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Mr.Wolf: An Energy-Precision Scalable Parallel
Ultra Low Power SoC for IoT Edge Processing

Antonio Pullini∗, Davide Rossi†∗, Igor Loi†, Giuseppe Tagliavini†, and Luca Benini∗†
∗Integrated Systems Laboratory, ETH Zürich, Gloriastr. 35, 8092 Zurich, Switzerland †DEI, University of

Bologna, Via Risorgimento 2, 40136 Bologna, Italy

Abstract—This paper presents Mr.Wolf, a Parallel Ultra Low
Power (PULP) SoC featuring a hierarchical architecture with
a small (12 kgates) microcontroller (MCU) class RISC-V core
augmented with an autonomous IO subsystem for efficient data
transfer from a wide set of peripherals. The small core can offload
compute-intensive kernels to an 8-cores floating-point capable
processing engine available on demand. The proposed SoC,
implemented in a 40 nm LP CMOS technology, features a 108 µW
fully retentive memory (512 kB). The IO subsystem is capable
of transferring up to 1.6 Gbit/s from external devices to the
memory in less than 2.5 mW. The 8-core compute cluster achieves
a peak performance of 850 millions of 32-bit integer multiply
and accumulate per second (MMAC/s), 500 millions of 32-bit
floating-point multiply and accumulate per second (MFMAC/s)
- 1 GFlop/s - with an energy efficiency up to 15 MMAC/s/mW
and 9 MFMAC/s/mW. These building blocks are supported by
aggressive on-chip power conversion and management, enabling
energy-proportional heterogeneous computing for always-on IoT
end-nodes improving performance by several orders of mag-
nitude with respect to traditional single core MCUs within a
power envelope of 153 mW. We demonstrated the capabilities
of the proposed SoC on a wide set of near-sensor processing
kernels showing that Mr.Wolf can deliver performance up to
16.4 GOp/s with energy efficiency up to 274 MOp/s/mW on real-
life applications, paving the way for always-on data analytics on
high-bandwidth sensors at the edge of the Internet of Things.

I. INTRODUCTION

The majority of current ultra-low-power smart-sensing edge
devices operating for years on small batteries can handle
only low-bandwidth sensors, such as temperature or pressure.
The main design driver for these systems is to consume the
smallest possible amount of power at the cost of performance,
which is acceptable for most applications linked to low-
bandwidth sensors [1]. In this direction, several approaches
have been proposed to reduce as much as possible the power
consumption of deeply embedded computing systems mainly
focusing on the design of sub-threshold processors [2][3]
operating at frequencies ranges from few tens of kHz up to
few MHz.

Some of the approaches for power minimization exploit
partial shut-down strategies to leverage the heavy duty-cycled
nature of these applications, developing systems able to keep
the deep-sleep power of processors as low as few tens of nW
[1]. Other approaches exploit deep circuit-level optimizations
such as transmission-gate standard cells [4], and dual mode
standard cells, optimized for energy efficiency in Normal
Mode (NM), and for power consumption in Leakage Suppres-

sion Mode (LSM), delivering sub-nW power consumption at
the operating frequency of few Hz [5][6].

While the low bandwidth generated by the aforementioned
sensors allows to transmit raw data to the cloud for external
analysis, a new generation of edge applications is emerging,
which is focused on probing the environment with data-rich
sensors (such as vibration, audio, video or bio-potentials sen-
sors) and performing data-intensive computations locally at the
sensors. This approach, preventing raw data to be transmitted
wirelessly, is beneficial in terms of energy, aggregate sensor
bandwidth, and security [7]. A possible way to tackle this
challenge is to bring significant portion of the data analytics
close to the sensor, reducing the high-bandwidth raw sensor
output to highly compressed and informative data such as tags,
classes or even simple trigger events or alarms. However, this
approach poses an extreme challenge of squeezing the com-
putational requirements of advanced near-sensor data analysis
algorithms within the mW-range power envelope of always-
ON battery-powered IoT end-nodes.

The solutions proposed during last few years to deal with
the increasing performance requirements of near-sensor data
analytics applications, mainly leverage two approaches. The
first one lies in widening the operating range of low-power
processors to target a higher peak performance while main-
taining reasonable efficiency for low performance applications
[8][9][10]. However, when the performance constraints are so
tight that the system is forced to operate out of the near-
threshold region [11], energy efficiency unavoidably drops.
The second approach lies on the system specialization. Extend-
ing end-node devices with accelerators dedicated to specialized
functions can significantly improve energy efficiency for these
specific tasks, while leveraging general purpose processors for
other tasks. This approach has been effectively adopted in
secure artificial intelligence processors featuring Convolutional
Neural Network (CNN) accelerators for data analytics and
crypto accelerators for security [12][13][14]. A much more
flexible solution lies in Parallel Near Threshold Computing.
This approach exploits the energy benefits of near-threshold
operations without compromising (i) performance thanks to
parallel execution over multiple cores, and (ii) flexibility
leveraging software programmable processors [15].

In this scenario, one of the big challenges is to join low-
power capabilities and energy efficiency of MCUs with peak
performance of more complex architecture such as DSPs and
parallel processors. Indeed, while always-on IoT applications
rely on ultra-low-power MCUs featuring modest compute
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capability cores such as ARM Cortex R© M0+, most of this new
generation of applications require much more computational
power (up to few Giga Operations Per Second - GOp/s) and
significant memory footprint (up to few MB). These require-
ments have to be achieved without compromising the tens-of-
mW power envelope, coupled with state retentive deep sleep
modes to deal with the heavily duty-cycled behavior of several
IoT applications. Moreover, floating-point capable processors
are desirable, to ease the porting and to deal with the high
dynamic range of some near-sensor data analytics applications,
especially in the field of bio-potentials processing.

To address this challenge, we propose Mr.Wolf, a multi-
GOp/s fully programmable power/performance/precision-
tunable IoT-edge computing engine fabricated in 40nm LP
CMOS technology. Mr.Wolf exploits the flexible attributes
of the RISC-V ISA to deliver a state of the art micro
controller called fabric controller (FC) coupled with a powerful
programmable parallel processing engine for flexible multi-
sensor (image, audio, bio-potentials, inertial) data analysis and
fusion. The SoC is built around an ultra-low power MCU
subsystem based on a 2-pipeline stages processor optimized
for low power featuring a programmable 72-to-108 µW state-
retentive sleep power (for up to 512 kB of system memory) and
an I/O subsystem optimized for efficient and autonomous (with
minimal processor intervention) data transfers from high-
bandwidth peripherals (up to 1.6 Gbit/s aggregated bandwidth
in 2.5 mW). The compute cluster is composed of 8 fully
programmable processors featuring DSP extensions targeting
energy-efficient digital signal processing, delivering up to 800
MMAC/s and up to 15 MMAC/s/mW, sharing a floating-point
unit (FPU) delivering up to 500 MFMAC/s (i.e., 1 GFlop/s)
and up to 9 MFMAC/s/mW, when executing 32-bit fixed-point
and 32-bit floating point matrix multiplication, respectively.
We demonstrated the performance and efficiency of Mr.Wolf
on a wide range of real-life applications belonging to audio,
image and bio-potential processing, showing that it can deliver
performance from 1.1 GOp/s to 16.4 GOp/s with energy
efficiency from 18 MOp/s/mW to 274 MOp/s/mW.

The rest of this paper, extending the short abstract presented
at ESSCIRC 2018 [16], is organized as follows. Section
II introduces the Mr.Wolf SoC architecture, focusing on
its key innovation aspects: autonomous IO, high-bandwidth
L2 memory architecture, parallel computing accelerator, and
power management. Section III describes the implementation
of the SoC in 40nm CMOS technology, and presents the
power/performance figures measured on the silicon prototype.
Section IV presents the benchmarking with a wide set of near-
sensor processing kernels and Section V provides a detailed
comparison with respect to the state of the art. Finally, Section
VI closes the paper with some final remarks.

II. MR.WOLF SOC

Figure 1 provides a top-level view of the Mr.Wolf architec-
ture. It includes two power domains isolated by level-shifters
and dual clock FIFOs to operate into independent voltage and
frequency islands: the SoC and the cluster domains.
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Fig. 1: Mr.Wolf SoC Block Diagram. Arrows indicate master
to slave connections.

A. SoC Subsystem

The SoC domain consists of an MCU built around a 12
kgates, 2-pipeline stages RISC-V processor optimized for low
power consumption (called zero-RISCY), referred to as Fabric
Controller (FC), and 512 kB of L2 memory (Figure 1). The
processor implements the RV32IMC RISC-V ISA [17] and
includes an integer 32-bit sequential multiplier featuring a
latency of 3 cycles and integer 32-bit divider featuring a
latency of 35 cycles. This processor configuration was selected
to optimize the trade-off between power and performance
in control oriented tasks typical of a controller, such as IO
management: it reduces the power consumption by a factor of
2 with respect to the DSP processors available on the cluster
without compromising performance for tasks where scalar 32-
bit arithmetic is needed (e.g. address manipulations, simple
calculations, as used in IO drivers and control code) [18].

The SoC has a full set of peripherals typical of advanced
MCUs: Quad SPI (400 Mbit/s), I2C, 4 I2S (4 × 3 Mbit/s),
a parallel camera interface (400 Mbit/s), UART, 4 channels
PWM interface, GPIOs, and a JTAG interface for debug
purposes. The set of peripherals available on Mr.Wolf, together
with the autonomous IO subsystem described in the following,
enable parallel capture of images, sounds and vibrations,
at high bandwidth and efficiency. The additional HyperBus
peripheral available on Mr.Wolf allows to extend the on-chip
memory by means of a DDR interface featuring 800 Mbit/s
of bandwidth.

Efficient sharing of on-chip memory resources is one of
the key aspects to target high computing efficiency, since
all functional units (CPU, IO peripherals, parallel computing
cluster) share data through the L2 memory, typically exploit-
ing a double-buffering mechanism (i.e., data transfers from
peripherals and L2, and from L2 to L1 memory are completely
overlapped). To this end, in Mr.Wolf, the 512 kB of L2
memory are arranged as four 112 kB word-level interleaved
logical banks (448 kB overall), on top of the two 32 kB private
banks. This approach increases the access bandwidth to L2
memory by 4×, minimizing conflicts during parallel accesses
through the 6 master ports of the L2 memory interconnect
(i.e., the µDMA, the processor and the Cluster domain). Each
logical bank is further split into 8 physical memory banks
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(Figure 3) that can be independently power gated, allowing to
implement an incremental state-retentive mechanism for the
L2 memory. The memory hierarchy of Mr.Wolf is organized
as a single address space: every master in the chip can access
all memory locations, easing the overall programmability of
the system.

Private and low latency accesses are needed for data and
more importantly for instruction accesses coming from the FC.
The FC does not have an instruction cache so when the CPU
is active the bandwidth on the instruction port is 3.2 Gb/s @
100 MHz. Such bandwidth, if directed to the shared memory,
would increase significantly the contention ratio degrading the
performance of both the FC and the other resources sharing
their data through the L2. For this reason, 2 banks of 32 kB that
can be used privately by the FC (e.g., program, stack, private
data) without incurring any banking conflicts, and improving
the performance of the FC by up to 2× during execution of
highly memory-intensive applications.

The connection with the parallel processing cluster consists
of 2 asymmetric AXI plugs featuring a 64-bit width for cluster-
to-memory communication and 32-bit for FC to cluster com-
munication. The bus has been designed in an asymmetric way
to save area, since the only master in the SoC domain (i.e. the
FC) is only able to generate up to 32-bit blocking transactions
(i.e. the FC is not able to generate bursts). Indeed, high-
bandwidth data transfers are handled entirely by the DMA
of the cluster through the 64-bit plug connected to the cluster
AXI bus. Despite the high performance interconnect, the SoC
features a low-cost APB subsystem to access configuration
registers of the different SoC IO peripheral IPs including
pad GPIO and multiplexing control, clock and power control,
timer, µDMA configuration port and PWM controller.

Energy efficient IoT systems require not only efficient pro-
cessing engines but also an efficient I/O subsystem. Mr.Wolf
implements an advanced I/O subsystem in which each periph-
eral has a dedicated lightweight DMA channel (µDMA) that
enables the peripherals themselves to control the data transfer
to/from the L2 memory. The µDMA has 2 dedicated 32-bit
ports on the L2 memory interconnect, granting an aggregated
bandwidth equal to 2×32-bit×SoC clock frequency, sufficient
to satisfy the requirements of parallel transfers from all the
peripherals (up to 1.6 Gbit/s) with a frequency of just 57
MHz, and a power of 2 mW. This architecture, coupled
with the single-cycle latency multi-ported memory structure
described above, guarantees to have a predictable latency to the
memory. Moreover, it allows multiple concurrent data transfers
toward external devices while operating at low frequency
with no need for large buffers attached to the peripherals
(16 bytes/channel are employed in Mr.Wolf). Some of the
peripherals are equipped with an internal transaction engine
that allows them to implement complex I/O transfers with
completely autonomous synchronization between the involved
I/O resources, so that the FC only duty is to setup the
transaction and trigger its start.

B. Parallel Computing Cluster
The cluster, residing on a dedicated voltage and frequency

domain, is turned on and adjusted to the required voltage and
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Fig. 2: Mr.Wolf Parallel Computing Cluster. Arrows indicate
master to slave connections.

frequency when applications running on the FC offload highly
intensive computation tasks.

It contains 8 RISC-V cores supporting the RVC32IMF
instruction set [17], plus an extension targeting energy-efficient
digital signal processing (Xpulp) [19]. Such ISA extension
consists of a first set of instructions, called XpulpV1 that can
be easily inferred by compiler. This set of instructions include
hardware loops to accelerate for statements typical of DSP
kernels, load/store with post increment to accelerate incremen-
tal accesses to vectors and tensors, Multiply And Accumulate
(MAC). A second set of extensions, called Xpulpv2 can be
typically exploited inferring built-in intrinsic functions in the
code, and include Single Instruction Multiple Data (SIMD)
vectorial instructions such as parallel arithmetic operations
on 16-bit and 8-bit data, bit manipulation instructions useful
to accelerate computations of emerging applications such as
binary neural networks (BNN) [20], and support for fixed-
point arithmetic such as saturation and clipping. These exten-
sions improve performance and energy efficiency of compute
intensive kernels by up to 11×, if compared to a baseline
RVC32IMF ISA (Figure 10).

The cluster is served by a 64 kB multi-banked L1 scratch-
pad memory called Tightly Coupled Data Memory (TCDM),
composed of 16 4 kB SRAM banks, enabling shared-memory
parallel programming models such as OpenMP [21]. The
L1 memory can serve all memory requests in parallel with
single-cycle access latency, thanks to a low-latency logarithmic
interconnect featuring a word-level interleaving scheme with
round-robin arbitration resulting into a low average contention
rate (<10% even on data intensive kernels). A dedicated
peripheral interconnect is used to access the cluster peripherals
such as a timer and the event unit, as well as the AXI-4 bus.
Data movements from L1 memory and to L2 memory are
explicitly managed by software through a lightweight DMA
controller supporting 2D addressing capabilities and up to
16 outstanding transactions toward the AXI-4 bus to hide
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TABLE I: Summary of Shared FPU Features

Unit Latency Pipelined/Iterative # Of Shared Units
ADD 2 Pipelined 1
SUB 2 Pipelined 1
MUL 2 Pipelined 1
MAC 3 Pipelined 2
DIV 4 Iterative 1

SQRT 6 Iterative 1
CAST 2 Pipelined 1

access latency of the L2 memory. This approach has significant
smaller overhead with respect to an L1 data cache, and allows
to completely overlap data transfers and computation phases
by means of double-buffering.

The cluster program cache is implemented using latch-
based memory to improve the access energy (by up to 4×
for instruction memory [22]) of this high-bandwidth memory
(25 Gbit/s at 100 MHz when all cores are active) with respect
to traditional SRAM-based implementation. However, using
latches instead of SRAMs comes at the cost of significant
area overhead [22]. To reduce this overhead, taking advantage
of the data-parallel computational model typical employed in
the cluster, the instruction cache is shared among the cores,
avoiding instruction replication on the private caches typically
employed in traditional multi-core systems [23]. To ease the
physical implementation of the latch-based memories, and
reducing routing congestion, the 4 kB instruction cache is split
into 4 arrays. Each array has a single write port connected
to the AXI-bus, used for refills, and 8 read ports connected
to the prefetch buffers of the RI5CY cores. This multi-port
architecture allows the cores to have a non-blocking access
to the cache with the same performances as a private cache.
Moreover, refills are handled by a global controller so that if
all cores are generating a miss accessing the same location
only one request is propagated to the L2 memory, reducing
the pressure on the L2 memory. This approach couples the
bandwidth (performance) benefits of private caches with the
energy benefits of the latch-based implementation, mitigating
the area overhead by means of sharing, improving energy
efficiency by up to 1.5× with respect to an area-equivalent
cluster architecture featuring a traditional SRAM-based private
instruction cache.

Reducing parallelization overhead is one of the key elements
for improving energy efficiency of computing systems relying
on data-parallel computational models such as OpenMP [21],
especially when dealing with applications characterized by
unbalanced workloads and small parallel regions. Traditional
parallel computing systems rely on software synchroniza-
tion mechanisms (such as test-and-set) implemented through
atomic instructions in dedicated memory regions. In Mr.Wolf,
on top of the traditional software support, fast event man-
agement, parallel thread dispatching, and synchronization are
supported by a dedicated hardware block (Event Unit) enabling
low-overhead fine-grained parallelism to boost performance
and energy efficiency of fine-grained parallel workloads. The
processors can wait on generic events just performing a load
operation on a register of the event unit mapped on a single-
cycle aliased region accessed through the demuxes.

The Event Unit block also controls the top-level clock gating
of every single core in the cluster, hence a core waiting for
an event (attached to a synchronization barrier or general
event) is instantly brought into a fully clock gated state,
zeroing its dynamic power consumption, and resumes the
execution after the event in 2 clock cycles. When all the
processors reach the synchronization of the barrier, or the event
is triggered, the event unit releases the clock gating of the
processors that can resume the program flow. With respect
to a traditional synchronization mechanism implemented with
test-and-set instructions, the Event Unit reduces the latency
and energy cost by up to 15× for barriers and by up to 1.5×
for mutex, leading to a cluster-level speed-up (and energy)
improvements up to 2×, during execution of applications
with unbalanced workloads and small parallel regions such as
Dijkstra, DWT, FFT, with respect to the execution of the same
kernels with software barriers. To enable fast, non-blocking
accesses, both the event unit and the DMA have dedicated
ports to each CPU. The connection is made through a 2-level
demuxing logic implemented close to the data port of the core.
This design choice guarantees to prioritize access to timing
critical low-latency interconnect over peripherals.

Floating-point capable processors are desirable in many
deeply embedded applications [24], especially those dealing
with processing of bio-potentials, often leveraging linear alge-
bra algorithms featuring extremely high dynamic range [25],
but also in other fields such as audio and robotics [26].
Even when floating-point applications can be transformed into
fixed-point, this is not necessarily the best solution energy-
wise, since the additional instructions required to deal with
dynamic range of variables might incur significant overhead
[27]. However, since FPUs are expensive in terms of area (the
area of a full FPU is almost the same as the RI5CY core)
their overhead needs to be minimized at system level to deal
with tight cost requirements of IoT end-nodes. To address this
challenge, the cluster implements a sharing approach for FPUs
motivated by the following observations: (i) FPUs needs to be
pipelined to match the frequency of the rest of the system,
featuring a latency of at least 2 cycles (Table I), and (ii) the
density of floating-point operations in applications is rarely
larger than 50% because of load/store instructions needed to
access the data, as highlighted in Table VI.

The FPU and 2 floating-point multiply and accumulate units
(FMACs) are shared among the 8 processors of the cluster.
The FPU implements common floating-point operations sum-
marized in Table I. The FPU and FMACs are integrated in
the cluster through an Auxiliary Processing Units interconnect
(APU), featuring a request/grant protocol with round-robin
arbitration as in the TCDM interconnect, and communicating
with the execute pipeline stage of the processor. Following this
approach, each processor can transparently access each unit of
the shared FPU, being stalled whenever the shared resource is
used by another processor.

C. Power Management

To maximize energy efficiency while minimizing the num-
ber of external components, the SoC contains a dual mode
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TABLE II: Mr.Wolf Power Modes.

Power Mode VDD [V] Frequency Power
Deep Sleep∗ 0.8 n.a. 72 µW

Ret. Deep Sleep∗ 0.8 n.a. 76.5 – 108 µW
SoC Idle 0.8 – 1.1 SoC clock gated 0.55 – 1.96 mW

SoC Active 0.8 – 1.1 32 kHz – 450 MHz 0.97 – 38 mW
Cluster Idle† 0.8 – 1.1 Cluster clock gated 1.2 – 4.6 mW

Cluster Active‡ 0.8 – 1.1 32 kHz – 350 MHz 1.6 – 153 mW
∗From VBAT; †SoC must be active or idle; ‡SoC must be active;

voltage regulator composed of an internal DC/DC converter
for active modes associated with a micro low-dropout regulator
(uLDO) for low power modes, as shown in Figure 3. The
internal DC/DC converter can be directly connected to an
external battery. It can deliver voltages in the range of 0.8
V to 1.1 V when the circuit is active with an efficiency
of 70% for very low loads (< 500 µW) and up to 95%
for medium and high loads (2-150 mW). When the circuit
is in sleep mode this regulator is turned off and the uLDO
regulator is used to power the real-time clock, fed by an off-
chip 32 kHz crystal oscillator, which controls programmed
wake-up and, optionally, part of the L2 memory allowing
retention of application state for fast wake-up. In this way,
the quiescent current of the voltage regulators is reduced to
290 nA. The wake-up is controlled by an embedded power
manager that, depending on the system state, reboots the SoC
from external memory (QSPI or HyperRAM) or from the L2
memory, supervising the power state transitions of the different
domains.

Eight ultra-low leakage SRAM banks can be independently
power gated, allowing to implement an incremental state-
retentive mechanism for the L2 memory, where the leakage
power of the memory arrays is incurred only for the memory
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banks that are actually being used by the applications. When in
deep sleep the current consumption is reduced to 72 µW (from
VBAT) assuming the RTC is active and no data retention,
and up to 108 µW assuming full L2 retention. The two main
domains have their own separate clocks, generated by two
Frequency-Locked Loops (FLL) placed on the SoC domain.
Special attention has been paid to the time needed to turn on
and turn off the cluster. The typical turn-around time from
FC idle to cluster active is always below 300 µs allowing
for agile power state transitions. Table II shows the power
modes of Mr.Wolf, together with maximum frequency and
power consumption.

Unlike other power modes the Cluster Idle power mode
is automatically activated in hardware. Figure 4 shows an
overview of the clock domains used in Mr.Wolf and how
the hardware clock gating in the cluster works. Each IP in
the cluster provides a busy signal to a central clock gating
unit notifying the presence of pending transactions. When
all resources are not busy and no transactions are in flight
on the interconnect the clock is gated at the source of the
clock tree completely cutting the dynamic power of the cluster.
The circuit is then reactivated in a single clock cycle when a
transaction or an event arrives at the boundary of the cluster.

III. MR.WOLF CHIP

A. Implementation

Figure 6 shows a die photograph and the floorplan of the
Mr.Wolf SoC. The SoC was implemented in TSMC 40nm
CMOS LP technology. It was synthesized with Synopsys De-
sign Compiler 2016.12, while Place & Route was performed
with Cadence Innovus 16.10. The two main power domains of
the chip (SoC and Cluster domains) are highlighted in Figure
6 with dashed lines, while the Power On Reset (POR) and
DC/DC converter have been placed in the third, always-on
power domain. Both SoC and Power Domains are switchable.
The power switches residing in the two domains are supplied
by the DC/DC and controlled digitally by the power manager
placed in the always-on domain to selectively turn on each
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Fig. 5: Mr.Wolf SoC Layout.

TABLE III: Mr.Wolf SoC features.

Technology CMOS 40nm LP
Chip Area 10mm2

Memory Transistors 576 kB
Equivalent Gates (NAND2) 1.8 Mgates

Voltage Range 0.8 V – 1.1 V
Frequency Range 32 kHz – 450 MHz

Power Range 72 µW – 153mW

domain. The output of the power switches is then connected
to the rails powering the cells and memories of each domain.

In order to enable selective retention mode for each of
the L2 memory banks highlighted in Figure 6, a power ring
supplied by the always-on VDD (0.8 V) was placed around
each bank, and few additional power switches were placed
inside each sub-domain to selectively supply the array of the
SRAM banks when the SoC domain is off. This selective state-
retention mode has an area overhead of approximately 2% of
the overall chip area. The two FLLs and the bootup ROM
reside in the SoC domain as well.

Table III summarizes the main features of Mr.Wolf SoC.
The die size is 10 mm2, integrating 1.8 million of equivalent
logic gates (minimum sized NAND2) and 576 kB of memory,
featuring a voltage range of 0.8 V – 1.1 V, an operating
frequency ranging from 32 kHz and 450 MHz, while the power
consumption ranges from 72 µW and 153 mW.

Table IV highlights the main contributions to the overall
chip area. The three largest components of the SoC are the L2
memory subsystem (i.e., 512 kB of multi-banked L2 memory
+ SoC interconnect), the DC/DC and Power-On Reset (POR),
and the cluster, while the combined contribution of the IO
and FC subsystems is smaller than 4%. Within the compute
cluster (Table V), 27% of the area is used by the 8 RI5CY
processors, while 16.3% of the area is occupied by the 16 port

Fig. 6: Mr.Wolf. SoC Micrograph and Floorplan Description.

TABLE IV: Mr.Wolf SoC Area Breakdown.

Instance Area [µm2] Percentage [%]
Pad Frame 1516800 15,17

DC/DC 991900 9,92
PorBor 119600 1,20

SoC Domain 3240900 32,41
Safe Domain 1169259 11,69

Cluster Domain 2961541 29,62

TABLE V: Mr.Wolf Cluster Area Breakdown.

Instance Area [µm2] Percentage [%]
Cores 400000 26,9

TCDM 242508 16,3
Interconnect 41501 2,8

Bus AXI 37952 2,6
I$ 579239 38,9

DMA 81381 5,5
Event Unit 41318 2,8

FPU 63575 4,3

64 kB multi-banked TCDM, implemented by 16 1024x32-bit
SRAM banks. A relevant amount of the cluster area (38.9%) is
used by the 4 kB shared instruction cache, implemented with a
standard cell based (i.e., latches) approach. Although the latch
based implementation features a significant area overhead with
respect to more traditional approaches based on SRAMs, it
provides major energy savings [22], which is one of the main
reasons for the significantly higher energy efficiency of the
cluster with respect to the fabric controller, as discussed in
Section III-B. The floating-point units occupies only 4.3% of
the area, thanks to the sharing approach adopted in the cluster
architecture, saving significant area with respect to a private
FPU approach for which 30% area overhead would be needed.
Finally, the remaining area is used by smaller blocks such as
DMA, event unit, and by the interconnect.
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Fig. 7: Mr.Wolf Performance when executing an integer matrix
multiplication on the FC and on the Cluster, and a floating-
point matrix multiplication on the Cluster.

B. Performance and Energy Efficiency

Figure 7 shows the SoC performance measured on the
silicon prototype running a typical high-utilization workload
(matrix multiplication), while Figure 8 shows the related
energy efficiency. The first two curves (blue and red) show
the FC and cluster performance when executing an integer
matrix multiplication. It is possible to note that similarly to
other low power MCUs [3][28], based on tiny processors
optimized for low-power control tasks, the FC can achieve
a peak performance of 25 MMAC/s at 450 MHz, 1.1 V, and
a peak efficiency of 1.5 MMAC/s/mW @ 150 MHz, 0.8 V.
The differentiating factor and the power of Mr.Wolf stands on
the possibility to power-on the parallel processing cluster and
offload compute intensive tasks with significant performance
and efficiency. Thanks to the instruction set extensions, the
optimized pipeline of the 8 RI5CY processors, and most
importantly to the efficient memory sharing through the L1
data memory and instruction cache, the cluster can execute 2.5
MAC/cycle on 8 cores. This execution efficiency leads to the
peak performance of 850 MMAC/s at 350 MHz, 1.1 V and
a peak energy efficiency of 15 MMAC/s/mW at 110 MHz,
0.8 V, improving DSP performance and energy efficiency
with respect to the FC by 35× and 12×, respectively. The
third curve (green) shows the performance and efficiency
of the cluster when executing a FP matrix multiplication,
expressed as MFMAC/s and MFMAC/s/mW, respectively. It
is interesting to note that even if the FMAC units are shared,
and despite their 2 pipeline stages (required to reach the target
frequency) the architectural efficiency is 1.57 FMAC/cycle,
leading to a peak performance of 500 MFMAC/s - 1 GFlop/s
- and a peak energy efficiency of 9 MFMAC/s/mW.

C. IO Performance

Figure 9 shows in the lower 2 curves the measurements of
power consumption of the SoC subsystem for different I/O
input bandwidths with and without 50 millions of operations
per second (MOp/s) of load on the FC. The system can sustain
800 MBit/s operating at as low as 28.5 MHz and consuming
1.21 mW when only I/O to memory transfer is involved and
work at 62.5 MHz and consume 2.7 mW when executing
a kernel on the CPU at 50 MOp/s in parallel to the I/O
transfer. The other curves in the graph show an estimate of the

Fig. 8: Mr.Wolf Energy Efficiency when executing an integer
matrix multiplication on the FC and on the Cluster, and a
floating-point matrix multiplication on the Cluster.

Fig. 9: Mr.Wolf IO Subsystem Efficiency.

consumption of more traditional system with CPU, memory
and DMA sharing the same system bus. When DMA is used,
performance is deeply affected by the buffer size.

The two extremes are shown in the graph, a small buffer of
32 B, and a hypothetical system with 1 kB buffer dedicated
to each single peripheral. The proposed solution shows an
improvement of up to 4.5× in power consumption when oper-
ating at high bandwidth (800 MBit/s) compared to a traditional
DMA solution with a small 32 B/peripheral buffer. Moreover,
even when very big buffers are employed in traditional ar-
chitectures, the µDMA is still 1.2× more efficient for three
reasons: (i) traditional architectures are required to use higher
frequency to compensate for contention with the processor on
the system memory (ii) tightly coupled integration with the L2
memory enable the use of smaller (and more energy efficient)
buffers, and (iii) in traditional architectures the whole system
interconnect is active during I/O transfers (e.g. AHB matrix).

In Figure 9 CPU polling is presented as a reference and
to highlight that in a traditional DMA-based solution, the
buffering resources at the peripherals have to be big enough
to hide the overhead of the DMA interrupt service routine
and DMA programming. Moreover, in a traditional system,
buffering has to be allocated at design time and cannot be
dynamically allocated as in our solution.
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TABLE VI: Main features and results of applications used for benchmarking Mr.Wolf SoC.

Application Domain Precision Code size F.P. Density IPC TCDM Stalls LD-use Stalls I$ Stalls Performanceab Efficiencyac

[bytes] [%] [%] [%] [%] [GOp/s] [MOp/s/mW]

PCA ExG 32-bit F.P. 3180 18 5.4 0.4 0.0 0.5 1.7 20
32-bit Int. 6832 – 5.6 0.0 0.4 0.1 1.8 30

FFT Audio, Image, ExG 32-bit F.P. 2832 33 4.7 0.9 0.1 0.5 1.6 26
32-bit Int. 4438 – 7.1 2.6 0.2 0.6 2.2 36

DWT Audio, Image, ExG 32-bit F.P. 698 8 5.4 2.9 2.9 0.3 1.9 31
32-bit Int. 1274 – 5.2 2.2 1.7 0.7 2.0 33

FIR Audio, ExG 32-bit F.P. 490 19 7.0 1.2 0.0 0.2 3.7 62
32-bit Int. 502 – 8.0 0.0 0.0 0.2 3.8 64

SVM ExG 32-bit F.P. 1288 16 6.1 0.6 0.0 0.6 1.1 18
32-bit Int. 1448 – 5.2 0.5 0.0 0.5 1.3 21

MatMul Audio, Image, ExG
32-bit F.P. 1618 25 6.1 2.1 0.0 0.1 2.9 49
32-bit Int. 1630 – 7.2 1.0 7.0 0.2 4.6 76
16-bit Int. 704 – 7.5 2.1 1.8 0.4 9.9 164
8-bit Int. 596 – 6.8 6.9 2.9 0.8 16.4 274

5x5 Conv Audio, Image, ExG
32-bit F.P. 746 36 4.7 0.9 0.0 0.1 1.7 28
32-bit Int. 588 – 7.0 7.0 5.5 0.2 3.7 62
16-bit Int. 764 – 6.3 1.2 0.0 0.3 7.2 120
8-bit Int. 500 – 5.6 0.6 0.1 0.6 12.2 203

CNN Layer Image
32-bit Int. 778 – 7.5 3.4 0.0 0.1 3.2 53
16-bit Int. 1072 – 5.6 1.5 0.0 0.3 6.0 99
8-bit Int. 842 – 5.0 1.0 0.0 0.4 10.0 167

HD [29] ExG binary 3326 – 7.1 0.6 0.8 0.2 7.7 129

BNN [20] Audio, Image binary 4204 – 7.1 0.3 2.8 2.4 5.8 97
a Equivalent RV32IMC and RV32IMFC operation are reported for fixed-point and floating-point applications, respectively.
b Performance at 350 MHz, 1.1V is reported.
c Efficiency at 110 MHz, 0.8V is reported.
d Includes code size of the kernels. Calls to external libraries (e.g. math standard functions) are not included.

IV. MR.WOLF BENCHMARKING

This section presents an extensive architectural evaluation
of the Mr.Wolf SoC, when executing parallel kernels be-
longing to different near-sensor processing application fields
(audio processing, image processing, bio-potentials). The set
of kernels selected for benchmarking, presented in Table VI
forms the building blocks of several real life applications
such as EMG-based gesture recognition [29], seizure detection
[30], object detection [20], and many others, being the ones
where most of the time (and energy) is typically spent in
the considered applications. The selected set of kernels is
highly heterogeneous (i.e. we did not choose variations of
the same basic pattern) to emphasize the flexibility of the
architecture. To evaluate the performance of Mr.Wolf, the
kernels were executed in isolation to assess the capability of
the system to deal with arithmetic operations with different
operands bit-width and precision: floating-point, 32-bit, 16-bit
and 8-bit fixed point, and bit-wise. All the benchmarks were
compiled with a version of GCC 7.1 enhanced to support
Xpulp extensions (discussed in Section II), and parallelized
with a runtime library optimized for PULP architectures.

All the benchmarks were executed on an evaluation board
hosting a prototype of Mr.Wolf connected to a PC through a
JTAG adapter for loading binaries to the L2 memory. Table VI
summarizes the benchmark set and their relevant features such
as precision, code size, and floating-point density (i.e., number
of floating-point instructions vs. the overall number of instruc-
tions executed by the processors). Moreover Table VI reports
the main results of their implementation and optimization in
Mr.Wolf, namely: (i) the IPC on the 8-core cluster (referred
to the RV32IMFCXpulp instructions actually executed by the
cores), (ii) the % of stalls extracted from the performance

counters available on the RI5CY processors, and (iii) the
performance and energy efficiency, normalized to equivalent
RV32IMC operations. For fair comparison with respect to
a sequential implementation, the overhead of the parallel
runtime (e.g., additional instructions for thread dispatching
and synchronization) is taken into account during the parallel
execution, but not during the normalization with respect to the
equivalent RV32IMC operations used to derive performance
and efficiency.

Figure 10 reports the benchmarking of fixed-point kernels
highlighting the performance boost when moving the exe-
cution from the fabric controller of Mr.Wolf (i.e. a zero-
RISCY processor) to the cluster (single-core execution on a
RISCY processor), and when exploiting the Xpulp extensions.
A detailed description of the instruction set extensions of
RI5CY core can be found in [19]. It is possible to note
that the performance increases from 1.1× to 1.9× when
moving from zero-RISCY to RI5CY, due to the pipeline
optimized for energy efficient digital signal processing fea-
turing single-cycle multiplication and load/store operations. A
further performance boost can be noted when enabling the
Xpulp extensions on the RI5CY processor. While some of the
extensions are general-purpose and are automatically inferred
by the compiler enabling the related flags (XpulpV1), some
of the benchmarks have been optimized through the usage
of intrinsic functions (a.k.a. built-in functions) in the source
code of the applications to better exploit the capabilities of
the underlying hardware (Xpulpv2). This effect can be noted
in Figure 10 when analyzing applications featuring smaller
than 32-bit precision such as MatMul, 5x5 Conv and CNN
Layer, exploiting the vectorial capabilities of the processor
able to execute 2 16-bit operation and 4 8-bit operation in
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Fig. 10: Benchmarking of zero-RISCY and RI5CY processors,
and benefit of XpulpV1 and XpulpV2 extensions on a set of
fixed-point near-sensor processing kernels.

parallel. When exploiting compiler optimization the speed-up
with respect to zero-RISCY ranges from 2.3× to 3.9×, which
is further boosted when exploiting manual optimization with
intrinsic functions, leading to speed-ups ranging from 4.4× to
11.7×. Applications leveraging bit-manipulation instructions
such as bit-insert, bit-extract and pop-count also significantly
benefit from the exploitation of intrinsic functions, featuring
a speed-up up to 3.5× with respect to the execution on zero-
RISCY leveraging shift and mask operation to handle bitwise
computations.

Figure 11 shows the performance boost achieved by the
cluster when executing the fixed-point benchmarks on 2, 4
and 8 cores, where benchmarks are sorted from the lowest
to the highest speed-up. The overlying hollow bars depict
the Amdahl’s limit of each application, that is the maximum
speed-up theoretically achievable by the parallel execution.
Table VI shows other relevant information related to the 8-
parallel core implementation, such as the number of stalls
due to contention in TCDM, the number of load-use stalls,
the number of I$ stalls, and the number of Instruction Per
Cycles (IPC) delivered by the cluster. It is possible to note
that most highly-parallel applications (i.e., featuring Amdahl’s
limit close to 2, 4 and 8) feature almost linear speeds-up. In
general, the performance drop with respect to the ideal speed-
up is smaller than 15% even for applications featuring very
small parallel regions and frequent synchronization barriers,
such as FFT, and highly unbalanced workloads such as PCA.
This is achieved mainly thanks to the efficient data sharing
implemented by the TCDM interconnect, that keeps the worst-
case access contention to the shared memory banks to 7% even
on an extremely LD/ST intensive workload such as 32-bit 5x5
convolution (5x5 Conv 32-bit), the 4 kB shared instruction
cache architecture which perfectly fits the program memory
footprint of near-sensor processing applications, allowing to
keep the stalls related to instruction fetch below 1% also for
large applications (such as PCA and BNN, as reported by the
code size in Table VI), and the efficient hardware-assisted syn-
chronization mechanism discussed in Section II. The overall
performance of the cluster, normalized to equivalent RV32IMC
operations, ranges between 1.1 GOp/s more and 16.4 GOp/s;
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Fig. 12: Floating-point efficiency compared to the fixed-point
version of the benchmarks.

the higher values are achieved when the 8-bit SIMD extensions
can be fully exploited on highly parallel workload such as
MatMul, 5x5 Conv or CNN Layer.

Figure 12 shows the reduction of performance due to the
sharing of floating-point units when increasing the number
of cores from 1 to 8. The floating-point efficiency is highly
related to the floating-point operations density (i.e., the number
of floating-point operations normalized to the total number of
executed operations), as summarized in Table VI. Applications
featuring floating-point densities below 20% feature a high
floating-point efficiency (above 90%) even when running on 8
cores. Applications with higher density of floating-point opera-
tions feature high efficiency despite a floating-point efficiency
down to 0.8%, with the exceptions of FFT and 5x5 Conv,
featuring extremely high floating-point density (33% and 36%,
respectively).

This results confirms the benefits of the sharing approach,
providing floating-point capabilities to the parallel processing
cluster with significant smaller overhead than a private FPU
approach, and leading to a performance overhead smaller
than 20% for most of the applications. Overall, the floating-
point performance of Mr.Wolf ranges between 1.1 GOp/s to
2.9 GOp/s, considering operations normalized to equivalent
RV32IMFC instructions, as summarized in Table VI.
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TABLE VII: Comparison between Mr.Wolf and other embedded SoCs representative of the state-of-the-art in Low-Power
MCUs, wide performance range DSPs and Parallel Ultra-Low-Power architectures.

Tech. ISA # of
Cores I$/D$/L2 Sleep

Power
VDD
Range

Max
Freq.

Peak Int.
Perf.a

Peak Int.
Eff.

Peak F.P.
Perf.

Peak F.P.
Eff.

[kB] [µW] [V] [MHz] [MOp/s] [MOp/s/mW] [MFlop/s] [MFlop/s/mW]

M
C

U
s

SleepWalker [3] 65nm 16-bit
MSP430 1 16/2/n.a. 1.5 st.ret. 0.4 25 25 81.5d - -

Myers et.al. [1] 65nm 32-bit
Cortex-M0+ 1 n.a./n.a./24 0.08 st.ret. 0.2–1.2 66 66 85 - -

REISC [28] 55nm 32-bit 1 8/8/n.a. n.a. 0.54–1.2 82.5 82.5 98 - -

D
SP

s

Hexagon [31] 28nm 32-bit VLIW 1 16/32/256 n.a. 0.6–1.05 1200 3690b 53b - -

FRISBEE [32] 28nm 32-bit 1 4/4/n.a. n.a. 0.4–1.3 2600 2600 16.1 - -

RISC-V VP [33] 28nm RV64IMFC 1 n.a./n.a./n.a. n.a. 0.45–1 961 961 68d 1900e 68d

P
U

LP
So

C
s PULPv2 [15] 28nm OR32 4 4/48/64 200 0.32–1.15 825 3300 193 - -

FULMINE [13] 65nm OR32 Xpulp 4 4/64/192 120 0.8–1.1 400 4200c 69 - -

GAP-8 [12] 55nm RV32IMC
Xpulp 1+8 4/64/512 3.6–30

st.ret. 1–1.2 250 3500c 50 - -

Mr.Wolf (This Work) 40nm RV32IMFC
Xpulp 1+8 4/64/512 72–108

st.ret. 0.8–1.1 450 7000c 120 1000e 18
a Equivalent RVC32IM operations.
b An Efficiency of 80% is considered as upper bound for a 4-lanes VLIW, equivalent to an IPC of 3.2 [34].
c Considers performance ratio between execution with and without Xpulp extensions in ideal conditions (i.e. no stalls). 16-bit and 8-bit SIMD operations are not considered.
d Power density is normalized to 32-bit operations.
e Considering 1 MAC = 2 ops where MOp/s are reported, when executing a matrix multiplication.

V. COMPARISON WITH STATE OF THE ART

Table VII shows a comparison with the devices defining the
boundaries of the Mr.Wolf design space: low-power micro-
controllers [3][1][28], wide performance range digital signal
processors (DSPs) [31][32][33], and Parallel-Ultra-Low-Power
architectures [15][13][12]. Performance of existing architec-
tures are normalized to equivalent RV32IMC instructions.
Since for most architectures IPC is not reported, we have
considered one instruction per cycle (IPC=1), and applied a
2.5× factor to FULMINE, GAP-8 and Mr.Wolf MOp/s to take
into account the performance boost of Xpulp extensions on
near-sensor processing applications (Table VI).

With respect to tiny micro-controllers such as SleepWalker
and REISC, Mr.Wolf delivers orders of magnitude better
peak performance, and also 1.5× better energy efficiency,
despite the implementation strategy of these MCUs is highly
optimized to operate at very low voltage (i.e., down to 0.4 V).
Indeed, similarly to the one of the zero-RISCY core, the micro-
architecture of these processors is not optimized for energy
efficient digital signal processing. Moreover, the architectures
of these SoCs are designed with extremely simplified memory
hierarchy (i.e., instruction and data memory of few kB)
which consume significant less power than Mr.Wolf, but pose
severe limitations during execution of complex near-sensor
data analytic applications. The superior energy efficiency of
the Mr.Wolf cluster is determined by the optimized micro-
architecture of the core (including DSP extensions), coupled
with the architectural features of the cluster, namely: (i) the
efficient data memory banks sharing, (ii) latch based shared
instruction cache, and (iii) efficient hardware synchronization
management. All these features allow to achieve almost linear
speed-ups for parallel execution of several applications (Table
VI), with negligible power overhead, boosting the energy
efficiency of the Mr.Wolf cluster. For instance, [28] reports an
IPC of 0.63 for FFT and FIR (single core), while the Mr.Wolf
cluster delivers 0.88 and 1 per core, respectively. The speed-up

of the Mr. Wolf cluster with respect to basic RISC ISAs such
as [28] jumps to 1.5× and 3× per core when considering
XpulpV1 extensions of RI5CY, up to 10× per core when
exploiting the full XpulpV2 extensions, which include SIMD
16-bit, 8-bit instructions and bit-manipulation extensions (Ta-
ble VI). Finally, for a given performance target (MOp/s),
exploiting parallelism allows to achieve the same performance
at a lower supply voltage, improving energy efficiency with
respect to sequential execution. Similar considerations can be
done for [1] and [3], leveraging ARM Cortex M0+ and 16-bit
MSP430 ISAs, respectively.

Mr.Wolf also surpasses the performance of all existing
wide-range DSPs (by more than 2×) with significant energy
efficiency margin (more than 1.8×), when considering 32-
bit operations (Table VII). Both performance and efficiency
can be further increased on Mr.Wolf when exploiting SIMD
instructions available on the Xpulp extensions not available in
other cores, leading to a performance and efficiency boost of
1.9× to 2.1×, and 3.2× to 3.5×, when operating on 16-bit
and 8-bit data, respectively (Table VI). The RISC-V vector
processor [33] performs with 3.7× better energy efficiency
than Mr.Wolf on floating-point workloads (normalized to 32-
bit floating-point operations for fair comparison) [33], thanks
to the more scaled technology node (28nm FD-SOI) that
allows to operate at high frequency down to 0.45 V, and the
architecture highly specialized for floating-point computations.
However the fixed-point performance and efficiency of the
scalar RISC-V processor is significantly smaller, especially
when enabling the SIMD extensions for smaller than 32-bit
operations on Mr.Wolf. Finally, none of the described mobile
processors feature state-retentive deep-sleep modes to enable
duty cycled operations for IoT applications.

Exploiting the heterogeneous architecture which couples
the IO efficiency and state-retentive deep-sleep capabilities
of the SoC domain with the powerful and energy-efficient
8-processors cluster, Mr.Wolf represent a significant advance
in the state of the art of parallel ultra low power (PULP)
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processors. The efficiency of Mr.Wolf is surpassed only by
PULPv2 (even though PULPv2 does not support the Xpulp
ISA extensions) due to a more scaled technology used for
implementation (28nm FD-SOI vs. CMOS 40nm LP). How-
ever PULPv2 is lacking internal power management circuits
(i.e., DC/DC, LDO, power gating), significantly decreasing the
system-level efficiency for duty-cycled applications. Although
low power processors such as Sleepwalker [3] feature a better
deep sleep power, GAP-8 and Mr.Wolf have the capability to
store in a full retentive way up to 512 kB of data (instead
of few kB). However, while GAP-8 is more specialized for
Convolutional Neural Network (CNN) workloads, featuring
a dedicated accelerator, Mr.Wolf is 2.4× more efficient on
fixed-point workloads, and more general-purpose thanks to the
presence of the shared floating-point units.

Finally, thanks to its autonomous IO subsystem and the hier-
archical and energy-proportional architecture, Mr.Wolf allows
to periodically wake-up the SoC only to efficiently transfer
sensor data to L2 with the µDMA, accumulate data on the
state-retentive L2 memory (enabling retention only on used
banks to minimize sleep power), and activating the cluster
when enough data has been acquired for energy-efficient
(floating-point) digital signal processing, paving the way for
always-on data analytics of high-bandwidth sensors data at the
edge of the Internet of Things.

VI. CONCLUSION

We presented Mr.Wolf, a SoC for edge IoT applications
coupling a state of the art micro-controller (MCU) featur-
ing an advanced IO subsystem for efficient data acquisition
from high-bandwidth sensors, with an 8-cores floating-point
capable computing cluster. The proposed SoC, implemented
in a commercial 40nm technology, features a 108 µW fully
retentive memory (512 kB), an efficient IO subsystem capable
to transfer up to 1.6 Gbit/s in less than 2.5 mW, and an 8-
core compute cluster achieving a peak performance of 850
MMAC/s and 500 MFMAC/s (1 GFlop/s) and an energy
efficiency up to 15 MMAC/s/mW (and 9 MFMAC/s/mW).
We demonstrated that Mr.Wolf SoC allows to perform par-
allel floating-point digital signal processing within a power
envelope smaller than high-performance microcontroller. We
demonstrated the capabilities of the proposed SoC on real-life
near-sensor processing applications, showing that Mr.Wolf can
deliver performance up to 16.4 GOp/s with energy efficiency
up to 274 MOp/s/mW.

VII. ACKNOWLEDGMENTS

This work was supported in part by the Swiss National
Science Foundation under Grant 162524 (MicroLearn: Mi-
cropower Deep Learning) and the OPRECOMP (Open trans-
PREcision COMPuting) project founded from the European
Union’s Horizon 2020 research and innovation program under
Grant Agreement No. 732631. We thank Dolphin Integration
for providing the Retention Alternating Regulator (RAR).

REFERENCES

[1] J. Myers, A. Savanth, R. Gaddh, D. Howard, P. Prabhat, and D. Flynn,
“A Subthreshold ARM Cortex-M0+ Subsystem in 65 nm CMOS for
WSN Applications with 14 Power Domains, 10T SRAM, and Integrated
Voltage Regulator,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1,
pp. 31–44, Jan 2016.
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M. Blagojević, P. Chiu, H. Le, P. Chen, N. Sutardja, R. Avizienis, A. Wa-
terman, B. Richards, P. Flatresse, E. Alon, K. Asanović, and B. Nikolić,
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