5O. Each new
role is located at a unique, fresh address (pre�xed by the location de�ned in
the rule). In this way, parallel executions of the same rule can run without the
need for any coordination among parallel rule applications. After each new role
has started, its Role Supporter responds to the invoking Rule Server with the
address of the instantiated role. Hence, the Rule Server collects the locations
of all new roles, which the adaptation leader (R1) will use to contact them to
�nalise the adaptation process. After this, or if no new roles are needed, the
protocol continues with steps 6O and 7O that forward the adaptation code of
each participant back to the Adaptation Manager and, immediately after, to the
adaptation leader. Finally, at step 8O, the adaptation leader (R1) distributes the
adaptation code to the participants (the previously present R1, · · · ,Rn and the
newly instantiated R11 · · ·Rmj), to proceed executing the updated behaviour.

All the components for managing adaptation described above are written
in Jolie [9] and can be easily deployed using some scripts we provide. For the
extension, the code of the Rule Server has been updated to take into account the
possibility to use Role Supporters. This last component has been instead created
from scratch. The code of the Adaptation Manger and Environment did not
require any changes. For more technical details on AIOCJ, an explanation on how
to deploy and use AIOCJ with the new extension and its actual implementation
we refer the interested reader to [7,12].

6 Note that in case the new roles cannot be instantiated, the adaptation rule is con-
sidered not applicable and the process of rule selection proceeds discarding this rule.



6 Related work

This paper extends dynamic choreographic programming [2] to support the in-
troduction at runtime of new participants. While referring to the related work
in [2] for further details, in this section we describe the main distinctive features
of our approach and the work closest to it. As far as we know, the approach
in [2] is the only one encompassing i) adaptation for distributed systems, ii)
guarantees of relevant correctness properties by construction, and iii) a working
implementation. To the best of our knowledge, existing proposals share only two
of those qualities.

In the literature we can �nd several middlewares and architectures enabling
run-time adaptation [13,14,15,16,17] (see also the related survey [18]). These
proposals provide tools for programming adaptive systems, but they do not o�er
by construction correctness guarantees on the behaviour of the system during
and after adaptation. Some of them, however, such as [17], allow one to check
correctness properties using techniques such as model checking. In order to do
this, they assume knowledge of all the possible available adaptations at the
moment of writing the adaptable application.

Other approaches are based on session types [19,20,21,22], choreography lan-
guages [23,24], behavioural contracts [25], and ad-hoc scripting languages [26].
Those works provide high-level speci�cations to describe the expected behaviour
of a distributed system, ensuring relevant correctness properties, however they
assume a static system and are not suitable for runtime adaptation.

There are also approaches based on adaptive choreographies [27,28,29], how-
ever they are not implemented and they concentrate on correctness checking
more than on code generation. In particular, [27] concentrates on systems that
autonomously switch among a set of pre-de�ned behaviours, [28] supports system
update when no protocol is ongoing, and [29] requires to check global conditions
on the system to ensure correctness of adaptation and therefore it is not suitable
for large and complex distributed systems.

Finally, among the existing proposals based on choreographic programming,
we note [30], where the authors de�ne a compositionality mechanism for chore-
ographies that, although not speci�cally targeted for adaptation, constitutes a
�rst technical step to support it.

7 Conclusion and future work

We presented an extension of dynamic choreographic programming [2] to support
the runtime introduction of new roles, extending both the related theory and the
AIOCJ programming language [7].

Directions for future research include optimizing code generation to reduce
the number of auxiliary communications, introducing in choreographic programs
more structured forms of adaptation such as aspects, and developing or exploit-
ing state-of-the-art DevOps tools to automatise the deployment of the di�erent
services generated by the AIOCJ framework.
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