
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Asynchronous π -calculus at Work: The Call-by-Need Strategy

Published:
DOI: http://doi.org/10.1007/978-3-030-31175-9_3

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/707530 since: 2019-12-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-31175-9_3
https://hdl.handle.net/11585/707530

This is a post-peer-review, pre-copyedit version of an article published in
Lecture Notes in Computer Science, vol 11760. The final authenticated version
is available online at: https://doi.org/10.1007/978-3-030-31175-9 3

This version is subjected to Springer Nature terms for reuse that can be found at:

https://www.springer.com/gp/open- access/authors-rights/aam-terms-v1

1

Asynchronous π-calculus at work:
the call-by-need strategy

Davide Sangiorgi

Focus Team, University of Bologna and INRIA

Abstract. In a well-known and influential paper [17] Palamidessi has
shown that the expressive power of the Asynchronous π-calculus is strictly
less than that of the full (synchronous) π-calculus. This gap in expres-
siveness has a correspondence, however, in sharper semantic properties
for the former calculus, notably concerning algebraic laws. This paper
substantiates this, taking, as a case study, the encoding of call-by-need
λ-calculus into the π-calculus. We actually adopt the Local Asynchronous
π-calculus, that has even sharper semantic properties. We exploit such
properties to prove some instances of validity of β-reduction (meaning
that the source and target terms of a β-reduction are mapped onto be-
haviourally equivalent processes). Nearly all results would fail in the ordi-
nary synchronous π-calculus. We show that however the full β-reduction
is not valid. We also consider a refined encoding in which some further
instances of β-validity hold. We conclude with a few questions for future
work.

1 Introduction

A lot of effort has been devoted to the comparison of the π-calculus with the
λ-calculus, beginning with Milner’s seminar work on functions as processes [14].
The attention has gone mostly to call-by-name and call-by-value λ-calculi [19],
and the main results concern operational correspondence, validity of β-reduction,
characterisation of the equivalence induced on λ-terms by the π-calculus encod-
ing [14, 21, 22, 27, 6]. In particular, the call-by-name encoding, for its simplicity,
is often presented as the π-calculus representation of functions.

In a call-by-name reduction, the redex contracted is the leftmost one; the
reduction occurs regardless of whether the argument of the function is a value
(as in call-by-value). As a consequence, if the argument is not a value and will
be used several times, its evaluation will be repeated the same number of times.
In implementation of programming languages following call-by-name, this rep-
etition of evaluation is avoided: evaluation occurs only once, the first time the
term is used, and the value so obtained is recorded for future uses. This imple-
mentation technique is referred to as call-by-need evaluation (or strategy) [28].
Thus call-by-need uses explicit environments and β-reduction does not require
substituting a term for a variable, as in call-by-name (or call-by-value) — just
substituting a reference to a term for a variable. In this sense call-by-need is
closer to the π-calculus than call-by-name, as substitutions in the π-calculus

only involve names. Again, the modifications that take us from call-by-name to
call-by-need can be easily represented in a π-calculus encoding [24].

The π-calculus, having a rich and well-developed theory, as well as a remark-
able expressiveness, has been advocated as a foundational model for reasoning
about higher-order languages, including equivalence between programs and cor-
rectness of compilers and compiler optimisations [25, 26]. Indeed, the π-calculus
and related languages have been used, via appropriate encodings, as a target
language of compilers, for a number of experimental programming languages,
beginning with Pict [18] and Join [7].

The above raises the question about how, and at which extent, the π-calculus
and its current theory can be used to prove the correctness of call-by-need as
an optimised implementation strategy for call-by-name. The only work on the
correctness of the π-calculus representation of call-by-need is by Brock and Os-
theimer [5]. The paper considers operational correspondence, between reduction
in a call-by-need system and in the encoding π-calculus terms. However there are
foundametal semantic issues that remain unexplored. A major one is the validity
of β-reduction, namely the property that the processes encoding β-convertible λ-
terms are behaviourally iundistinguishable. The property holds in call-by-name
(and it is at the heart of its theory), as well as in the π-calculus encoding of call-
by-name. One would therefore hope to find analoguos results for call-by-need.
The correctness of the process representation of call-by-need is the topic of the
present paper, focusing on the validity of β-reduction.

In a well-known and influential paper [17] Palamidessi has shown that the
expressive power of the asynchronous π-calculus is strictly less than that of the
full (synchronous) π-calculus. This gap in expressiveness has a correspondence,
however, in sharper semantic properties for the former calculus, notably con-
cerning algebraic laws. This paper may be seen as a demonstration of this, since
most the proofs are carried out using algebraic laws that are only valid in the
asynchronous π-calculus — precisely in the Asynchronous Local π-calculus, ALπ,
[12], where only the output capability of names may be exported.

In Section 2 we present ALπ and some of its laws. In Section 3 we briefly
recall the call-by-name and call-by-need λ-calculus. In Section 4 we consider two
encodings of call-by-need. We show that limited forms of validity β-reduction
hold, and that the general property fails. The questions that follow from this,
discussed in Section 5, may contribute to open some interesting directions for
future work, which may also shed further light on the theory of the π-calculus
and similar name-passing calculi.

2 The Asynchronous Local π-calculus

2.1 Syntax

Small letters a, b, . . . , x, y, . . . range over the infinite set of names, and P,Q,R, . . .
over the set of all processes. A tilde represents a tuple. The i-th elements of a
tuple Ẽ is referred to as Ẽi. Our notations are extended to tuples componentwise.

3

The Asynchronous Local π-calculus (ALπ) [12] is built from the operators of
inaction, input prefix, output, parallel composition, restriction, and replication:

P := 0 | a(̃b).P | a〈̃b〉 | P1 | P2 | νa P | !a(̃b).P .

with the syntactic constraint that in processes a(̃b).P and !a(̃b).P names b̃ may
not occur free in P in input position.

When the tilde is empty, the surrounding brackets () and 〈〉 will be omitted.

0 is the inactive process. An input-prefixed process a(̃b).P , where b̃ has pairwise
distinct components, waits for a tuple of names c̃ to be sent along a and then
behaves like P{c̃/̃b}, where {c̃/̃b} is the simultaneous substitution of names b̃ with

names c̃. An output particle a〈̃b〉 emits names b̃ at a. Parallel composition is
to run two processes in parallel. The restriction νa P makes name a local, or
private, to P . A replication !P stands for a countable infinite number of copies
of P in parallel. We assign parallel composition the lowest precedence among
the operators.

2.2 Terminologies and notations

We write a(b). b(c̃).Q as an abbreviation for νb (ab | b(c̃).Q), and similarly for

a(b). !b(c̃).Q. The prefix ‘a(b)’ is called a bound output. In prefixes a(̃b) and a〈̃b〉,
we call a the subject and b̃ the object. We use α to range over prefixes. We
often abbreviate α. 0 as α, and νa νb P as (νa, b) P . An input prefix a(̃b).P

and a restriction νb P are binders for names b̃ and b, respectively, and give rise
in the expected way to the definition of free names (fn), bound names (bn) and
names (n) of a term or a prefix, and alpha conversion. We identify processes or
actions that only differ on the choice of the bound names. The symbol = will

mean “syntactic identity modulo alpha conversion”. Sometimes, we use
def
= as

abbreviation mechanism, to assign a name to an expression to which we want
to refer later. In a statement, a name declared fresh is supposed to be different
from any other name appearing in the objects of the statement, like processes or

substitutions. Substitutions are of the form {b̃/̃c}, and are finite assignments of
names to names. A context is a process expression with a hole [·] in it. We use
C to range over contexts; then C[P] is the process obtained from C by filling its
hole with P .

2.3 Sorting

Following Milner [13], we only admit well-sorted agents, that is agents obeying
a predefined sorting discipline in their manipulation of names. The sorting
prevents arity mismatching in communications, like in a〈b, c〉 | a(x).Q. A sorting
is an assignment of sorts to names, which specifies the arity of each name and,
recursively, of the names carried by that name. We do not present the formal
system of sorting because it is not essential in the exposition of the topics in the
present paper.

4

We will however allow sorting to identify linear names, that is, names that
are supposed to be used only once. Linearity will be used a few times to replace
input-replicated prefixes with ordinary input prefixes. Again, we omit the details
of linearity in type systems (sorting is a form of type system), as they are by
now standard [9, 24].

inp: a(̃b).P
a(b̃)−−−→ P out: a〈̃b〉 a〈b̃〉−−−→ 0

rep:
P | !P µ−→ P ′

!P
µ−→ P ′

par:
P

µ−→ P ′

P | Q µ−→ P ′ | Q
if bn(µ) ∩ fn(Q) = ∅

com:
P

a(c̃)−−−→ P ′ Q
(ν d̃) a〈b̃〉−−−−−−→ Q′

P | Q τ−→ νd̃ (P ′{b̃/̃c} | Q′)
if d̃ ∩ fn(P) = ∅

res:
P

µ−→ P ′

νa P
µ−→ νa P ′

a 6∈ n(µ) open:
P

(ν d̃) a〈b̃〉−−−−−−→ P ′

νc P
(ν c,d̃) a〈b̃〉−−−−−−−→ P ′

c ∈ b̃− d̃, a 6= c.

Fig. 1. The transition system for ALπ

2.4 Relations

A process has three possible forms of action. A silent action P
τ−→ P ′ represents

an interaction, i.e. an internal activity in P . Input and output actions are, re-

spectively, of the form P
a(d̃)−−−→ P ′ and P

(ν d̃) a〈̃b〉−−−−−−→ P ′ . In both cases, the action
occurs at a — the subject of the action. In the output action, b̃ is the tuple of
names which are emitted, and d̃ ⊆ b̃ are private names which are carried out
from their current scope. We use µ to represent the label of a generic action (not

to be confused with α, which represents prefixes). In an input action a(d̃) and in

an output action (ν d̃) a〈̃b〉, names d̃ are bound, the remaining ones free. Bound
and free names of an action µ, respectively written bn(µ) and fn(µ), are defined
accordingly. The names of µ, briefly n(µ), are bn(µ) ∪ fn(µ). The transition
system of the calculus is presented in Figure 1. We have omitted the symmetric
versions of rules par and com. Alpha convertible processes have deemed to have
the same transitions. We often abbreviate P

τ−→ Q with P −→ Q. The ‘weak’
arrow =⇒ is the reflexive and transitive closure of −→.

We use the symbol ≡ to denote structural congruence, a relation used to
rearrange the structure of processes [13]. We shall also use it to represent garbage-
collection of restrictions and of inert terms.

Definition 1 (Structural congruence). Structural congruence, ≡, is the small-
est congruence relation satisfying the axioms below:

5

– P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
– !a(x).P ≡ a(x).P | !a(x).P ;
– νa 0 ≡ 0, νa νb P ≡ νb νa P , νa (P | Q) ≡ P | νa Q if a 6∈ fn(P);

– νa (P | !a(̃b).Q) ≡ P and νa (P | a(̃b).Q) ≡ P , if a 6∈ fn(P).

(A derivable law is νa P ≡ P , for a not free in P .) A standard behavioural
equivalence for the π-calculus is barbed congruence. Barbed congruence can be
defined in any calculus possessing: (i) an interaction relation (the τ -steps in the
π-calculus), modelling the evolution of the system; and (ii) an observability pred-
icate ↓a for each name a, which detects the possibility of a process of accepting
a communication with the environment at a. More precisely, we write P ↓a if
P can make an output action whose subject is a, that is, if there are P ′ and an

output action µ with subject a such that P
µ−→P ′. We write P ⇓a if P =⇒ P ′ and

P ′ ↓a. Unlike synchronous π-calculus, in asynchronous calculi it is natural to re-
strict the observation to output actions [1]. The reason is that in asynchronous
calculi the observer has no direct way of knowing when a message emitted is
received.

Definition 2 (Barbed congruence). A symmetric relation S on π-calculus
processes is a barbed bisimulation if P S Q implies:

1. If P
τ−→P ′ then there exists Q′ such that Q =⇒ Q′ and P ′ S Q′.

2. If P ↓a then Q ⇓a.

Two π-calculus processes P and Q are barbed bisimilar if P S Q for some barbed
bisimulation S. We say that P and Q are barbed congruent, written P ≈ Q, if
for each π-calculus context C, processes C[P] and C[Q] are barbed bisimilar.

Strong barbed congruence, written ∼, is defined analogously but replacing the
weak arrows =⇒ and ⇓a with the strong arrows −→ and ↓a. As expected, we
have ≡ ⊆ ∼ ⊆ ≈; each containment is strict.

2.5 Further algebraic laws

Most of the proofs in the paper are carried out using algebraic reasoning. We
report here some important laws. First some simple laws that are valid in the
full (synchronous) π-calculus (Lemma 1). Then laws that are specific to ALπ.

Lemma 1. 1. νa (a(b).P | a(y).Q) ≈ (νa, b) (P | Q{b/y}) and νa (a(b).P |
!a(y).Q) ≈ (νa, b) (P | Q{b/y} | !a(y).Q);

2. νa (α.Q | !a(x̃).P) ∼ α.νa (Q | !a(x̃).P), if bn(α) ∩ fn(a(x̃).P) = ∅ and
a 6∈ n(α) (a similar law holds without the replication);

3. a(x̃). (P | !a(x̃).P) ∼ !a(x̃).P .

Important laws of ALπ are the following ones. Their validity hinges on the
asynchronous and output-capability properties of ALπ. For simplicity we present
them on monadic prefixes.

6

Lemma 2. We have ab ≈ νc (ac | !c(x). bx). Moreover, if b is linear, then the
replication can be removed thus: ab ≈ νc (ac | c(x). bx).

Next, we report some distributivity laws for private replications, i.e., for
systems of the form

νy (P | !y(q̃).Q)

in which y may occur free in P and Q only in output position. One should think
of Q as a private resource of P , for P is the only process who can access Q;
indeed P can activate as many copies of Q as needed. One such law has already
been given as Lemma 1(2). (The laws can be generalised to the full π-calculus,
but need stronger assumptions.)

Lemma 3. Suppose a occurs free in P,R,Q only in output position. Then:

1. νa (P | R | !a(̃b).Q) ∼ νa (P | !a(̃b).Q) | νa (R | !a(̃b).Q);

2. νa ((!P) | !a(̃b).Q) ∼ !νa (P | !a(̃b).Q);

3. νa (α.P | !a(̃b).Q) ∼ α.νa (P | !a(̃b).Q), if bn(α) ∩ fn(a(̃b).Q) = ∅ and
a 6∈ n(α);

4. νa ((νc P) | !a(̃b).Q) ∼ νc νa (P | !a(̃b).Q) if c 6∈ fn(a(̃b).Q).

ALπ has also sharper properties concerning labelled characterisation of bisim-
ilarity and associated congruence properties [12, 3].

3 The λ-calculus

We use M,N to range over the set Λ of λ-terms, and x, y, z to range over
variables. The set Λ of λ-terms is given by the grammar:

M ::= x | λx.M | MN

A redex is a term of the form (λx.M)N , and then its contractum is M{N/x}. In
call-by-name evaluation [19], the redex is always at the extreme left of a term.
We omit the standard evaluation rules.

Call-by-need [28, 2] optimises call-by-name as follows, so to guarantee that in
the contractum M{N/x} the evaluation of N is not performed more than once.
Roughly, N is placed in an environment, and the evaluation continues on M .
When x is needed (i.e., x reaches the leftmost position), then N is evaluated and,
if a value (i.e., an abstraction) is obtained, say V , then V replaces x (value V can
replace all occurrences of x or, more commonly, only the leftmost occurrence,
and then other occurrences of x when they reach the outermost position). Call-
by-need is best presented in a graph; or in a system with a let construct to
represent sharing. We refer to Ariola et al. [2] for details, as they are not essential
for understanding the remainder of the paper; see also the references in Section 5.

We sometimes omit λ in nested abstractions, thus for example, λx1x2.M
stands for λx1.λx2.M . We assume the standard concepts of free and bound

7

variables and substitutions, and identify α-convertible terms. Thus, throughout
the paper ‘=’ is syntactic equality modulo α-conversion.

Following the call-by-value terminology, the set of abstractions and variables
are the values. (Indeed, call-by-need may also be thought of as a modified form
of call-by-value, in which the evaluation of the argument of a function λx.M is
made only when x is used for the first time, rather than before performing the
reduction.)

4 The encoding and its properties

4.1 Background material

Figure 2 presents the call-by-name and call-by-need encodings [16, 24]. The call-
by-name one is a variant of the original encoding by Milner [14], with the ad-
vantage that it can be written in ALπ and can be easily modified to follow
call-by-need.

We explain the encodings. The important part is the treatment of application.
Both in call-by-name and in call-by-need, a function located at q (its ‘location’)
is a process that signals to be a function on q, and then receives a pointer x to
the argument N together with the location p for the next interaction. Now the
evaluation of M continues. The difference between call-by-name and call-by-need
arises when the argument N is needed. This is signaled by an output at x that
also provides the location for the evaluation of a copy of N . In call-by-name,
every output at x triggers the evaluation of a new copy of N . In call-by-need, in
contrast, the evaluation is made only the first time. Precisely, in call-by-need N
is evaluated at the first request and, when it becomes a value, a pointer to this
value is returned (instantiating w, in the table). This pointer is returned to the
process that requested N . When further requests for N are made, the pointer
is returned immediately. Thus, for instance, in the call-by-name encoding of
(λ.xx)(II) term II is evaluated twice, whereas in the call-by-need encoding
only once. In all encodings, the location names (in the table, the names ranged
over by p, q, r) are linear.

Correcteness of call-by-name has been studied in depth. In particular, it
has been shown that β-reduction is validated by the encoding, that the encod-
ing gives rise to a term model for the λ-calculus, and that the equivalence on
λ-terms induced by the encoding corresponds to the best tree-structures of the
λ-calculus — which are also at the heart of its denotational semantics — namely
Böhm Trees and Lévy-Longo Trees [14, 23] Correctness of the call-by-need encod-
ing has been studied only by Brock and Ostheimer [5], and only for operational
correspondence with respect to Ariola et al.’s system [2]. (The encoding in Fig-
ure 2 is actually a minor improvement over that in [5] — avoiding one reduction
step during a β-reducition — and maintains the results of operational correspon-
dence in [5] recalled below.) Following Ariola et al.’s system [2] we write M ⇓
if the call-by-need computation of M terminates, and M ⇑ it the computation
does not terminate.

8

call-by-name encoding

M[[λx.M]]p
def
= p(v). !v(x, q).M[[M]]q

M[[x]]p
def
= xp

M[[MN]]p
def
= (νq)

(
M[[M]]q | q(v).νx v〈x, p〉. !x(r).M[[N]]r

)
call-by-need encoding

N [[λx.M]]p
def
= p(v). !v(x, q).N [[M]]q

N [[x]]p
def
= xp

N [[MN]]p
def
=

(νq)

(
N [[M]]q | q(v).νx v〈x, p〉.x(r).νq′ (N [[N]]q′ |

q′(w). (rw | !x(r′). r′w))

)

Fig. 2. The encoding of call-by-name and call-by-need

Theorem 1 (Brock and Ostheimer, [5]). We have, for M closed:

1. M ⇓ iff N [[M]]p ⇓p;
2. M ⇑ iff N [[M]]p ⇑.

The proof in [5] considers an extended version of the call-by-need system
in [2], one that yields a closer (nearly one-to-one) correspondence between re-
ductions in the call-by-need system and reductions on the encoding π-calculus
processes.

Note that, since M is closed, the only free name of N [[M]]p is p; and since p
is used in N [[M]]p in output, the first visible action of N [[M]]p (if there is one)
is an output at p.

However, operational correspondence alone is not fully satisfactory as a cri-
terium for correctness. It does not ensure foundamental semantic properties of
the source language terms. In the following sections we focus on the validity of
β-reduction.

4.2 β-validity

We consider in this section a few cases of validity of β-reduction; that is, the
property that a β-redex (λx.M)N and its contractum M{N/x} are barbed con-
gruent when represented as ALπ processes.

A form of β-reduction that is straightforward to handle is one in which the
argument is never used.

Theorem 2. If x 6∈ fv(M) then N [[(λx.M)N]]p ≈ N [[M{N/x}]]p.

9

A more interesting form deals with β-reduction between closed values.

Theorem 3. N [[(λx.M)(λy.N)]]p ≈ N [[M{λy.N/x}]]p.

Proof. Using algebraic reasoning, we first derive:

N [[(λx.M)(λy.N)]]p

= (νq)
(
N [[λx.M]]q |
q(v).νx v〈x, p〉.x(r).νq′ (N [[λy.N]]q′ |

q′(w). (rw | !x(r′). r′w))
)

= (νq)
(
q(v). !v(x, q′).N [[M]]q′ |
q(v).νx v〈x, p〉.x(r).νq′ (N [[λy.N]]q′ |

q′(w). (rw | !x(r′). r′w))
)

≈ (νx)
(
N [[M]]p |
x(r).νq′ (N [[λy.N]]q′ |

q′(w). (rw | !x(r′). r′w))
)

= (νx)
(
N [[M]]p |
x(r).νq′ (q′(v). !v(y, q′′).N [[N]]q′′ |

q′(w). (rw | !x(r′). r′w))
)

≈ (νx)
(
N [[M]]p |
x(r).νv (!v(y, q′′).N [[N]]q′′ |

(rv | !x(r′). r′v))
)

∼ (νx, v)
(
N [[M]]p |
!v(y, q′′).N [[N]]q′′ |
x(r). (rv | !x(r′). r′v)

)
∼ (νx, v)

(
N [[M]]p |
!v(y, q′′).N [[N]]q′′ |
!x(r′). r′v

)
where the two occurrences of ≈ represent applications of law (1) of Lemma 1,
and the two occurrences of ∼ are due to laws (2) and (3) of the same lemma,
respectively.

Now we proceed by induction on the structure of M . If M is variable different
from x then the two replications at v and x can be garbage-collected and we are
done. If M = x, then

(νx, v)(N [[M]]p | !v(y, q′′).N [[N]]q′′ | !x(r′). r′v) =
(νx, v)(xp | !v(y, q′′).N [[N]]q′′ | !x(r′). r′v) ≈
(νx, v)(pv | !v(y, q′′).N [[N]]q′′ | !x(r′). r′v) ≡

(νv)(pv | !v(y, q′′).N [[N]]q′′) =
N [[λy.N]]p

where ≈ is obtained from law (1) of Lemma 1, and ≡ from the garbage-collection
laws of Definition 1.

10

When M is an abstraction or an application, we proceed by induction and
exploit the distributivity properties of private replications in Lemma 3

Finally we consider the case when the argument of the function is divergent —
a form of β-reduction that is not valid in call-by-value.

Theorem 4. Suppose (λx.M)N is closed. If N ⇑ then we have N [[(λx.M)N]]p ≈
N [[M{N/x}]]p.

Proof. Using Theorem 1 we have N [[N]]q ⇑, for any q, hence N [[N]]q ≈ 0. As a
consequence, using algebraic reasoning similar to that in the proof of Theorem 3,
we obtain

N [[(λx.M)N]]p ≈ νx (N [[M]]p | x(r). 0)

Now, since x occurs in N [[M]]p only in output subject position, each output at
x, say xr, can be removed, or replaced by N [[N]]r (because in the relation ≈
with 0), up-to ≈. This yields N [[M{N/x}]]p.

4.3 Failure of general β-validity

However, in call-by-name and call-by-need β-reduction is not confined to values.
We show that, in the call-by-need encoding, the general β-reduction fails. No-
tably β-reduction fails when the argument of the function is a variable. For this
we show that

N [[yy]]p 6≈ N [[(λz. zz)y]]p (1)

While for simplicity this counterexample is shown for open terms, a similar one
can be given for closed terms, by closing the two terms with an abstraction, i.e.,

N [[λy. (yy)]]p 6≈ N [[λy. ((λz. zz)y)]]p

The remainder of the section is devoted to the proof of (1). We first unroll
the initial traces of the two processes (the only traces that they can perform)
We have:

N [[yy]]p

= (νq′)
(
yq′ | q′(w).νx w〈x′, p〉.x′(r).νq′′ (yq′′ |

q′′(w′). (rw′ | !x(r′). r′w′))
)

y(q′)−−−→ q′(w)−−−−→ νx′ w〈x′,p〉−−−−−−−→ x′(r)−−−→ νq′′ (yq′′ |
q′′(w′). (rw′ | !x′(r′). r′w′))

y(q′′)−−−−→ q′′(w′)−−−−→ rw′ | !x′(r′). r′w′

Since the above is the only possible trace of the term, we have

N [[yy]]p ∼ y(q). q(v).νx v〈x, p〉.x(r). y(q′). q′(w). (rw | !x(r′). r′w) (2)

We now consider the analogous trace for N [[(λz. zz)y]]p. Below, the uses of
≡ are due to some garbage-collection of restrictions and private inputs (possibly

11

replicated), and some rearrangements of the scopes of some restrictions; the use
of ∼ is due to (2).

N [[(λz. zz)y]]p

= (νq)
(
N [[λz. zz]]q |
q(v).νx v〈x, p〉.x(r).νq′ (N [[y]]q′ |

q′(w). (rw | !x(r′). r′w))
)

= (νq)
(
q(v). !v(z, q′).N [[zz]]q′ |
q(v).νx v〈x, p〉.x(r).νq′ (yq′ |

q′(w). (rw | !x(r′). r′w))
)

τ−→ τ−→≡ νx
(
N [[xx]]p |
x(r).νq′ (yq′ |

q′(w). (rw | !x(r′). r′w))
)

∼ νx
(

x(q). q(v).νx′ v〈x′, p〉.x′(r).x(q′). q′(w). (rw | !x′(r′). r′w) |
x(r).νq′ (yq′ |

q′(w). (rw | !x(r′). r′w))
)

τ−→≡ (νx, q, q′)(
q(v).νx′ v〈x′, p〉.x′(r).x(q′). q′(w). (rw | !x′(r′). r′w) |
yq′ |
q′(w). (qw | !x(r′). r′w)

)
y(q′)−−−→ q′(w)−−−−→ (νx, q)(

q(v).νx′ v〈x′, p〉.x′(r).x(q′). q′(w). (rw | !x′(r′). r′w) |
(qw | !x(r′). r′w)

)
τ−→ (νx)

(
νx′ w〈x′, p〉.x′(r).x(q′). q′(w). (rw | !x′(r′). r′w) |
!x(r′). r′w

)
νx′ w〈x′,p〉−−−−−−−→ x′(r)−−−→ (νx)

(
x(q′). q′(w). (rw | !x′(r′). r′w) |
!x(r′). r′w

)
τ−→ τ−→≡ rw | !x′(r′). r′w

Again, the above is the only possible trace for the term. Up-to some renaming,
the final derivative is the same as the final derivative of the trace emanating
from N [[yy]]p examined earlier. However, the two traces are different — the first
is longer. As a consequence, the two terms can be distinguished, for instance in
the context

C
def
= νy ([·] | y(q). q(v). v(x, p).νr (xr | y(q′).h))

The observable output at h becomes visible only when the context is filled with
the first term, N [[yy]]p (the one that produces the longer trace).

12

In contrast, in the call-by-name encoding the validity of the full β-reduction
holds [23]. Therefore the above counterexample not only shows that the call-by-
need encoding is observably different from the call-by-name one; it also tells us
that the properties that the two encoding satisfy are quite different.

4.4 A refined encoding

In this section we experiment with a refinement R of the encoding so to improve
on the problems described in Section 4.3.

Such encoding is shown in Figure 3. In the definition of application for call-
by-need, the argument of a function is interrogated only once, the first time the
argument is used. Future uses of the argument will directly use the answer so
received, without repeating the interrogation — this is indeed the essence of the
call-by-need optimisation over call-by-name. To mirror this policy we modify
the encoding of an abstraction λx.M , so that the body M will interrogate the
parameter x only once. As a consequence, in this refined encoding when the
head ‘λx’ of the function is consumed a local entry is left that takes care of
the dialogue with x; in particular the local entry makes sure that x is consulted
only once. The refined encoding, while it exhibits more interactions than the
original one, in a distributed setting may be thought of as an optimisation of the
latter, as the interactions with the new local entry replace interactions with the
possibly remote actual parameter for x. We write LE(x, y) for a local entry in
which the internal resource is x and the external one is y; it will be convenient
to break its definition into two parts, using the auxiliary local entry LE′(s, r, x);
see Figure 3.

The local entry is unnecessary if the internal resource is used only once.

R[[λx.M]]p
def
= p(v). !v(x′, q).νx (R[[M]]q

| LE(x, x′))

R[[x]]p
def
= xp

R[[MN]]p
def
=

(νq)

(
R[[M]]q | q(v).νx v〈x, p〉.x(r).νq′ (R[[N]]q′ |

LE′(q′, r, x))

)
where

LE(x, y)
def
= x(r). y(s). LE′(s, r, x)

LE′(s, r, x)
def
= s(v). (rv | !x(r′). r′v)

Fig. 3. The refined call-by-need encoding

13

Lemma 4. Suppose z′ appears only once in M . Then

νz′ (R[[M]]p | LE(z′, z)) ≈ R[[M{z/z′}]]p

Proof. By induction on the structure of M . The most interesting case is when
M = z′, in which case we exploit the (linear) law of ALπ in Lemma 2. When M
is an application we exploit the hypothesis (z′ occurring only once), and simple
algebraic manipulation, so to be able to carry out the induction.

The next lemma shows that local entries compose.

Lemma 5. νx (LE(z, x) | LE(x, y)) ≈ LE(z, y).

Proof. We use laws (2) and (1) of Lemma 1, and the garbage-collection laws of
structural congruence.

We revisite the counterexample of Section 4.3, that involves terms yy and
(λz. zz)y, under the refined encoding R. All free variables should be protected
under a local entry, except for the variables that occur only once (by Lemma 4).
We begin by examining νy′ (R[[y′y′]]q | LE(y′, y)). We have:

νy′ (R[[y′y′]]q | LE(y′, y))

∼ νy′ (y′(q). q(v).νx v〈x, p〉.x(r). y′(q′). q′(w). (rw | !x(r′). r′w)
| y′(r). y(r′). r′(v). (rv | !y′(r). rv))

≈ (νy′, q) (q(v).νx v〈x, p〉.x(r). y′(q′). q′(w). (rw | !x(r′). r′w)
| y(r′). r′(v). (qv | !y′(q). qv))

y(r′)−−−→ r′(v)−−−→ (νy′, q) (q(v).νx v〈x, p〉.x(r). y′(q′). q′(w). (rw | !x(r′). r′w)
| qv | !y′(q). qv)

τ−→ (νy′) (νx v〈x, p〉.x(r). y′(q′). q′(w). (rw | !x(r′). r′w)
| !y′(q). qv)

νx v〈x,p〉−−−−−−→ x(r)−−−→ (νy′) (y′(q′). q′(w). (rw | !x(r′). r′w)
| !y′(q). qv)

τ−→ τ−→ rv | !x(r′). r′v

where the occurrence of ∼ is justified by (2) (the two encodings coincide on terms
that do not contain abstractions) and definition of LE(y′, y), and the occurrence
of ≈ comes from law (1) of Lemma 1.

We now consider the second term, (λz. zz)y, under the refined encoding.
First we note that, if the argument of a function L is a variable, then the refined
encoding can be simplified thus:

R[[Ly]]p = (νq)
(
R[[L]]q |
q(v).νx v〈x, p〉.x(r).νq′ (N [[y]]q′ |

LE′(q′, r, x))
)

= (νq)
(
R[[L]]q |
q(v).νx v〈x, p〉. LE(x, y)

)
14

Using this property, we have:

R[[(λz. zz)y]]p = (νq)
(
R[[λz. zz]]q |
q(v).νx v〈x, p〉. LE(x, y)

)
= (νq)(q(v). !v(z′, q).νz (R[[zz]]q | LE(z, z′))

| q(v).νx v〈x, p〉. LE(x, y))
τ−→ τ−→ νz νx (R[[zz]]p | LE(z, x) | LE(x, y))
≈ νz (R[[zz]]p | LE(z, y))

where ≈ is obtained by composition of local entries (Lemma 5).
The above reasoning shows that the behaviour of the initial and refined

encodings are the same on the term (λz. zz)y:

R[[(λz. zz)y]]p ≈ N [[(λz. zz)y]]p

And it is also the same as that of the refined encoding on the β-contractum yy,
when the free variables y are protected under the appropriate local entry, i.e.,

R[[(λzz)y]]p ≈ νy′ (R[[y′y′]]p | LE(y′, y))

The result also holds by closing up the terms:

R[[λy. (yy)]]p ≈ R[[λy. ((λz. zz)y)]]p

In the refined encoding R, the local entry (necessary for confining the behaviour
of yy) is produced by the encoding of the abstraction.

More generally, proceeding as above one can show that, on the encoding R,
β-reduction is valid when the argument of a function is a variable. Moreover,
β-reduction is also valid when the argument is itself a function, reasoning as
in Theorem 3. We may therefore conclude that β-reduction is valid when the
argument is a value (as it is the case for the encoding of the call-by-value strategy
[24]).

We write LE(x̃, ỹ) for LE(x1, y1) | . . . | LE(xn, yn) where n is the length of the
tuples x̃ and ỹ. We use V to range over values.

Theorem 5. Suppose fv((λz.MV)) ⊆ x̃. Then, for any y and fresh ỹ, we have

νx̃ (R[[(λz.M)V]]p | LE(x̃, ỹ)) ≈ νx̃ (R[[M{V/z}]]p | LE(x̃, ỹ))

Similarly to what done earlier, a local entry LE(xi, yi) may be removed when
the variable xi appears at most once.

However, even in the encoding R, the full β-reduction is unvalid. As a coun-
terexample we can use the terms (xz)(xz) and (λy. yy)(xz). Indeed we have:

νxz (R[[(xz)(xz)]]p | LE(x, x′) | LE(z, z′) 6≈ R[[(λy. yy)(xz)]]p

We omit the calculations, which are rather involved. Intuitively, the difference
appears because the full trace of the process computing the application xz is
visible twice in the first process, whereas, in the second process, the second
time, part of the trace is concealed.

15

5 Conclusions

Call-by-need was proposed by Wadsworth [28] as an implementation technique.
Formalizations of call-by-need on a λ-calculus with a let construct or with
environments include Ariola et al. [2], Launchbury [11], Purushothaman and
Seaman [20], and Yoshida [29]. The uniform encoding in Section 4 is from [16].
A study of the correctness of the call-by-need encoding in Figure 2 is in [5].
Encodings of graph reductions, related to call-by-need, into π-calculus were given
in [4, 8] but their correctness was not studied. Niehren [15] used encodings of call-
by-name, call-by-value and call-by-need λ-calculi into π-calculus to compare the
time complexity of the strategies.

In the paper we have used the theory of the Asynchronous Local π-calculus
(ALπ) [12] to reason about the encoding of the call-by-need λ-calculus strategy
as processes. We have mainly focused on the validity of β-reduction. We have
showed that various instances of the property on closed terms hold, though the
general property fails. We have also considered a refined encoding in which β-
reduction on arbitrary values (though not on arbitrary terms) holds. All this
leaves us with some challenging questions, that we leave for future work:

1. In the refined encoding, we use special processes called local entries to protect
the formal parameter of the function, thus improving the results about β-
validity. Is it possible to further protect variables (or terms) so to recover
the full β-validity?

2. Is there a different form of behavioural equivalence under which the full
β-validity holds, in the initial or in the refined encoding?

3. What is an appropriate process preorder under which call-by-need can indeed
be proved to be an optimisation of call-by-name?

4. What is the equivalence on λ-terms induced by the call-by-need encoding?
Following the results for call-by-name and call-by-value, one expects to re-
cover some kind of tree structure (Böhm Trees and Lévy-Longo Tree for
call-by-name, Lassen’s trees [10] for call-by-value). We are not aware of sim-
ilar tree structures for call-by-need. Hence investigating this question may
also shed light on what should the appropriate forms of trees for call-by-need
be.

In questions (2) and (3), ‘easy’ answers may be obtained by confining the
testing contexts to be encodings of λ-calculus contexts. The challenge is to find
more general and useful answers, with applications outside the realm of pure
λ-calculi. One may consider forms of behavioural types.

In questions (1) and (2), perhaps requiring the validity of the full β-reduction,
in the same way as for call-by-name, is too demanding. Indeed in this way
probably the tree structure referred to in question (4) is likely to be the same as
that for call-by-name. One may find it acceptable to limit β-validity to reductions
between closed terms.

16

Acknowledgments Thanks to the reviewers for their careful reading of the pa-
per and their suggestions. Research partly supported by the H2020-MSCA-RISE
project ID 778233 “Behavioural Application Program Interfaces (BEHAPI)”.

References

1. Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science 195, 291–324 (1998)

2. Ariola, Z., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: A call-by-need λ-
calculus. In: Proc. 22th POPL. ACM Press (1995)

3. Boreale, M., Sangiorgi, D.: Some congruence properties for π-calculus bisimilarities.
Theoretical Computer Science 198, 159–176 (1998)

4. Boudol, G.: Some chemical abstract machines. In: Proc. REX Summer
School/Symposium 1993. Lecture Notes in Computer Science, vol. 803. Springer
Verlag (1994)

5. Brock, S., Ostheimer, G.: Process semantics of graph reduction. In: Lee, I., Smolka,
S. (eds.) Proc. CONCUR ’95. Lecture Notes in Computer Science, vol. 962, pp.
471–485. Springer Verlag, Philadelphia, Pennsylvania (1995)

6. Durier, A., Hirschkoff, D., Sangiorgi, D.: Eager functions as processes. In: 33nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018. IEEE
Computer Society (2018)

7. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) Applied Se-
mantics, International Summer School, APPSEM 2000. Lecture Notes in Computer
Science, vol. 2395, pp. 268–332. Springer (2002)

8. Jeffrey, A.: A chemical abstract machine for graph reduction. In: Proc. Ninth Inter-
national Conference on the Mathematical Foundations of Programming Semantics
(MFPS’93). Lecture Notes in Computer Science, vol. 802. Springer Verlag (1993)

9. Kobayashi, N., Pierce, B., Turner, D.: Linearity and the pi-calculus. TOPLAS
21(5), 914–947 (1999), preliminary summary appeared in Proceedings of POPL’96

10. Lassen, S.B.: Eager normal form bisimulation. In: 20th IEEE Symposium on Logic
in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings.
pp. 345–354 (2005)

11. Launchbury, J.: A natural semantics for lazy evaluation. In: Proc. 20th POPL.
ACM Press (1993)

12. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Journal of Math-
ematical Structures in Computer Science 14(5), 715–767 (2004)

13. Milner, R.: The polyadic π-calculus: a tutorial. Tech. Rep. ECS–LFCS–91–180,
LFCS, Dept. of Comp. Sci., Edinburgh Univ. (Oct 1991), Also in Logic and Algebra
of Specification, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag,
1993.

14. Milner, R.: Functions as processes. Journal of Mathematical Structures in Com-
puter Science 2(2), 119–141 (1992)

15. Niehren, J.: Functional computation as concurrent computation. In: Proc. 23th
POPL. ACM Press (1996)

16. Ostheimer, G., Davie, A.: π-calculus characterisations of some practical λ-calculus
reductions strategies. Tech. Rep. CS/93/14, St. Andrews (1993)

17. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Journal of Mathematical Structures in Computer Science 13(5),
685–719 (2003)

17

18. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press (2000)

19. Plotkin, G.: Call by name, call by value and the λ-calculus. Theoretical Computer
Science 1, 125–159 (1975)

20. Purushothaman, S., Seaman, J.: An adequate operational semantics for sharing in
lazy evaluation. In: Krieg-Brückner, B. (ed.) ESOP’92. Lecture Notes in Computer
Science, vol. 582, pp. 435–450. Springer Verlag (1992)

21. Sangiorgi, D.: An investigation into functions as processes. In: Proc. Ninth Inter-
national Conference on the Mathematical Foundations of Programming Semantics
(MFPS’93). Lecture Notes in Computer Science, vol. 802, pp. 143–159. Springer
Verlag (1993)

22. Sangiorgi, D.: From λ to π, or: Rediscovering continuations. Journal of Mathemati-
cal Structures in Computer Science 9(4) (1999), special Issue on ”Lambda-Calculus
and Logic” in Honour of Roger Hindley

23. Sangiorgi, D.: Lazy functions and mobile processes. In: Plotkin, G., Stirling, C.,
Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Mil-
ner. MIT Press (2000)

24. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press (2001)

25. Sangiorgi, D.: Typed pi-calculus at work: A correctness proof of Jones’s paralleli-
sation transformation on concurrent objects. TAPOS 5(1), 25–33 (1999)

26. Turner, N.: The polymorphic pi-calculus: Theory and Implementation. Ph.D. the-
sis, Department of Computer Science, University of Edinburgh (1996)

27. Vasconcelos, V.T.: Lambda and pi calculi, CAM and SECD machines. J. Funct.
Program. 15(1), 101–127 (2005)

28. Wadsworth, C.P.: Semantics and pragmatics of the lambda calculus. Ph.D. thesis,
University of Oxford (1971)

29. Yoshida, N.: Optimal reduction in weak lambda-calculus with shared environments.
In: Proc. of FPCA’93, Functional Programming and Computer Architecture. pp.
243–252 (1993)

18

