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Poincaré polynomial of elliptic arrangements is not
determined by the Tutte polynomial

Roberto Pagaria1

Scuola Normale Superiore
Piazza dei Cavalieri 7, 56126 Pisa

Italy

Abstract

The Poincaré polynomial of the complement of an arrangements in a non com-
pact group G is a specialization of the G-Tutte polynomial associated with
the arrangement. In this article we show two unimodular elliptic arrangements
(built up from two graphs) with the same Tutte polynomial, having different
Betti numbers.
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1. Introduction

Let A ∈ M(k, n;Z) be an integer matrix and let G be a group of the form
H × (S1)p ×Rq, where H is a finite abelian group. Each column α of A defines
a morphism from Gk to G given by

(g1, . . . , gk) 7→ α1g1 + α2g2 + · · ·+ αkgk.

We call Hi ⊂ Gk the kernel of the map defined by the ith-column of A. The
complement of the arrangement A in G is the topological space

M(A;G) = Gk \
n⋃
i=1

Hi.

When G = R2 ' C we obtain the definition of central hyperplane arrange-
ments (with rational equations). If G = S1 ×R ' C∗ the arrangement is called
toric. We are mainly interested in the case G = S1×S1 ' E (an elliptic curve),
these arrangements are called elliptic arrangement.

There are several combinatorial objects associated with an arrangement: for
instance, the poset of layers, the arithmetic matroid ([2, 3]) and the G-Tutte
polynomial ([7, 6, 12]). Given a subset S of [n] = {1, 2, . . . , n} we call layer
any connected component of the intersection

⋂
i∈S Hi. The poset of layers is

the set of all layers ordered by reverse inclusion. The arithmetic matroid is the
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triple ([n], rk,mG) associated with toric, hyperplanes or elliptic arrangements,
where rk(S) and mG(S) are, respectively, the codimension and the number of
connected components of

⋂
i∈S Hi. The G-Tutte polynomial is a generalization

of the arithmetic Tutte polynomial and of the classical Tutte polynomial; it is
defined by

TGA (x, y)
def
=
∑
S⊆[n]

mG(S)(x− 1)rk[n]−rk(S)(y − 1)|S|−rk(S)

where mG is the multiplicity function defined in [6, Definition 4.6]; if G is
connected, then mG(S) coincides with the number of connected components of⋂
i∈S Hi.

Recently, a formula for the Poincaré polynomial of M(A;G) was found by
Liu, Tran and Yoshinaga [6] when G is not compact, i.e. q > 0. This formula
involves the G-characteristic polynomial χGA(t), which is a specialization of the
G-Tutte polynomial:

χGA(t) = (−1)rk[n]tk−rk[n]TGA (1− t, 0).

When G is not compact, the Poincaré polynomial of M(A;G) is

PM(A;G) = (−tp+q−1)kχGA

(
− PG(t)

tp+q−1

)
,

where PG(t) = mG(∅)(t + 1)p is the Poincaré polynomial of the group G. The
formula

e(M(A;G)) = (−1)(p+q)kχGA((−1)p+qe(G))

for the Euler characteristic holds for all groups G (e(G) is the Euler character-
istic of G), see [1, 6].

We focus on the “smallest” compact group G = S1 × S1, the case G = S1

being trivial. From now on, we denote the two-dimensional compact torus
S1 × S1 by E. In this case, Bibby [1] and Dupont [5] have given a model of
the cohomology ring H •(M(A;E);Q), provided by the second page of the Serre
spectral sequence for the inclusion M(A;E) ↪→ Ek. As shown in [8], this model
is combinatorial, i.e. can be defined from the arithmetic matroid ([n], rk,mE).
Thus the Betti numbers are implicitly encoded in the arithmetic matroid, but
there is no explicit formula that allows their calculation. We will show that these
Betti number are independent from the arithmetic Tutte polynomial, exhibiting
an example.

2. The model for cohomology

We recall the model developed by Dupont [5] and Bibby [1] for the cohomol-
ogy ring in the particular case of graphic elliptic arrangements.
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Let Ek+1/E ' Ek be the quotient of Ek+1 by the diagonal action of E.
Given a finite graph G = ([k + 1], E), undirected and without loops or multiple
edges, we can define an arrangement AG in Ek+1/E given by the divisors

He = Hi,j
def
= {g ∈ Ek+1/E | gi = gj},

for each edge e = (i, j) ∈ E . We fix arbitrarily a spanning forest T of G and
an orientation of G. Consider the external algebra Λ over the rationals on the
generators {ωe, xt, yt}e∈E

t∈T
. We set the bi-degree of ωe to be (1, 0) and the one

of xt and yt to be (0, 1). For the sake of an easier notation we define for each
oriented edge e = i → j the element xe =

∑
f∈γ(e) ε(e, f)xf , where γ(e) is the

unique path from i to j in T and ε(e, f) is 1 if the arc f is oriented as in the
path γ(e), −1 otherwise. Consider the homogeneous ideal I ⊂ Λ generated by
the elements ωexe, ωeye and

l∑
i=0

(−1)iωe0ωe1 . . . ω̂ei . . . ωel ,

for every cycle C = (e0, e1, . . . , el) of G. We call E2(AG) the quotient Λ/I.
Finally, we define the differential d2 : E2(AG) → E2(AG) on the generators by
d2(ωe) = xeye and d2(xe) = d2(ye) = 0. This is well defined since d2(I) ⊆ I.
The model (E2(AG),d2) coincides with the second page of the Leray spectral
sequence and the cohomology of the second page (i.e. the third one) is the
cohomology ring ofM(AG ;E) with rational coefficients. The bi-gradation of the
third page corresponds to the bi-gradation given by the mixed Hodge structure
(and the total degree). Let e(a, b) be the dimension of the homogeneous subspace
of bi-degree (a, b) of the third page. The number e(a, b) coincides with the
dimension of the subspace of Ha+b(M(AG ;E)) of weight a+2b (see [4, 4 pg 81]).

Since the elliptic arrangement AG is unimodular, i.e. every subset of divi-
sors has connected intersection, the G-Tutte polynomial TEAG

coincides with the
classical Tutte polynomial TG associated with the graph G. In particular the
dimension of Ea,b2 (AG) can be easily calculated from∑

a,b

dimEa,b2 (AG)tasb = TG

(
1 +

(1 + t)2

s
, 0

)
sk.

Thus, the Hodge polynomial evaluated in (−1, u) is

∑
n

∑
m≥0

(−1)me(n− 2m,m)

un = TG

(
1− (1 + u)2

u2
, 0

)
(−u2)k,

and the Euler characteristic of M(AG ;E) is (−1)kTG(1, 0), as shown in [1].

3. The example

Consider the two graphs G1 and G2 in fig. 1 and the corresponding graphic
elliptic arrangements A1 and A2. These graphs appeared for the first time
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Figure 1: The graph G1 on the left and G2 on the right

in [10]. They share the same Tutte polynomial, which is the following

T (x, y) = x7 + 4x6 + x5y + 9x5 + 6x4y + 3x3y2 + x2y3 + 13x4 + 13x3y+

+7x2y2 + 3xy3 + y4 + 12x3 + 15x2y + 9xy2+

+3y3 + 7x2 + 9xy + 4y2 + 2x+ 2y.

Using SAGE [11], we have computed the mixed Hodge numbers of M(A1) and
of M(A2) and reported them in Tables 1 and 2. For this computation we have
used the code available here [9]; the calculation of the Hodge number e(4, 2)
has taken more than 2 days with a CPU of 2.2GHz and about 32 GB of RAM.
Some Hodge numbers have being calculated using the following formula

∑
n

∑
m≥0

(−1)me(n− 2m,m)

un = 1 + 14u+ 80u2 + 232u3 + 329u4+

+ 122u5 − 165u6 − 24u7 + 164u8 − 56u9 − 71u10 + 68u11 − 26u12 + 4u13.

The Poincaré polynomials of M(A1) and M(A2) are different:

PM(A1;E)(t) = 1 + 14t+ 82t2 + 269t3 + 570t4 + 820t5 + 765t6 + 363t7,

PM(A2;E)(t) = 1 + 14t+ 82t2 + 270t3 + 578t4 + 844t5 + 785t6 + 366t7.

The Euler characteristic of M(A1;E) and of M(A2;E) are both equal to −48.
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