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Abstract. IIn 1999, the first sprites were observed above European thunderstorms using sensitive

cameras. Since then, Eurosprite campaigns have been conducted to observe sprites and other tran-

sient luminous events (TLEs), expanding into a network covering large parts of Europe and coastal

areas. In 2009 through 2013, the number of optical observations of TLEs reached a peak of 2000 per

year. Because of this unprecedented number of European observations, it was possible to construct

a climatology of 8319 TLEs observed above 1018 thunderstorm systems, and study for the first time

their distribution and seasonal cycle above Europe and parts of the Mediterranean Sea. The number

of TLEs per thunderstorm was found to follow a power law, with less than 10 TLEs for 801 thun-

derstorms and up to 195 TLEs above the most prolific one. The majority of TLEs were classified as

sprites, 470 elves, 280 halos, 70 upward lightning, 2 blue jets and 1 gigantic jet. The climatology

shows intense TLE activity during summer over continental areas, and in late autumn over coastal

areas and sea. The two seasons peak respectively in August and November, separated by March and
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April with almost no TLEs, and a relative minimum around September. The observed TLE activity,

i.e. mostly sprites, is shown to be largely consistent with lightning activity, with a 1/1000 of observed

TLE to lightning ratio in regions with most observations. The overall behavior is consistent among

individual years, making the observed seasonal cycle a robust general feature of TLE activity above

Europe.

1 Introduction

Three decades ago, a test low-light camera recorded a sprite (Franz et al., 1990), a spectacular dis-

charge extending for tens of km above a thunderstorm. It was the first discovery of a whole family of

upper atmosphere electrical processes, collectively known as transient luminous events (TLEs – see

reviews by Rodger, 1999; Neubert, 2003; Füllekrug et al., 2006; Neubert et al., 2008; Pasko et al.,

2011). TLEs occur in the upper troposphere to lower thermosphere region, between the top of thun-

derclouds and the lower ionosphere. They are the visible manifestation of the electrical impact of

thunderstorms onto the above atmosphere. They can be made of streamers, weakly ionized plasma

channels (Petrov and Petrova, 1999; Ebert et al., 2006; Luque and Ebert, 2009), roughly up to 70 km

altitude; or be large diffused patches of enhanced ionization at higher altitude, where the dielectric

relaxation timescale becomes comparable with that of dissociative attachment (Pasko et al., 1998).

Over the years, TLEs have been distinguished in specific classes: Blue jets (Wescott et al., 1995;

Boeck et al., 1995; Petrov and Petrova, 1999) are fountain-like streamers directly expanding from

their leader core, and injected from the thundercloud top up to 40 km altitude towards the ionosphere

(Krehbiel et al., 2008; Pasko, 2008). Sprites (Sentman and Wescott, 1993; Lyons, 1994; Sentman

et al., 1995) are luminous discharges that initiate at about 70 km altitude (Stenbaek-Nielsen et al.,

2010) as a consequence of the transient quasi-electrostatic field induced by large positive cloud-to-

ground (+CG) lightning strokes (Pasko et al., 1997). They extend downwards to 40 km as streamers

and upwards to 90 km altitude as diffuse emission, and are tens of km wide (Stenbaek-Nielsen et al.,

2000). Sprite halos occur as downward moving diffuse glow at 70–80 km altitude, often accompa-

nying sprite events but in some occasions alone (Barrington Leigh et al., 2001; Wescott et al., 2001).

Elves appear as horizontally expanding diffuse emission rings of a few hundreds km diameter at

about 90 km altitude, when the electromagnetic pulse of a triggering lightning stroke hits the lower

ionosphere (Boeck et al., 1992; Fukunishi et al., 1996; Inan et al., 1997). Much rarer are gigantic jets

(GJs), which join together apparent features of blue jets and sprites, and cause a direct connection of

the thunderstorm to the lower ionosphere (Pasko et al., 2002; Su et al., 2003; Cummer et al., 2009;

van der Velde et al., 2010a). Depending on the relaxation timescales at the altitude of occurrence,

TLEs last from several hundreds of milliseconds (jets) down to a few milliseconds (elves). Sprites

are the most commonly observed kind of TLE from ground based video observations, with global

occurrence rate of about 1–3 spritemin−1 (Ignaccolo et al., 2008, and references therein). Satellite
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observations (Chen et al., 2008) confirmed a global occurrence rate of sprites of about 1 per minute,

a similar rate for halos, whereas the much higher efficiency in observing elves led to an estimate of

about 30 elvemin−1 globally. A high elve/sprite ratio (6:1) was found also adopting ground based

photometers, further pointing to a selection bias towards sprites in ground based video observations

(Newsome and Inan, 2010).

Europe is a unique region for studies of TLEs under extremely varying conditions. The first im-

ages of European TLEs were captured by chance in 1999 over the Balkans from an aircraft based

camera during the 999 Leonids-MAC airborne campaign (Gardner, L.C., and M.J. Taylor, Second

Leonids-MAC workshop, Tel Aviv, 2000). The first dedicated observations were obtained in 2000

with a camera installed at the Observatoire Midi-Pyrénées, located at Pic du Midi in the French

Pyrenees (Neubert et al., 2001). The authors recorded 40 sprites over the Alps and Southern France,

in connection with cold fronts coming from the Atlantic. In the following years, Eurosprite cam-

paigns were conducted during summer leading to over 700 TLE images being captured in the period

from 2000 to 2008, and involving a broad range of correlative measurements including radio and

infrasound (Neubert et al., 2005; Chanrion et al., 2007; Arnone et al., 2008; Neubert et al., 2008).

These campaigns allowed a great number of detailed studies using specific European TLE events and

thunderstorms. This includes investigations of radio signatures of TLEs and thunderstorm-induced

effects onto the atmosphere (Haldoupis et al., 2004; Mika et al., 2005; Haldoupis et al., 2006; Mika

et al., 2006; Farges et al., 2007; Greenberg et al., 2009; Haldoupis et al., 2010; NaitAmor et al.,

2010; Füllekrug et al., 2010, 2011); investigations on infrasound signatures of sprites (Farges et al.,

2005; Ignaccolo et al., 2008; Farges and Blanc, 2010); metereology of TLEs and of their producing

thunderstorm (Ignaccolo et al., 2006; van der Velde et al., 2006; Ganot et al., 2007; Bór et al., 2009;

Iwański et al., 2009; Savtchenko et al., 2009; Vadislavsky et al., 2009; Yair et al., 2009; Soula et al.,

2010; Mäkelä et al., 2010; van der Velde et al., 2010b; Bór et al., 2018); the morphological aspects of

various sprite-types (Bór, 2013). A general collection of research related to Eurosprite was included

in Füllekrug et al. (2006) and presented by Neubert et al. (2008).

Eurosprite has since then expanded to become a network that joins the observational activities of

tens of observers across Europe and the Mediterranean sea, exceeding 1000 observations per year.

In particular, a coordination effort over 2009 through 2013 led to the production of a first database of

observations with a broad coverage of regions over Europe and the Mediterranean sea. The increased

number of observations was accompanied by the first detection of extremely rare phenomena such as

the first GJ observed over Europe (van der Velde et al., 2010a; Kułak and Młynarczyk, 2011; Neubert

et al., 2011), detailed analysis of peculiar sprite-producing thunderstorms (Soula et al., 2014, 2015,

2017), of sprite parent lightning (van der Velde et al., 2014), and elve statistics of a specific region

(van der Velde and Montanyà, 2016), high speed recording of sprites (Montanyà et al., 2010), sprites

signatures in radio waves (Farges and Blanc, 2011; Füllekrug et al., 2013b; Mlynarczyk et al., 2015),

long-lasting TLE signatures in the ionosphere induced by rare very strong lightning (Haldoupis et al.,
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2012, 2013). More recent studies included also detailed impact of sprite-producing thunderstorms

on the atmosphere above with consequent relativistic acceleration of electrons (Füllekrug et al.,

2013a) in association with model studies (Chanrion and Neubert, 2010), impact of sprite-producing

thunderstorms on the lower ionosphere (especially on the sporadic E layer) over Central European

region (Barta et al., 2017) using ionosonde data, or may lead to joint studies also with detection of

terrestrial gamma-ray flashes over the Mediterranean Sea (Gjesteland et al., 2015).

Such a large number of observations allows for the first time climatological studies to be per-

formed over Europe and the Mediterranean sea: a Southern Mediterranean perspective was presented

by Yair et al. (2015) and an introduction to the climatology presented here was discussed by Arnone

and Dinelli (2016). Despite being inhomogeneously distributed, the number of ground-based ob-

served sprites largely exceeds that acquired globally from satellites over equivalent periods of time

(Chen et al., 2008). They give therefore an essential contribution to climatological studies, which re-

main fundamental for understanding the global role of TLEs in the atmosphere (see e.g., reviews by

Pasko, 2010; Pasko et al., 2011): e.g. answering questions on the spatial and temporal distribution

of their occurrence and of their impact; opening the way to comparison with other climatological

atmospheric and climate data for which one-to-one analysis is not meaningful; allowing calibration

of climatologies based on non-optical measurements, such as through Schumann resonances and

detection at extremely low frequency (Füllekrug and Reising, 1998; Whitley et al., 2011).

A branch of European TLE-related activities that has developed over the past years and will greatly

benefit from these large observational samples is that studying the impact of TLEs on the atmosphere.

This include model and laboratory studies of the discharges themselves (e.g., Luque and Ebert, 2009;

Ebert et al., 2010); modeling of their emissions and impact onto the atmosphere and its chemistry

at local or global level (Enell et al., 2008; Gordillo-Vázquez, 2008; Arnone et al., 2008; Gordillo-

Vázquez et al., 2011; Parra-Rojas et al., 2013; Neubert and Chanrion, 2013; Arnone et al., 2014;

Winkler and Notholt, 2014, 2015; Parra-Rojas et al., 2015); observational studies linking chemistry

to TLE occurrence (Arnone et al., 2008, 2009; Arnone and Hauchecorne, 2012; Arnone and Dinelli,

2016): a number of TLE parametrized distributions have been adopted by several of these modeling

and observational studies based on regional to global lightning observations. Furthermore, investi-

gations of the impact of sprites on the ionospheric potential and role in the global electric circuit

were also brought forward (Rycroft et al., 2007; Rycroft and Odzimek, 2010; Rycroft and Harrison,

2011). More recently, a capability of investigating TLEs with high resolution spectroscopy was also

developed (Gordillo-Vázquez et al., 2018) in association with optical observations of sprites.

The growth of this field of research in Europe has brought to the development of the Atmosphere-

Space Interaction Monitor (ASIM) that was launched on the 2nd of April, 2018, and installed on an

external platform of the Columbus Module of the International Space Station. The main objectives

of the mission are related to thunderstorm activity by observing associated emissions in the near

UV, near-infrared, X- and gamma-ray bands. The mission embarks two main instrument modules,
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the Modular Multi-spectral Imaging Array (MMIA) with two cameras and three photometers ob-

serving in the 180-230nm, 337 nm and 777.4 nm bands and the Modular X- and Gamma-ray Sensor

(MXGS) observing photons of energy in the range 15keV to 20MeV with imaging capability (Neu-

bert, 2009). A further European mission dedicated to the study of thunderstorms is the TARANIS

satellite (Tool for the Analysis of RAdiations from lightNIngs and Sprites) which is planned to be

launched in 2019-2020 carrying a set of instruments recording thunderstorm emission in the optical,

X-, gamma- ray and radio bands (Blanc et al., 2007; Lefeuvre et al., 2008). Both space missions will

exploit the coordinated ground-based observation systems and the knowledge on TLE distribution

and variability discussed in this study.

In this paper, we present the distribution and seasonal cycle of TLE observations from the Eu-

rosprite network and partners during 2009 through 2013, the period with the widest data coverage of

European observations to date. The structure of the paper is as follows: the coordinated Eurosprite

instrumentation and observations are presented in Sect. 2 and data analysis in Sect. 3. The results are

presented in Sect. 4 and discussed in Sect. 5. Conclusions are given in Sect. 6.

2 Eurosprite instrumentation and observations

Several partners contribute to the so called Eurosprite network which provided the observations stud-

ied in this work. Eurosprite is an umbrella identifying a coordinated observational effort composed

by several optical cameras permanently installed at strategic locations or temporary deployed dur-

ing field campaigns throughout Europe and coastal areas. The main optical systems involved in the

network are shown in Fig. 1 with their estimated coverage (see Sec. 2.5). A large number of fur-

ther optical systems contribute with sporadic observations. As shown, most of Central and Southern

Europe is well covered by observations, whereas there is as yet limited coverage of Eastern and

Northern Europe. The Mediterranean sea and coastal areas are covered in the Northern parts by

systems in Spain, France and Italy, and in the Southern parts by Israel. An overview of the optical

systems involved in this study (i.e. active in 2009 to 2013) and their current status is given here

below. An overall description of Eurosprite activities and early campaigns can be found in Neubert

et al. (2008).

2.1 Southern Europe and the Mediterranean Sea

The first operating European sprite-watch system was installed in Southern France at Pic du Midi

(42.94◦ N, 0.14◦ E, 2877 m) in the French Pyrenees to conduct campaign operations in 2000 and

2003 (Neubert et al., 2001; Neubert et al., 2005). It consisted of remotely controlled optical cameras

sensitive to low-light conditions and photometers. This camera was associated to other similar sys-

tems for summer and fall campaigns, especially in 2005 and 2006 with a camera at Puy de Dome

(45.77◦ N, 2.962◦ E,1465 m) and in 2008 on Mount Corona (42.46◦ N, 8.92◦ E, 2144 m) in Corsica,

and at the Calar-Alto Observatory (37.22◦ N, -2.58◦ E) (Neubert et al., 2005; Chanrion et al., 2007;
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Arnone et al., 2008; Neubert et al., 2008; Soula et al., 2017). A new low-light and high-resolution

charge-coupled device (CCD) camera (Watec 902H) mounted on a pan-tilt unit remotely controlled

by the Internet, was installed in 2009 at Pic du Midi and continuously operated. It is equipped

with a 12 mm f/0.8 lens with a 31◦ field of view (FOV). The typical maximum range of such a

high mountain system is 800 km, so that this system commonly observes TLEs over the southeast-

ern France, the Alps, the western Mediterranean Sea and a large part of Spain (Soula et al., 2010,

2014, 2015, 2017; van der Velde et al., 2010a, 2014). Other similar cameras are located in southern

France at lower altitude, in Lannemezan (43.13◦ N, 0.37◦ E, 592 m) since 2007, in Clermont-Ferrand

(45.76◦ N, 3.11◦ E; 400 m) since 2010, in Rustrel (43.94◦ N, 5.48◦ E, 1020 m) since 2011. These

four cameras can be operated along the year. In particular, during the period considered for this

study, the Pic du Midi system was active in 2010 (mid-July to end of August), 2011 (mid-May to

end of November) and 2013 (mid-August to end of September); the Corsica system in 2009 (August

to mid-November), 2010 (mid-July to mid-October) and 2011 (second half of July); the Calar Alto

system in 2009 (mid-April to mid-November) and 2011 (end of September to mid-December). In

September 2018, a high speed remote camera system was mounted at the top of the Laboratoire

Souterrain à Bas Bruit (LSBB) in Rustrel (43.93◦ N, 5.49◦ E) and plan to install another system at

the Observatoire Midi-Pyrénées in 2019.

Observations taken from Spain were based on a remotely controlled camera installed at Sant

Vicenç de Castellet (41.67◦ N, 1.85◦ E) and additional deployable cameras including a high-speed

system (see blue circles in Fig. 1). The remotely controlled system has an observation range of

about 150 to 450 km centered at the camera location, with minimum distance rarely below 100 km

(about 35◦ high in the sky) and reaching a maximum a distance of about 600 km. The viewing had

partial limitation towards Southern France because of hills blocking the lowest 12◦. The system was

moved to moved to Castellgalí (41.67 ◦ N, 1.83◦ E) in November 2013 were it continues operations.

The cameras were operated continuously throughout the year, with observation taken when viewing

conditions were clear and manually operated whenever there storms.

Observations from Italy and Switzerland were recorded by the Italian Meteor and TLE Network

(IMTN), which groups over 30 cameras with fixed pointing and a few automated pointing cameras.

IMTN fully covers central and Northern Italy, and adjacent regions, and has some limited sensitivity

down to Southern Italy. Most cameras are close to sea level and close to cities, so that the observation

range of each camera is limited to a few hundred km. Because of multiple cameras covering the same

areas from different location, it is often possible to have triangulation. The most active stations (i.e.

with more cameras and continuity of observations, resulting in more observations taken) are installed

at Ferrara (44.83◦ N, 11.57◦ E), Tortoreto (42.66◦ N, 13.67◦ E) Contigliano (42.41◦ N, 12.76◦ E),

Bologna/Medicina (44.50◦ N, 11.26◦ E), Lugano/Gnosca (46.12◦ N, 8.84◦ E), Cuneo (44.39◦ N,

7.48◦ E) and Scandicci (43.74◦ N,11.08◦ E), The southermost camera is placed in Casamassima

(41.03◦ N, 16.82◦ E) since 2012. In 2010, a research camera with a remotely controlled automated
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TLE detection system was mounted at the Italian Climate Observatory on Mount Cimone (44.19◦ N,

10.70◦ E), Modena, Italy. The system was moved to the Loiano Observatory (44.39◦ N, 11.19 ◦ E)

in early 2013 and continues to be operational. The overall coverage from Italy includes adjacent

seas, parts of central Europe and the Balkans (see yellow ellipse in Fig. 1). The cameras are operated

throughout the year. The network of overlapping camera viewing demonstrated to be extremely

efficient in capturing TLEs, leading for example to the only GJ captured to date over Europe (van

der Velde et al., 2010a). Despite shortages in the viewing conditions and continuity of the operation

of individual cameras, these regions can be considered to be largely continuously observed.

Covering the western Mediterranean Sea and adjacent regions were observations conducted from

Israel by ILAN team. The TLE observing system is deployed on the rooftop of the Geophysics

department of Tel Aviv University and is comprised of two panchromatic CCD cameras, mounted on

a remotely controlled pan-and-tilt unit (Ganot et al., 2007) (see orange circle in Fig. 1). Observations

are conducted during the thunderstorm active period of September-May every year, with a line of

sight stretching up to Cyprus and Southern Turkey (Yair et al., 2009). For specific storm events, an

alternative site at the Wise astronomical observatory (30.60◦ N, 34.76◦ E) in the Negev desert was

used, extending the coverage to the Nile delta and beyond

2.2 Central Europe

Organized TLE observations in Central Europe started in 2007 with an optical detection site in So-

pron, Hungary (47.69◦ N,16.44◦ E) with a remotely controlled monochrome analogue video camera.

Due to the vulnerability of the applied pan-tilt unit, the camera used to be dismounted for the winter

and reinstalled in the following year (see cyan circle in Fig. 1). Observations were taken in May to

August, June to August, and July to October, in 2009, in 2010, and in 2011, respectively. Further

details of TLE-related observations in Hungary can be found in Sátori et al. (2013).

Observations from Czech Republic started in May 2011 with a camera installed at at Nydek

(49.67◦ N, 18.77◦ E) and continued thereafter all years round with only very minor breaks dur-

ing the period of this study (5/7 to 21/7 in 2011, 5/11 to 26/11 in 2012 and 1/11 to 14/11 in 2013).

See e.g. (Mlynarczyk et al., 2015). Observed TLEs occurred between May and November. The con-

tribution from this region reached about 700 TLEs, covering Czech Republic, Slovakia, Germany,

Austria, Poland, Hungary, Ukraine and extending to Italy, Slovenia, Croatia and the Adriatic Sea

with distances from the observer ranging between 100 and 700 km.

First TLE research observations in Poland have been carried out during a two-week field campaign

at Mount Sniezka (50.74◦ N, 15.74◦ E), the highest peak of the Sudetest, in July 2007 organized

as part of Eurosprite (Odzimek et al., 2008; Iwański et al., 2009). Since summer 2011, research

observations have also been made sporadically from Gliwice (50.28◦ N, 18.65◦ E) with azimuth

180-300 and from Swider (52.01◦ N, 21.39◦ E) with azimuth 300-50. These observations have been

carried out using low-light sensitive cameras pointed manually, covering parts of Germany, Austria,

Hungary, the Czech Republic and Poland (see pink circle in Fig. 1), as far as Southern Lithuania
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from Swider. Large parts of this area overlap with those covered by systems in Hungary and Czech

therefore allowing triangulation. It has also to be noted that tens of sprites each year have been

observed from Poland since 2009 by the Polish Fireball Network (PFN). PFN operates cameras at

fixed direction over the territory of Poland with stations disseminated over central, North-West and

South-West of Poland, and two stations in the East, with limited and variable viewing directions for

all stations.

2.3 Northern Europe

Optical observations in northern Europe presents the basic problem that the sky is seldom dark

during summer, when most Northern European thunderstorms occur. A station has been operated

at Esrange, Kiruna to look for sprites over winter thunderstorms over the Atlantic coast of Norway.

In Finland there is an extensive network of amateur astronomers and storm chasers related to the

Astronomical Association Ursa running automatic detection software for observing bolides and other

bright events in the twilight and night sky. In 2009, the northernmost European sprite and elve were

recorded (Mäkelä et al., 2010). In 2009-2013, a total of 25 TLEs were observed (24 sprites, 1 blue

jet).

2.4 Correlative non-optical measurements

Lightning detections from national networks were used both as guidance for pointing direction dur-

ing the observations, and in order to geolocate the TLEs with their parent lightning in post-processing

of TLE data. In particular, lightning data came from the VLF/LF lightning detection network LINET

(Betz et al., 2009) network in Italy, Spain, Hungary, Poland and Germany. Meteorage/EUCLID data

was adopted in France and nearby areas. Lightning data from Blitzortung was used by automated

pointing cameras in Italy and Czech Republic. In Poland lightning detection was acquired also from

PERUN and CELDN. In Finland, the lightning location data is from the Nordic Lightning Infor-

mation Systems (NORDLIS Mäkelä et al., 2010). Additionally, satellite infrared images and local

radar images are used both for pointing and data geolocation. For a more homogeneous analysis

of lightning over Europe, we make use of data from the World Wide Lightning Location Network

(WWLLN) in 2009 to 2013 over Europe and the Mediterranean Sea, both for comparison and aid

in the interpretation of the TLE observations. The network is based on the recording of lightning

emissions in the VLF range. The lightning detection is based on the consistent recording of a spheric

signals from lightning by 5 stations of the network. Since 2009, WWLLN detectors covering and

the Mediterranean Sea are placed in Portugal, Hungary, Israel and Northern Finland, whereas a new

detector was activated in 2012 in the U.K. The switch on of the U.K. detector may lead to an increase

in the detection rate since 2012. The overall detection efficiency is about 15-30%, biased towards

strong lightning.

Several receivers were used for simultaneous electromagnetic measurements in the ELF-VLF

radio range together with the optical campaigns. An ELF station located at the Geodetic observatory
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in Sopron, Hungary was accompanied by measurements at the Wise observatory in Israel, a remote

site which has low man-made electromagnetic noise levels (Greenberg and Price, 2004). The VLF

station located in Crete (CR), Greece (35.31◦ N, 25.08◦ E) is a Stanford University receiver which

uses a 1.7× 1.7 m2 magnetic loop antenna, and it was accompanied by measurements at the Ben-

Gurion University Desert Research Institute (30.86◦ N, 34.78◦ E) at Sde-Boker in Israel, where the

station consists of two orthogonal triangular loop-antennas (Price et al., 2002). Infrasound detections

from France have been used by several studies (see e.g. Farges and Blanc, 2010). The Swedish-

Finnish Infrasound Network (SFIN) has been used to seek sprite signatures (Liszka and Hobara,

2006), and more later jointly with Eurosprite.

2.5 Observational coverage and detection efficiency

Figure 1) shows the location of the most representative optical systems that contributed with obser-

vations during 2009-2013 (white crosses) with an estimate of their viewing coverage (colored areas).

A main issue with ground-based optical TLE observations is the unevenness of the distribution of

the cameras, and the continuous changes of their viewing due to either atmospheric processes or

experimental changes. Although the main observation hotspots are known (i.e. the area delimiting

the observations taken by cameras capturing most TLEs), the detection efficiency is affected in a

way that is not possible to characterize correctly for the largest part of the available data, for which

detailed historical conditions (e.g. viewing conditions, pointing direction, operating period, obser-

vational choice of the observer when more thunderstorms are in view) were not recorded. In order

to take into consideration these shortages and avoid introducing analysis biases between different

cameras, we adopted and brought forward in parallel two approaches.

Firstly, an approximate coverage was evaluated adopting the same discretization as for the data

analysis (see Sec. 3) and assigning to each geographical bin a score based on the viewing of the most

representative camera systems (as introduced above). These systems were selected as main systems

of each contributing research group or regional network, and on the basis of the continuity of their

operations, area covered (e.g. if covering areas that no other cameras are reaching), and reported

number of TLEs. Each of these cameras was characterized by a circular area of coverage around

its location, with a radius of 300 (e.g., city) to 800 km (e.g., high mountain) depending on the geo-

graphical location and characterization by the observer. As a first approximation, a circular area was

assumed for all cameras with no consideration of their actual viewing direction, assigning a score

of 1 to each geographical bin within the circular area of a camera. The score was dropped to 0.5 in

the 100 km closest to the camera (where the high zenith angle may prevent observing TLEs) and in

the 100 km (200 km for high mountains) farther away (because of the expected drop in detection

efficiency). A weight ranging 0 to 1 was then applied to the scores of each camera depending on the

continuity of operations: fraction of the 5 years 2009–2013 and fraction of individual year (season).

By this characterization, a bin within the viewing range of a camera operated throughout the year
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would get a score 1 if operated along the whole 5 years, 0.8 if operated along 4 years only. The

weight was tuned also depending on known shortages or high efficiency of the cameras. The cover-

age distribution was then calculated integrating contribution from all cameras, resulting in maximum

scores of 5 (i.e., 5 overlapping cameras) indicating the highest probability of detecting TLEs. The

resulting distribution reported in Fig. 1) shows the large areas covered and highlights the areas with

higher expected observing capability. This coverage was used to interpret the TLE climatology and

to simulate the expected TLE distribution based on the lightning distribution. With this approach,

the actual detection efficiency of individual cameras remain to be evaluated a posteriori (based on

the results of this study and future dedicated case studies) but can be assumed to be partly compen-

sated and similar among all cameras so that the overall geographical distribution can be correctly

interpreted.

Secondly, in order to remove the bias produced by the uneven detection efficiency, we produced

further climatologies normalized by their multi-year annual average and studied seasonal changes

of the geographical distribution and monthly averages integrated over the whole area of observation

both for TLEs and lightning.

3 Data analysis

The Eurosprite data used in this study include all available 2009–2013 optical images from the broad

network of instrumentation described in the previous section. Individual TLE images were collected

by the observers into data entries for the Eurosprite database: Each entry consists of a number of

TLEs associated to an individual thunderstorm or closely related thunderstorm cells; the geograph-

ical area covered by those TLEs; the period of TLE activity; and the TLE type. TLEs recorded in

one individual observation (e.g. several sprite elements in one video frame) were typically counted

as one, unless they were clearly discernible as separate events. The geographical coverage of the

TLEs was estimated by the observers on the basis of the camera field of view, its pointing direction

and correlative meteorological data. The geolocation was performed either associating the TLE to its

parent lightning stroke obtained through lightning detection networks, whenever possible, or to its

parent thunderstorm through the overall lightning and cloud conditions in the region of interest. In

the database, the TLE data coverage was reported with a ±1◦ latitude and longitude uncertainty for

most observations, whereas the timing with a ±1min uncertainty. The ±1◦ uncertainty reflects both

the actual spatial extent of the events, and the possible inaccuracy on their geolocation. Observa-

tions reported with higher accuracy were rounded to the closest 0.5 ◦, assuming a minimum spatial

extent of 1 ◦. In order to avoid being affected by uncertainties on individual events, we studied the

observed TLEs only in terms of climatology. Eurosprite data entries were binned over 0.5 ◦ latitude

and longitude bins, and on 1-month or 1-season intervals, distributing their contribution among all

bins affected by the data entry/thunderstorm area. This implies an oversampling was performed of
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data over a grid finer than the given uncertainty, in order to obtain an increased resolution allowed by

higher accuracy observations and overlap of several observations. Possible observations of the same

events by multiple cameras was either accounted for directly by the observers (this is the case of e.g.

the several cameras of the IMTN network), or by removal of the database entry with less counts in

case of entries that clearly overlap in space and time. The latter removal was applied only to cases

reporting more than 20 TLEs to avoid rejecting cases where few different TLEs were captured by

different cameras over the same region.

Lightning data from the WWLLN network was also analyzed in a similar fashion, producing a

climatology with number of detected strokes within individual geographical bins in a certain season

or year, and taking into consideration the total number of strokes or nighttime only strokes. The latter

was evaluated considering the time of the local sunset and sunrise. For lightning climatologies, we

adopted a discretization of 1◦ in latitude and longitude in order to be less affected by differences

at too fine regional scale and allow an easier interpretation of the TLE distribution main features.

In several occasions, we studied lightning data within the limited area of camera coverage or that

delimiting the actual TLE observations (see further details below), and performed integration of the

overall stroke counts over these regions to obtain monthly means. WWLLN lightning climatologies

were used also to evaluate the distribution of TLE to stroke ratio (in this case accordingly increasing

the size of the bins of the TLE climatology to 1◦) and to simulate the expected TLE distribution

based on detected strokes.

4 Results

4.1 Eurosprite observations in 2009–2013: TLE and lightning climatologies

In the years 2009 to 2013, Eurosprite and partners recorded 8139 TLEs over 1018 thunderstorms.

The vast majority of observations were sprites, with 6994 classified events, followed by 470 elves

and 280 halos. Also observed were 70 upward lightning processes, 2 blue jets and the first European

gigantic jet (the latter recorded in December 2009, west of Corsica – see further details in van der

Velde et al., 2010a). The remaining fraction of the events were reported as unclassified TLEs.

The climatology of TLEs above Europe and Southern Mediterranean Sea for 2009 to 2013 is

reported in Fig. 2 as density of observed TLEs (TLEs 10−3km−2 yr−1). In a similar way, the 2009–

2013 climatologies of WWLLN lightning strokes as total daily counts and nighttime only counts is

reported in Fig. 3 (strokes km−2 yr−1). Since TLEs are observed only during nighttime, the latter

should be preferred for comparison, although both maps show relevant information on the geo-

graphical distribution of thunderstorm activity over Europe and the Mediterranean sea. In particular,

total lightning can be more correctly compared to climate parameters in terms of e.g., temperature,

winds and precipitation. To ease comparison, the approximate area of observed TLEs over Europe

is reported in the WWLLN map as reference (see white contours). The geographical extension of
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TLE activity closely resembles the estimated observational coverage, therefore supporting the over-

all viewing range adopted for the cameras. Drops in recorded TLE rates can promptly be associated

with decreases in observational coverage. High TLE activity is found in Southern France and around

the Balearic Islands, in Italy and adjacent seas, then extending over Austria and the Czech Republic

to the North, towards Hungary to the East, and with a separate set of observations around Cyprus.

Despite the biases introduced by the location of the observational systems, some main features in

the observed TLE climatology can be extracted with consideration of both observational coverage

and lightning activity. Within the regions covered by the observations, the TLE main geographical

distribution tends to mimic the distribution of thunderstorm activity. This is evident in the northern

part of the TLE climatology where large areas with a weak TLE rate are consistent with a drop in

lightning activity over vast areas, e.g. in France and Germany, and particularly over Spain contrast-

ing with the adjacent high activity over the Pyrenees. Interestingly, some local drops in TLE rates

are consistently seen in lightning, as e.g. over Eastern Italy, and likely Sardinia, a behavior that is

related to nighttime lightning and less evidently to total lighting. Further similarities occur in the

coastal areas of Northern Spain and Western France, were increased TLE rates are correlated with

weakly increased nighttime lighting rates (more visible with a dedicated change of the color scale

here not shown) and more evident in total lightning. High TLE rates are recorded at the German-

Polish border with partial correlation to lightning activity (see spots of high lighting activity in this

region more visible in total lightning), whereas the high activity over Czech Republic is not repro-

duce by a similar increase in strokes counts. In contrast, the fading of TLE activity in Southern Italy

and towards Eastern Europe is due to poor coverage. The poor coverage causes similar low rates over

Corsica, North-West Italy and Hungary, where local cameras tend to observe only thunderstorm at a

certain distance from the observation spot.

4.1.1 TLE rates and TLE to lightning ratio

Peak TLE rate are close to or exceeds 10−3km−2 yr−1 in a few hotspots in Southern France, North-

ern Mediterranean Sea, Italy, the Balkans and Poland, whereas it is typically around 0.2–0.3 in large

adjacent regions. These rates and the main features of the climatology should be largely assigned to

sprites, since the other observed TLEs represent a minor fraction of the database. Regarding other

TLE types, almost all elves were observed over autumn/winter maritime thunderstorms, or close

to coastal areas. This selection occurred also for the upward lightning, blue jets and gigantic jet

(see also van der Velde et al., 2010a), whereas halos were often observed also over land. Compari-

son to lightning rate seen in the lightning climatologies of around 0.2–0.3 within the same regions,

suggests a factor around 1000 in the ratio of observed TLE to detected total lightning on a yearly

average (recall the factor 10−3 in the TLE climatologies). To further inspect this relationship, the

TLE to nighttime lightning stroke ratio is shown in Fig. 4 and was evaluated adopting a lower res-

olution 1◦ climatology of TLEs. Typical values of the ratio are of the order 1 to 10 in regions well
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covered by observations, and exceed 10 in a few hotspots previously identified, particularly in the

area around the German-Polish border where many more TLE per lightning stroke are observed.

Taking into consideration the shortages in the observational coverage, we can evaluate an average

ratio on a fraction of the geographical bins which have the highest values and drop those with low

rates, which are presumably more affected by low observational coverage: when considering the top

50% of the bins, the mean TLE to nighttime lightning stroke ratio is 2.7/1000; when considering the

top 30%, the mean ratio increases to 4.3/1000 (corresponding to a value of 1.3 when total lightning

is used i place of nighttime lightning). Note that over the whole climatology, the rate of nighttime to

total lightning has a mean value of 0.39 and median value of 0.37, with higher values over coastal

ares and sea, and lower ones over continents (not shown).

4.1.2 Simulated TLE distribution

Based on the above results, we simulated an expected TLE distribution based on the nighttime light-

ning climatology (see Fig. 3, the observational coverage (see Fig. 1) and the estimated TLE to night-

time lightning ratio 4/1000. The observational coverage was normalized to a maximum value of 1.

The results are shown in Fig. 4. The simulated TLE distribution now carries information on both

lightning distribution and observational coverage, with maximum values scaled by the adopted TLE

to lightning ratio. The main characteristics and typical values seen in the observed TLE climatol-

ogy are found also in the simulated one: e.g., overall extension and shape of the area covered by

the observations, main active regions and the overall values, features of the high rate areas and low

rate ones. Also, some peculiarities of the observed climatologies can now be more easily interpreted

on the base of a simultaneous effect of lightning activity and camera sensitivity. This is the case

of Northern Spain and Western France (where the line features could be better reproduced with a

change in the color scale – not shown) or the drop in central Spain, high rates in the Southern France

coast and close to the Balearic Islands, and drop in the rates over Sardinia. The simulation reproduce

correctly the observed drop over coastal Eastern Italy, Northern France, and Germany, and can also

pick the behavior of the distribution observed over Hungary. In contrast, the simulation does not

replicate the behavior of the climatology over Czech Republic, Slovakia and Poland, were a further

refinement of the observational coverage (i.e., with consideration of the actual field of view of each

camera) with dedicated studies may improve it. The simulation also expects higher than observed

rates around Cyprus because of the local very intense lightning activity, although the overall area is

reproduced suggesting lower weights should be estimated via dedicated studies.

The comparison of the observed and simulated TLE climatologies was evaluated quantitatively by

inspecting the probability distribution functions and main statistics of the two datasets, considering

a 1.0 ◦ lower resolution TLE climatology which was found not to differ in its statistics from the

original 0.5 ◦ resolution climatology. The TLE and simulated climatologies have about 530 and 590

points with TLE rates greater than zero and lead to very similar probability distribution functions
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(not shown). Mean TLE rates for the observed climatology are 0.07, 0.10 and 0.21 (medians 0.03,

0.07 and 0.19) 10−3km−2 yr−1 respectively considering only geographical bins with rates above

0, above 0.01 and above 0.1 10−3km−2 yr−1. In comparison, mean TLE rates for the simulated

climatology are 0.11, 0.13 and 0.25 (medians 0.05, 0.07 and 0.20) 10−3km−2 yr−1 respectively.

The slightly higher mean values of the simulated climatology can be reduce if adopting a TLE to

nighttime lightning rate of 3/1000 to 0.08, 0.10 and 0.21 (medians 0.04, 0.06, 0.17) 10−3km−2 yr−1,

although at the expenses of the median which is also slightly reduced, and of a poorer simulation of

rate values over some areas (e.g., Spain and France). Overall, the adoption of a 3.5 or 4/1000 ratio

seems to be adequate, supporting a posteriori what previously calculated based on the top 30% of

the geographical bins with highest rates.

4.2 TLE seasonal cycle above Europe: changes to the mean geographical distribution

Seasonal averages of the geographical distribution of TLEs for individual years 2009 to 2013 are

presented in Fig. 5. Grey shades show the overall area of observed TLEs during each year. As for

the yearly average, the same seasonal averages are reported also for WWLLN nighttime lightning

strokes in Fig. 6. Color grading refers to Fig. 2 and 3. In terms of seasonal change, TLE activity over

Europe is concentrated over the sea in winter, then moves to the coastal areas in spring substantially

fading in intensity, it increases and spreads over the continent in summer, and relocates again over

the sea in autumn. This behavior is very consistent among the 5 years of the sample. The activity in

the Southern Mediterranean Sea is consistent with the onset of maritime thunderstorms in autumn

and winter (see Yair et al., 2015, for further details). Comparison to Fig. 6 shows a remarkable con-

sistency. Firstly, the general seasonal oscillation of TLE detection between land and sea is consistent

with thunderstorm activity. Secondly, detailed comparison of the hotspots of observed TLEs within

a certain season corresponds in most cases to regions having the highest lightning rate (see e.g. the

coastal and sea areas close to Southern France, Balearic Sea and Italy), or, vice-versa, lack of TLEs

corresponds to very low lightning rates (e.g. France and Germany as mentioned above). There are

clear deviations from this general behavior, e.g. in the case of autumn thunderstorms observed at

the border of Czech Republic, Germany and Poland both in 2011 and 2012, or of the large summer

activity observed in 2011 around the Balearic islands. Consistently, in both cases there are signatures

of high lightning activity also in WWLLN data (Note that the maps show the yearly rate per km2,

so that rates in individual seasons can largely exceed that calculated over the whole year dataset).

Especially during its first months, 2009 shows a relatively poorer data coverage as compared to the

following years. Despite this difference, the main features in the distribution of TLEs are repeated

over the years, making it meaningful to average the 5 years together as performed in Fig. 2. In order

to remove the bias induced by the clustering of optical observation systems over specific regions

(see Fig. 1), we normalized the seasonal distributions of the observed TLE activity by the 2009-2013

yearly average (Fig. 2). Results of the normalization are reported in Fig. 7 as percent component of
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the yearly mean. The magnitude of the seasonal changes in the distribution of TLEs is now more

clearly visible: TLEs are detected largely over the sea in winter followed by a negligible activity

over land in spring. In summer, TLEs are detected largely over land and the higher alpine regions

(see both activity over the Pyrenees and the Alps) abruptly shifting the activity over the coastal areas

and sea in autumn. The strongest activity over the sea in most areas is seen in autumn, together with

a maximum in activity throughout Italy. Particularly interesting is the highlight of the activity over

the Southern Mediterranean Sea around Cyprus, shifting from the southern area in autumn to the

northern area in winter.

4.3 TLE seasonal cycle above Europe: a monthly mean perspective

We further analyzed the seasonal evolution of TLEs calculating total average counts above Europe

per month for TLEs, and for the corresponding lightning strokes (see Fig. 8). The calculation for

TLEs was performed without the inclusion of ILAN observations of the Southern Mediterranean

in order to have a more uniform area and a more consistent seasonal behavior; for consistency, we

included only lightning data within the main TLE coverage (see grey shapes in Fig. 3). Monthly TLE

and nighttime lightning counts (left panels in Fig. 8) both show a largely consistent seasonal cycle

with the two active seasons (summer and autumn) separated by a deep minimum in late winter–spring

(mainly March and April), and a relative minimum in late summer–early autumn (in September for

TLEs and August for lightning). Maxima are reached in August and November for TLEs, and July

and November for lightning. This behavior is fairly consistent among the 5 years, a part for a very

active June in 2009 (which was largely affected by the most prolific thunderstorm in the sample,

see 4.4). Both in summer and autumn, TLEs appear to peak some time later than lightning, but in

both cases November is the most prolific month. The seasonal evolution of the number of nighttime

hours should be taken in consideration when comparing summer and autumn counts since optical

observations of TLEs are only available at night. This effect can be very pronounced at high latitude:

For example in Northern Europe, most of the TLE observations are made in late summer (Aug-Oct)

between 19 and 03 UTC. However, most of the lightning occur in June to August, which suggests

that only a fraction of the TLEs occurring in the Northern Europe are observable with cameras

because of the bright summer sky. In order to do so, we calculated an average nighttime duration

(considering duration for Bari, Budapest, Warsaw and Granada – see dashed grey curve in Fig. 8)

and normalized the monthly counts to a constant 12-hour night. The results are reported in Fig. 8

together with monthly mean lightning activity from the whole day (right panels). The overall TLE

behavior is confirmed, with two distinct summer and autumn seasons now reaching similar total

counts per month. An almost flat distribution between May to November is found for lightning, with

an increase during July in some years.

An analysis of the time of occurrence of the observed TLEs is showed in Fig. 9 (top-left panel),

reporting for each month both the average start and end of the observations (step lines) and the first
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and last observation (circles). The average start and end tends to be very close to the reference local

midnight (at 11 UTC, dotted black line) in May to August, then increasing the average observation

interval with increasing nighttime hours in autumn and winter, with a tendency to last longer during

the second part of the night. First observations of each month generally start 1 or 2 hours after sunset

(see bottom of the figure), whereas the last observations typically occur within 1 hour before sunrise,

and sunrise. Note that the time information for February to April is based on a very limited number of

observations. In Northern Europe, most of the TLE observations are made in late summer (Aug-Oct)

between 19 and 3 UTC. However, most of the lightning occur in June to August, which suggests that

only a fraction of the TLEs occurring in the Northern Europe are observable with cameras because

of the bright summer sky.

Figure 9 also reports the seasonal evolution of the average latitude of the observations during the

5 years (top-right panel). The seasonal changes in the distribution discussed above are now summa-

rized by an average latitude: It cycles between 41–42 ◦ latitude in autumn and winter, and 46–47 ◦

latitude in summer, with a fairly consistent behavior among the years, and therefore well character-

izing the geographical change above Europe. Since the main seasonal change in TLE activity occur

in latitude, no meaningful information can be extracted from average longitude.

4.4 TLE-producing thunderstorms

The seasonal evolution of the number of observed TLE-thunderstorms in 2009 to 2013 is reported

in Fig. 9 (bottom-left panel) in a similar fashion as for the number of TLEs in Fig. 8. For consis-

tency, data from Israel were again excluded from the analysis. Here we assume that each entry of the

database (i.e. a collection of TLEs observed above the same thunderstorm or closely related thunder-

storm cells) can be considered as an individual thunderstorm system, although some database entries

may likely extend over several thunderstorm cells which were observed during the observing period.

Care should thus be taken to correctly interpreting these results. Peaks in number of observed TLE-

thunderstorms are reached in July, August and November, consistently with lightning activity, with

about 150 TLE-thunderstorms accumulating over the 5 years. Comparison to TLE counts in Fig. 8

(top-left panel) shows that November is characterized by less but more prolific TLE-thunderstorms

as compared to summer months. Out of 1018 observed thunderstorms, 801 (79%) were reported

with less than 10 TLEs each, 921 (90%) with less than 20, 97 (10%) with 20 or more, 56 (6%) with

more than 30, 34 (3%) with more than 40. Overall, the distribution in number of TLEs observed per

thunderstorm is reported in 9 (bottom-right panel) in a log-log view. The occurrence is defined as the

fraction of thunderstorms having a certain number of TLEs and normalized by the bin size (1 TLE);

only cases occurring more than once are considered. The distribution follows a power law as shown

by a best linear fit with coefficients –0.54 and –1.45 (dashed black line) and having a correlation of

–0.96. The power law linear fits for individual years 2009 to 2013 are also shown, having correlation

coefficients -0.79, -0.90, -0.91, -0.87 and -0.90 respectively. A part from 2009, the multiyear fit and
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fits for individual years are consistent, suggesting the law may be expected to apply for large sample

of thunderstorms observed over Europe in future years. The 30 most prolific thunderstorms are sum-

marized in Tab. 1. In particular, 12 of these thunderstorms were observed during the summer season

(or late spring), and 18 during the autumn-winter season. Seven thunderstorms were reported with

more than 100 TLEs each, the most prolific one being observed 29 October 2013 with 195 TLEs

(193 sprites and 2 halos), followed by a thunderstorm on 10 June 2009 with 147 TLEs (146 sprites

and 1 halo) and by a thunderstorm on 28 November 2011 with 140 TLEs (131 sprites, 8 elves and

1 halo). The 10 June 2009 thunderstorm makes up most of the anomalously high June TLE count

found in 2009 as shown in Fig. 8 (top-left panel). Most of the prolific thunderstorms were reported

with almost only sprites. Four thunderstorm were reported with a significant (greater than 30) num-

ber of elves and were all observed during the autumn-winter season (in November to January 2012

and 2013). The 12 December 2009 thunderstorms included observation of the gigantic jet discussed

above, and of an upward lightning. For comparison, data for the 12 November 2011 thunderstorm

observed from Israel were included in the table: this is the only case of very prolific thunderstorm

observed to last only 30 minutes, whereas all other prolific thunderstorms observed above Europe

and coastal areas lasted several hours each.

5 Discussion

The dataset and climatology presented in the previous section represent the first attempt to have such

a coordinated ground-based climatology over Europe and Mediterranean sea. Similar continuous

observations were performed over limited regions such as the US High Planes (Lyons, 1996) or in

Japan (Adachi et al., 2005; Suzuki et al., 2011). Considering that only a negligible fraction of satellite

observations of TLEs are currently taken over Europe (Chen et al., 2008), this is also the largest

European TLE dataset available to date. The overall distribution and seasonal cycle of TLEs present

robust features repeated in all the 5 years included in the sample, both as number of observed TLE-

producing thunderstorms and as number of observed TLEs. This includes the two-peak seasonal

cycle, with maxima in summer and late autumn, separated by two minima in March-April and less

pronouncedly in September-October. The two active seasons are due to land driven convection during

summer, typically associated with large thunderstorms, and sea driven convection during autumn and

winter, found in synoptic-scale weather systems which transport cold continental air masses over

the relatively warm Mediterranean Sea water, leading to instability and convection, and generating

smaller thunderstorm cells. For example, the thunderstorm producing 54 TLEs on 12 December

2009 including the first European GJ, was composed by several small cells with cloud top height of

only 6 km (van der Velde et al., 2010a). Nevertheless, TLEs were observed to be produced by fewer

but more prolific thunderstorms in autumn rather than in summer. The shift of TLE activity from the
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continental areas in summer to sea and coastal areas in autumn and winter is therefore abrupt both

in the region of activity and in the leading processes driving the TLE production.

The observed evolution of the TLE distribution is remarkably consistent with lightning activity

reported by the WWLLN network within the region of Eurosprite observations, similarly to the mi-

gration from land to coastal and maritime regions previously observed over the oceans (Füllekrug

et al., 2002). The adoption of a observational sensitivity map based on actual regions covered by

each camera and the related simulated TLE climatology allows to better interpret the main features

of the observed climatologies, assigning them to either observational limitations or lightning activ-

ity. Considering the number of shortages that were not included in the calculation, the agreement

between the observed and simulated climatologies is remarkable. On the one hand, dedicated stud-

ies can be planned to further inspect specific regions and try to resolve the differences in terms of

observational capabilities. On the other hand, this comparison also throws light on possible differ-

ences in the behavior of TLE-producing thunderstorms in terms of production rates: can one expect

the same TLE to lightning rate for all thunderstorms? Our results point to a very good consistency

in the majority of cases but cannot exclude large differences. Discrepancies will therefore need to be

further investigated inspecting the +CGs/-CGs ratio or further characteristics of the thunderstorms

themselves, which vary in autumn/winter maritime thunderstorms as compared to summer conti-

nental ones, when this information will be available over continental scales. This includes also a

larger fraction of high charge moment change and high peak current lightning, respectively needed

for sprite and elve generation (e.g. Pasko et al., 2011). The climatological approach will aid in the

comparison to relevant electrical and atmospheric parameters at large scale.

In agreement with previous studies of European TLE-producing thunderstorms (Neubert et al.,

2001; Neubert et al., 2005, 2008; Soula et al., 2010; van der Velde et al., 2010b), the majority of

TLE-producing thunderstorms in 2009-2013 were relatively small and reported to produce a small

number of TLEs as compared to large thunderstorm observed e.g. in North or South America (Lyons,

1996; Taylor et al., 2008). The power law we found describing the number of thunderstorms pro-

ducing a certain number of TLEs was novel and not reported before. This power law behavior is not

unexpected, since it is often found in several other natural phenomena, such as when describing the

occurrence and intensity of e.g., tornadoes, fires, earthquakes (see the review by Pinto et al., 2012).

Furthermore, it is also found in describing the distribution of terrestrial gamma ray flashes (TGFs),

the second type of exotic emissions produced by thunderstorm activity (Smith et al., 2005). Since

the power law was found to be consistent over the 4 most prolific years, it suggests a possible new

pathway for modeling the occurrence and distribution of TLEs and TLE-producing thunderstorms

above Europe and other regions, so as to further fill the gaps in the observations and allow inclu-

sion in global models (see e.g. the parametrization adopted by Arnone et al., 2014). Given a large

sample of TLEs (e.g. from satellites intermittent passages over Europe), the scaling to obtain yearly

rates should be performed clustering the observations over individual thunderstorms as described
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by the power law. It also allows a new approach for comparing the distribution of TLE-producing

thunderstorms over different regions of the globe.

A selection mechanism due to better visibility in winter cannot be excluded to have contributed

to observing more elves, halos, upward lightning and blue jets during autumn/winter, besides the

expected higher rate of occurrence of elves over the sea. Comparison to Chen et al. (2008) and New-

some and Inan (2010) shows that a strong selection mechanism exists in ground optical observations

in favor of sprites: the elve to sprite detection ratio in our climatology is in fact only 1:17 as compared

to roughly 6:1 (30:1 accounting for detection efficiency corrections) found by the ISUAL satellite

(Chen et al., 2008), and 6:1 found by ground using high time resolution photometer array (Newsome

and Inan, 2010). However, the detection of elves almost exclusively over maritime thunderstorms is

well in agreement with what found by previous studies (Chen et al., 2008). Besides shortages in the

optical sensitivity to elves, the algorithms used for identifying elve images in the video frames are

also less effective than for sprites. A similar detection bias occurs for halos, which we observed with

a 1:27 halo to sprite ratio, whereas in the ISUAL satellite observations it was reported around 4:5.

The consequences of different detection efficiency was discussed also by Williams et al. (2012). This

further underlines the robustness of a joint TLE climatology, considering together TLE-producing

thunderstorms, which are often observed to produce several types of TLEs, some of which have

likely been missed.

As discussed, a key shortage of the adopted dataset is the inhomogeneity of the observational

coverage. Cameras are often moved to different locations or pointing directions, or their views can

be affected by the cloud coverage along their lines of sight. Besides, some cameras are used to track

the evolution of thunderstorms (i.e. their pointing direction follows the peak activity), other cameras

constantly cover the same region (i.e. they have a fixed pointing direction). The large number of

cameras involved are likely overcoming some of this inhomogeneity and the adopted observational

sensitivity map was shown to aid in correctly interpreting the results, further improving the compari-

son with the simulated climatology. The consistency of the observed TLE seasonal changes with the

lightning activity shows that the climatological approach is robust. This novel climatology therefore

represents an ideal reference for several TLE space missions (e.g. GLIMS, ASIM and TARANIS)

operating over the next few years, and the joint use of ground and space-based observations will im-

prove our simulation and the possibility of extending the climatology outside its current limitations.

6 Conclusions

We presented a first climatology of TLEs over Europe and the Mediterranean Sea based on a coordi-

nated database of optical observations by the Eurosprite ground based network from 2009 to 2013.

The main features of the TLE seasonal cycle were found to be robust, repeating over the years and

consistent with lightning activity. The main TLE activity shifts from continental areas in summer
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to coastal and sea areas in late autumn and early winter. The largest number of TLEs per month is

recorded in November, aided by the longer nighttime duration. In March and April TLE activity is

almost completely halted, which considering the availability of continuously operated cameras and

agreement with lightning activity cannot be due to a bias in active observational campaigns. Elves

are observed almost exclusively over autumn-winter maritime thunderstorms, whereas sprites and

halos follow the seasonal changes from land to sea.

Taking in consideration both observational coverage and lightning activity into a joint simulation,

the consistency of the observed TLEs with lightning activity confirms nighttime lightning is a good

proxy for TLEs at large scale and highlights regions were further studies are needed to optimize ob-

servational shortages or investigate possible peculiarities in the TLE production. Our analysis points

to a 4/1000 (1/1000) TLE to (nighttime) lightning ratio, which applied to a global lightning rate of

44 flashes/s would lead to a TLE global rate of 2.6 TLE/min (largely a sprite global rate in our case),

i.e. consistent but on the high hand of previous estimates in literature. Further consideration of detec-

tion efficiency for individual cameras and WWLLN lightning data will need to be adopted to further

refine such estimate and the overall climatology. We also found that given a large sample of TLEs, a

power law can well describe how to distribute the expected number of TLE per thunderstorm. These

features should be taken into account when investigating the global impact of TLEs onto the atmo-

sphere and parametrizing TLEs into global models. They can also be a valuable guidance for new

ground-based observations and current or upcoming space missions.

Despite the consistency on these general features, we found some geographical discrepancies

and different rates in some months (e.g. May and September) comparing TLEs to lightning. This

confirms that disclosing the details of TLE activity requires further investigation in relation to the

type of lightning (e.g. +CG/-CG ratio and intensity) and electrification mechanisms. The proposed

climatological approach may lead to further advances also in this direction, by comparing large TLE

samples to key atmospheric parameters. The very low rate of elve and halo observations is also

evidence of the strong limitation of ground-based optical cameras for their observation, stimulating

once more a needed synergetic approach with space missions such as ASIM. At the same time,

ongoing Eurosprite activities will attempt to remove the main gaps in the observational coverage of

Europe and the Mediterranean sea, including observations from regional all-sky camera networks

which have developed over the last years.
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Figure 1. Location (white crosses) and estimated observational coverage (color scale) of the main optical cam-

era systems involved in the Eurosprite network. The coverage is reported in terms of number of cameras ob-

serving a specific location weighted by the continuity or shortages of the contribution of each camera. See text

for details.
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Figure 2. Climatology of observed TLEs (TLEs 10−3km−2 yr−1) for 2009 to 2013.
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Figure 3. Climatology of lightning strokes detected by WWLLN (strokes km−2yr−1) for 2009 to 2013 consid-

ering the whole day (left) and nighttime only (right) counts. The white thick contours delimit the approximate

area of TLE observations used in monthly mean calculations of WWLLN data.
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Figure 4. Left – Ratio of observed TLEs to 103 WWLLN nighttime strokes for 2009 to 2013. Right – expected

TLEs based on WWLLN nighttime strokes (see Fig. 3), observational coverage (see Fig. 1) and an average

4/1000 TLE to nighttime stroke ratio (see left panel).
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Figure 5. Climatology of observed TLEs (TLEs 10−3km−2 yr−1) for individual years 2009 to 2013 (top to

bottom) and season winter (DJF: December, January, February), spring (MAM), summer (JJA) and autumn

(SON) (left to right). The area of data coverage of each individual year is shaded in dark grey. Color grading

refers to color bar in Fig. 2.
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Figure 6. Climatology of nighttime lightning strokes detected by WWLLN (strokes km−2yr−1) for individual

years 2009 to 2013 (top to bottom) and season winter (DJF: December, January, February), spring (MAM),

summer (JJA) and autumn (SON) (left to right). White thick contours of the approximate TLE coverage (Fig. 3)

are shown to ease comparison to TLE maps. Color grading refers to color bar in Fig. 3.
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Figure 7. Average seasonal variation of TLEs (see labels). Data are reported as seasonal fractional component

of the 2009-2013 average of Fig. 2. The area of data coverage of the complete data set is shaded in dark grey.
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Figure 8. Cumulative number of observed TLEs (top) and WWLLN CG strokes (bottom) per month including

data from the start of the sample (January 2009) to the end of 2009, 2010, 2011, 2012 and 2013 (respectively

in grey, blue, green, yellow and red). Panels in the left column show TLEs and nighttime strokes; the average

seasonal cycle of nighttime hours is shown in dashed grey. Panels in the right column show TLEs normalized

to a costant 12-hour nighttime and WWLLN strokes during the whole day. WWLLN data are scaled by a factor

104 and averages calculated over the rectangular shapes shown in Fig. 3.
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Figure 9. Top panels show the seasonal evolution of the average time (left) and latitude (right) for 2009, 2010,

2011, 2012 and 2013 (respectively in grey, blue, green, yellow and red). Time is shown as average start and

average end of observations (step lines) and first and last observation (circles) of each month. Dashed lines

show the seasonal evolution of the average sunrise and sunset (dark grey), and of an indicative 1 hour twilight

(light grey). Bottom panels show the cumulative number of TLE-producing thunderstorms per month (left,

color grading corresponds to Fig. 8) and the distribution of the number of TLEs per thunderstorms (right). A

power law fit with correlation coefficient –0.96 is shown (dashed black line), together with power law fits for

individual years 2009 to 2013 (colors as in top panels).
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Table 1. Summary of the 30 most prolific TLE-thunderstorms observed in 2009 to 2013.

Date Time Latitude Longitude TLE Sprite Elve Halo

29-OCT-2013 17:48 / 5:32 39.0 / 40.5 3.0 / 7.5 195 193 0 2

10-JUN-2009 21:00 / 2:00 45.0 / 47.0 19.0 / 23.0 147 146 0 1

28-NOV-2011 18:26 / 2:48 37.0 / 40.0 3.0 / 7.0 140 131 8 1

30-AUG-2012 21:23 / 4:05 37.0 / 40.0 0.0 / 2.5 129 123 0 6

26-JUL-2013 20:28 / 2:23 44.0 / 44.5 -1.0 / 1.5 111 111 0 7

12-OCT-2012 20:15 / 4:40 38.0 / 41.0 1.0 / 4.5 107 98 4 5

06-AUG-2013 19:37 / 0:49 48.0 / 50.0 12.5 / 14.5 101 84 0 16

30-NOV-2009 23:14 / 6:07 38.0 / 40.0 4.0 / 6.0 96 0 0 0

28-NOV-2012 16:39 / 4:02 40.0 / 44.0 15.0 / 17.0 79 79 0 0

29-JAN-2012 21:18 / 6: 8 36.5 / 39.0 0.0 / 5.0 78 18 59 4

08-OCT-2009 18:17 / 0:47 43.0 / 44.0 2.0 / 5.0 77 0 0 0

12-NOV-2011 22:19 / 23:01 33.0 / 35.0 31.0 / 33.0 75 75 0 0

27-MAY-2009 21:10 / 2:18 42.0 / 46.0 12.0 / 16.0 69 69 0 0

22-NOV-2013 1:31 / 5:54 41.0 / 42.5 4.0 / 8.0 62 10 50 2

20-AUG-2012 20:26 / 2:37 46.5 / 49.5 9.0 / 14.5 62 61 0 1

25-DEC-2013 21:34 / 6:21 43.5 / 47.0 -7.0 / -1.0 61 14 47 5

09-NOV-2010 19:59 / 5:30 43.5 / 44.5 -5.5 / -0.5 58 0 0 0

02-JUL-2012 20:15 / 1:32 49.5 / 52.0 12.0 / 16.5 54 51 0 4

12-DEC-2009 22:26 / 3:05 41.0 / 42.0 6.0 / 7.0 54 47 2 3

20-JUN-2013 21:26 / 1:14 50.5 / 54.0 11.0 / 16.5 53 53 0 0

02-AUG-2009 21:15 / 1:00 49.0 / 51.0 15.0 / 19.0 52 52 0 0

24-SEP-2012 17:47 / 22:24 45.0 / 47.5 12.5 / 18.0 50 50 0 0

02-JUL-2012 20:09 / 1:32 50.5 / 51.5 14.0 / 15.5 50 49 0 0

09-JAN-2012 0:26 / 5:30 41.5 / 43.5 14.0 / 16.0 50 50 0 0

24-NOV-2013 18:55 / 5:31 39.0 / 41.0 6.5 / 7.5 49 8 39 4

28-NOV-2010 19:31 / 3:45 43.5 / 45.0 -6.0 / -1.0 49 0 0 0

06-NOV-2011 18:01 / 23:25 42.0 / 44.0 13.0 / 16.0 46 2 0 0

25-JAN-2010 22:00 / 22:00 35.0 / 37.0 -3.0 / 0.0 44 40 4 0

20-JUN-2013 20:38 / 0:43 51.5 / 53.0 14.0 / 15.0 43 38 0 5

20-AUG-2012 19:18 / 3:04 47.0 / 49.0 9.5 / 13.5 42 42 0 0
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