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ABSTRACT: 

The use of heritage point cloud for documentation and dissemination purposes is nowadays increasing. The association of semantic 
information to 3D data by means of automated classification methods can help to characterize, describe and better interpret the object 
under study. In the last decades, machine learning methods have brought significant progress to classification procedures. However, 
the topic of cultural heritage has not been fully explored yet. This paper presents a research for the classification of heritage point 
clouds using different supervised learning approaches (Machine and Deep learning ones). The classification is aimed at automatically 
recognizing architectural components such as columns, facades or windows in large datasets. For each case study and employed 
classification method, different accuracy metrics are calculated and compared. 
 

 
Figure 1. 3D point cloud classification process based on machine learning: surveyed point cloud (a), features extraction (b), 

manual annotation of a small portion to define training set and classes (c), final automated classification results (d). 

1. INTRODUCTION 

The 3D documentation of Cultural Heritage monuments and sites 
with point clouds or meshes, coming from photogrammetry and 
laser scanning surveys, is broadly diffuse. Given the recent 
evolution of technologies and digital tools, the need for 
automated and reliable methods to classify point clouds or 
meshes is becoming fundamental. Among the possible and 
interesting applications provided by the classification of heritage 
3D data we can mention: identification and distinction of 
structural and decorative architectural elements, mapping of 
different states of conservation and materials, automatic 
recognition of similar architectural elements as a propaedeutic 
phase for Building Information Modelling (BIM), etc.  
In the literature, different methods of data classification were 
proposed (Grilli et al., 2017) like edge and region-based 
approaches (applied initially for image segmentation) (Wang and 
Shang, 2009; Vo et al., 2015) or model-fitting approaches, based 
on the possibility to fit geometric primitives to the 3D shapes 
(Chen et al., 2014). With the advent of Artificial Intelligence (AI) 
solutions, further progress in automation and interesting results 
came out. In particular, Machine and Deep Learning (ML/DL) 
methods allowed the development of algorithms that let machines 
to take decisions based on empirical training data.  
Deep Learning can be considered an evolution of Machine 
Learning. Its algorithms are structured in layers to create an 
artificial neural network that can learn and make intelligent 
decision on its own. The use of Machine Learning techniques for 
point cloud classification has been successfully investigated in 

the last decade in the geospatial environment (Guo et al., 2014; 
Niemeyer et al., 2014; Weinmann et al., 2015; Qi et al., 2017; 
Özdemir and Remondino, 2019a) while in the Cultural Heritage 
(CH) field it has only recently started to be explored (Poux et al., 
2017; Grilli and Remondino, 2019). 
The paper aims to explore the potential offered by Machine and 
Deep Learning approaches for the supervised classification of 3D 
heritage case studies (Figure 1).  
In the paper, firstly, a literature review is presented. Secondly, 
different ML/DL point cloud classification approaches are 
presented and then experimented on two different case studies: 
the temple of Neptune in Paestum and some renaissance 
buildings with porticoes in Bologna. Classification results are 
finally presented and commented relying on confusion matrix 
scores. 
 

2. RELATED WORKS 

In recent years, significant progress has come out in automatic 
procedures for classification of point clouds or meshes thanks to 
the advent of Machine Learning approaches (Hackel et al., 2016; 
Weinmann et al., 2017; Wang et al., 2018).  
Several benchmarks have been proposed in the Geomatics 
community, providing labelled terrestrial and airborne data on 
which users can test and validate their algorithms. Most of the 
available datasets provide classified natural, urban, and street 
scenes (e.g., www.semantic3d.net, www.cityscapes-dataset.com, 
etc.). While in those scenarios, the object classes and labels are 
almost defined (mainly ground, roads, trees, and buildings), the 
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identification of precise categories in the heritage field is much 
more complicated, as:  
• for the same case study several classes can be identified 

based upon different purposes; 
• not always a semantic architectural class is linked to a precise 

shape/colour. 
Probably for these reasons, up to now, the only available 
databases of annotated heritage are with 2D images and refer only 
to building facades, e.g. eTRIMS (Korc and Forstner, 2009), 
Ecole Centrale Paris (ECP) Facades dataset (Teboul et al., 2010), 
CMP Facade Database (Tyleček and Šára, 2013).  Despite this 
existing data shortage, different Machine Learning approaches 
were proposed in the architectural and heritage context. Oses et 
al. (2014) used different Machine Learning classifiers to perform 
an image-based delineation of masonry walls. Amato et al. 
(2015) used k-nearest neighbour (kNN) classification and 
landmark recognition techniques to address the problem of 
monument recognition in images. Convolutional Neural 
Networks (CNN) were applied for the first time to heritage 
scenarios in Llamas et al. (2016) and Llamas et al., (2017). CNNs 
are also used by Yasser et al. (2017) for visual categorization and 
to create a digital heritage search platform (ICARE) that allows 
users to archive digital heritage content and perform semantic 
queries over multimodal cultural heritage data archives. 
In some cases, the classification is performed for annotation and 
restoration purposes, and the information is transferred from 2D 
to 3D (Campanaro et al., 2016; Grilli et al., 2018). The web 
platform Aioli (www.aioli.cloud) allows a semi-automatic 
annotation of 3D heritage, where 2D mapping data are in real-
time displayed onto a 3D model (Roussel et al., 2019).  
To the author’s knowledge, there are no works applying Deep 
Learning methods for the classification of 3D architectural 
heritage. 
 

3. ANALYZED METHODS 

 
Figure 2. Classification workflow. 

 
The different ML/DL methods presented in this paper (Section 
3.2-3.5) work directly on 3D point clouds and they are all 
supervised, as the input data contain associated labels (i.e. 
classes) information.  
The classification processes (Figure 2) consist of four steps: 
feature extraction, feature selection, model training and 
prediction. To evaluate the performance of the classification 
methods for each case study a test set is taken into consideration. 
For every point of the dataset, the label predicted by the classifier 
is compared with the same manually annotated. Confusion 
matrices are then generated, and the following accuracy metrics 
are calculated for each class: 
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where Tp = true positive, +( = true negative, ., = false positive, 
.( = false negative.  
 
3.1 Features extraction and selection 

For the training and classification goal, different sets of features 
are used (Figure 3), depending on the case study and the approach 
(ML / DL) (Özdemir and Remondino, 2019b). In case of heritage 
and architectural 3D data, we combined the use of:  
• Decentralised coordinates: they are used to represent the 

local geometry around a point as a patch of k-number of 
nearest points. To decentralise the coordinates, the minimum 
x, y, z values are subtracted within each sequence and the 
sequences are sorted with respect to the decentralised 
coordinate values (Figure 3a). 

• Radiometric values: the input data is a 3-band RGB colour 
space with an 8-bit radiometric resolution per band. The RGB 
values are re-scaled to have values between 0-1 (Figure 3b).  

• Geometric features (Figure 3c): covariance features and 
others are described in Section 3.1.1. 
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Figure 3. Data sequence used for the classification purpose with 
m number of points and n number of features: decentralised 

coordinates (a), radiometric values (b), geometric features (c).  
 

Linearity Lλ =  CD	–	CF	
CD

                       (6) 

Planarity Pλ =  CF	–	CG	
CD

 (7) 

Sphericity Sλ =  CG	
CD

 (8) 

Omnivariance Oλ =  λjG
JKD

L  (9) 

Anisotropy Aλ =  CD	–	CG	
CD

 (10) 

Surface Variation Cλ =  CG	
M	N

 (11) 

Verticality V=	1	–	nz		 (12) 

Table 1. Considered geometric features. 

 
3.1.1 Geometric features 

The geometric features employed include (i) covariance features, 
(ii) normal based features (Verticality V), and (iii) height-based 
features (Z coordinates). The covariance features (also called 
eigenfeatures) are based on the covariance matrix (Cheata et al., 
2009) computed within a local neighbourhood of a 3D point. The 
combinations of three eigenvalues λi (λ1 > λ2 > λ3) extracted from 
the covariance matrix hold a great potential to calculate local 
features and describe the shape of the neighbourhood (Blomey et 
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al., 2014). The measures of linearity L, planarity P and sphericity 
S provide information about the presence of a linear 1D structure, 
a planar 2D structure or a volumetric 3D structure. Further 
measures are provided by omnivariance O, anisotropy A and 
Local surface variation Cλ (Table 1).  
Different strategies can be applied to identify local 
neighbourhoods for points belonging to a 3D point cloud 
(Weinmann et al., 2013). In our method (Grilli et al 2019), 
features are first calculated on spherical neighbourhoods at 
various radius sizes (multi-scale approach) using CloudCompare 
(Hackel et al., 2016). Then, features are examined to investigate 
whether some classes are particularly well described by features 
at specific scales. Finally, the optimum subset of features is 
selected in order to emphasize the differences between the classes 
we are interested in.  
Unlike the conventional DL approaches, we provide handcrafted 
features (the same features for the ML methods) as input to the 
employed DL algorithms (Ozdemir and Remondino, 2019b).  
 
3.2 Machine Learning approach - Random Forest  

Random Forest (RF) is a supervised classification classifier 
(Breiman, 2001) that uses an ensemble of classification trees, 
gets a prediction from each tree, and selects the best solution by 
means of voting. Two parameters need to be set to produce the 
forest trees: the number of decision trees to be generated (Ntree) 
and the number of variables to be selected and tested for the best 
split when growing the trees (Mtry) (Belgiu et al., 2016). We rely 
on the RF implementation available in the Scikit-learn Python 
library (version 0.21.1). During the training process, the Ntree 
and Mtry are tuned considering the best F1-score computed on 
the test set.  
 
3.3 Machine Learning approach – OvO classifier  

The One-versus-One (OvO) classifier converts a group of binary 
classifiers into a multiclass classifier. It works training the binary 
classifiers in a one vs. one trend. In the case of N possible classes, 
it trains N*(N-1)/2 binary classifiers, which are then employed 
for the identification of the classes on the test sample. In our 
tested we used the OvO classifier available in the dlib C++ library 
(King, 2009). 
 
3.4 Deep Learning approach - 1D and 2D CNN  

Two Convolutional Neural Networks (CNN) (Fukushima et al., 
1980) methods are also proposed. CNN is a specific type of 
artificial neural network specialized in processing data that has a 
grid-like topology, such as an image. The layers of a CNN consist 
of an input layer, an output layer and a hidden layer that includes 
multiple convolutional layers, pooling layers, fully connected 
layers and normalization layers. The tested CNNs are:  
• 1D CNN: it consists of 1 input layer, 2 convolutional layers, 

3 dense layers, 1 maximum pooling layer, 1 global average 
pooling layer and 1 dropout layer. 

• 2D CCN: it is composed of 1 input layer, 4 2D convolutional 
layers, 2 2D max pooling layer, 3 dropout layers, 1 flatten 
layer and 2 dense layers. 

 
3.5 Deep Learning approach - Bi-LSTM 

Recurrent Neural Network (RNN) (Rumelhart et al., 1988) is 
commonly used for modelling sequential data. The data 
is sequential if the building blocks in a dataset are not 
independent from each other. The most common application for 
RNN are handwriting or speech recognition, translation, etc. Our 
RNN consists of five layers: sequence input layer, Bidirectional 
Long Short-Term Memory layer (Bi-LSTM) with 200 hidden 
units, fully connected layer, softmax layer and classification 

layer. We describe each point with a sequence that is generated 
with its surrounding points (i.e. each row in Figure 3 is a part of 
the sequence). These sequences are expected to represent the 
geometry around each point in a better way when compared to a 
single feature vector representation. 
 

4. CASE STUDIES AND RESULTS 

The aforementioned ML/DL classification approaches were 
applied to two different heritage datasets:  
a) The Greek temple of Neptune in Paestum (Italy): it was built 

in the Doric order around 460 – 450 BC. It measures ca 24,5 
x 60 m (Fig. 4) and the available point cloud is the result of a 
combined UAV and terrestrial photogrammetric survey 
(Fiorillo et al., 2013). With ML and DL approaches, the aim 
is to semantically segment the 3D data of the temple 
considering its Greek architectural elements.  

 

 
Figure 4. Temple of Neptune in Paestum, Italy. 

 
b) Building with porticos in Bologna (Italy): the historical 

porticos of Bologna (Fig. 5) were built during the 11th–20th 
centuries. We consider a portion of ca 85x6m, surveyed with 
photogrammetric techniques (Remondino et al., 2016). The 
ML/DL classification is aimed at a semantic annotation of the 
different architectural and decorative elements. 
 

 
Figure 5.  Building with porticoes in Bologna, Italy (Source: 

Google Street View). 

For both case studies, the five classification approaches described 
in Section 3 are run, using different sets of features as input 
(Table 2). For the ML approaches and the 1D CNN all the points 
of the cloud are described by a feature vector that contains 
different geometric features chosen ad hoc. Regarding the 2D 
CNN and Bi-LSTM, in addition to these geometric features, the 
classification was led with, and without the decentralised 
coordinates.  
 

 TEMPLE PORTICOS  
RF c b + c  

OvO c b + c  
Conv 1D c b + c  
Conv 2D a + c c a + b + c b + c  
BiLSTM a + c c a + b + c b + c  

Table 2. Considered geometric features for each 
classification approach. As described in figure 3: a 

= decentralised coordinates, b = radiometric 
features, c = geometric features. 
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4.1 Temple of Neptune in Paestum  

After applying a subsampling, to speed up the computational 
process, the data consist of some 2.2 million points (Figure 6). 
 

 
Figure 6. Photogrammetric point cloud of the temple of Neptune 

in Paestum (ca 2,2 million points). 
 
Ten different classes corresponding to the architectural elements 
of the temple were identified. Then a small portion of the entire 
data set was accurately manually annotated (Figure 7).   
 

 
Figure 7. Manually labelled temple. 

 

 
Figure 8. Some relevant features computed on the Neptune’s 

point cloud. From left to right respectively, clock-wise: 
verticality, surface variation, sphericity and planarity. 

 

Covariance features (Table 1, Fig. 8) were then extracted at 
different neighbourhood sizes, correlated with the dimensions of 
the column orders. According to the selected geometric feature 
chosen and the used radius size (r), it is possible to highlight 
different architectural elements. The feature Surface Variation, 
for example, can emphasise the columns if extracted at a 
neighbourhood size r = radius of the columns. The Planarity 
extracted with the same radius distinguishes planar elements (e.g. 
facades, floors) from cylindrical ones (e.g. columns).  
Using a combination of these features, both Machine and Deep 
Learning methods were trained to predict the labels on the entire 
dataset (Figure 8). 
 

 
Figure 9. RF classification results and exploded view.  

 
Table 3 reports the results obtained with the RF classifier, 
including confusion matrix and accuracy metrics. Each row of 
the matrix represents the instances in an actual class (ground 
truth), while each column represents the instances in a predicted 
class. In general, we notice that most of the classification errors 
are between classes with quite similar geometries as "Abacus" 
and "Architrave", and "Frieze", "Cornice" and "Tympanum. 
Table 4 shows in parallel the per-class F1-score results for each 
method applied.  The F1-score averages are between the 86.69 % 
with Bi-LSTM and 92% with RF. Table 5 summarizes all the 
accuracy metrics reached with the different approaches. As we 
can observe from the diagram, higher levels of accuracy were 
achieved using the machine learning approaches (RF and OvO).  

CLASS NAME Grass Crep. Pavim. Shaft Echinus Abacus Architr. Frieze Cornice Tymp. Prec. Recall F1 True 
Neg. 

Balanc. 
Acc. 

Grass 56998 1647 0 0 0 0 0 0 0 0 97% 100% 99% 100% 100% 
Crepidoma 67 38389 484 497 0 0 0 0 0 0 97% 93% 95% 100% 97% 
Pavement 0 958 62211 993 0 0 0 0 0 0 97% 99% 98% 100% 99% 

Shaft 0 54 125 169950 172 56 4 0 268 0 100% 98% 99% 100% 99% 
Echinus 0 0 0 966 18717 988 4 0 40 0 90% 87% 88% 100% 93% 
Abacus 0 0 0 63 2651 23941 3998 0 636 0 77% 88% 82% 99% 93% 

Architrave 0 0 0 0 0 2140 50903 2600 1 0 91% 91% 91% 99% 95% 
Frieze 0 0 0 0 0 0 1036 34609 334 33 96% 80% 87% 100% 90% 

Cornice 0 42 0 90 67 223 90 4569 106415 2071 94% 95% 95% 99% 97% 
Tympanum 0 0 0 0 0 0 4 1492 3841 21393 80% 91% 85% 99% 95% 

AVERAGE 92% 92% 92% 99% 96% 

Table 3. RF classification results: Confusion Matrix and per-class accuracy for the temple dataset.	
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CLASS / 
ALGORITHM 

F1-Score 

RF OvO CNN 1D CNN 2D 
(a,c) CNN 2D (c) Bi-LSTM 

(a,c) Bi-LSTM (c) 

Grass 98.52% 99.05% 99.05% 99.08% 98.89% 98.20% 97.95% 
Crepidoma 95.34% 95.42% 95.30% 96.22% 95.84% 92.48% 91.57% 
Pavement 97.98% 97.84% 97.31% 97.89% 98.02% 96.68% 96.48% 

Shaft 99.04% 98.73% 98.25% 98.30% 98.77% 97.60% 97.90% 
Echinus 88.45% 84.40% 81.03% 79.54% 84.91% 78.15% 76.53% 
Abacus 81.66% 80.64% 74.85% 75.93% 79.23% 77.86% 72.94% 

Architrave 91.16% 91.90% 78.56% 80.22% 90.69% 89.10% 89.53% 
Frieze 87.31% 87.74% 77.50% 66.97% 87.31% 78.13% 86.02% 

Cornice 94.55% 93.90% 93.24% 92.73% 93.54% 87.76% 89.52% 
Tympanum 85.19% 84.66% 85.99% 80.55% 85.31% 70.94% 74.14% 
AVERAGE 91.92% 91.43% 88.11% 86.74% 91.25% 86.69% 87.26% 

Table 4. A summary of all tested ML/DL classification methods reporting per-class F1-score for the temple dataset. 

 
Table 5. Summary of the classification results for the temple 

dataset achieved with the different ML/DL methods. 
 

4.2 Renaissance buildings in Bologna 

The photogrammetric point cloud of the porticos consists of ca 1 
million points (Figure 10). 
 

 
Figure 10. Photogrammetric point cloud of a renaissance 

building in Bologna (ca 1,1 million points). 

A a small portion of the entire dataset was manually annotated 
with 14 classes (Figure 11) and some significant features were 
extracted (Figure 12). Then, the different classifiers were trained 
to classify the entire point cloud (Figure 13). Confusion matrixes 
and classification results obtained using the machine and deep 
learning approaches are showed below (Table 6-7-8). As for the 
previous case study, the best results were achieved applying 
machine learning approaches.  
 

 
Figure 11. A portion of the Bologna dataset manually labelled 

with 14 classes. 

 

 
Figure 12. Example of the Surface Variation feature 

extracted on the Bologna dataset. 
 

 
Figure 13. RF classification results on the Bologna dataset. 

 
Among the identified 14 classes, the ones with more 
classification errors were those with similar geometric properties.  
For example, the "road" was misclassified as "pavement " or also 
the "moulding" as "facade". This is probably due to the limited 
number of points in the annotations. 
 

 
Table 6. Summary of the classification results for the 

porticos dataset achieved with the different ML/DL methods. 
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CLASS 
NAME Road Facade Pav. Base Shaft Capital Arch. Win/do

or Vault Mouldi
ng 

Curtai
n 

Drainp. 
VI 

Cornic
e 

Drainp. 
H Prec. Recal

l F1 True 
Neg. 

Bal. 
Acc. 

Road 1411 43 5105 0 0 0 0 0 0 0 0 30 0 0 21% 100% 35% 96% 98% 
Facade 0 46838 1968 73 0 0 145 95 254 660 62 151 14 0 93% 91% 92% 96% 93% 

Pav. 0 59 16695 282 0 0 0 21 1 1 0 25 0 0 98% 70% 82% 100% 85% 
Base 0 8 17 1604 226 0 1 11 0 1 0 3 0 0 86% 80% 83% 100% 90% 
Shaft 0 0 0 0 9143 0 0 0 0 0 0 9 0 0 100% 95% 97% 100% 97% 

Capital 0 0 0 0 246 1101 178 0 73 0 0 22 0 0 68% 99% 81% 100% 99% 
Arch 0 169 0 0 0 0 6179 0 757 5 0 0 0 0 87% 91% 89% 99% 95% 

Win/do 0 27 0 0 0 0 0 2321 0 242 0 0 0 0 90% 74% 81% 100% 87% 
Vault 0 1060 0 0 0 1 218 0 18331 0 0 0 0 0 93% 94% 94% 99% 97% 

Moulding 0 2919 55 19 0 0 7 693 0 6526 205 3 0 0 63% 82% 71% 97% 89% 
Curtain 0 49 0 0 0 0 0 0 0 198 3464 4 0 0 93% 92% 93% 100% 96% 

Drainp.V 0 221 0 23 52 10 69 8 0 354 36 1150 47 0 58% 82% 68% 99% 91% 
Cornice 0 118 0 0 0 0 0 0 0 0 0 2 4746 175 94% 98% 96% 100% 99% 

Drainp.H 0 0 0 0 0 0 0 0 0 0 0 0 13 547 98% 76% 85% 100% 88% 
 AVERAGE 82% 87% 82% 99% 93% 

Table 7. RF classification results: Confusion Matrix and per-class accuracy for the porticos dataset.	
 

CLASS / 
ALGORITHM 

F1-Score 

RF OvO CNN 1D CNN 2D 
(a,b,c) CNN 2D (b,c) Bi-LSTM 

(a,b,c) 
Bi-LSTM 

(b,c) 
Road 35.28% 46.54% 87.29% 0.00% 2.93% 3.40% 9.98% 

Facade 92.05% 90.79% 88.61% 81.41% 91.35% 78.70% 83.68% 
Pavement 81.59% 86.48% 89.20% 71.14% 80.47% 75.12% 78.50% 

Base  82.85% 86.58% 65.96% 0.00% 83.48% 0.00% 0.00% 
Shaft 97.17% 96.90% 93.23% 82.10% 97.90% 69.95% 82.28% 

Capital 80.60% 82.90% 58.52% 0.00% 64.58% 0.00% 0.00% 
Arch 88.86% 86.90% 67.05% 40.01% 88.48% 21.58% 53.06% 

Window/door 80.89% 79.90% 61.48% 65.67% 77.52% 53.15% 68.97% 
Vault 93.94% 92.90% 88.82% 84.33% 94.57% 80.30% 85.99% 

Molding 70.88% 58.77% 48.14% 23.02% 66.26% 0.02% 0.43% 
Curtain 92.60% 89.11% 81.15% 82.98% 95.71% 6.21% 90.02% 

Drainp. V. 68.27% 62.63% 21.82% 0.00% 57.32% 0.00% 0.00% 
Cornice 96.26% 95.78% 85.84% 87.32% 94.23% 86.57% 90.42% 

Drainp. H. 85.34% 88.02% 69.26% 0.00% 60.29% 0.00% 0.00% 
AVERAGE 81.90% 81.73% 71.88% 44.14% 75.37% 33.93% 45.95% 

Table 8. A summary of all tested ML/DL classification methods reporting the per-class F1-score for the porticos dataset. 
 

 
Figure 14. Exploded view of the Bologna dataset after the automated classification (vertical drainpipe and road classes are not 

visualized due to their low accuracy score). 
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5. CONCLUSIONS 

The paper presented an evaluation of different ML/DL 
classification approaches to semantically segment point clouds of 
architectural and archaeological scenarios. From the summarized 
results in Tables 5 and 6, we can state that: 
• ML approaches outperformed DL methods; 
• for the Temple dataset, the F1-scores are between 86% and 

95% while for the Bologna they change between 34% up to 
82%. In our opinion, even if the features were handcrafted 
appositely for the case studies, the class structure complexity 
of the Bologna dataset caused lower accuracy metrics; 

• based on the achieved accuracy metrics in the Bologna 
dataset, we can suggest that the used DL approaches are not 
suitable for this kind of dataset; 

• in case of heritage datasets, the conventional use of 
decentralised coordinates for DL approaches reduced the 
overall accuracy. From detailed analysis of Table 4 and Table 
8 we can observe that the accuracy decreases when the 
classes share the same geometry. This represents one of the 
most challenging point for heritage classification, as there’s 
not always a correspondence between shape/colours and 
semantics for the architectural classes. 

• as concern the training times, the used DL approaches took 
about 10 minutes on GPU, while the ML ones completed the 
training in less than a minute on a CPU.  

As further evolutions we plan to explore new features and class 
structures to improve our classification results. Moreover, 
starting from the achieved classification results (Fig. 9 and 14), it 
would be interesting to develop a tool to assist the conversion of 
semantic point cloud to parametric 3D model (HBIM/BIM). 
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