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Abstract

Pivot tables are one of the most popular tools for data visualization in both
business and research applications. Although they are in general easy to
use, their comprehensibility becomes progressively lower when the quantity
of cells to be visualized increases (i.e., information flooding problem). Pivot
tables are largely adopted in OLAP, the main approach to multidimensional
data analysis. To cope with the information flooding problem in OLAP,
the shrink operation enables users to balance the size of query results with
their approximation, exploiting the presence of multidimensional hierarchies.
The only implementation of the shrink operator proposed in the literature
is based on a greedy heuristic that, in many cases, is far from reaching a
desired level of effectiveness.

In this paper we propose a model for optimizing the implementation of
the shrink operation which considers two possible problem types. The first
type minimizes the loss of precision ensuring that the resulting data do not
exceed the maximum allowed size. The second one minimizes the size of
the resulting data ensuring that the loss of precision does not exceed a given
maximum value. We model both problems as set partitioning problems with
a side constraint. To solve the models we propose a dual ascent procedure
based on a Lagrangian pricing approach, a Lagrangian heuristic, and an
exact method. Experimental results show the effectiveness of the proposed
approaches, that is compared with both the original greedy heuristic and a

commercial general-purpose MIP solver.

Keywords: OLAP, Integer Linear Programming, Set Partitioning,

Lagrangian Relaxation, Pricing

*Corresponding author, marco.boschetti@unibo.it

Preprint submitted to Elsevier March 4, 2019



1. Introduction

Pivot tables are one of the most popular and powerful tools for data
visualization in both business and research applications. Although they are
in general easy to use, their comprehensibility becomes progressively lower
when the quantity of cells to be visualized increases. Human operators have
difficulties in understanding issues and effectively making decisions when
they have too much information. This problem is known as information
flooding and it can be solved by properly tuning the quantity of data to be
visualized.

Pivot tables have been widely adopted in Business Intelligence (BI) sys-
tems, becoming the primary mode of viewing On-Line Analytical Processing
(OLAP) data. In the context of BI data are mainly modeled using a multidi-
mensional paradigm. Figure 1 shows a multidimensional cube, where events
to be analyzed (e.g., census outcomes) are associated with multidimensional
cube cells, while cube edges represent the analysis dimensions (e.g., RESI-
DENCE, TIME, OCCUPATION). For each cube cell, a value is given for each
measure describing the event (e.g., citizen incomes, number of children).
On top of each dimension, a hierarchy is built that defines groupings of its
values. Figure 2 reports hierarchies associated with the dimensions of the
cube shown in Figure 1. Multidimensional cubes are queried through OLAP
queries, which typically ask for the values of one or more numerical measures
(e.g., income of citizens) grouped by a given set of attributes in the hierar-
chies (e.g., City and Year), possibly with reference to a subset of dimensional
values (e.g., State="FL’). The results of OLAP queries also take the form
of multidimensional cubes and they are typically visualized through pivot
tables, which usually consist of rows, columns, and data fields (see Figure
3).

As argued in more detail in [27], one of the critical issues affecting OLAP
analyses, especially using pivot tables, is the achievement of a satisfactory
compromise between the precision and the size of the data being visualized.
In other words, the goal is to return the maximum quantity of information
while avoiding information flooding. Queries that return results at a very
fine-grained aggregation level (i.e., a cube with many cells) give more in-
formation, but they also require a greater effort from the user to analyze
them. An excessive level of detail hinders the comprehension of the overall

picture, which would be apparent when exploiting queries at coarse-grained
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Figure 1: An example of a three dimensional cube.
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Figure 2: Two examples of hierarchies showing both their values and their aggregation
structures (see [15])

aggregation levels, thus losing some precision.

In contrast with the general case, the presence of hierarchies in multidi-
mensional cubes permits to deal with the problem of information flooding in
pivot tables through an optimization process. Hierarchies define how dimen-
sional values (e.g., Miami, Arlington) can be grouped to create semantically
relevant clusters of elements (e.g., Tampa and Orlando can be grouped since
they are both located in Florida). Compliance with the hierarchy structure
when grouping dimensional values is not only recommended, but it is also
mandatory for ensuring summarizzability [23]. This is a core property of
OLAP applications that ensures the correctness and meaningfulness of val-
ues when progressive grouping is applied (e.g., income values for the cluster
of citizens including Miami and Arlington can not be used to calculate the
income of FL citizens). Based on this property/constraint and on the obser-
vation that approximation is a key to balance data precision with data size,

in [15] the authors proposed a novel OLAP operation called shrink. Shrink



Year
2014 2015 2016

Miami| 47 45 50
Orlando | 44 43 52

Jiami (74557 44 | 51

> Tampa) 39 | 50 | 41 2 Tampa| 39 | 50 | 41
O Washington | 47 45 51 val 45 46 50.6
Richmond| 43 46 49
Arlington| — 47 52

Year
2014 2015 2016

City

Figure 3: A pivot table resulting from an OLAP query (left), and its shrunk version when
applied to the RESIDENCE dimension (right).

can be applied to the dimensions of a cube resulting from an OLAP query
to decrease its size while controlling the loss in precision. The main idea is
to fuse/cluster those dimensional values whose cells have similar values and
replace them with a single representative satisfying the constraints imposed
by hierarchies. As a consequence, the corresponding slices of cells will be
fused and the measure values will be substituted by an approximated value,
computed as their average.

We propose a simple example to help readers that are not familiar with
OLAP queries. Let us suppose that an OLAP query has been issued against
the CENSUS cube in Figure 1. The query asks for the average citizen incomes
for each city in different years. Since the returned pivot table (Figure 3 left)
is too large, due to the high number of cities, the user applies the shrink
operator to the RESIDENCE dimension. This permits to fuse rows related
to those cities that show similar values and comply with the structure of the
hierarchy to be shrunk. The right side of Figure 3 shows a possible result.
Miami and Orlando are clustered, since they show similar average incomes
and belong to the same state. Similarly, all the cities in Virginia have been
clustered and their names have been replaced by the state name to improve
readability. Finally, Tampa remains a singleton since the income behavior
differs too much from the other ones. Overall, the number of cells to be
visualized drops from 18 to 9. As a side effect, we have a loss of precision.

The shrink operation can have two different but related goals:

e Size-bound shrink: minimize the loss in precision without exceeding

the maximum size allowed for the resulting data.

e Loss-bound shrink: minimize the size of the resulting data without



exceeding the maximum loss of precision.

The shrink operation is ruled by a parameter expressing either the max-
imum size allowed for the resulting data (i.e., the maximum number of
returned cells) or the maximum loss of precision. Due to hierarchical con-
straints (better defined in Section 2) not all the slice fusions are feasible for
shrinking, thus an additional constraint must be defined.

The shrink implementation proposed in [15] is based on a simple greedy
algorithm, which is able to find a solution in a small amount of computing
time. Unfortunately, as shown in Section 7, the greedy heuristic may gen-
erate solutions too weak for some target applications as the percentage gap

from the optimal solution could be of some units. In this paper we propose:

e An original formulation of the problem as a set partitioning problem

with side constraints.

e A new matheuristic algorithm (see [6, 26]) based on a dual ascent
procedure that exploits pricing and Lagrangian relaxation. The dual
ascent procedure provides a near optimal solution for the dual problem
and the Lagrangian heuristic generates feasible solutions of very good
quality. The percentage gap from the optimal solution value of the
proposed approach is much better than that of the greedy heuristic

and for many instances the best solution found is also optimal.

e An exact method which solves the problem using only a limited subset
of variables generated by a pricing procedure based on the dual solu-
tion found by the dual ascent procedure. This exact method performs
better than IBM ILOG CPLEX, a commercial general-purpose MIP

solver, that also fails in solving some very large instances.

Our contributions create a bridge between BI and optimization tech-
niques. This approach has become very common in recent years since BI
approaches have become more sophisticated and often require the support
of optimization techniques for an effective implementation, as witnessed by
several papers on the subject proposed in the literature.

One of the classical application of optimization in BI is the design of
learning algorithms, where classification, clustering, and regression problems
must be solved (e.g., [21], [34]). An interesting introduction to operations

research and data mining can be found in the special issue [31] and in the



survey [32]. Some mathematical formulations and challenges are also dis-
cussed in [10] and [33]. Operational research inspired techniques have been
also adopted during the design of BI solutions; for example the problem
of selecting the most effective subset of materialized views in Data Ware-
house is discussed in [25] and [36]. Operations research is also very useful
for optimizing query execution (e.g., [22], [24]) or data visualization and
discretization (e.g., [1], [18], [19]). This article focuses on the latter topic.
Among the proposed solutions to this problem there are those that make use
of On-Line Analytical Mining (OLAM) techniques. OLAM corresponds to
an OLAP paradigm that is coupled with data mining techniques to create an
approach where multidimensional data can be mined “on-the-fly” to extract
concise patterns for user evaluation, but at the price of an increased com-
putational complexity and an overhead for analyzing the generated patterns
(see [16]).

A problem that shares some similarities with shrink operation (SH) is
microaggregation (MA), which is a statistical disclosure control technique
aimed at producing groups of microdata records with cardinality greater
than a given parameter k, such that an intruder cannot identify individuals.
For each variable in the microdata, the average value over the group is
reported. The goal is to obtain groups that are as homogenous as possible.
For this reason, an optimal MA minimizes within-group sum squared error.

Several different formulations of the basic problem have been proposed:

e Fixed vs Variable group size: in the fixed version, all the groups must

have the same size k.

e Univariate vs Multivariate aggregation: in the univariate version, group-

ing is based on a single variable.

While optimal MA for univariate data relies on polynomial algorithms
[17], the optimal solution for multivariate one has been proven to be NP-hard
[30]. The MA formulation that is closest to the SH one involves multivariate
data and produces groups with variable size. The main difference between
SH and MA is that, while the SH limits the overall number of groups or the
overall error, MA constrains the cardinality of each single group. Since the
cardinality of an optimal cluster is not constrained between k and 2k, there
exist a much higher number of feasible solutions. Differences in constraints

make most of the findings reported in [14] not applicable to the SH prob-



lem. Consequently, while the heuristic proposed in [14] for multivariate MA
relies on the same clustering principle as the one we proposed in [15], the
differences in constraints make the specific optimizations proposed in [14]
not applicable in [15].

To the best of our knowledge, no commercial OLAP tools implements
techniques similar to our ones to address the visualization of pivot tables,
therefore, the problem is open. The main approaches adopted so far are:
(i) splitting the tables in several parts through selection predicates and vi-
sualizing each of them separately; (ii) representing the pivot table through
smart visualization techniques [20] that exploit colors and shapes to increase
the readability when many data are represented. Solution (i) directly rep-
resents pivot tables but lacks in providing an overall picture of the data.
Solution (ii) typically provides an overall picture of the data but requires
further analysis steps to obtain numeric details (e.g., zoom in, details-on-
demand operators [3]). Conversely, the proposed matheuristic algorithm
based on a Lagrangian relaxation does not make use of expensive commer-
cial solvers and provides effective results, therefore it is a good candidate to
be integrated in a commercial OLAP tool.

The paper outline is as follows. Section 2 introduces the shrink operator
together with its greedy implementation [15]. In Section 3 we define the set
partitioning formulation of the problem, whereas the dual ascent procedure
and the Lagrangian heuristic are described in Sections 4 and 5, respectively.
The exact method is presented in Section 6. In Section 7 we discuss the

computational results and in Section 8 we draw the conclusions.

2. OLAP Shrink Operation

Given a multidimensional cube and chosen one of its dimensions, the
shrink operation works by merging the dimensional values, together with the
corresponding slices of cells. The aim is to obtain a compact representation
of the input data while minimizing the approximation error (or size) and
satisfying a given size (or error) threshold. The resulting representation
must also be compliant with the constraints imposed by the structure of
the involved hierarchy. Before describing the greedy implementation of the
shrink operation proposed in [15], we need to briefly introduce the concept
of hierarchy compliance and how we compute the approximation error (for

an exhaustive and formal definition see [15]).



Year Year
2014 2015 2016 2014 2015 2016

Miami, Orlando| 45.5 44 51
Tampa| 39 | 50 | 41 South-AtIantic‘ 44 ‘ 46 \49.2‘
VA| 45 | 46 | 50.6

City

(a) (b)

Figure 4: Two reductions of the same cube

Intuitively, given a cluster C' composed by the values of a dimension on
top of which a hierarchy h is built, we say that C is hierarchy-compliant
(or h-compliant) if and only if the elements of C are values of h belong-
ing to a same level and with the same parent. The complete enumera-
tion of the h-compliant clusters associated to the RESIDENCE hierarchy
of Figure 2 is listed in Table 1. An example of a non h-compliant clus-
ter is instead {Miami, Washington}, because in order to have Miami and
Washington in the same cluster it would be necessary to also merge to-
gether Orlando, Tampa, Richmond, and Arlington. When a cluster in-
cludes all and only the children of one or more elements of the parent level,
it can be represented as the set of the corresponding parent values (i.e.,
{ Miami, Washington, Orlando, Tampa, Richmond, Arlington} ~ {FL, VA}).

Each hierarchical value at the finest level of detail (i.e., a dimensional
value) has an associated slice of cells, e.g., with reference to Figure 1, the
slice associated with the value Miami of the City attribute is composed by
values 47,45, and 50. To compactly represent cells of several hierarchical
values that have been merged together, the shrink operator uses their av-
erage. The approximation error introduced by representing a set of slices
with an average slice is computed as the Sum Squared Error (SSE) be-
tween the average and the original values. Two different examples of reduc-
tions induced by the shrink operator are shown in Figure 4. Specifically,
the SSE associated to the average slice { Miami, Orlando} in Figure 4.a is
(1.5% + 1.5%) + (12 + 1%) + (12 + 1?) = 8.5. Notice that the SSE given by
merging two or more values is never negative.

The greedy implementation of the shrink operation for both size- and
error-constrained problems is based on agglomerative hierarchical clustering.

Specifically, the algorithm works bottom-up by merging at each iteration the



Table 1: Clusters for the example reported in Figures 1 and 2

Level 0

C1 = {South-Atlantic} ~ {FL, VA}

Level 1

Cy = {Miami, Orlando, Tampa} ~ {FL}

Cs = { Washington, Richmond, Arlington} ~ { VA}

Level 2

Cy = {Miami}
Cs = {Orlando}
Cs = { Tampa}

C7 = {Miami, Orlando}

Cs = {Orlando, Tampa}

Cy = {Miami, Tampa}

Cho = { Washington}

Cy1 = {Richmond}

Cha = {Arlington}

Ci3 = { Washington, Richmond }
C14 = {Richmond, Arlington}
Ci5 = { Washington, Arlington}

two clusters of hierarchical values (and their slices) that lead to the minimum
increase in SSE. Of course the two clusters can be merged only if the result
is still h-compliant. This iterative process ends when the size constraint is
satisfied or, conversely, when the result is such that no more values can be
merged without violating the error threshold.

Consider again the cube in Figure 1. In the following we show in detail
how the greedy shrink algorithm computes a reduction that solves the error-

constrained problem with a maximum total SSE of 20 (Figure 5).
1. First, six singleton clusters are created, one for each member.

2. The most promising merge is the one between the Arlington and the
Washington clusters, that yields SSE equal to 2.5 (Figure 5.a, right).
The SSE of the resulting reduction (Figure 5.b, left) is 2.5, which meets

the SSE constraint, so there is still room for shrinking.

3. The most promising merge is now the one between the Miami and
the Orlando clusters (Figure 5.b, right). The total SSE is 11, so the

iterative approach can be repeated.



4. At the next iteration, the algorithm merges Richmond cluster with the
Washington — Arlington cluster (Figure 5.c, right). Since the resulting
reduction has SSE higher than 20 (Figure 5.d), the algorithm stops.

The reduction returned is the one shown in Figure 5.c, left.

Year g E § E E ?
2010 2011 2012 SSE ASSE S &§ & £ & %
Miami| 47 | 45 | 50 0 Miami
Orlando| 44 | 43 | 52 | 0 Orlando| 8.5 |
2z Tampa| 39 | 50 | 41 | 0 Tampa| 85 |97.5 (a)
o Washington | 47 45 51 0 Washington
Richmond| 43 | 46 | 49 | 0 Richmond 10.5
Arlington| — | 47 | 52 | 0 Arlington 25] 5 |
£
Year g § s :’ §
s 2 g g 3
2010 2011 2012 SSE ASSE s &§ & & &
Miami| 47 45 50 0 Miami
Orlando| 44 43 52 0 Orlando| 8.5
g Tampa| 39 50 41 0 Tampa| 85 |97.5 (b)
Washington, Arlington | 47 46 | 515 | 2.5 Wash., Arlin.
Richmond | 43 46 49 0 Richmond 14.7
N
= £ .
Q ~
Year g 2 :’ E
2010 2011 2012 SSE ASSE § § § S
Miami, Orlando | 45.5 44 51 8.5 Miami, Orlando
> Tampa| 39 | 50 | 41 | 0 Tampa | 1273 ©
o Washington, Arlington | 47 46 515 | 2.5 Wash., Arlin.
Richmond| 43 | 46 | 49 0 Richmond 14.7
Year
2010 2011 2012 SSE
Miami, Orlando| 45.5 44 51 8.5
g Tampa| 39 | 50 | 41 | 0 (d)
VA| 45 | 46 | 506 | 14.7

Figure 5: Applying the greedy algorithm for shrinking. The left column shows the pivot
tables, the right column reports the SSE increase for each feasible merge. Grey cells
correspond to non h-compliant merges.
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Figure 6: The shrink optimization process.

3. Mathematical Formulation

In order to achieve a better understanding of the model for optimizing
the shrink operator, in Figure 6 we provide a graphical representation of
the optimization process. The algorithms proposed in the next sections are
implemented by the main computational module denoted with Shrink. The

input for such a module are:

e The index set V ={1,...,

archy involved in the shrink operation.

e The index set C of all the feasible (i.e., h-compliant) clusters together
with the associated loss of precision, which are computed as described

in Section 2. For each cluster j € C the loss of precision is denoted by

ej.

e The parameter o denoting the maximum size or the maximum loss
allowed, depending on whether you are solving the size-bound (goal =

S) or loss-bound (goal

The h-compliant cluster generator module is in charge of generating in
advance the whole set of h-compliant clusters induced by the involved hi-
erarchy. As we will show in Section 7, this task can be accomplished in a
negligible time when compared with the one required by the Shrink module.

We denote with C; C C the subset of clusters involving the value 4, for
each ¢ € V. Cj represents the index set of the values contained in the cluster

j € C. Let z; be a 0—1 binary variable equal to one if and only if the cluster

Year

2014 2015 2016

455

1

51

39

50

41

45

6

506

n} of the n dimensional values of the hier-

= L) version of the problem, respectively.
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j € C is in the optimal solution. The problem can be formulated as a set

partitioning problem with a side constraint as follows:

(P) zp = min Z cjx; (1)

jec

st. Y wj=1, i€V (2)
Jj€eC;
Zajxj <« (3)
jec
zj€{0,1}, jeC (4)

If goal = S, setting c¢; = e; the objective function (1) minimizes the loss of
precision; conversely, if goal = L, setting ¢; = 1 the objective function (1)
minimizes the size of the resulting data. Constraints (2) ensure that each
original dimensional value is included in a cluster. Constraint (3) guarantees
that the resulting data do not exceed the maximum size allowed by setting
a; =1 and o = MaxSize, if goal = S, or the maximum loss of precision by
setting a; = e; and a = MaxzLoss, if goal = L.

Let u; and v be the dual variables associated to constraints (2) and (3),

respectively. The dual of the LP-relaxation of problem P is the following:

(D) zZp = min Z u; + v (5)
eV

s.t. Z ui+ajv<cj, jeC (6)
i€Cj

u; unconstrained, i€V (7)

v <0. (8)

The dual D is used for defining the dual ascent procedure, described in
Section 4, which is based on a Lagrangian relaxation of the problem P. The
dual ascent procedure iteratively improves the dual solution which is used
for defining a core subset of clusters by means of a pricing procedure. The
dual ascent ends providing a near optimal dual solution for the problem D.

The dual solution is also used to define a core subproblem for the exact
method proposed in Section 6. The exact method solves the problem P
using only a limited subset of variables generated by a pricing procedure

based on the dual solution found by the dual ascent procedure.

12



4. A Dual Ascent

The dual ascent procedure is based on a parametric relaxation of prob-
lem P and its Lagrangian relaxation. The resulting problem is solved by
a subgradient algorithm that uses only a subset of variables defined by a

pricing procedure and embeds an effective Lagrangian heuristic.

4.1. Parametric Relazation

Parametric relaxation is a well-known approach in the literature. Some
interesting applications are described by Christofides et al. [12] for vehi-
cle routing and by Mingozzi et al. [28] and Boschetti et al. [7] for crew
scheduling. Recently, dual ascent procedures based on a parametric relax-
ation have been proposed by Boschetti et al. [8] for the set partitioning
problem and by Boschetti and Maniezzo [5] for the set covering problem
with side constraints. The proposed dual ascent generalizes the approach
of Boschetti et al. [8], which does not consider side constraints, and it uses
an approach similar to the one used by Boschetti and Maniezzo [5] for the
set covering problem. It also generalizes the dual ascent approach proposed
by Christofides et al. [12], Mingozzi et al. [28], Boschetti et al. [7]. In this
section we describe the parametric relaxation of problem P used by the
proposed dual ascent.

We associate with each dimensional values ¢ € V' a positive real weight
¢. Let ¢(Cy) = Ziecj ¢; be the total weight of column (cluster) j € C.
Since weights {g¢;} are positive, ¢(C;) > 0 for every column j € C. We

replace each variable x; by a new set of |C}| variables y}, i € U}, as follows:

qi i .
zj=y  —=yh jeC (9)
iECj q(Cj>

and the resulting mathematical formulation of the parametric relaxation of

problem P is the following:

(PR(q))  zpr(g)=min > > %y (10)

jE(C’iGCj
st Y3 q(’; yr=1, i€V (11)
jeC; he, q(C;)
qdn
Zaj Z Y < a, (12)
jeC  hec; EANE

13



y; € {0,1}, jECieC;. (13)

Constraints (11) and (12) correspond to constraints (2) and (3) of problem
P, respectively. Notice that if y;- = 1 no constraint imposes that y]h =1
for every value h € C; covered by column j, therefore PR(q) is a relaxation
of problem P, because in this case the corresponding variable x; of P is

fractional (see equation (9)).

4.2. Lagrangian Relaxation

Problem PR(q) can be relaxed by dualizing constraints (11) and (12) in
a Lagrangian fashion, by means of the penalty vector A € R"*! having the
first n components \;, ¢ € V, unconstrained and A,+1 < 0.

The resulting Lagrangian problem is:

(LR(X,q)) zzr(A, @) =min Y Y~ (¢; — X(Cy)) q(g)yé + 3 A+ ada

jeC e J eV
(14)

st.ys€{0,1}, i€eV,jeC (15)

where X' (C}) = AM(C;) + ajA41 and N(Cj) = >_nec,; M- The optimal value
of problem LR(A,q) is a valid lower bound for the original problem P and
it can be strengthened adding the constraint jec, y;. =1 for every i € V.

Problem LR(X,q) is decomposable into |V| subproblems, one for each

row ¢ € V:
(LR'(X,q)) 2;r(X, ) = min Z (A q) yj + A (16)
J€C;
s.t. Z y; =1 (17)
JEC;
y; € {07 1}7 JE Ci (18)

where the cost of each variable y; is ¢4(X, q) = ¢ q(‘gj) and ¢ = ¢; — A\(Cj) —

ajAn+1. Hence, the overall value of the Lagrangian problem is zpr(X, q) =

Zz‘ev Z},R()H Q) + a)\nJrl-
Theorem 1 shows that any optimal solution of problem LR(A\, q) provides
a feasible solution (u,v) of cost zpr(A, q) for the dual problem D.

14



Theorem 1. Let A be a vector of n + 1 real numbers, where \;, i € V, are
unconstrained and Ap+1 < 0. Let g be a vector of n positive real numbers,
i.e., ¢ > 0, for everyi € V. A feasible dual solution (u,v) of cost zpr(\, q)

for dual problem D can be obtained by means of the following expressions:

c

U = @ minje(ci {Wé’])} + )\i, 1€V (19)

v = An—f—l?

where C;’ = Cj — )\(Cj) — aj)\n_H, /\(CJ) = ZiGC]' )\i; and Q(C]) = ZiECj qi-

Proof. Let us consider the dual constraint (6) corresponding to column j €
C of the LP-relaxation of P. For every column j, the following inequalities
hold:

: c, } c .
min < , for every i € Cj. 20
wi (g} < oy VIEC 20
From expression (19) we obtain
c
U < g~ + XN, i€C;jeC 21
Q) J 2!

and by adding inequalities (21) we derive
c
ZWSZ <Qi62(]C“)+)\i>’ jeC. (22)
iECj iECj J
Therefore, considering the dual constraint (6) for every j € C, we have
/

Zui+(ljU§ Q(Cé,j) Z%’+Z>\z’+aﬂ}

iECj iECj iECj

G
Q(C5)
i+ ANCj) + ajv (23)
— )\(C]) — ;v + )\(Cj) + a;v

IN

Q(Cj) + A(C)) + ajv

—~

AN

IN

€

IN
o

j.

It is straightforward to show that the dual solution (u,v) is of cost

zp(w,v) = Y ey ui + av = zLr(A, q). O

15



The dual solution obtained according to Theorem 1 can be further im-
proved by applying the greedy procedure described in Balas and Carrera [2]
or Caprara et al. [11].

Corollary 1 shows that the best lower bound that can be achieved using
expression (19) is equal to the optimal solution cost zp of the dual problem D
and that this value can be obtained searching the maximum of the function

zrr(A, @) with respect to A.

Corollary 1. For every q > 0, g € R", the following equality holds:

max{z;r(X, q) : A € R"™ N\, 11 <0} = zp. (24)

Proof. Let (u*,v*) be an optimal solution of problem D of cost zp. For
every j € C, we have

cj — Z uj, — a;jv* >0 (25)
hECJ‘

and for every i € V, there exists at least a column j’ € C; such that

cjr — Z uj, — ajv* = 0. (26)
hECj/

If for a given i € V' a column j’ satisfying equality (26) does not exist, we
can improve the “optimal dual solution” by increasing the corresponding
dual variable u;, in contradiction with the hypothesis.

By setting A = (u*,v*), when we evaluate the dual solution by expres-
sion (19) we have u; = ¢; minjcc;, %é])} +u; = 04w, for every ¢ € V', and
v =v*. Therefore, 2 r(X,q) = 3 ;cy 21N, Q) + X1 =D 0y U +av =
ZD- O

In order to find the optimal (or near optimal) dual solution of cost zp we
need to solve the Lagrangian Dual max{zzgr(X,q) : A € R*™1 )\, 1 <0}.

We propose a dual ascent procedure based on a subgradient algorithm
that only considers a subset of problem variables. These variables are defined
by a pricing procedure following the approach proposed by Boschetti et al.
[8] for the set partitioning problem (without side constraint). We also use

a simple variant where the subgradient 6% at iteration k is smoothed by the
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direction defined by the subgradient 8~ at previous iteration k—1 (see Boyd

and Mutapcic [9] and Crainic et al. [13]). This variant slightly improves the

convergence of the subgradient algorithm and generates a better sequence

of dual variables for the Lagrangian heuristic, which helps improving the

quality of its solutions. A possible interesting future research direction could

be the use of a bundle method instead of the subgradient.

DuAL ASCENT PROCEDURE

Step 1.

Step 2.

Step 3.

Step 4.

Initial setup
Set zpp = —o0, S = [, the initial penalty vector A = 0, p = 0.5,
and s = 0.

Generate an initial core subset of columns C' C C.

Solve Lagrangian Problem
Solve LR(A, q) using only the columns in the core C'.
Compute (u,v) according to Theorem 1 and improve it using the

greedy algorithm described in Caprara et al. [11].

Pricing

Generate a subset Q C C of columns having negative reduced costs
with respect to (u,v),ie, Q={jeC:¢; — Ziecj u; —ajv < 0}.
Add subset @ to the core C'; i.e., C' =C' UQ.

If @ = 0, then (u,v) is a feasible dual solution for problem D,
therefore z,p = max{z.p, LR(X,q)} and all columns of reduced

cost larger than €9z are removed from C’.

Update Lagrangian penalties

Compute subgradient components:

¢ 0, =1— Zjeci Zhecj_ q(q—chj)y;?, for every i € V
— h
® Ont1 =0 =3 jcc ZhGCj 4 Q(%j)yj

0.01xzrr(A,q)
sntlg2

i=1 "4

Compute the step size 0 = 8 and update vector A:
e \i =\ +p(db;) + (1 —p)s;, for every i € V
o Apt1 =min{0, A1 + p(0bpi1) + (1 — p)spi1}

Save s = g0.
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Step 5. Stop Conditions
If the maximum number of iterations Maxlter is not reached and the
lower bound has improved enough (i.e., the improvement is larger

than e12z7p) during last Maxlter, iterations, go to Step 2.

In this paper we generate the full set C in advance, before starting the
DuaL ASCENT PROCEDURE, because the full generation is not time con-
suming, but the dual ascent procedure works with a small subset of columns,
called core, adding new columns only when required. Working with a core
of small size allows a large computing time saving. The initial core is gen-
erated by considering in turns the columns in C sorted by non-decreasing
order of the values ¢;/|C}|. If the column covers a row already covered by
another column in the core or violates the side constraint, then it is ignored,
otherwise it is added to the core.

Notice that zpg(A, q) is a valid lower bound for problem P if and only if
no columns of negative reduced costs exist (i.e., @ = )), with respect to the
corresponding dual solution (u,v), which is feasible in this case. When the
dual solution (u,v) is feasible, we remove from C’ all columns of reduced
cost larger than €gzyp to maintain the core as small as possible. Instead,
the parameter €1 is used in the stop conditions to check if the lower bound
has been improved enough during the last Maxlterq iterations.

In order to improve the convergence to a near optimal dual solution,
we update the step-size parameter 8 during the execution. If, after a given
number of iterations Maxltery, the lower bound is not improved, we decrease
B, i.e, 8 = v18, where 71 < 1. As soon as the lower bound is improved we
increase f3, i.e, 8 = 72, where 9 > 1.

The complete definition of the parameter values can be found at Section

7, where the computational results are described.

5. A Lagrangian Heuristic

The dual ascent procedure provides an effective lower bound for problem
P. While following a “matheuristic” approach (see [4, 6, 26]) to obtain an
upper bound of good quality, we develop a Lagrangian heuristic algorithm.
The proposed Lagrangian heuristic is based on a simple greedy algorithm

that makes use of the solution of the Lagrangian problem LR(X,q) and of
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the corresponding penalized costs. It is applied at each iteration of the dual
ascent procedure when the current lower bound is good enough.
At the beginning, the procedure builds an initial partial solution using
. . v S . c .
the columns (i.e., configurations) C" = {] = argmin;c, {W&)} S V}.

To build the initial solution, we start with an empty solution (i.e., m; =0,

for every j € C) and we consider each of the columns in C” in turns. Given

r_
=
to the current emerging solution (i.e, 2; = 1). Since the order in which the

a column j € C”, if we have 2/, = 0 for every i € C;, we can add the column
columns of C” are considered is very important, we have considered four
different sortings. Notice that C” is generated by selecting one column for
each row ¢ € V, therefore we order its columns by sorting the rows in one of

the following ways:

e for increasing val(i) =i (i.e., the index i € V');

for non-decreasing val(i) = minjcc, {%},
J

_3 . . _ _ i 0 € /= argmin;; ch
for non-increasit g ’UCLZ(Y/) Q(Cg/)y ) wher J rgimnl J€Cq { (Cj)}
al 7 J

e for non-increasing val(i) = \;.

The procedure tries to complete the emerging solution considering the re-
maining columns sorted in non-decreasing order of their normalized cost \%I
We use this sorting because the number of columns can be huge and we can
save time computing it at the beginning of the dual ascent. We perform
two iterations: the first one only considering the columns of the core C’; the

second one considering all columns C.

LAGRANGIAN HEURISTIC

Step 1. Initial setup
Let 28! be the best upper bound found so far.
Set zyp = 0, 2 =0, for every j € C, and iter = 1.

Step 2. Phase 1: Build a partial solution from the LR solution

For each ¢ € V, following one of the four sorting criteria, try to add
. . g . c’
to the emerging solution column j’ = argmin;cc, {T(Cj) }

/I o . . best
If Zirecj/ ZJGCL/ x] — 0, Z]G(C ajxj S a—aj/, a,nd ZUB +le < ZUB 5
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column j’ is added to the emerging solution, i.e., :U;», =1land zyp =

zyB + ¢jr.

Step 3. Check if the emerging solution is complete
If Zje(c,; :c; = 1 for every ¢ € V, the solution is feasible, therefore

update the current best solution szeg,t = zyp, %! = &/, and STOP.

Step 4. Phase 2: Complete the emerging solution
If there exists at least a row i € V such that }_ ¢ zj = 0, we
try to complete the emerging solution by considering the remain-
ing columns sorted in non-decreasing order of their normalized cost
cj

oAk We perform two iterations: the first one only considering the

columns of the core C’; and a second one considering all columns C.

I _ ! best
If Zi’EC’j/ Zjeci, x; =0, icca;r; < a—ay, and zup+cy < 277,
column j’ is added to the emerging solution, i.e., 37;., = 1 and

ZUB = ZUB + Cjr.

Step 5. Check if the emerging solution is complete
If Zje(Ci :r; = 1 for every i € V, the solution is feasible, therefore
update the current best solution zl(’fgt = zyp, 't = &'; otherwise
the Lagrangian heuristic was not able to find a feasible solution of

best
cost smaller than 275"

Notice that when the LAGRANGIAN HEURISTIC adds a column 5’ to the
emerging solution all the rows are covered by at most one column, the side
constraint is satisfied, and its cost zyp is less than zll’fgt. Therefore, as soon
as the emerging solution covers all rows, it is certainly feasible and better
than the current best solution of cost zll’]egt.

In the computational results, the LAGRANGIAN HEURISTIC is run only
when the percentage gap between the current lower and upper bounds
is under the 10% and LR(A,q) > HéaszB or it is under the 5% and
LR(X,q) > Hg,,z.p. The idea is to apply the LAGRANGIAN HEURIS-
TIC only when the dual solution is sufficiently good (i.e., Héap > Héap).
The parameter values H(l;ap and H, éap can be found at Section 7, where the
computational results are described.

When the LAGRANGIAN HEURISTIC is run, it is repeated four times, one

for each criterion for sorting the dimensional values ¢ € V' in phase 1.
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6. An Exact Method

Using heuristic algorithms we can obtain effective feasible solutions in a
small computing time, and by means of the dual ascent procedure we can
evaluate the maximum distance from the optimal solution value. But when
we need to evaluate the optimal value, the only possibility is the use of an
ezact method.

In this paper we propose an exact method based on an approach similar
to the ones described in [7] and [8].

The proposed approach computes a near optimal dual solution by the
DuAL ASCENT PROCEDURE. It uses the corresponding reduced costs c; =
cj — Ziecj u; — a;v and generates a reduced problem P’ by replacing in P
the set C with the subset C’ and the original cost ¢; with the reduced cost c;.
The subset C’ is the largest subset of the lowest reduced cost variables such
that ¢; < min{g™**, 2pp — zrp} and |C'| < A™4. We solve the resulting
reduced problem P’ by a MIP solver. Given the solution of P/, we are able
to check if it is optimal for the original problem P. If it is not optimal, we
enlarge the subset C’ and we solve the new reduced problem again.

The resulting exact method can be summarized as follows.

ExAcT ALGORITHM

Step 1. Initial setup

Set zpp = —00, zyg = 0, iter = 1, and A™** = A,.

Step 2. Computing a lower bound z/,
Compute a solution (u’,v’) of the dual problem D of cost zrp = 2],
using the DUAL ASCENT embedding the LAGRANGIAN HEURISTIC

max

which provides an upper bound zyp. Set g
If z,p = zyp, then STOP.

= U1ZLB-

Step 3. Define a reduced problem P’
Let c; =cj — Zz‘ecj u; — ajv be the reduced cost of cluster j € C
with respect to the dual solution (u’,v’).
Let C’ be the largest subset of the lowest reduced cost variables such
that ¢ < min{g™*", 2yp — zrp} and |[C'| < AT,
Define the reduced problem P’ replacing in P the set C with C’ and

replacing the original cost ¢; with the reduced cost c;».
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Step 4. Solve problem P’
Solve problem P’ using a general purpose MIP solver (e.g., IBM Ilog
Cplex).
Let 23, be the cost of the optimal solution x* obtained (we assume
z5 = oo if the set C' does not contain any feasible solution).

Update zyp = min{zyp, 25 + 2}

Step 5. Test if x* is optimal for the original problem P
Let cmae = max{c} : j € C'}, if C" C C, otherwise ¢qp = 00, if

C' = C. We have two cases:

(a) 25 < Cmaz, then Stop because x* is guaranteed to be an optimal

solution for the original problem P.

(b) 2} > Cmax, then x* is not guaranteed to be an optimal solution
for the original problem P, however 2}, + Cmaqe is a valid lower

bound on the optimal solution value of problem P.

Step 6. Update the parameters If iter < Maxlter, then increase A" =
o A and g™ = pog™*, ue > 1, set iter = iter + 1 and go to
Step 3.

At Steps 3 and 4 we use the reduced cost c; instead of the original cost
¢j, because the solution of the LP-relaxation of P’, at node zero, is usually
faster (i.e., we incorporate the dual information in P’, see [8]).

The procedure terminates when the optimal solution of P is obtained
or the maximum number of iterations is reached. Notice that if we set
Mazxlter = oo, the procedure converges to the optimal solution because in

the worst case at a given iteration C' = C.

7. Computational Results

The algorithms presented in this paper were coded in C++ using Mi-
crosoft Visual Studio Community 2017, and run on a workstation equipped
with an Intel Core i7-3770, 3.40 GHz, 32Gb of RAM, and operating system
Windows 10 Educational (version 1803) 64bit. IBM Ilog CPLEX 12.5 is
used as LP and MIP solver.

For our experiments we considered four different hierarchies: RESIDENCE,
OCCUPATION, PROD_DEPARTMENT, and PROD_BRAND. The former two
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come from the IPUMS database [29], while the others two are extracted from
the Foodmart database that can be found with the Pentaho suite [35]. After
aggregating input data along these hierarchies (e.g., by state or by city), we
generated, by means of sampling, several test instances with varying char-
acteristics, such as size and average fan-out (i.e., children per parent ratio).
In the remainder of this paper we refer to these instances using the name
of the attribute used to aggregate the data, followed by a progressive num-
ber; for example, CITY-1 means that the data has been first aggregated by
city, and then a sampling process has been performed to create the dataset.
To observe how the algorithms behave not only with different problem sizes
(i.e., number of clusters) but also with different data distributions, we gener-
ated instances CITY_UNI and OCCUPATION_UNI by reusing the hierarchical
structure of RESIDENCE and OCCUPATION, but with uniformly random
data slices. Finally, we generated some hard instances to show that the new
proposed algorithm solves instances where a general-purpose solver fails. A
thorough description of the dataset can be found in [15].

For every test instance we solve both versions of the problem: the prob-
lem of Type A, where the objective function minimizes the size of the result-
ing data and the side constraint guarantees that the loss of precision does not
exceed a given maximum value; the problem of Type B, where the objective
function minimizes the loss of precision and the side constraint guarantees
that the size of the resulting data does not exceed a given maximum value.

For every problem type we solve the problem for different values of the
maximum loss of precision or of the maximum size of the data.

In this section we summarize the computational results in Tables 2 and
3, while the complete description of the results are reported in the Ap-
pendix A in Tables A.4-A.11. When we report in the tables the value of
the the maximum loss of precision, we use the notation 1.00M and 1.00G
for representing the values 1.00 x 10 and 1.00 x 10°, respectively. When a
computing time or a percentage gap is equal to 0.00, it means that its real
value is smaller that 0.01.

In Tables 2 and 3 the test instances are grouped by the value of the right-
hand side « of the side constraint, which is the maximum loss of precision
for problem of Type A and the maximum size of the data for problem of
Type B. For each group, these tables report the average Avg, the maximum

Maz, and the standard deviation s.d. for each column.
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Notice that groups having very small values of « (i.e., & = 1.00M and
a = 10.00M, for problems of Type A, and a = 10 and « = 15, for problems

of Type B) correspond to few small size instances.

7.1. Dual Ascent procedure

In our computational experiments the parameters of the dual ascent are
set as follows. The parameters for defining the step size are 5y = 20, v =
0.90, 9 = 1.10, for problems of Type A, and 5y = 1, v1 = 0.90, v = 1.005,
for problems of Type B. The parameter €9 used for reducing the size of the
subset C’ is 0.05, i.e., 5% of the value of the current lower bound. Instead,
the parameter £; used to check if the lower bound has improved enough
during the last Mazltery iterations is €1 = 0.001. The maximum number of
iterations are Mazlter = 100000 (i.e., virtually unlimited), MazxItery = 200,
and Mazlter; = 5.

The choice of the parameter values is made empirically, because the
purpose of the computational tests is to show that just with a good choice
we can achieve effective results. Therefore, a better analysis on the choice
of the parameter values is outside of the scope of this paper, but it will be
an interesting research direction for the future.

In Table 2 we compare the results obtained by the CPLEX LP solvers
and by the dual ascent procedure, described in Section 4.

For the CPLEX solvers we report the computing times Time, for each
solver available: primal (P), dual (D), network (N), barrier (B), and sifting
(S). For the dual ascent we report the percentage gap between the best lower
bound zj 5, corresponding to the best feasible dual solution generated, and
the LP-relaxation optimal value z1p, Gappp = 100 x *LL=2LE the number
of iterations Iter, the computing time Time, and the size of subset C’ at the
end of the execution.

The more effective CPLEX LP solver is the network simplex, in par-
ticular for problems of Type B, at the contrary the barrier is very time
consuming for both problem types. To improve the results provided by the
barrier algorithm we also tried to apply all the barrier algorithms available
by the parameter CPX_PARAM _BARALG, without any improvement. The
total number of barrier iterations, returned by function “CPXgetbaritcnt”,
ranges from few tens to some hundreds, for the most difficult instances, and

in the worst case it reaches 648 iterations (i.e., instance “city11”, see Ap-
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pendix A). We are not able to explain the poor performance of the barrier
algorithm. It is an another interesting topic for future research.

Even the primal and the dual simplex do not work as expected. The
difference in the performance is more evident for medium-large size instances
and seems to depend by the number of clusters in the optimal solution: the
smaller the number of clusters the greater the difference in the performance.
Notice that for a problem of Type A a greater value of « allows for a smaller
number of clusters in the optimal solutions. The reason for these differences
in performance is unclear and further investigation will be needed to provide
an explanation. Perhaps, these instances have a particular structure that
gives an advantage to the network simplex.

The dual ascent provides near optimal solutions in a smaller computing
time with respect to CPLEX LP solvers for problems of type A. It generates
lower bounds having an average percentage gap Gap;p from the optimal
solution value zyp equal to 0.02% and it is on average faster than the better
CPLEX LP solver (see Table A.4). For problems of Type B, the dual ascent
is a little worse only with respect to the network simplex and the average
percentage gap Gap;p is under 0.01% (see Table A.5). Even the results on
the hard instances, reported in Tables A.6 and A.7, confirm these figures.

Setting a smaller Maxltery and a more aggressive value for Sy we can
obtain a faster convergence of the dual ascent with a smaller worsening of
the lower bound provided. However, the convergence is more erratic and the
quality of the solutions generated by the embedded Lagrangian heuristic is
a little worse. Since we are mainly interested in the heuristic or optimal
solution of the problem, we prefer a slower dual ascent which enhances the

quality of the solutions generated by the Lagrangian heuristic.

7.2. Greedy and Lagrangian Heuristics

In Table 3 we compare the greedy and the Lagrangian heuristics, de-
scribed in Sections 2 and 5. The results of the Lagrangian heuristic include
the dual ascent procedure which embeds it.

For each group of test instances we report the percentage gap between the
best upper bound found zyp and the value of the optimal integer solution,
Gap = 100 x ZU%;OW, and the computing time Time. For the dual ascent
with the Lagrangian heuristic we also report the number of iterations Iter,
and the size of C'.

25



g1e 9¢°LT €01 100 LVLT [4aatat TG'8€ 68°6¢9 QLEV ‘ps

G081 LT'V0T €ret ¥0°0 €L°C9 61768V €8°¢S1 29°0€T 19°871 xew

9121 ¥8'02 L211 00°0 Gz el 88'¥8 ¥9°6T STV §6°0€ 3ae 08T =
oce cviLe cLT 00°0 81°0€ 88°9L v0'qg gg'cot EL'EV ‘prs

GL6T 76°8€T 2est 10°0 86°C6 20°80¢€ 28°60T 14144 G8'8¥%1 xew

99€T1 €6°LT SYIT 00°0 GL°GT 16°€9 06°€€ L8°19 8.°0€ 3ae 00T =
769 96°CV 9LT 00°0 LETVT €€°899 6C°8¢ €9°GET 0¢°6¢€ ‘ps

€997 66°CST 08¥1 00°0 8€7969 IT°61¥C 1€cve 16919 61971 xew

1691 12°2€ €2C1 00°0 79°G0T ST E€VY 90°'T€ 01°'28 9L°LT Sae 0¢ =
8 200 107 000 €0°0 69°0 €0°0 €0°0 70°0 ‘ps

1€ 70°0 LIET 00°0 L00 6T°T 90°0 90°0 L0°0 xew

€T €0°0 L16 00°0 S0°0 09°0 €0°0 €0°0 700 Sae ST =
T 000 Vs 00°0 €00 0T1°0 ¥0°0 700 700 ‘p's

v 700 689 00°0 L0°0 0z'0 L0°0 L0°0 80°0 Xeur

jd! 700 G€9 000 ¥0°0 110 ¥0°0 700 700 3ae o1 = g °dAL
8G.L9T 0L°T €T T0°0 98°C c9°6e 66T 66°C 8¢€'C ‘prs

CI108 08'g 9LTT €0°0 €8°CT G0'80T €79 LV'6 T0°8 xew

91629 ST’V 9,6 €0°0 cv'8 96°89 | 8L'¥Y 90°¢ Sae ©00°000T =
L8108 9v'et €6 200 L6°C¢ 68°198 80°G¥ L8°€V £€°¢e p's

TT189¢C eT'9¥ 6L1T L0°0 L0O°GTT 08°L60¢ €L'8LT £€8°€91 79°921 Xeur

rrees 2011 056 €0°0 62°8¢ G4°999 6£°6¢ 10°0€ 19°v¢C 3ae 2007001 =
§000T 8T°L 81 T0°0 €v'et L6°00€ GG'81 9T°Cl 90°91 ‘ps

PAs(0 2 EV've 6121 ¥0°0 96 7Y 65 V10T €399 ¥8°6¢ 9€°€9 Xew

0€1CT 26°9 186 200 10°€T CEEVT I1°GT 68°01 EIVL 3ae 200°0T =
L9G Vo 1.2 T10°0 8L°0 780 99°0 ¥9°0 <90 ‘ps

€ovt j 44t 166 €0°0 61°C Ve 28’1 9L'T LLT xew

€1L 87°0 652 200 68°0 L6°0 GL'0 €L°0 €L°0 Sae JN00°000T =
67¢€ Ty eVl T10°0 61°6 8€°L 20’8 60°'8 0T'8 ‘prs

TLST 4! 6911 90°0 €C'1€ 81°6T 1T'LT ovLT LELT Xew

266 65°€ G696 200 oyl 62°9 ge'9 LE'9 6€°9 3ae JN00°00T =
0 000 0 00°0 00°0 00°0 00°0 00°0 00°0 ‘ps

86¢€ 6T°0 L68 90°0 LLT et cL0 9L°0 cL0 xew

86¢€ 61°0 L68 90°0 LL°T Ic'1 cL'0 9.°0 cL0 Sae JV00°0T =
0 000 0 000 00°0 00°0 00°0 00°0 00°0 p's

€6€T 010 896 80°0 90°T L9°0 89°0 89°0 L9°0 xew

€681 01°0 896 80°0 901 19'0 89°0 890 19'0 Sae 00T = v °dAT,

1,0l QUL ], 427] dTdvr) Sowa, Howa,J, NowJ, Ao, d o,
jJuadsy [en xo1dD

g pue Y odAT, WS[qOIJ :SIOA[0S JT XHTdD Ym paredwod st ainpadord juaosy [en( :g 9[qel,

26



The computing time of the greedy heuristic is negligible but the percent-
age gap from the optimal solution value is on average 1.28% and 3.74% for
the problems of type A and B (reported in Tables A.8 and A.9, respectively),
and is on average 0.57% and 5.09% for the hard instances of type A and B
(reported in Tables A.10 and A.11). The maximum gap is the 25% and is
often greater than 5%.

For the Lagrangian heuristic we have set the parameters H éap = 0.1%
and Héap = 0.001%, for problems of Type A, and Héap = 1% and Héap =
0.001%, for problems of Type B (see Section 5). The Lagrangian heuristic is
more time consuming but the percentage gap from the optimal solution value
is much smaller. For problems of type A it finds the optimal solution for all
the instances. The quality of the upper bound is a little worse for problems
of type B, where only some instances having a = 50 and o = 100 are not
solved to optimality: the average gap is 0.17% and 1.65%, respectively. For
the very large instances of Type B, the maximum gap is 8.66%, but it is still
much better than the greedy heuristic.

7.8. Ezxact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, de-
scribed in Section 5, and of the exact method, described in Section 6, in
Table 3 we compare them with the CPLEX MIP solver.

For the proposed exact method in our computational results we set
Mazxlter = 10, Ag = 1000, 1 = 0.001, and pe = 10. For the exact method
we setup a less aggressive setting for the Lagrangian heuristic by setting the
parameters Héap = Héap = 0.001%, for both problems of Type A and B (see
Section 5). We made this choice because the exact method requires a small
computing time for closing a possible gap between the upper bound and the
optimal solution. In this case it is convenient to avoid a time consuming
most aggressive setting.

For the CPLEX MIP solver we report the computing time Time. How-
ever, for two instances of Type A and for five instances of Type B the CPLEX
MIP solver fails because of an “out of memory”. For these instances column
Time reports the computing time spent to generate the error (see Tables
A.10 and A.11 in Appendix A for more details).
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For the dual ascent embedding the Lagrangian heuristic, we report the
gap between the best upper bounds found and the optimal solution, Gap =
100 x ZU%);O’” and the computing time T4. For the exact method, we report
the size of the subset of columns C’ considered in the integer reduced problem
P’, the number of iterations Iter, the computing time T for solving the
reduced problem P’ (even more than one time if Iter > 1), and the overall
computing time 7'7,; which also includes the computing time of the dual
ascent procedure and of the embedded Lagrangian heuristic. When the
problem is solved by the dual ascent, we report |C'| = 0.

Notice that we used a less aggressive setting for the Lagrangian heuristic
for the exact method, therefore the Gap between the best upper bounds
found and the optimal solution is sometimes greater than the one found
by the more aggressive Lagrangian heuristic. The advantage is a smaller
computing time.

The exact method performs very well for problems of Type A, where it
needs to solve the integer reduced problem P’ only for six instances using
a very small subset of columns C’. Only for one instance the exact method
requires two iterations. The proposed exact method is on average about
seven times faster than the CPLEX MIP solver and for two hard instances
the CPLEX MIP solver runs out of memory.

Problems of Type B are more difficult to solve, but the exact method is
on average about five times faster than the CPLEX MIP solver. As shown
in Appendix A by Table A.9, for many instances the exact method needs
to solve the integer reduced problem P’. However, the size of the subset C’
is still small and the computing time for solving the reduced problem P’ is
very small. We need two iterations only for seven instances, three iterations
for one instance, and four iterations for one hard instance. All the remaining
instances are solved in one iteration. For only one hard instance of type B,
the exact method requires about 18 minutes, but for the same instance the
CPLEX MIP solver fails. Overall, the CPLEX MIP solver fails for five hard
instances of Type B.

The most difficult medium-large instances are the ones having a small
number of clusters in the optimal solution. For problems of Type A, they
are imposed by the side constraint with a small right-hand-side (i.e., the
maximum number of clusters). For problems of Type B, they are obtained

by minimizing the number of clusters having a side constraint that allows a

29



large error with a large right-hand-side.

8. Conclusions

In this paper we have proposed an integer linear programming model for
solving the problem of implementing effectively the OLAP shrink operator.

We have modelled the problem as a set partitioning problem with one
side constraint and we have considered two different approaches for finding
its solution. In the first one (problem of Type A), we minimize the size
of the resulting data, while the side constraint guarantees that the loss of
precision does not exceed a given maximum value. In the second approach
(problem of Type B), we minimize the loss of precision, while the side con-
straint guarantees that the size of the resulting data does not exceed a given
maximum value.

The proposed mathematical formulation is able to model both problem
types. For switching from one type to the other, it is sufficient to modify
the coefficients of the objective function and of the side constraint, along
with its right-hand side.

The first solution method considered is a dual ascent which embeds a
Lagrangian heuristic. The dual ascent generates at each iteration a hopefully
feasible dual solution of the LP-relaxation of the problem. The dual ascent
only considers a reduced subset of columns to solve the problem and uses the
generated feasible dual solutions for adding columns to the reduced problem
using the pricing. The computing time allows an operational use of the
procedure and the quality of the solution generated is of very good quality.
For problems of Type A the dual ascent significantly outperforms general
purpose LP solvers as CPLEX. It is able to generate a near optimal dual
solution in a short computing time.

We have also proposed an exact method to use when the optimal solu-
tion is required. After running the dual ascent embedding the Lagrangian
heuristic, the proposed exact procedure generates, with a very small addi-
tional computing time, an optimal solution using a very small subset of the
columns of the original instance. Therefore, the exact procedure has the po-
tential for an operational use, while a general purpose solver, like CPLEX,
is time consuming and fails for some instances.

The computational results show the maximum instance sizes that can

be solved to optimality and they are much smaller than the size of instances
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of similar problems such as the microaggregation (see Section 1).

For the instances used in this paper, the computing time for generating
the clusters is almost negligible with respect to the time for solving the
problem, even if the number of columns is huge for many instances. The use
of pricing to select a small subset of columns allows a huge reduction of the
overall computing time without compromising the optimal solution of the
problem. However, future developments could embed a column generation
procedure in the proposed algorithms in order to solve much larger instances,
at least of one further order of magnitude, where the complete generation

of clusters takes time and requires a huge amount of memory.

Appendix A. Complete computational results

For each instance, the number of values in the hierarchy and the number
of generated clusters are shown alongside the results of the experiments in
Tables A.4-A.7T.

For every test instance we solve both versions of the problem. In Tables
A4, A6, A8, and A.10 we solve the problem of Type A. Whereas, in Tables
A5, A7, A9, and A.11 we solve the problem of Type B.

Appendiz A.1. Dual Ascent procedure
In Tables A.4, A.5, A.6, and A.7 we compare the CPLEX LP solvers and

the dual ascent procedure, described in Section 4.

For each test instance we report the number of clusters m, the number of
dimensional values n, the computing time for generating the clusters Tgen,
and the right-hand side a of the side constraint, which is the maximum loss
of precision for problem of Type A and the maximum size of the data for
problem of Type B. For the CPLEX solvers we report the optimal value
zrp of the LP-relaxation of the problem P and the computing times Time,
for each solver available: primal (P), dual (D), network (N), barrier (B),
and sifting (S). For the dual ascent we report the best lower bound zrp
corresponding to the best feasible dual solution generated, its percentage
gap from zpp Gappp = 100 x =L—=LE the number of iterations Iter, the

computing time Time, and the size of subset C" at the end of the execution.
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In Tables A.4, A.5, A.6, and A.7 column |C'| shows that the size of the
subset of columns C’ evaluated in the dual ascent procedure is always very
small with respect to the total number of columns n of the original instances.

Notice that the computing time for generating the full set of column C is

usually very small and it never dominates the time for solving the instances.

Appendiz A.2. Greedy and Lagrangian Heuristics

In Tables A.8, A.9, A.10, and A.11 we compare the greedy and the
Lagrangian heuristics, described in Sections 2 and 5. The results of the
Lagrangian heuristic include the dual ascent procedure which embeds it.

For each test instance we report the right-hand side « of the side con-
straint, which is the maximum loss of precision for problem of Type A and
the maximum size of the data for problem of Type B, and for both heuris-
tics we report the best upper bound provided zyp, the percentage gap from
the value of the optimal integer solution Gap = 100 x ZU%;O’”, and the
computing time T%me. For the dual ascent with the Lagrangian heuristic
we also report the best lower bound zyp corresponding to the best feasible

dual solution generated, the number of iterations Iter, and the size of C'.

Appendiz A.3. Fzact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, de-
scribed in Section 5, and of the exact method, described in Section 6, in
Tables A.8, A.9, A.10, and A.11 we compare them with the CPLEX MIP
solver. For the CPLEX MIP solver we report the integer optimal solution
value zpp; and the computing time Time. We report the symbol “-” in
column zp,; when the CPLEX MIP solver fails because of an “out of mem-
ory’. For these instances column Time reports the computing time spent
to generate the error.

For the exact method we report the integer optimal solution value zop;,
the gap Gap between the best upper bound found by the Lagrangian heuris-
tic and the optimal solution, the size of the subset of columns C’ considered
in the integer reduced problem P’, the number of iterations Iter, the com-
puting time T4 for the Lagrangian heuristic, the computing time Ty for
solving the reduced problem P’ (even more than one time if Iter > 1), and
the overall computing time T'7,; which also includes the computing time of
the dual ascent procedure and of the embedded Lagrangian heuristic. When

the problem is solved by the dual ascent we report |[C'| = 0.
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