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Observation of quantum droplets in a heteronuclear bosonic mixture
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We report on the formation of heteronuclear quantum droplets in an attractive bosonic mixture of 41K and
87Rb. We observe long-lived self-bound states, both in free space and in an optical waveguide. In the latter
case, the dynamics under the effect of a species-dependent force confirms their bound nature. By tuning the
interactions from the weakly to the strongly attractive regime, we study the transition from expanding to localized
states, in both geometries. We compare the experimental results with beyond-mean-field theory and we find good
agreement in the full range of explored interactions. Our findings provide access to the production of long-lived
droplets with important implications for further research.
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I. INTRODUCTION

Interactions are ubiquitous in nature and understanding
their effects is a primary challenge in physics, especially
in many-body quantum systems. Generally, mean-field (MF)
theories reproduce well a plethora of phenomena related to
interparticle interactions. However, this approach fails when
quantum fluctuations are non-negligible. The first-order cor-
rection to the MF energy, the so-called Lee-Huang-Yang
(LHY) term, was first calculated [1] to describe bosons with
hard-core repulsion. In ultracold gases the LHY term is nor-
mally negligible and only recently it has been experimentally
investigated [2–6]. Nevertheless, there are situations where
the LHY and MF contributions can be of the same order.
For instance, in attractive bosonic mixtures the repulsive LHY
term may stabilize the system against collapse, leading to the
formation of self-bound droplets. Although very dilute, these
states have a liquidlike behavior, characterized by a core with
uniform density in the large atom number limit [7].

While originally predicted for Bose-Bose mixtures, quan-
tum droplets were first realized in dipolar gases, by exploiting
the competition between contact repulsion and anisotropic
dipole-dipole attraction [8–13]. Recently, tuning contact in-
teractions through a Feshbach resonance, quantum droplets
have been observed also in a spin mixture of 39K, both in

*derrico@lens.unifi.it
†burchianti@lens.unifi.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the presence of an external potential [14,15] and in free
space [16]. By studying collisions between droplets it has
been possible to observe the crossover between compressible
and incompressible regimes [17]. Free space 39K droplets
have a short lifetime (only few milliseconds), limited by three-
body losses [16,17], motivating the quest for stable long-lived
droplets in different atomic mixtures. Longer lifetimes could
indeed allow the investigation of many peculiar features of
these states, such as the characterization of the incompressible
regime and the observation of self-evaporation [7].

In this work we study the formation of quantum droplets
in a heteronuclear Bose-Bose mixture of 41K and 87Rb where
the two species experience different trapping potentials. We
exploit Feshbach resonances for tuning interspecies interac-
tions. In particular, we explore the transition from the weakly
to the strongly attractive regime, beyond the MF threshold for
collapse, where self-bound quantum droplets are predicted to
exist. We observe that in the absence of any external trapping
potential, the strongly attractive mixture remains localized on
a timescale of several tens of milliseconds, consistently with
the formation of long-lived self-bound droplets. Furthermore,
we study the size evolution and the center-of-mass dynamics
of the mixture in a horizontal optical waveguide, in the
presence of a species-dependent magnetic force. Also in this
geometry, where both the LHY correction and the radial con-
finement provide a mechanism to prevent the collapse [18], we
observe the formation of a localized bound state whose center-
of-mass follows a trajectory intermediate between those of
two weakly attractive 41K and 87Rb clouds. By studying the
dynamics, we extract the number ratio of 41K and 87Rb atoms
forming the bound state, and we find it consistent with the
value predicted by the theory [7]. Our experimental findings
are reproduced well by numerical simulations performed by
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using two coupled generalized Gross-Pitaevskii (GP) equa-
tions [19,20], including the LHY correction for heteronuclear
mixtures [7,21].

II. EXPERIMENT

We produce a binary condensate of 41K and 87Rb both pre-
pared in the |F = 2, mF = 2〉 state in a crossed optical dipole
trap [22]. To tune the interspecies interaction, two microwave
pulses transfer both species in the |F = 1, mF = 1〉 state and
a vertical homogeneous magnetic field is increased to �71 G,
lying between two Feshbach resonances [23]. Due to their
different masses, 41K and 87Rb atoms have a differential
vertical gravitational sag and their equilibrium positions are
separated by ∼15 μm in the optical trap. We compensate
for this offset by compressing the dipole trap and by adding
a vertical magnetic field gradient bz = −16 G/cm [24,25],
exploiting the different magnetic moments of the two species
(μK = −0.83μB and μRb = −0.52μB, at 70 G), as shown
in Appendix A. At this stage, we normally have a binary
condensate with NK � (1–2) × 104 and NRb � (4–6) × 104

atoms, confined in an approximately harmonic potential with
different frequencies for the two atomic species: (νx, νy, νz ) �
(130, 90, 180) Hz for 41K and (100, 70, 130) Hz for 87Rb.
The homonuclear and heteronuclear scattering lengths are,
respectively, aK = 65a0 [26] and aRb = 100.4a0 [27], and
aKRb � 0a0 [28,29]. To enter the attractive regime, we then
change the magnetic field to the desired value BF in 30 ms,
thus tuning aKRb, as detailed in Appendix A. The mix-
ture is completely characterized in terms of the intraspecies
gK = 4π h̄2aK/mK and gRb = 4π h̄2aRb/mRb and interspecies
gKRb = 2π h̄2aKRb/mr coupling constants, with mK and mRb

the atomic masses and mr the reduced mass. The onset of the
MF collapse regime corresponds to δg = gKRb + √

gKgRb = 0
(aKRb = −75.4a0) [30]. We explore the crossover from the
weak (aKRb < 0, δg > 0) to the strong (δg < 0) attractive
regime. For the measurements in free space, the trap beams
and the magnetic field gradient bz are simultaneously switched
off and the atoms are imaged in time of flight (TOF). For the
expansion in the horizontal waveguide (along the ŷ direction)
one of the two beams of the dipole trap [labeled as crossed
beam in Fig. 1(a)] is slowly turned off by linearly reducing
its intensity in 10 ms and the atoms are imaged in situ after a
given evolution time. In the waveguide the atoms experience
a radial trapping potential with average frequencies νr �
160 Hz (120 Hz) and an axial antitrapping potential, produced
by the magnetic field gradient, with νy � −1.8 Hz (−0.6 Hz)
for 41K (87Rb).

III. RESULTS

A. Dynamics in free space

We first consider the dynamics in free space. In Fig. 1(b)
we show typical absorption images of the two condensates
in the xz plane and with a TOF of 24.5 ms for δg > 0 (top)
and δg < 0 (bottom). In the former case both 41K and 87Rb
samples freely expand, while in the latter case we observe that
a fraction of both species bounds and forms a small and dense
component. The different shape of 41K and 87Rb clouds for
δg < 0 is a consequence of our imaging procedure. To detect

FIG. 1. (a) Schematics of the geometry of the crossed trap.
(b) Absorption images in the xz plane (190 × 190 μm2) after a TOF
of 24.5 ms (27 ms) for 41K (87Rb) condensate in the weakly attractive
(top row) and in the strongly attractive (bottom row) regimes. The
41K atoms are imaged at the target Feshbach field, while the 87Rb
atoms are imaged at B = 0 G after an additional TOF of 2.5 ms.
(c) Average size σ = √

σxσz of the 41K cloud as a function of the
TOF in free space for two values of the interspecies scattering length:
aKRb = (−17.5 ± 1.4)a0 (open circles) and aKRb = (−84.5 ± 1.6)a0

(closed circles). The error bars correspond to a standard deviation of
typically five independent measurements.

both atomic species, in fact, we first take an absorption image
of the 41K sample at the magnetic field BF , then we switch off
BF , and after further 2.5 ms of TOF we take the image of 87Rb
atoms. The actual size of the bound state can be measured only
in the first image, after which the state is dissociated and the
87Rb cloud expands. In Fig. 1(c) we plot the average width
(rms) σ = √

σxσz of the 41K sample as a function of TOF for
both interaction regimes. Whereas for δg > 0 (open circles) σ

increases in time, for δg < 0 (closed circles) it does not exceed
our imaging resolution (5 μm) up to 28 ms of TOF, indicating
the formation of a droplet state. In our mixture the droplet
density is expected to be one order of magnitude smaller than
in 39K at the same δg, leading to a substantial reduction of the
three-body losses. This is consistent with a lifetime two orders
of magnitude longer. Such a difference is mainly due to the
larger scattering lengths of 41K and 87Rb, since the density
scales as n ∼ (δg/g)2a−3 for approximately equal scattering
lengths, as discussed in Appendix B. In the experiment, for a
TOF greater than 28 ms, we observe that the atomic clouds
start to expand. We attribute this to the variation of aKRb,
since for a longer TOF the atoms fall off the region where
the Feshbach field is spatially homogeneous. Nevertheless,
this time is longer than the maximum observation time of 39K
droplets in free space [16]. In order to increase the observation
time, one could exploit a magnetic gradient bz to levitate the
droplet, with an average magnetic moment per particle

μKRb = Nd
KμK + Nd

RbμRb

Nd
K + Nd

Rb

, (1)

where Nd
K and Nd

Rb are the number of 41K and 87Rb atoms
forming the bound state. However, we observed that, due to
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FIG. 2. In situ absorption images in the yz plane of the atoms
expanding in a horizontal waveguide (760 × 266 μm2) at increasing
(from top to bottom) evolution time t in the weakly attractive regime
aKRb = (−11.4 ± 1.4)a0 (top row) and in the strongly attractive one
aKRb = (−82.4 ± 1.6)a0 (bottom row). Both 41K and 87Rb atoms are
imaged as described in Fig. 1.

the species-dependent magnetic force, the droplet breaks up
for bz � 5 G/cm. Thus, we apply a lower magnetic field
gradient bz = 1.1 G/cm, which, even if too small to com-
pensate for gravity, reduces the variation of the Feshbach
field during the TOF.1 In addition, it introduces a species-
dependent acceleration sufficient to spatially discriminate the
bound and the unbound atoms. In the images at δg < 0
[Fig. 1(b), bottom], we note indeed the presence of a halo
surrounding the localized clouds of both 41K and 87Rb. Due
to the finite temperature, a fraction of atoms remains unbound.
Moreover, for an efficient sympathetic cooling of the mixture,
the atom number of 87Rb is typically three or four times
larger than that of 41K, leading to an excess of unbound
87Rb atoms. For 41K the unbound halo is upshifted (|μK| >

|μKRb|), whereas for 87Rb it is downshifted (|μRb| < |μKRb|).
By measuring the accelerations of the different components
one could extract μKRb and therefore the ratio of the atom
numbers Nd

K/Nd
Rb in the droplet. However, in free space, the

acceleration is dominated by gravity (for the droplet the ratio
between magnetic and gravitational forces is only 0.035).

B. Waveguide dynamics

To minimize the effect of gravity, we hold the atoms in a
horizontal waveguide and let them evolve under the dominant
effect of a magnetic field gradient along the ŷ direction. In
Fig. 2 we show in situ images of the two condensates as
a function of the evolution time t in the waveguide. In this
configuration we are able to detect the bound states for a
longer time, since the center-of-mass displacement is less than
300 μm in 50 ms. For δg > 0 (top), both species expand as t
increases, while for δg < 0 (bottom) we observe the formation
of self-bound states. Also here, as well as in free space, a
fraction of the atoms remains unbound and follows the same

1After 25 ms of TOF we estimate a variation of the Feshbach field
of 0.17 G, resulting in an aKRb variation of 2.9a0.
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FIG. 3. Evolution of (a) the longitudinal size σy and (b) the
center-of-mass position yc.m. along the waveguide of 41K [blue open
(closed) circles] and 87Rb [red open (closed) triangles] clouds for
aKRb = (−11.4 ± 1.4)a0 [(−82.5 ± 1.6)a0]. Solid lines in (b) are fits
with constant acceleration. The measured accelerations of the ex-
panding clouds are αK = (0.276 ± 0.025) m/s2 and αRb = (0.104 ±
0.010) m/s2 for aKRb = (−11.4 ± 1.4)a0, while for the bound com-
ponents we find αd = (0.152 ± 0.017) m/s2 [αd = (0.151 ± 0.022)
m/s2] from images of 41K (87Rb). The error bars are the standard
deviation of typically five independent measurements.

dynamics of the weakly attractive gas. In Fig. 3 we plot
the size σy and the center-of-mass position yc.m. along the
longitudinal direction. For δg < 0 we fit the atomic density
distribution with two Gaussians to distinguish the bound and
unbound components. For clarity, σy and yc.m. are shown
only for the bound components, since the unbound fraction
behavior is very similar to the one observed for δg > 0 (see
Appendix C). The measured size for δg < 0 (closed symbols)
is constant and is comparable to the imaging resolution in
the waveguide (10 μm),2 while for δg > 0 both species ex-
pand (open symbols). In the waveguide, the center of mass
moves under the combined effect of a magnetic force and a
residual component of the gravity, since the guide is tilted
θ � 0.1◦–0.2◦ with respect to the horizontal plane. Assuming
a constant acceleration (see Appendix C), we extract the ratio
of the atom number of the two species in the bound state as

Nd
K

Nd
Rb

= mRb(αd − αRb)

mK(αK − αd )
, (2)

where αK and αRb are the accelerations of the unbound
41K and 87Rb clouds and αd is the acceleration of the
bound state. From αK and αRb measured at δg > 0 we find

2We use two different imaging systems: For measurements in
free space (in the waveguide) the imaging beam propagates along
the waveguide (crossed beam) and the optical resolution is 5 μm
(10 μm).
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FIG. 4. (a) Size σx of the 41K cloud expanding in free space
as a function of the interspecies scattering length aKRb after a
TOF of 26.5 ms from the crossed trap. (b) Axial size σy of the
41K cloud as a function of the interspecies scattering length aKRb

after expansion in the waveguide of t = 45 ms. The dashed red
vertical line corresponds to the critical aKRb for the existence of a
droplet in the homogeneous case with NK + NRb = 33 000, while
the dash-dotted gray vertical line corresponds to δg = 0. The solid
lines are the numerical predictions for NK + NRb = 33 000, where
we fix NRb = √

gK/gRbNK. The colored areas indicate the systematic
relative uncertainty of the experimental atom number of 30%. We
do not appreciate a substantial change of the average total atom
number in the explored range of aKRb. The horizontal dotted lines
show imaging resolutions of 5 and 10 μm for the measurements in
free space and in the waveguide, respectively. Vertical error bars are
a standard deviation of typically five independent measurements.

Nd
K/Nd

Rb = 0.8(3), which is consistent with the predicted value
of

√
gRb/gK = 0.85 [7]. We note that the center-of-mass

motion allows a measurement of the atom number ratio which
is not affected by the usual systematic uncertainty of N
measurements.

C. Comparison with theory

Both in free space and in the waveguide, we study the
full range of attractive interactions. In Fig. 4 we plot the
width σx of 41K in free space after a TOF equal to 26.5 ms
[Fig. 4(a)] and σy after t = 45 ms of expansion in the waveg-
uide [Fig. 4(b)]. In both cases we observe a transition from
an expanding gas for aKRb � −82a0 to a localized self-bound
state for strong attractive interactions (aKRb � −82a0) whose
width is below the optical imaging resolution. In Fig. 4 we
also show the MF threshold for collapse (dash-dotted gray
line) and the critical scattering length to enter the droplet
regime with our experimental atom number (dashed red
line) [7]. Both lines are calculated for a homogeneous system.
In the presence of the radial confinement a stable bound state

may exist also in between the two vertical lines. This is due
to the combined effect of the LHY term and the dispersion
along the guide giving rise to the formation of “solitonic”
solutions [18,31].

In order to compare the experimental results with theo-
retical predictions [7,21], we have performed numerical sim-
ulations by using two coupled generalized time-dependent
GP equations including the LHY term, taking into account
the actual experimental preparation (see Appendix B for
details). In Fig. 4 the colored areas correspond to the nu-
merical predictions including the experimental uncertainty
on the atom number. Considering the finite imaging resolu-
tion, we find that the theory well reproduces the observed
behavior. From the simulations in free space [Fig. 4(a)] we
find that, in the strongly attractive regime, almost spherical
droplets form [7]. As expected, the critical scattering length to
enter the droplet regime depends on the atom number. We find
that this threshold actually occurs at larger values of |aKRb|
with respect to the homogeneous case (see the dashed red
line in Fig. 4). This is due to the additional kinetic energy
cost associated with the droplet surface, whose effects are
more important for small droplets, such as those formed in
the experiment.

As for the waveguide dynamics, we observe expanding
clouds in between the two vertical lines instead of the pre-
dicted solitonic bound states. We attribute this to a twofold
effect: (i) We adjust the initial size of the mixture to match
the droplet size (smaller than the one of the solitonic ground
state) and (ii) the dynamics is triggered by a nonadiabatic
process. However, droplets formed for very large attractive
scattering lengths (|aKRb| � 95a0), as already observed in
previous experiments [14], eventually decay into solitonic
solutions due to the decrease of the atom number induced
by three-body losses. In the waveguide, indeed, atomic losses
do not affect the existence of self-bound states allowing their
observation for a wider range of aKRb. In free space, instead,
as confirmed by numerical simulations with three-body losses
(Appendix B), we are limited to |aKRb| � 95a0. This corre-
sponds to a broader range of δg with respect to the case of
39K droplets, pushing the investigation far away from the MF
collapse.

IV. CONCLUSION

We have observed quantum droplets in a mixture of two
atomic species experiencing different potentials, providing a
clear picture of their formation and evolution both in free
space and under radial confinement. This proves that the
presence of identical traps for the two components is not
essential to the droplets production. We have found evidence
that the lifetime of our droplets is substantially longer than
those in 39K, as expected. The droplet density obtained by
our numerical simulations results in a lifetime up to 400 ms.
This opens interesting perspectives for future studies of the
droplets peculiar properties [7,21] and of their collective
modes [31]. Indeed, the lower density of our sample allows for
a larger ratio τlife/τ ∼ n−1, with τlife and τ being, respectively,
the lifetime and the characteristic timescale of the droplet
dynamics (Appendix B). Other directions could be the cre-
ation of droplets in reduced dimensionality [32–36], where

033155-4



OBSERVATION OF QUANTUM DROPLETS … PHYSICAL REVIEW RESEARCH 1, 033155 (2019)

quantum fluctuations become easily dominant, and the inves-
tigation of beyond LHY corrections [37] and other stabiliza-
tion mechanisms [38,39]. Finally, the nucleation of vortex-
antivortex ring pairs [40–42] or more exotic scenarios, such as
droplets clusters [43], could be studied with rotating droplets.
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APPENDIX A: FESHBACH RESONANCES, MAGNETIC
MOMENTS, AND THREE-BODY LOSSES

In Fig. 5 we show the behavior of the interspecies scat-
tering lengths aKRb for 41K and 87Rb in the |F = 1, mF = 1〉
state as a function of the magnetic field B. Two Feshbach
resonances around 40 and 80 G can be seen. The values of
aKRb predicted by the two collisional models in Refs. [28,29]

FIG. 5. (a) Calculated interspecies scattering length aKRb for 41K
and 87Rb in the |F = 1, mF = 1〉 state as a function of the magnetic
field B. The predictions of both Refs. [28,29] are shown by the
thickness of the curve. (b) Close-up of the range of magnetic field
used in the experiment.

FIG. 6. Calculated magnetic moment μ (in units of the Bohr
magneton μB) of the |F = 1, mF = 1〉 state for both 41K and 87Rb
as a function of the magnetic field B.

differ slightly by a few a0, as shown by the thickness of the
curve in Fig. 5(b). All the values of aKRb given in this work are
the average of the two models, with uncertainty equal to the
half-deviation that dominates over the one due to the magnetic
field calibration.

In the experiment we produce the double condensate at
aKRb � 0 and then we tune the magnetic field in the range
65 G � B � 69 G to access the attractive interspecies interac-
tion regime (−100a0 � aKRb � −50a0). In particular, we use
two linear ramps: from 71 G to 68.5 G in 20 ms and then to
the final value in the other 10 ms.

At these magnetic fields, the Zeeman effect is no longer
linear (especially for 41K) and the magnetic moments μK and
μRb of the hyperfine state of 87Rb and 41K in our mixture vary
as shown in Fig. 6. In particular, in the range of B used in the
experiment the two magnetic moments are quite different, en-
abling a different magnetic control of the two atomic species,
while their relative variations 	μK/μK and 	μRb/μRb are
below 4% and therefore neglected. The difference between
the two magnetic moments is exploited both to superimpose
the two condensates by means of a magnetic gradient bz and
to induce a different acceleration of the unbound and bound
components.

As mentioned in Sec. III C, we include in our analysis a
loss term due to inelastic three-body collisions. In general,
the three-body loss coefficient K3 depends on the scattering
length, scaling as a4 in the vicinity of a Feshbach resonance.
In our case, we explored a very limited range of magnetic
fields and scattering lengths aKRb; therefore, we measured the
atom’s lifetime to obtain the rate of inelastic three-body colli-
sions at aKRb = (−77.8 ± 1.6)a0. We measured the lifetime of
the 41K sample, since (i) the number of the minority species
is more sensitive to losses and (ii) the dominant three-body
losses are due to K-Rb-Rb collisions [44], yielding a purely
exponential decay for 41K atoms. We measured a 1/e lifetime
τK = 122(11) ms with an estimated 87Rb peak density n0,Rb =
(6 ± 2) × 1020 m−3. From 1/τK = (K3/2!)n2

0,Rbξ , with ξ =∫
n2

RbnKdV/n2
0,RbNK, we obtain K3 = (7 ± 4) × 10−41 m6/s

with an uncertainty due to that of n0,Rb. This must be com-
pared to published values for larger scattering lengths: K3 �
10−38 m6/s at aKRb � −120a0 [44] and K3 � 3 × 10−39 m6/s
at aKRb � −400a0 [45].
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APPENDIX B: THEORETICAL ANALYSIS

The GP energy functional for a Bose mixture, including
both the mean-field term and the LHY correction accounting
for quantum fluctuations in the local density approximation,
reads [7,21]

E =
2∑

i=1

∫
dr

[
h̄2

2mi
|∇ψi(r)|2 + Vi(r)ni(r)

]

+ 1

2

2∑
i, j=1

gi j

∫
dr ni(r)n j (r)

+
∫

dr ELHY(n1(r), n2(r)), (B1)

where Vi(r) and ni(r) = |ψi(r)|2 represent the external poten-
tial and the density of each component (i = 1 for 41K and
i = 2 for 87Rb) and the LHY correction is [7]

ELHY = 8

15π2

(
m1

h̄2

)3/2

(g11n1)5/2 f

(
m2

m1
,

g2
12

g11g22
,

g22n2

g11n1

)

≡ κ (g11n1)5/2 f (z, u, x). (B2)

Here f (z, u, x) > 0 is a dimensionless function, whose ex-
pression for z �= 1 and u = 1 can be found in Ref. [21]. Fol-
lowing [7,21], we also consider this function at the mean-field
collapse u = 1, f (z, 1, x). We note that the actual expression
for f can be fitted very accurately with the same functional
form of the homonuclear case (m1 = m2) [46]

f
(

87
41 , 1, x

) � (1 + αx)β, (B3)

where α and β are fitting parameters that in general depend
on the value of the mass ratio m1/m2. For the present case
we find α � 1.554 and β � 2.506, which are very close to
the values of the approximated formula proposed in Ref. [46],
which shows that only α is a function of the mass ratio α =
(m2/m1)3/5 = 1.571, whereas the value of β is universal, β =
5/2.

Minimization of the action associated with Eq. (B1) leads
to the generalized GP equations (Euler-Lagrange equations)

ih̄
∂ψi

∂t
=

[
− h̄2

2mi
∇2 + Vi + μi(n1, n2)

]
ψi , (B4)

where

μi ≡ δE

δni
= giini + gi jn j + ∂ELHY

∂ni
( j �= i) (B5)

and

∂ELHY

∂n1
= κg11(g11n1)3/2

(
5

2
f − x

∂ f

∂x

)
, (B6)

∂ELHY

∂n2
= κg22(g11n1)3/2 ∂ f

∂x
. (B7)

The above equations are solved by mapping the system (den-
sities, wave functions, differential operators, etc.) on discrete
equally spaced Cartesian grids. The differential operators are
represented by a 13-point discretization. The stationary GP
equation is solved by imaginary-time evolution. Dynamical

equations have been solved by using Hamming’s predictor-
modifier-corrector method, initiated by a fourth-order Runge-
Kutta-Gill algorithm [47]. The effect of three-body losses
on the real-time dynamics of the mixture is simulated by
adding to the energy functional in Eq. (B1) a dissipative term
−(i/2)h̄K3

∫
dr n1(r, t )n2(r, t )2 (with K3 = 7 × 10−41 m6/s,

see Appendix A) which accounts for the dominant recombi-
nation channel, i.e., K-Rb-Rb.

We performed two different series of simulations of the
experiment for the TOF in free space and for the expansion in
the waveguide. In the first case, the ground state of the mixture
is produced in two concentric harmonic potentials (for the two
condensates) approximating the actual crossed dipole trap.
Then the potential is switched off abruptly and an evolution in
free space is followed, taking into account three-body losses.
For the simulation in the waveguide, we adopt a complete
description of the potential experienced by the two species
including the optical, magnetic, and gravitational potentials.
This allows us to reproduce the effect of a residual magnetic
field and a differential gravitational sag of the two compo-
nents. The results reported in Fig. 4(b) are obtained, neglect-
ing three-body losses after checking that their contribution is
negligible in the range of parameters investigated. All results
of the simulations shown in Fig. 4 have been performed with
NRb/NK = √

gK/gRb. Any unbalance from this ratio leads to
an unbound expanding fraction which does not affect the
bound fraction, but heavily affects computation time requiring
a larger spatial grid. The simulations show the formation of
self-bound states even when the trapping potentials of the two
condensates are not identical and completely overlapped. A
detailed investigation of this effect goes beyond the scope of
the present work.

The equilibrium density of a droplet can be obtained with
the condition P = −ε + ∑

i(∂ε/∂ni ) ni = 0, where P is the
pressure and ε is the energy density. For the heteronuclear case
this condition gives

n0
1 = 25π

1024 a3
11

δa2

a11a22

(m1 + m2)2

4m1m2

(
1 + 10

√
m2

m1

√
a22

a11

)−5

,

n0
2 = n0

1

√
a11m2

a22m1
. (B8)

Here a11, a22, and a12 are the intra- and interspecies scat-
tering lengths and δa ≡ a12 − ac

12, with ac
12 the mean-field

threshold for collapse. From Eq. (B8) we estimate that, in our
mixture, the homogeneous equilibrium density n0

1 varies from
∼ 2 × 1014 to ∼ 2 × 1015 atoms/cm3 for −6a0 < δa <

−20a0, corresponding to the range for which we observe a
droplet state [Fig. 4(a)]. Furthermore, for 41K and 87Rb, the
terms containing the masses are ∼ 1 and Eq. (B8) is not
substantially different from the equation for the homonuclear
case given in Ref. [7]:

n0
1 = 25π

1024 a3
11

δa2

a11a22

(
1 +

√
a22

a11

)−5

. (B9)

From Eq. (B9) it is evident that upon increasing all scattering
lengths by a factor γ > 1, the densities decrease as γ −3. To
compare the equilibrium density of droplets formed either
by the 41K-87Rb mixture or with two spin states 39K, we
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use Eqs. (B8) and (B9), respectively. In the first case a11

and a22 are larger than those of 39K (for which a22 is tuned
through a Feshbach resonance, while a11 and a12 are constant),
resulting in a droplet density lower by approximately an order
of magnitude at δa of a few −a0. As already mentioned in the
main text, this also results in a longer lifetime (τlife ∼ n−2) and
a larger ratio τlife/τ ∼ n−1, with τ the characteristic timescale
of the droplet [7].

APPENDIX C: WAVEGUIDE DYNAMICS

1. Equations of motion

In this Appendix we derive the equations of motion for
both atomic species confined in the waveguide. We start by
considering the case in which they are unbound. The anticon-
fining force experienced by the ith atomic species along the
ŷ axis is mainly determined by the magnetic potential Uy,i.
This is given by the Feshbach field BF and the overlapping
magnetic field gradient, which are produced by two different
pairs of Helmholtz and anti-Helmholtz coils, respectively,
along the ẑ axis. Thus, we have

Uy,i = −|μi|
√

B2
F + (byy)2, (C1)

where μi is the magnetic moment and by is the ŷ component of
the magnetic field gradient. For |byy| 
 BF , which is fulfilled
in our experimental conditions, Uy,i can be approximated as

Uy,i � −|μi|BF

[
1 + 1

2

(
byy

BF

)2
]
, (C2)

where we neglect the terms in byy/BF higher than second
order. If we define ω2

i = |μi|/(miBF )b2
y, with mi the atomic

mass, the equation of motion is reduced to

ÿi − ω2
i yi = 0, (C3)

where yi is the center-of-mass position of the atomic cloud and
ÿi its acceleration. The solution of Eq. (C3) is

yi(t ) = A1cosh(ωit ) + A2sinh(ωit ), (C4)

where the constant factors A1 and A2 are determined by the
initial conditions. For short times (t 
 min{ω−1

i }), Eq. (C4)
can be approximated by its Taylor series expansion as

yi(t ) � yi(0)
[
1 + 1

2 (ωit )2] + ẏi(0)t, (C5)

which corresponds to a uniformly accelerated motion, with
constant acceleration αi ≡ yi(0)ω2

i . Equation (C5) is a good
approximation of the observed center-of-mass dynamics and
indeed it has been used for fitting the experimental data
discussed in the main text. Here yi(0) is the initial distance of
the atomic cloud from the maximum of the magnetic potential
and ẏi(0) is the initial velocity. The value of yi(0) is not zero
since the position of the atoms in the dipole trap is displaced
from the symmetry axis of the magnetic field coils. We found
that setting ẏi(0) = 0 does not substantially affect the fitting
results. Further we verified that, with ẏi = 0, for evolution
times up to 60 ms the error in yi made using Eq. (C5) instead
of Eq. (C4) is less than 1%.

We now treat the case of the bound state. Assuming that it
is formed by Nd

i atoms in each component (i = 1, 2), then its

0 10 20 30 40 5 0

-300

-200

-100

0

t (ms)

y c.
m

.
( μ

m
)

FIG. 7. Evolution of the center-of-mass position yc.m. along the
waveguide for aKRb = (−11.4 ± 1.4)a0 of 41K (blue open circles)
and 87Rb (red open triangles) and for the expanding fractions at
aKRb = (−82.5 ± 1.6)a0 of 41K (blue closed circles) and 87Rb (red
closed triangles). Solid lines are fit with constant acceleration for
aKRb = (−82.5 ± 1.6)a0. The fit results are αK = (−0.27 ± 0.07)
m/s2 and αRb = (−0.104 ± 0.013) m/s2.

equation of motion is given by

ÿd

2∑
i=1

Nd
i mi =

2∑
i=1

Fi, (C6)

where yd is the center of mass of the droplet and Fi is the total
(constant) force acting on each component. This force can also
be expressed in terms of the center-of-mass acceleration αi

that the ith component would have in the absence of the other
species, namely, Fi = Nd

i miαi. Then Eq. (C6) can be rewritten
as

ÿd

∑
i

Nd
i mi =

∑
i

Nd
i miαi, (C7)

from which it is straightforward to get Eq. (2).

2. Experimental fit of the unbound-state dynamics

In the droplet regime, we generally observe a portion of
atoms left over the bound state. We ascribe this effect to the
presence of a thermal fraction in both atomic species and an
excess of 87Rb atoms with respect to the droplet atom ratio.
Thus, to distinguish the bound and unbound parts, we fit the
atomic density distribution with a two-component Gaussian
function. In Fig. 4 we have shown only the results obtained
for the bound portion. Here we report also the evolution of
the center-of-mass position yc.m. of the unbound fraction for
δg< 0, finding the same behavior of the weakly attractive
mixture (Fig. 7).

Following the same strategy described in the main text,
from Eq. (2), where now αK and αRb are the accelerations
of the unbound 41K and 87Rb components at δg < 0, we
obtain the atom number ratio of the two species in the bound
state, Nd

K/Nd
Rb = 0.8 ± 0.7, again consistent with the expected

value [7].
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