ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

An exact method for shrinking pivot tables

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:
An exact method for shrinking pivot tables / Boschetti M.A.; Golfarelli M.; Graziani S.. - In: OMEGA. - ISSN 0305-0483. - STAMPA. - 93:(2020), pp. 102044.1-102044.18. [10.1016/j.omega.2019.03.002]

Availability:
This version is available at: https://hdl.handle.net/11585/702179 since: 2020-03-04
Published:
DOI: http://doi.org/10.1016/j.omega.2019.03.002

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:
Boschetti, M. A., Golfarelli, M., \& Graziani, S. (2020). An exact method for shrinking pivot tables. Omega (United Kingdom), 93

The final published version is available online at: http://dx.doi.org/10.1016/j.omega.2019.03.002

Rights / License:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)
When citing, please refer to the published version.

An Exact Method for Shrinking Pivot Tables

Marco A. Boschettia,*, Matteo Golfarelli ${ }^{\text {b }}$, Simone Graziani ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Bologna, 47521 Cesena, Italy
${ }^{b}$ DISI, Department of Computer Science and Engineering, University of Bologna, 47521 Cesena, Italy

Abstract

Pivot tables are one of the most popular tools for data visualization in both business and research applications. Although they are in general easy to use, their comprehensibility becomes progressively lower when the quantity of cells to be visualized increases (i.e., information flooding problem). Pivot tables are largely adopted in OLAP, the main approach to multidimensional data analysis. To cope with the information flooding problem in OLAP, the shrink operation enables users to balance the size of query results with their approximation, exploiting the presence of multidimensional hierarchies. The only implementation of the shrink operator proposed in the literature is based on a greedy heuristic that, in many cases, is far from reaching a desired level of effectiveness.

In this paper we propose a model for optimizing the implementation of the shrink operation which considers two possible problem types. The first type minimizes the loss of precision ensuring that the resulting data do not exceed the maximum allowed size. The second one minimizes the size of the resulting data ensuring that the loss of precision does not exceed a given maximum value. We model both problems as set partitioning problems with a side constraint. To solve the models we propose a dual ascent procedure based on a Lagrangian pricing approach, a Lagrangian heuristic, and an exact method. Experimental results show the effectiveness of the proposed approaches, that is compared with both the original greedy heuristic and a commercial general-purpose MIP solver.

Keywords: OLAP, Integer Linear Programming, Set Partitioning, Lagrangian Relaxation, Pricing

[^0]
1. Introduction

Pivot tables are one of the most popular and powerful tools for data visualization in both business and research applications. Although they are in general easy to use, their comprehensibility becomes progressively lower when the quantity of cells to be visualized increases. Human operators have difficulties in understanding issues and effectively making decisions when they have too much information. This problem is known as information flooding and it can be solved by properly tuning the quantity of data to be visualized.

Pivot tables have been widely adopted in Business Intelligence (BI) systems, becoming the primary mode of viewing On-Line Analytical Processing (OLAP) data. In the context of BI data are mainly modeled using a multidimensional paradigm. Figure 1 shows a multidimensional cube, where events to be analyzed (e.g., census outcomes) are associated with multidimensional cube cells, while cube edges represent the analysis dimensions (e.g., RESIDENCE, TIME, OCCUPATION). For each cube cell, a value is given for each measure describing the event (e.g., citizen incomes, number of children). On top of each dimension, a hierarchy is built that defines groupings of its values. Figure 2 reports hierarchies associated with the dimensions of the cube shown in Figure 1. Multidimensional cubes are queried through OLAP queries, which typically ask for the values of one or more numerical measures (e.g., income of citizens) grouped by a given set of attributes in the hierarchies (e.g., City and Year), possibly with reference to a subset of dimensional values (e.g., State='FL'). The results of OLAP queries also take the form of multidimensional cubes and they are typically visualized through pivot tables, which usually consist of rows, columns, and data fields (see Figure $3)$.

As argued in more detail in [27], one of the critical issues affecting OLAP analyses, especially using pivot tables, is the achievement of a satisfactory compromise between the precision and the size of the data being visualized. In other words, the goal is to return the maximum quantity of information while avoiding information flooding. Queries that return results at a very fine-grained aggregation level (i.e., a cube with many cells) give more information, but they also require a greater effort from the user to analyze them. An excessive level of detail hinders the comprehension of the overall picture, which would be apparent when exploiting queries at coarse-grained

Figure 1: An example of a three dimensional cube.

Figure 2: Two examples of hierarchies showing both their values and their aggregation structures (see [15])
aggregation levels, thus losing some precision.
In contrast with the general case, the presence of hierarchies in multidimensional cubes permits to deal with the problem of information flooding in pivot tables through an optimization process. Hierarchies define how dimensional values (e.g., Miami, Arlington) can be grouped to create semantically relevant clusters of elements (e.g., Tampa and Orlando can be grouped since they are both located in Florida). Compliance with the hierarchy structure when grouping dimensional values is not only recommended, but it is also mandatory for ensuring summarizzability [23]. This is a core property of OLAP applications that ensures the correctness and meaningfulness of values when progressive grouping is applied (e.g., income values for the cluster of citizens including Miami and Arlington can not be used to calculate the income of $F L$ citizens). Based on this property/constraint and on the observation that approximation is a key to balance data precision with data size, in [15] the authors proposed a novel OLAP operation called shrink. Shrink

	Year		
	2014	2015	2016
Miami	47	45	50
Orlando	44	43	52
> Tampa	39	50	41
O Washington	47	45	51
Richmond	43	46	49
Arlington	-	47	52

	Year		
	2014	2015	2016
Miami, Orlando	45.5	44	51
Shrink $>\underset{\substack{\text { Ta }}}{\text { Tampa }}$	39	50	41
$V A$	45	46	50.6

Figure 3: A pivot table resulting from an OLAP query (left), and its shrunk version when applied to the RESIDENCE dimension (right).
can be applied to the dimensions of a cube resulting from an OLAP query to decrease its size while controlling the loss in precision. The main idea is to fuse/cluster those dimensional values whose cells have similar values and replace them with a single representative satisfying the constraints imposed by hierarchies. As a consequence, the corresponding slices of cells will be fused and the measure values will be substituted by an approximated value, computed as their average.

We propose a simple example to help readers that are not familiar with OLAP queries. Let us suppose that an OLAP query has been issued against the CENSUS cube in Figure 1. The query asks for the average citizen incomes for each city in different years. Since the returned pivot table (Figure 3 left) is too large, due to the high number of cities, the user applies the shrink operator to the RESIDENCE dimension. This permits to fuse rows related to those cities that show similar values and comply with the structure of the hierarchy to be shrunk. The right side of Figure 3 shows a possible result. Miami and Orlando are clustered, since they show similar average incomes and belong to the same state. Similarly, all the cities in Virginia have been clustered and their names have been replaced by the state name to improve readability. Finally, Tampa remains a singleton since the income behavior differs too much from the other ones. Overall, the number of cells to be visualized drops from 18 to 9 . As a side effect, we have a loss of precision.

The shrink operation can have two different but related goals:

- Size-bound shrink: minimize the loss in precision without exceeding the maximum size allowed for the resulting data.
- Loss-bound shrink: minimize the size of the resulting data without
exceeding the maximum loss of precision.
The shrink operation is ruled by a parameter expressing either the maximum size allowed for the resulting data (i.e., the maximum number of returned cells) or the maximum loss of precision. Due to hierarchical constraints (better defined in Section 2) not all the slice fusions are feasible for shrinking, thus an additional constraint must be defined.

The shrink implementation proposed in [15] is based on a simple greedy algorithm, which is able to find a solution in a small amount of computing time. Unfortunately, as shown in Section 7, the greedy heuristic may generate solutions too weak for some target applications as the percentage gap from the optimal solution could be of some units. In this paper we propose:

- An original formulation of the problem as a set partitioning problem with side constraints.
- A new matheuristic algorithm (see $[6,26]$) based on a dual ascent procedure that exploits pricing and Lagrangian relaxation. The dual ascent procedure provides a near optimal solution for the dual problem and the Lagrangian heuristic generates feasible solutions of very good quality. The percentage gap from the optimal solution value of the proposed approach is much better than that of the greedy heuristic and for many instances the best solution found is also optimal.
- An exact method which solves the problem using only a limited subset of variables generated by a pricing procedure based on the dual solution found by the dual ascent procedure. This exact method performs better than IBM ILOG CPLEX, a commercial general-purpose MIP solver, that also fails in solving some very large instances.

Our contributions create a bridge between BI and optimization techniques. This approach has become very common in recent years since BI approaches have become more sophisticated and often require the support of optimization techniques for an effective implementation, as witnessed by several papers on the subject proposed in the literature.

One of the classical application of optimization in BI is the design of learning algorithms, where classification, clustering, and regression problems must be solved (e.g., [21], [34]). An interesting introduction to operations research and data mining can be found in the special issue [31] and in the
survey [32]. Some mathematical formulations and challenges are also discussed in [10] and [33]. Operational research inspired techniques have been also adopted during the design of BI solutions; for example the problem of selecting the most effective subset of materialized views in Data Warehouse is discussed in [25] and [36]. Operations research is also very useful for optimizing query execution (e.g., [22], [24]) or data visualization and discretization (e.g., [1], [18], [19]). This article focuses on the latter topic. Among the proposed solutions to this problem there are those that make use of On-Line Analytical Mining (OLAM) techniques. OLAM corresponds to an OLAP paradigm that is coupled with data mining techniques to create an approach where multidimensional data can be mined "on-the-fly" to extract concise patterns for user evaluation, but at the price of an increased computational complexity and an overhead for analyzing the generated patterns (see [16]).

A problem that shares some similarities with shrink operation (SH) is microaggregation (MA), which is a statistical disclosure control technique aimed at producing groups of microdata records with cardinality greater than a given parameter k, such that an intruder cannot identify individuals. For each variable in the microdata, the average value over the group is reported. The goal is to obtain groups that are as homogenous as possible. For this reason, an optimal MA minimizes within-group sum squared error. Several different formulations of the basic problem have been proposed:

- Fixed vs Variable group size: in the fixed version, all the groups must have the same size k.
- Univariate vs Multivariate aggregation: in the univariate version, grouping is based on a single variable.

While optimal MA for univariate data relies on polynomial algorithms [17], the optimal solution for multivariate one has been proven to be NP-hard [30]. The MA formulation that is closest to the SH one involves multivariate data and produces groups with variable size. The main difference between SH and MA is that, while the SH limits the overall number of groups or the overall error, MA constrains the cardinality of each single group. Since the cardinality of an optimal cluster is not constrained between k and $2 k$, there exist a much higher number of feasible solutions. Differences in constraints make most of the findings reported in [14] not applicable to the SH prob-
lem. Consequently, while the heuristic proposed in [14] for multivariate MA relies on the same clustering principle as the one we proposed in [15], the differences in constraints make the specific optimizations proposed in [14] not applicable in [15].

To the best of our knowledge, no commercial OLAP tools implements techniques similar to our ones to address the visualization of pivot tables, therefore, the problem is open. The main approaches adopted so far are: (i) splitting the tables in several parts through selection predicates and visualizing each of them separately; (ii) representing the pivot table through smart visualization techniques [20] that exploit colors and shapes to increase the readability when many data are represented. Solution (i) directly represents pivot tables but lacks in providing an overall picture of the data. Solution (ii) typically provides an overall picture of the data but requires further analysis steps to obtain numeric details (e.g., zoom in, details-ondemand operators [3]). Conversely, the proposed matheuristic algorithm based on a Lagrangian relaxation does not make use of expensive commercial solvers and provides effective results, therefore it is a good candidate to be integrated in a commercial OLAP tool.

The paper outline is as follows. Section 2 introduces the shrink operator together with its greedy implementation [15]. In Section 3 we define the set partitioning formulation of the problem, whereas the dual ascent procedure and the Lagrangian heuristic are described in Sections 4 and 5, respectively. The exact method is presented in Section 6. In Section 7 we discuss the computational results and in Section 8 we draw the conclusions.

2. OLAP Shrink Operation

Given a multidimensional cube and chosen one of its dimensions, the shrink operation works by merging the dimensional values, together with the corresponding slices of cells. The aim is to obtain a compact representation of the input data while minimizing the approximation error (or size) and satisfying a given size (or error) threshold. The resulting representation must also be compliant with the constraints imposed by the structure of the involved hierarchy. Before describing the greedy implementation of the shrink operation proposed in [15], we need to briefly introduce the concept of hierarchy compliance and how we compute the approximation error (for an exhaustive and formal definition see [15]).

:		Year		
		2014	2015	2016
	Miami, Orlando	45.5	44	51
	Tampa	39	50	41
	VA	45	46	50.6

(a)

(b)

Figure 4: Two reductions of the same cube

Intuitively, given a cluster C composed by the values of a dimension on top of which a hierarchy h is built, we say that C is hierarchy-compliant (or h-compliant) if and only if the elements of C are values of h belonging to a same level and with the same parent. The complete enumeration of the h-compliant clusters associated to the RESIDENCE hierarchy of Figure 2 is listed in Table 1. An example of a non h-compliant cluster is instead \{Miami, Washington\}, because in order to have Miami and Washington in the same cluster it would be necessary to also merge together Orlando, Tampa, Richmond, and Arlington. When a cluster includes all and only the children of one or more elements of the parent level, it can be represented as the set of the corresponding parent values (i.e., $\{$ Miami, Washington, Orlando, Tampa, Richmond, Arlington $\} \simeq\{F L, V A\})$.

Each hierarchical value at the finest level of detail (i.e., a dimensional value) has an associated slice of cells, e.g., with reference to Figure 1, the slice associated with the value Miami of the City attribute is composed by values 47,45 , and 50 . To compactly represent cells of several hierarchical values that have been merged together, the shrink operator uses their average. The approximation error introduced by representing a set of slices with an average slice is computed as the Sum Squared Error (SSE) between the average and the original values. Two different examples of reductions induced by the shrink operator are shown in Figure 4. Specifically, the SSE associated to the average slice $\{$ Miami, Orlando $\}$ in Figure 4.a is $\left(1.5^{2}+1.5^{2}\right)+\left(1^{2}+1^{2}\right)+\left(1^{2}+1^{2}\right)=8.5$. Notice that the SSE given by merging two or more values is never negative.

The greedy implementation of the shrink operation for both size- and error-constrained problems is based on agglomerative hierarchical clustering. Specifically, the algorithm works bottom-up by merging at each iteration the

Table 1: Clusters for the example reported in Figures 1 and 2

```
Level 0
\(C_{1}=\{\) South-Atlantic \(\} \simeq\{F L, V A\}\)
Level 1
    \(C_{2}=\{\) Miami, Orlando, Tampa \(\} \simeq\{F L\}\)
    \(C_{3}=\{\) Washington, Richmond, Arlington \(\} \simeq\{V A\}\)
    Level 2
    \(C_{4}=\{\) Miami \(\}\)
    \(C_{5}=\{\) Orlando \(\}\)
    \(C_{6}=\{\) Tampa \(\}\)
    \(C_{7}=\{\) Miami, Orlando \(\}\)
    \(C_{8}=\{\) Orlando, Tampa \(\}\)
    \(C_{9}=\{\) Miami, Tampa \(\}\)
\(C_{10}=\{\) Washington \(\}\)
    \(C_{11}=\{\) Richmond \(\}\)
    \(C_{12}=\{\) Arlington \(\}\)
    \(C_{13}=\{\) Washington, Richmond \(\}\)
    \(C_{14}=\{\) Richmond, Arlington \(\}\)
    \(C_{15}=\{\) Washington, Arlington \(\}\)
```

two clusters of hierarchical values (and their slices) that lead to the minimum increase in SSE. Of course the two clusters can be merged only if the result is still h-compliant. This iterative process ends when the size constraint is satisfied or, conversely, when the result is such that no more values can be merged without violating the error threshold.

Consider again the cube in Figure 1. In the following we show in detail how the greedy shrink algorithm computes a reduction that solves the errorconstrained problem with a maximum total SSE of 20 (Figure 5).

1. First, six singleton clusters are created, one for each member.
2. The most promising merge is the one between the Arlington and the Washington clusters, that yields SSE equal to 2.5 (Figure 5.a, right). The SSE of the resulting reduction (Figure 5.b, left) is 2.5 , which meets the SSE constraint, so there is still room for shrinking.
3. The most promising merge is now the one between the Miami and the Orlando clusters (Figure 5.b, right). The total SSE is 11, so the iterative approach can be repeated.
4. At the next iteration, the algorithm merges Richmond cluster with the Washington - Arlington cluster (Figure 5.c, right). Since the resulting reduction has SSE higher than 20 (Figure 5.d), the algorithm stops. The reduction returned is the one shown in Figure 5.c, left.

(a)
(b)
(c)
(d)

Figure 5: Applying the greedy algorithm for shrinking. The left column shows the pivot tables, the right column reports the SSE increase for each feasible merge. Grey cells correspond to non h-compliant merges.

Figure 6: The shrink optimization process.

3. Mathematical Formulation

In order to achieve a better understanding of the model for optimizing the shrink operator, in Figure 6 we provide a graphical representation of the optimization process. The algorithms proposed in the next sections are implemented by the main computational module denoted with Shrink. The input for such a module are:

- The index set $V=\{1, \ldots, n\}$ of the n dimensional values of the hierarchy involved in the shrink operation.
- The index set \mathbb{C} of all the feasible (i.e., h-compliant) clusters together with the associated loss of precision, which are computed as described in Section 2. For each cluster $j \in \mathbb{C}$ the loss of precision is denoted by e_{j}.
- The parameter α denoting the maximum size or the maximum loss allowed, depending on whether you are solving the size-bound (goal $=$ S) or loss-bound (goal $=L$) version of the problem, respectively.

The h-compliant cluster generator module is in charge of generating in advance the whole set of h-compliant clusters induced by the involved hierarchy. As we will show in Section 7, this task can be accomplished in a negligible time when compared with the one required by the Shrink module.

We denote with $\mathbb{C}_{i} \subseteq \mathbb{C}$ the subset of clusters involving the value i, for each $i \in V . C_{j}$ represents the index set of the values contained in the cluster $j \in \mathbb{C}$. Let x_{j} be a $0-1$ binary variable equal to one if and only if the cluster
$j \in \mathbb{C}$ is in the optimal solution. The problem can be formulated as a set partitioning problem with a side constraint as follows:

$$
\begin{align*}
(P) \quad z_{P}=\min & \sum_{j \in \mathbb{C}} c_{j} x_{j} \tag{1}\\
\text { s.t. } & \sum_{j \in \mathbb{C}_{i}} x_{j}=1, \quad i \in V \tag{2}\\
& \sum_{j \in \mathbb{C}} a_{j} x_{j} \leq \alpha \tag{3}\\
& x_{j} \in\{0,1\}, \quad j \in \mathbb{C} . \tag{4}
\end{align*}
$$

If goal $=S$, setting $c_{j}=e_{j}$ the objective function (1) minimizes the loss of precision; conversely, if goal $=L$, setting $c_{j}=1$ the objective function (1) minimizes the size of the resulting data. Constraints (2) ensure that each original dimensional value is included in a cluster. Constraint (3) guarantees that the resulting data do not exceed the maximum size allowed by setting $a_{j}=1$ and $\alpha=$ MaxSize, if goal $=S$, or the maximum loss of precision by setting $a_{j}=e_{j}$ and $\alpha=$ MaxLoss, if goal $=L$.

Let u_{i} and v be the dual variables associated to constraints (2) and (3), respectively. The dual of the LP-relaxation of problem P is the following:

$$
\begin{align*}
(D) \quad z_{D}=\min & \sum_{i \in V} u_{i}+\alpha v \tag{5}\\
\text { s.t. } & \sum_{i \in C_{j}} u_{i}+a_{j} v \leq c_{j}, \quad j \in \mathbb{C} \tag{6}\\
& u_{i} \text { unconstrained, } \quad i \in V \tag{7}\\
& v \leq 0 . \tag{8}
\end{align*}
$$

The dual D is used for defining the dual ascent procedure, described in Section 4, which is based on a Lagrangian relaxation of the problem P. The dual ascent procedure iteratively improves the dual solution which is used for defining a core subset of clusters by means of a pricing procedure. The dual ascent ends providing a near optimal dual solution for the problem D.

The dual solution is also used to define a core subproblem for the exact method proposed in Section 6. The exact method solves the problem P using only a limited subset of variables generated by a pricing procedure based on the dual solution found by the dual ascent procedure.

4. A Dual Ascent

The dual ascent procedure is based on a parametric relaxation of problem P and its Lagrangian relaxation. The resulting problem is solved by a subgradient algorithm that uses only a subset of variables defined by a pricing procedure and embeds an effective Lagrangian heuristic.

4.1. Parametric Relaxation

Parametric relaxation is a well-known approach in the literature. Some interesting applications are described by Christofides et al. [12] for vehicle routing and by Mingozzi et al. [28] and Boschetti et al. [7] for crew scheduling. Recently, dual ascent procedures based on a parametric relaxation have been proposed by Boschetti et al. [8] for the set partitioning problem and by Boschetti and Maniezzo [5] for the set covering problem with side constraints. The proposed dual ascent generalizes the approach of Boschetti et al. [8], which does not consider side constraints, and it uses an approach similar to the one used by Boschetti and Maniezzo [5] for the set covering problem. It also generalizes the dual ascent approach proposed by Christofides et al. [12], Mingozzi et al. [28], Boschetti et al. [7]. In this section we describe the parametric relaxation of problem P used by the proposed dual ascent.

We associate with each dimensional values $i \in V$ a positive real weight q_{i}. Let $q\left(C_{j}\right)=\sum_{i \in C_{j}} q_{i}$ be the total weight of column (cluster) $j \in \mathbb{C}$. Since weights $\left\{q_{i}\right\}$ are positive, $q\left(C_{j}\right)>0$ for every column $j \in \mathbb{C}$. We replace each variable x_{j} by a new set of $\left|C_{j}\right|$ variables $y_{j}^{i}, i \in C_{j}$, as follows:

$$
\begin{equation*}
x_{j}=\sum_{i \in C_{j}} \frac{q_{i}}{q\left(C_{j}\right)} y_{j}^{i}, \quad j \in \mathbb{C} \tag{9}
\end{equation*}
$$

and the resulting mathematical formulation of the parametric relaxation of problem P is the following:

$$
\begin{align*}
(P R(\boldsymbol{q})) \quad z_{P R}(\boldsymbol{q})=\min & \sum_{j \in \mathbb{C}} \sum_{i \in C_{j}} c_{j} \frac{q_{i}}{q\left(C_{j}\right)} y_{j}^{i} \tag{10}\\
\text { s.t. } & \sum_{j \in \mathbb{C}_{i}} \sum_{h \in C_{j}} \frac{q_{h}}{q\left(C_{j}\right)} y_{j}^{h}=1, \quad i \in V \tag{11}\\
& \sum_{j \in \mathbb{C}} a_{j} \sum_{h \in C_{j}} \frac{q_{h}}{q\left(C_{j}\right)} y_{j}^{h} \leq \alpha, \tag{12}
\end{align*}
$$

$$
\begin{equation*}
y_{j}^{i} \in\{0,1\}, \quad j \in \mathbb{C}, i \in C_{j} . \tag{13}
\end{equation*}
$$

Constraints (11) and (12) correspond to constraints (2) and (3) of problem P, respectively. Notice that if $y_{j}^{i}=1$ no constraint imposes that $y_{j}^{h}=1$ for every value $h \in C_{j}$ covered by column j, therefore $P R(\boldsymbol{q})$ is a relaxation of problem P, because in this case the corresponding variable x_{j} of P is fractional (see equation (9)).

4.2. Lagrangian Relaxation

Problem $P R(\boldsymbol{q})$ can be relaxed by dualizing constraints (11) and (12) in a Lagrangian fashion, by means of the penalty vector $\boldsymbol{\lambda} \in \mathbb{R}^{n+1}$ having the first n components $\lambda_{i}, i \in V$, unconstrained and $\lambda_{n+1} \leq 0$.

The resulting Lagrangian problem is:

$$
\begin{gather*}
(L R(\boldsymbol{\lambda}, \boldsymbol{q})) z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})=\min \sum_{j \in \mathbb{C}} \sum_{i \in C_{j}}\left(c_{j}-\lambda^{\prime}\left(C_{j}\right)\right) \frac{q_{i}}{q\left(C_{j}\right)} y_{j}^{i}+\sum_{i \in V} \lambda_{i}+\alpha \lambda_{n+1} \tag{14}\\
\text { s.t. } y_{j}^{i} \in\{0,1\}, \quad i \in V, j \in \mathbb{C} \tag{15}
\end{gather*}
$$

where $\lambda^{\prime}\left(C_{j}\right)=\lambda\left(C_{j}\right)+a_{j} \lambda_{n+1}$ and $\lambda\left(C_{j}\right)=\sum_{h \in C_{j}} \lambda_{h}$. The optimal value of problem $L R(\boldsymbol{\lambda}, \boldsymbol{q})$ is a valid lower bound for the original problem P and it can be strengthened adding the constraint $\sum_{j \in \mathbb{C}_{i}} y_{j}^{i}=1$ for every $i \in V$.

Problem $L R(\boldsymbol{\lambda}, \boldsymbol{q})$ is decomposable into $|V|$ subproblems, one for each row $i \in V$:

$$
\begin{align*}
\left(L R^{i}(\boldsymbol{\lambda}, \boldsymbol{q})\right) \quad z_{L R}^{i}(\boldsymbol{\lambda}, \boldsymbol{q})=\min & \sum_{j \in \mathbb{C}_{i}} c_{j}^{i}(\boldsymbol{\lambda}, \boldsymbol{q}) y_{j}^{i}+\lambda_{i} \tag{16}\\
\text { s.t. } & \sum_{j \in \mathbb{C}_{i}} y_{j}^{i}=1 \tag{17}\\
& y_{j}^{i} \in\{0,1\}, \quad j \in \mathbb{C}_{i} \tag{18}
\end{align*}
$$

where the cost of each variable y_{j}^{i} is $c_{j}^{i}(\boldsymbol{\lambda}, \boldsymbol{q})=c_{j}^{\prime} \frac{q_{i}}{q\left(C_{j}\right)}$ and $c_{j}^{\prime}=c_{j}-\lambda\left(C_{j}\right)-$ $a_{j} \lambda_{n+1}$. Hence, the overall value of the Lagrangian problem is $z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})=$ $\sum_{i \in V} z_{L R}^{i}(\boldsymbol{\lambda}, \boldsymbol{q})+\alpha \lambda_{n+1}$.

Theorem 1 shows that any optimal solution of problem $L R(\boldsymbol{\lambda}, \boldsymbol{q})$ provides a feasible solution (\boldsymbol{u}, v) of $\operatorname{cost} z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})$ for the dual problem D.

Theorem 1. Let $\boldsymbol{\lambda}$ be a vector of $n+1$ real numbers, where $\lambda_{i}, i \in V$, are unconstrained and $\lambda_{n+1} \leq 0$. Let \boldsymbol{q} be a vector of n positive real numbers, i.e., $q_{i}>0$, for every $i \in V$. A feasible dual solution (\boldsymbol{u}, v) of $\operatorname{cost} z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})$ for dual problem D can be obtained by means of the following expressions:

$$
\begin{align*}
& u_{i}=q_{i} \min _{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}+\lambda_{i}, \quad i \in V \tag{19}\\
& v=\lambda_{n+1},
\end{align*}
$$

where $c_{j}^{\prime}=c_{j}-\lambda\left(C_{j}\right)-a_{j} \lambda_{n+1}, \lambda\left(C_{j}\right)=\sum_{i \in C_{j}} \lambda_{i}$, and $Q\left(C_{j}\right)=\sum_{i \in C_{j}} q_{i}$.
Proof. Let us consider the dual constraint (6) corresponding to column $j \in$ \mathbb{C} of the LP-relaxation of P. For every column j, the following inequalities hold:

$$
\begin{equation*}
\min _{h \in \mathbb{C}_{i}}\left\{\frac{c_{h}^{\prime}}{Q\left(C_{h}\right)}\right\} \leq \frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}, \quad \text { for every } i \in C_{j} \tag{20}
\end{equation*}
$$

From expression (19) we obtain

$$
\begin{equation*}
u_{i} \leq q_{i} \frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}+\lambda_{i}, \quad i \in C_{j}, j \in \mathbb{C} \tag{21}
\end{equation*}
$$

and by adding inequalities (21) we derive

$$
\begin{equation*}
\sum_{i \in C_{j}} u_{i} \leq \sum_{i \in C_{j}}\left(q_{i} \frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}+\lambda_{i}\right), \quad j \in \mathbb{C} . \tag{22}
\end{equation*}
$$

Therefore, considering the dual constraint (6) for every $j \in \mathbb{C}$, we have

$$
\begin{align*}
\sum_{i \in C_{j}} u_{i}+a_{j} v & \leq \frac{c_{j}^{\prime}}{Q\left(C_{j}\right)} \sum_{i \in C_{j}} q_{i}+\sum_{i \in C_{j}} \lambda_{i}+a_{j} v \\
& \leq \frac{c_{j}^{\prime}}{Q\left(C_{j}\right)} Q\left(C_{j}\right)+\lambda\left(C_{j}\right)+a_{j} v \\
& \leq c_{j}^{\prime}+\lambda\left(C_{j}\right)+a_{j} v \tag{23}\\
& \leq c_{j}-\lambda\left(C_{j}\right)-a_{j} v+\lambda\left(C_{j}\right)+a_{j} v \\
& \leq c_{j} .
\end{align*}
$$

It is straightforward to show that the dual solution (\boldsymbol{u}, v) is of cost $z_{D}(\boldsymbol{u}, v)=\sum_{i \in V} u_{i}+\alpha v=z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})$.

The dual solution obtained according to Theorem 1 can be further improved by applying the greedy procedure described in Balas and Carrera [2] or Caprara et al. [11].

Corollary 1 shows that the best lower bound that can be achieved using expression (19) is equal to the optimal solution cost z_{D} of the dual problem D and that this value can be obtained searching the maximum of the function $z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})$ with respect to $\boldsymbol{\lambda}$.

Corollary 1. For every $\boldsymbol{q}>\mathbf{0}, \boldsymbol{q} \in \mathbb{R}^{n}$, the following equality holds:

$$
\begin{equation*}
\max \left\{z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q}): \boldsymbol{\lambda} \in \mathbb{R}^{n+1}, \lambda_{n+1} \leq 0\right\}=z_{D} \tag{24}
\end{equation*}
$$

Proof. Let $\left(\boldsymbol{u}^{*}, v^{*}\right)$ be an optimal solution of problem D of cost z_{D}. For every $j \in \mathbb{C}$, we have

$$
\begin{equation*}
c_{j}-\sum_{h \in C_{j}} u_{h}^{*}-a_{j} v^{*} \geq 0 \tag{25}
\end{equation*}
$$

and for every $i \in V$, there exists at least a column $j^{\prime} \in \mathbb{C}_{i}$ such that

$$
\begin{equation*}
c_{j^{\prime}}-\sum_{h \in C_{j^{\prime}}} u_{h}^{*}-a_{j^{\prime}} v^{*}=0 \tag{26}
\end{equation*}
$$

If for a given $i \in V$ a column j^{\prime} satisfying equality (26) does not exist, we can improve the "optimal dual solution" by increasing the corresponding dual variable u_{i}, in contradiction with the hypothesis.

By setting $\boldsymbol{\lambda}=\left(\boldsymbol{u}^{*}, v^{*}\right)$, when we evaluate the dual solution by expression (19) we have $u_{i}=q_{i} \min _{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}+u_{i}=0+u_{i}$, for every $i \in V$, and $v=v^{*}$. Therefore, $z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})=\sum_{i \in V} z_{L R}^{i}(\boldsymbol{\lambda}, \boldsymbol{q})+\alpha \lambda_{n+1}=\sum_{i \in V} u_{i}+\alpha v=$ z_{D}.

In order to find the optimal (or near optimal) dual solution of cost z_{D} we need to solve the Lagrangian Dual $\max \left\{z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q}): \boldsymbol{\lambda} \in \mathbb{R}^{n+1}, \lambda_{n+1} \leq 0\right\}$.

We propose a dual ascent procedure based on a subgradient algorithm that only considers a subset of problem variables. These variables are defined by a pricing procedure following the approach proposed by Boschetti et al. [8] for the set partitioning problem (without side constraint). We also use a simple variant where the subgradient θ^{k} at iteration k is smoothed by the
direction defined by the subgradient θ^{k-1} at previous iteration $k-1$ (see Boyd and Mutapcic [9] and Crainic et al. [13]). This variant slightly improves the convergence of the subgradient algorithm and generates a better sequence of dual variables for the Lagrangian heuristic, which helps improving the quality of its solutions. A possible interesting future research direction could be the use of a bundle method instead of the subgradient.

Dual Ascent Procedure

Step 1. Initial setup

Set $z_{L B}=-\infty, \beta=\beta_{0}$, the initial penalty vector $\boldsymbol{\lambda}=\mathbf{0}, \rho=0.5$, and $\boldsymbol{s}=\mathbf{0}$.
Generate an initial core subset of columns $\mathbb{C}^{\prime} \subseteq \mathbb{C}$.

Step 2. Solve Lagrangian Problem

Solve $L R(\boldsymbol{\lambda}, \boldsymbol{q})$ using only the columns in the core \mathbb{C}^{\prime}.
Compute (\boldsymbol{u}, v) according to Theorem 1 and improve it using the greedy algorithm described in Caprara et al. [11].

Step 3. Pricing

Generate a subset $Q \subseteq \mathbb{C}$ of columns having negative reduced costs with respect to (\boldsymbol{u}, v), i.e., $Q=\left\{j \in \mathbb{C}: c_{j}-\sum_{i \in C_{j}} u_{i}-a_{j} v<0\right\}$.
Add subset Q to the core \mathbb{C}^{\prime}, i.e., $\mathbb{C}^{\prime}=\mathbb{C}^{\prime} \cup Q$.
If $Q=\emptyset$, then (\boldsymbol{u}, v) is a feasible dual solution for problem D, therefore $z_{L B}=\max \left\{z_{L B}, L R(\boldsymbol{\lambda}, \boldsymbol{q})\right\}$ and all columns of reduced cost larger than $\varepsilon_{0} z_{L B}$ are removed from \mathbb{C}^{\prime}.

Step 4. Update Lagrangian penalties

Compute subgradient components:

- $\theta_{i}=1-\sum_{j \in \mathbb{C}_{i}} \sum_{h \in C_{j}} \frac{q_{h}}{q\left(C_{j}\right)} y_{j}^{h}$, for every $i \in V$
- $\theta_{n+1}=\alpha-\sum_{j \in \mathbb{C}} \sum_{h \in C_{j}} a_{j} \frac{q_{h}}{q\left(C_{j}\right)} y_{j}^{h}$

Compute the step size $\sigma=\beta \frac{0.01 \times z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})}{\sum_{i=1}^{n+1} \theta_{i}^{2}}$ and update vector $\boldsymbol{\lambda}$:

- $\lambda_{i}=\lambda_{i}+\rho\left(\sigma \theta_{i}\right)+(1-\rho) s_{i}$, for every $i \in V$
- $\lambda_{n+1}=\min \left\{0, \lambda_{n+1}+\rho\left(\sigma \theta_{n+1}\right)+(1-\rho) s_{n+1}\right\}$

Save $\boldsymbol{s}=\sigma \boldsymbol{\theta}$.

Step 5. Stop Conditions

If the maximum number of iterations MaxIter is not reached and the lower bound has improved enough (i.e., the improvement is larger than $\varepsilon_{1} z_{L B}$) during last MaxIter ${ }_{0}$ iterations, go to Step 2.

In this paper we generate the full set \mathbb{C} in advance, before starting the Dual Ascent Procedure, because the full generation is not time consuming, but the dual ascent procedure works with a small subset of columns, called core, adding new columns only when required. Working with a core of small size allows a large computing time saving. The initial core is generated by considering in turns the columns in \mathbb{C} sorted by non-decreasing order of the values $c_{j} /\left|C_{j}\right|$. If the column covers a row already covered by another column in the core or violates the side constraint, then it is ignored, otherwise it is added to the core.

Notice that $z_{L R}(\boldsymbol{\lambda}, \boldsymbol{q})$ is a valid lower bound for problem P if and only if no columns of negative reduced costs exist (i.e., $Q=\emptyset$), with respect to the corresponding dual solution (\boldsymbol{u}, v), which is feasible in this case. When the dual solution (\boldsymbol{u}, v) is feasible, we remove from \mathbb{C}^{\prime} all columns of reduced cost larger than $\varepsilon_{0} z_{L B}$ to maintain the core as small as possible. Instead, the parameter ε_{1} is used in the stop conditions to check if the lower bound has been improved enough during the last MaxIter $_{0}$ iterations.

In order to improve the convergence to a near optimal dual solution, we update the step-size parameter β during the execution. If, after a given number of iterations MaxIter $_{1}$, the lower bound is not improved, we decrease β, i.e, $\beta=\gamma_{1} \beta$, where $\gamma_{1}<1$. As soon as the lower bound is improved we increase β, i.e, $\beta=\gamma_{2} \beta$, where $\gamma_{2}>1$.

The complete definition of the parameter values can be found at Section 7 , where the computational results are described.

5. A Lagrangian Heuristic

The dual ascent procedure provides an effective lower bound for problem P. While following a "matheuristic" approach (see [4, 6, 26]) to obtain an upper bound of good quality, we develop a Lagrangian heuristic algorithm.

The proposed Lagrangian heuristic is based on a simple greedy algorithm that makes use of the solution of the Lagrangian problem $\operatorname{LR}(\boldsymbol{\lambda}, \boldsymbol{q})$ and of
the corresponding penalized costs. It is applied at each iteration of the dual ascent procedure when the current lower bound is good enough.

At the beginning, the procedure builds an initial partial solution using the columns (i.e., configurations) $\mathbb{C}^{\prime \prime}=\left\{j^{\prime}=\operatorname{argmin}_{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}: i \in V\right\}$. To build the initial solution, we start with an empty solution (i.e., $x_{j}^{\prime}=0$, for every $j \in \mathbb{C}$) and we consider each of the columns in $\mathbb{C}^{\prime \prime}$ in turns. Given a column $j \in \mathbb{C}^{\prime \prime}$, if we have $x_{j}^{\prime}=0$ for every $i \in C_{j}$, we can add the column to the current emerging solution (i.e, $x_{j}^{\prime}=1$). Since the order in which the columns of $\mathbb{C}^{\prime \prime}$ are considered is very important, we have considered four different sortings. Notice that $\mathbb{C}^{\prime \prime}$ is generated by selecting one column for each row $i \in V$, therefore we order its columns by sorting the rows in one of the following ways:

- for increasing $\operatorname{val}(i)=i$ (i.e., the index $i \in V$);
- for non-decreasing $\operatorname{val}(i)=\min _{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}$;
- for non-increasing $\operatorname{val}(i)=\frac{q_{i}}{Q\left(C_{j^{\prime}}\right)} y^{i}$, where $j^{\prime}=\operatorname{argmin}_{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}$ and $y^{i}=\left|\left\{i^{\prime} \in V: j^{\prime}=\operatorname{argmin}_{j \in \mathbb{C}_{i^{\prime}}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}\right\}\right| ;$
- for non-increasing $\operatorname{val}(i)=\lambda_{i}$.

The procedure tries to complete the emerging solution considering the remaining columns sorted in non-decreasing order of their normalized cost $\frac{c_{j}}{\left|C_{j}\right|}$. We use this sorting because the number of columns can be huge and we can save time computing it at the beginning of the dual ascent. We perform two iterations: the first one only considering the columns of the core \mathbb{C}^{\prime}; the second one considering all columns \mathbb{C}.

Lagrangian Heuristic

Step 1. Initial setup

Let $z_{U B}^{\text {best }}$ be the best upper bound found so far.
Set $z_{U B}=0, x_{j}^{\prime}=0$, for every $j \in \mathbb{C}$, and iter $=1$.

Step 2. Phase 1: Build a partial solution from the $L R$ solution

For each $i \in V$, following one of the four sorting criteria, try to add to the emerging solution column $j^{\prime}=\operatorname{argmin}_{j \in \mathbb{C}_{i}}\left\{\frac{c_{j}^{\prime}}{Q\left(C_{j}\right)}\right\}$.
If $\sum_{i^{\prime} \in C_{j^{\prime}}} \sum_{j \in \mathbb{C}_{i^{\prime}}} x_{j}^{\prime}=0, \sum_{j \in \mathbb{C}} a_{j} x_{j}^{\prime} \leq \alpha-a_{j^{\prime}}$, and $z_{U B}+c_{j^{\prime}}<z_{U B}^{\text {best }}$,
column j^{\prime} is added to the emerging solution, i.e., $x_{j^{\prime}}^{\prime}=1$ and $z_{U B}=$ $z_{U B}+c_{j^{\prime}}$.

Step 3. Check if the emerging solution is complete

If $\sum_{j \in \mathbb{C}_{i}} x_{j}^{\prime}=1$ for every $i \in V$, the solution is feasible, therefore update the current best solution $z_{U B}^{\text {best }}=z_{U B}, \boldsymbol{x}^{\text {best }}=\boldsymbol{x}^{\prime}$, and STOP.

Step 4. Phase 2: Complete the emerging solution

If there exists at least a row $i \in V$ such that $\sum_{j \in \mathbb{C}_{i}} x_{j}^{\prime}=0$, we try to complete the emerging solution by considering the remaining columns sorted in non-decreasing order of their normalized cost $\frac{c_{j}}{\left|C_{j}\right|}$. We perform two iterations: the first one only considering the columns of the core \mathbb{C}^{\prime}; and a second one considering all columns \mathbb{C}. If $\sum_{i^{\prime} \in C_{j^{\prime}}} \sum_{j \in \mathbb{C}_{i^{\prime}}} x_{j}^{\prime}=0, \sum_{j \in \mathbb{C}} a_{j} x_{j}^{\prime} \leq \alpha-a_{j^{\prime}}$, and $z_{U B}+c_{j^{\prime}}<z_{U B}^{\text {best }}$, column j^{\prime} is added to the emerging solution, i.e., $x_{j^{\prime}}^{\prime}=1$ and $z_{U B}=z_{U B}+c_{j^{\prime}}$.

Step 5. Check if the emerging solution is complete

If $\sum_{j \in \mathbb{C}_{i}} x_{j}^{\prime}=1$ for every $i \in V$, the solution is feasible, therefore update the current best solution $z_{U B}^{\text {best }}=z_{U B}, \boldsymbol{x}^{\text {best }}=\boldsymbol{x}^{\prime}$; otherwise the Lagrangian heuristic was not able to find a feasible solution of cost smaller than $z_{U B}^{\text {best }}$.

Notice that when the Lagrangian Heuristic adds a column j^{\prime} to the emerging solution all the rows are covered by at most one column, the side constraint is satisfied, and its cost $z_{U B}$ is less than $z_{U B}^{\text {best }}$. Therefore, as soon as the emerging solution covers all rows, it is certainly feasible and better than the current best solution of cost $z_{U B}^{\text {best }}$.

In the computational results, the Lagrangian Heuristic is run only when the percentage gap between the current lower and upper bounds is under the 10% and $L R(\boldsymbol{\lambda}, \boldsymbol{q}) \geq H_{G a p}^{1} z_{L B}$ or it is under the 5% and $L R(\boldsymbol{\lambda}, \boldsymbol{q}) \geq H_{G a p}^{2} z_{L B}$. The idea is to apply the Lagrangian HeurisTIC only when the dual solution is sufficiently good (i.e., $H_{\text {Gap }}^{1}>H_{\text {Gap }}^{2}$). The parameter values $H_{\text {Gap }}^{1}$ and $H_{\text {Gap }}^{2}$ can be found at Section 7, where the computational results are described.

When the Lagrangian Heuristic is run, it is repeated four times, one for each criterion for sorting the dimensional values $i \in V$ in phase 1 .

6. An Exact Method

Using heuristic algorithms we can obtain effective feasible solutions in a small computing time, and by means of the dual ascent procedure we can evaluate the maximum distance from the optimal solution value. But when we need to evaluate the optimal value, the only possibility is the use of an exact method.

In this paper we propose an exact method based on an approach similar to the ones described in [7] and [8].

The proposed approach computes a near optimal dual solution by the Dual Ascent Procedure. It uses the corresponding reduced costs $c_{j}^{\prime}=$ $c_{j}-\sum_{i \in C_{j}} u_{i}-a_{j} v$ and generates a reduced problem P^{\prime} by replacing in P the set \mathbb{C} with the subset \mathbb{C}^{\prime} and the original cost c_{j} with the reduced cost c_{j}^{\prime}. The subset \mathbb{C}^{\prime} is the largest subset of the lowest reduced cost variables such that $c_{j}^{\prime}<\min \left\{g^{\max }, z_{U B}-z_{L B}\right\}$ and $\left|\mathbb{C}^{\prime}\right|<\Delta^{\max }$. We solve the resulting reduced problem P^{\prime} by a MIP solver. Given the solution of P^{\prime}, we are able to check if it is optimal for the original problem P. If it is not optimal, we enlarge the subset \mathbb{C}^{\prime} and we solve the new reduced problem again.

The resulting exact method can be summarized as follows.

Exact Algorithm

Step 1. Initial setup

Set $z_{L B}=-\infty, z_{U B}=\infty$, iter $=1$, and $\Delta^{\max }=\Delta_{0}$.
Step 2. Computing a lower bound z_{D}^{\prime}
Compute a solution $\left(\mathbf{u}^{\prime}, v^{\prime}\right)$ of the dual problem D of cost $z_{L B}=z_{D}^{\prime}$ using the Dual Ascent embedding the Lagrangian Heuristic which provides an upper bound $z_{U B}$. Set $g^{\max }=\mu_{1} z_{L B}$.
If $z_{L B}=z_{U B}$, then STOP.
Step 3. Define a reduced problem P^{\prime}
Let $c_{j}^{\prime}=c_{j}-\sum_{i \in C_{j}} u_{i}-a_{j} v$ be the reduced cost of cluster $j \in \mathbb{C}$ with respect to the dual solution $\left(\mathbf{u}^{\prime}, v^{\prime}\right)$.
Let \mathbb{C}^{\prime} be the largest subset of the lowest reduced cost variables such that $c_{j}^{\prime}<\min \left\{g^{\max }, z_{U B}-z_{L B}\right\}$ and $\left|\mathbb{C}^{\prime}\right|<\Delta^{\max }$.
Define the reduced problem P^{\prime} replacing in P the set \mathbb{C} with \mathbb{C}^{\prime} and replacing the original cost c_{j} with the reduced cost c_{j}^{\prime}.

Step 4. Solve problem P^{\prime}

Solve problem P^{\prime} using a general purpose MIP solver (e.g., IBM Ilog Cplex).
Let $z_{P^{\prime}}^{*}$ be the cost of the optimal solution \mathbf{x}^{*} obtained (we assume $z_{P^{\prime}}^{*}=\infty$ if the set \mathbb{C}^{\prime} does not contain any feasible solution).
Update $z_{U B}=\min \left\{z_{U B}, z_{P^{\prime}}^{*}+z_{D}^{\prime}\right\}$.

Step 5. Test if \mathbf{x}^{*} is optimal for the original problem P

Let $c_{\max }=\max \left\{c_{j}^{\prime}: j \in \mathbb{C}^{\prime}\right\}$, if $\mathbb{C}^{\prime} \subset \mathbb{C}$, otherwise $c_{\max }=\infty$, if $\mathbb{C}^{\prime}=\mathbb{C}$. We have two cases:
(a) $z_{P^{\prime}}^{*} \leq c_{\max }$, then Stop because \mathbf{x}^{*} is guaranteed to be an optimal solution for the original problem P.
(b) $z_{P^{\prime}}^{*}>c_{\max }$, then \mathbf{x}^{*} is not guaranteed to be an optimal solution for the original problem P, however $z_{D}^{\prime}+c_{\max }$ is a valid lower bound on the optimal solution value of problem P.

Step 6. Update the parameters If iter $<$ MaxIter, then increase $\Delta^{\max }=$ $\mu_{2} \Delta^{\max }$ and $g^{\max }=\mu_{2} g^{\max }, \mu_{2}>1$, set iter $=$ iter +1 and go to Step 3.

At Steps 3 and 4 we use the reduced cost c_{j}^{\prime} instead of the original cost c_{j}, because the solution of the LP-relaxation of P^{\prime}, at node zero, is usually faster (i.e., we incorporate the dual information in P^{\prime}, see [8]).

The procedure terminates when the optimal solution of P is obtained or the maximum number of iterations is reached. Notice that if we set MaxIter $=\infty$, the procedure converges to the optimal solution because in the worst case at a given iteration $\mathbb{C}^{\prime}=\mathbb{C}$.

7. Computational Results

The algorithms presented in this paper were coded in $\mathrm{C}++$ using Microsoft Visual Studio Community 2017, and run on a workstation equipped with an Intel Core i7-3770, $3.40 \mathrm{GHz}, 32 \mathrm{~Gb}$ of RAM, and operating system Windows 10 Educational (version 1803) 64bit. IBM Ilog CPLEX 12.5 is used as LP and MIP solver.

For our experiments we considered four different hierarchies: RESIDENCE, OCCUPATION, PROD_DEPARTMENT, and PROD_BRAND. The former two
come from the IPUMS database [29], while the others two are extracted from the Foodmart database that can be found with the Pentaho suite [35]. After aggregating input data along these hierarchies (e.g., by state or by city), we generated, by means of sampling, several test instances with varying characteristics, such as size and average fan-out (i.e., children per parent ratio). In the remainder of this paper we refer to these instances using the name of the attribute used to aggregate the data, followed by a progressive number; for example, CITY-1 means that the data has been first aggregated by city, and then a sampling process has been performed to create the dataset. To observe how the algorithms behave not only with different problem sizes (i.e., number of clusters) but also with different data distributions, we generated instances CITY_UNI and OCCUPATION_UNI by reusing the hierarchical structure of RESIDENCE and OCCUPATION, but with uniformly random data slices. Finally, we generated some hard instances to show that the new proposed algorithm solves instances where a general-purpose solver fails. A thorough description of the dataset can be found in [15].

For every test instance we solve both versions of the problem: the problem of Type A, where the objective function minimizes the size of the resulting data and the side constraint guarantees that the loss of precision does not exceed a given maximum value; the problem of Type B, where the objective function minimizes the loss of precision and the side constraint guarantees that the size of the resulting data does not exceed a given maximum value.

For every problem type we solve the problem for different values of the maximum loss of precision or of the maximum size of the data.

In this section we summarize the computational results in Tables 2 and 3, while the complete description of the results are reported in the Appendix A in Tables A.4-A.11. When we report in the tables the value of the the maximum loss of precision, we use the notation 1.00 M and $1.00 G$ for representing the values 1.00×10^{6} and 1.00×10^{9}, respectively. When a computing time or a percentage gap is equal to 0.00 , it means that its real value is smaller that 0.01 .

In Tables 2 and 3 the test instances are grouped by the value of the righthand side α of the side constraint, which is the maximum loss of precision for problem of Type A and the maximum size of the data for problem of Type B. For each group, these tables report the average $A v g$, the maximum Max, and the standard deviation s.d. for each column.

Notice that groups having very small values of α (i.e., $\alpha=1.00 M$ and $\alpha=10.00 M$, for problems of Type A, and $\alpha=10$ and $\alpha=15$, for problems of Type B) correspond to few small size instances.

7.1. Dual Ascent procedure

In our computational experiments the parameters of the dual ascent are set as follows. The parameters for defining the step size are $\beta_{0}=20, \gamma_{1}=$ $0.90, \gamma_{2}=1.10$, for problems of Type A, and $\beta_{0}=1, \gamma_{1}=0.90, \gamma_{2}=1.005$, for problems of Type B. The parameter ε_{0} used for reducing the size of the subset \mathbb{C}^{\prime} is 0.05 , i.e., 5% of the value of the current lower bound. Instead, the parameter ε_{1} used to check if the lower bound has improved enough during the last MaxIter ${ }_{0}$ iterations is $\varepsilon_{1}=0.001$. The maximum number of iterations are MaxIter $=100000$ (i.e., virtually unlimited), MaxIter $_{0}=200$, and MaxIter $_{1}=5$.

The choice of the parameter values is made empirically, because the purpose of the computational tests is to show that just with a good choice we can achieve effective results. Therefore, a better analysis on the choice of the parameter values is outside of the scope of this paper, but it will be an interesting research direction for the future.

In Table 2 we compare the results obtained by the CPLEX LP solvers and by the dual ascent procedure, described in Section 4.

For the CPLEX solvers we report the computing times Time ${ }_{x}$ for each solver available: primal (P), dual (D), network (N), barrier (B), and sifting (S). For the dual ascent we report the percentage gap between the best lower bound $z_{L B}$, corresponding to the best feasible dual solution generated, and the LP-relaxation optimal value $z_{L P}, G a p_{L P}=100 \times \frac{z_{L P}-z_{L B}}{z_{L P}}$, the number of iterations Iter, the computing time Time, and the size of subset \mathbb{C}^{\prime} at the end of the execution.

The more effective CPLEX LP solver is the network simplex, in particular for problems of Type B, at the contrary the barrier is very time consuming for both problem types. To improve the results provided by the barrier algorithm we also tried to apply all the barrier algorithms available by the parameter CPX_PARAM_BARALG, without any improvement. The total number of barrier iterations, returned by function "CPXgetbaritcnt", ranges from few tens to some hundreds, for the most difficult instances, and in the worst case it reaches 648 iterations (i.e., instance "city11", see Ap-
pendix A). We are not able to explain the poor performance of the barrier algorithm. It is an another interesting topic for future research.

Even the primal and the dual simplex do not work as expected. The difference in the performance is more evident for medium-large size instances and seems to depend by the number of clusters in the optimal solution: the smaller the number of clusters the greater the difference in the performance. Notice that for a problem of Type A a greater value of α allows for a smaller number of clusters in the optimal solutions. The reason for these differences in performance is unclear and further investigation will be needed to provide an explanation. Perhaps, these instances have a particular structure that gives an advantage to the network simplex.

The dual ascent provides near optimal solutions in a smaller computing time with respect to CPLEX LP solvers for problems of type A. It generates lower bounds having an average percentage gap $G a p_{L P}$ from the optimal solution value $z_{L P}$ equal to 0.02% and it is on average faster than the better CPLEX LP solver (see Table A.4). For problems of Type B, the dual ascent is a little worse only with respect to the network simplex and the average percentage gap $G a p_{L P}$ is under 0.01% (see Table A.5). Even the results on the hard instances, reported in Tables A. 6 and A.7, confirm these figures.

Setting a smaller MaxIter $_{0}$ and a more aggressive value for β_{0} we can obtain a faster convergence of the dual ascent with a smaller worsening of the lower bound provided. However, the convergence is more erratic and the quality of the solutions generated by the embedded Lagrangian heuristic is a little worse. Since we are mainly interested in the heuristic or optimal solution of the problem, we prefer a slower dual ascent which enhances the quality of the solutions generated by the Lagrangian heuristic.

7.2. Greedy and Lagrangian Heuristics

In Table 3 we compare the greedy and the Lagrangian heuristics, described in Sections 2 and 5. The results of the Lagrangian heuristic include the dual ascent procedure which embeds it.

For each group of test instances we report the percentage gap between the best upper bound found $z_{U B}$ and the value of the optimal integer solution, Gap $=100 \times \frac{z_{U B}-z_{O_{p t}}}{z_{O_{p t}}}$, and the computing time Time. For the dual ascent with the Lagrangian heuristic we also report the number of iterations Iter, and the size of \mathbb{C}^{\prime}.
Table 2: Dual Ascent procedure is compared with CPLEX LP solvers: Problem Type A and B.

					Cplex				Dual	Ascent	
			Time $_{P}$	Time $_{D}$	Time $_{N}$	Time $_{B}$	Time $_{S}$	${ }^{\text {Gap }}{ }_{L P}$	Iter	Time	$\left\|C^{\prime}\right\|$
Type A	$\alpha=1.00 \mathrm{M}$	avg	0.67	0.68	0.68	0.67	${ }^{1.06}$	0.08	968	${ }^{0.10}$	${ }^{1393}$
		max	0.67	0.68	0.68	0.67	1.06	0.08	968	0.10	1393
		s.d.	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0
	$\alpha=10.00 \mathrm{M}$	avg	0.72	${ }^{0.76}$	0.72	${ }_{1}^{1.21}$	1.77	${ }^{0.06}$	897	0.19	398
		max	0.72	0.76	0.72	1.21	1.77	0.06	897	0.19	398
		s.d.	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0
	$\alpha=100.00 \mathrm{M}$		6.39	6.37	${ }^{6.35}$	6.29	7.42	0.02	965	3.59	
		max	27.37	27.42	27.21	25.18	31.23	0.06	1169	14.22	1571
		s.d.	8.10	8.09	8.02	7.38	9.19	0.01	143	4.22	349
	$\alpha=1000.00 \mathrm{M}$		0.73	0.73	0.75	0.97	0.89	0.02	759	0.48	713
		max	1.77	1.76	1.82	2.42	2.19	0.03	991	1.24	1403
		s.d.	0.65	0.64	0.66	0.84	0.78	0.01	271	0.42	567
	$\alpha=10.00 \mathrm{G}$	avg	${ }^{14.13}$	10.89	15.11	${ }^{243.32}$	13.01	0.02	987	6.92	12130
		max	53.36	39.84	65.23	1014.29	44.96	0.04	1219	24.43	34057
		s.d.	16.06	12.26	18.55	300.57	13.43	0.01	184	7.18	10005
	$\alpha=100.00 \mathrm{G}$		${ }^{24.61}$	30.01	129.39	${ }^{566.75}$	${ }^{28.29}$	0.03	950	${ }^{11.02}$	83344
		max	126.64	163.83	178.73	3097.50	115.07	0.07	1179	46.13	268111
		s.d.	33.33	43.87	45.08	861.89	32.97	0.02	93	12.46	80787
	$\alpha=1000.00 \mathrm{G}$		5.06	4.78	3.69	68.96	8.42	0.03	976	4.15	${ }^{62576}$
		max	${ }^{8.01}$	9.47	${ }^{6.43}$	108.05	${ }^{12.83}$	0.03	1176	5.80	${ }^{80112}$
		s.d.	2.38	2.99	1.99	35.62	2.86	0.01	131	1.70	16758
Type B	$\alpha=10$		0.04	0.04	0.04	0.11	0.04	0.00	635	0.04	14
		max	0.08	0.07	0.07	0.20	0.07	0.00	689	0.04	14
		s.d.	0.04	0.04	0.04	0.10	0.03	0.00	54	0.00	1
	$\alpha=15$		${ }^{0.04}$	${ }^{0.03}$	${ }^{0.03}$	0.60	${ }^{0.05}$	0.00	917	0.03	
		max	0.07	0.06	0.06	1.19	0.07	0.00	1317	0.04	31
		s.d.	0.04	0.03	0.03	0.59	0.03	0.00	401	0.02	8
	$\alpha=50$		27.76	82.10	${ }^{31.06}$	443.15	${ }^{105.64}$	0.00	1223	32.21	1691
		max	146.19	516.51	242.31	2419.11	${ }^{596.38}$	0.00	1480	152.99	4553
		s.d.	39.50	135.53	58.29	658.33	144.57	0.00	176	42.96	694
	$\alpha=100$		${ }^{30.78}$	${ }^{61.87}$	33.90	53.91	25.75	0.00	1145	27.93	$\begin{array}{r}1366 \\ { }_{1975} \\ \hline 1\end{array}$
		max	148.85 43.73		205.82 55.04	308.02 76.88	92.98 30.18	0.01 0.00	${ }_{1722}^{152}$	138.94 3742	${ }_{220}^{1975}$
	$\alpha=150$		${ }^{30.95}$	${ }^{44.15}$	25.64	84.88	13.25	0.00	1127	20.84	1216
		$\begin{aligned} & \text { max } \\ & \text { s.d. } \end{aligned}$	148.61 43.75	$\begin{gathered} 230.62 \\ 65.89 \end{gathered}$	$\begin{array}{r} 152.53 \\ 38.52 \end{array}$	439.19	$\begin{aligned} & 62.73 \\ & 17.47 \end{aligned}$	0.04 0.01	$\begin{array}{r} 1313 \\ 103 \end{array}$	104.17 27.56	1805 315
											S15

The computing time of the greedy heuristic is negligible but the percentage gap from the optimal solution value is on average 1.28% and 3.74% for the problems of type A and B (reported in Tables A. 8 and A.9, respectively), and is on average 0.57% and 5.09% for the hard instances of type A and B (reported in Tables A. 10 and A.11). The maximum gap is the 25% and is often greater than 5%.

For the Lagrangian heuristic we have set the parameters $H_{\text {Gap }}^{1}=0.1 \%$ and $H_{\text {Gap }}^{2}=0.001 \%$, for problems of Type A, and $H_{\text {Gap }}^{1}=1 \%$ and $H_{\text {Gap }}^{2}=$ 0.001%, for problems of Type B (see Section 5). The Lagrangian heuristic is more time consuming but the percentage gap from the optimal solution value is much smaller. For problems of type A it finds the optimal solution for all the instances. The quality of the upper bound is a little worse for problems of type B , where only some instances having $\alpha=50$ and $\alpha=100$ are not solved to optimality: the average gap is 0.17% and 1.65%, respectively. For the very large instances of Type B, the maximum gap is 8.66%, but it is still much better than the greedy heuristic.

7.3. Exact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, described in Section 5, and of the exact method, described in Section 6, in Table 3 we compare them with the CPLEX MIP solver.

For the proposed exact method in our computational results we set MaxIter $=10, \Delta_{0}=1000, \mu_{1}=0.001$, and $\mu_{2}=10$. For the exact method we setup a less aggressive setting for the Lagrangian heuristic by setting the parameters $H_{\text {Gap }}^{1}=H_{\text {Gap }}^{2}=0.001 \%$, for both problems of Type A and B (see Section 5). We made this choice because the exact method requires a small computing time for closing a possible gap between the upper bound and the optimal solution. In this case it is convenient to avoid a time consuming most aggressive setting.

For the CPLEX MIP solver we report the computing time Time. However, for two instances of Type A and for five instances of Type B the CPLEX MIP solver fails because of an "out of memory". For these instances column Time reports the computing time spent to generate the error (see Tables A. 10 and A. 11 in Appendix A for more details).
Table 3: Comparison among CPLEX MIP solver, Dual Ascent with Lagrangian Heuristic, and Exact method: Problem Type A and B

For the dual ascent embedding the Lagrangian heuristic, we report the gap between the best upper bounds found and the optimal solution, Gap $=$ $100 \times \frac{z_{U B}-z_{O p t}}{z_{O P t}}$ and the computing time T_{A}. For the exact method, we report the size of the subset of columns \mathbb{C}^{\prime} considered in the integer reduced problem P^{\prime}, the number of iterations Iter, the computing time T_{E} for solving the reduced problem P^{\prime} (even more than one time if Iter >1), and the overall computing time $T_{\text {Tot }}$ which also includes the computing time of the dual ascent procedure and of the embedded Lagrangian heuristic. When the problem is solved by the dual ascent, we report $\left|\mathbb{C}^{\prime}\right|=0$.

Notice that we used a less aggressive setting for the Lagrangian heuristic for the exact method, therefore the Gap between the best upper bounds found and the optimal solution is sometimes greater than the one found by the more aggressive Lagrangian heuristic. The advantage is a smaller computing time.

The exact method performs very well for problems of Type A, where it needs to solve the integer reduced problem P^{\prime} only for six instances using a very small subset of columns \mathbb{C}^{\prime}. Only for one instance the exact method requires two iterations. The proposed exact method is on average about seven times faster than the CPLEX MIP solver and for two hard instances the CPLEX MIP solver runs out of memory.

Problems of Type B are more difficult to solve, but the exact method is on average about five times faster than the CPLEX MIP solver. As shown in Appendix A by Table A.9, for many instances the exact method needs to solve the integer reduced problem P^{\prime}. However, the size of the subset \mathbb{C}^{\prime} is still small and the computing time for solving the reduced problem P^{\prime} is very small. We need two iterations only for seven instances, three iterations for one instance, and four iterations for one hard instance. All the remaining instances are solved in one iteration. For only one hard instance of type B, the exact method requires about 18 minutes, but for the same instance the CPLEX MIP solver fails. Overall, the CPLEX MIP solver fails for five hard instances of Type B.

The most difficult medium-large instances are the ones having a small number of clusters in the optimal solution. For problems of Type A, they are imposed by the side constraint with a small right-hand-side (i.e., the maximum number of clusters). For problems of Type B, they are obtained by minimizing the number of clusters having a side constraint that allows a
large error with a large right-hand-side.

8. Conclusions

In this paper we have proposed an integer linear programming model for solving the problem of implementing effectively the OLAP shrink operator.

We have modelled the problem as a set partitioning problem with one side constraint and we have considered two different approaches for finding its solution. In the first one (problem of Type A), we minimize the size of the resulting data, while the side constraint guarantees that the loss of precision does not exceed a given maximum value. In the second approach (problem of Type B), we minimize the loss of precision, while the side constraint guarantees that the size of the resulting data does not exceed a given maximum value.

The proposed mathematical formulation is able to model both problem types. For switching from one type to the other, it is sufficient to modify the coefficients of the objective function and of the side constraint, along with its right-hand side.

The first solution method considered is a dual ascent which embeds a Lagrangian heuristic. The dual ascent generates at each iteration a hopefully feasible dual solution of the LP-relaxation of the problem. The dual ascent only considers a reduced subset of columns to solve the problem and uses the generated feasible dual solutions for adding columns to the reduced problem using the pricing. The computing time allows an operational use of the procedure and the quality of the solution generated is of very good quality. For problems of Type A the dual ascent significantly outperforms general purpose LP solvers as CPLEX. It is able to generate a near optimal dual solution in a short computing time.

We have also proposed an exact method to use when the optimal solution is required. After running the dual ascent embedding the Lagrangian heuristic, the proposed exact procedure generates, with a very small additional computing time, an optimal solution using a very small subset of the columns of the original instance. Therefore, the exact procedure has the potential for an operational use, while a general purpose solver, like CPLEX, is time consuming and fails for some instances.

The computational results show the maximum instance sizes that can be solved to optimality and they are much smaller than the size of instances
of similar problems such as the microaggregation (see Section 1).
For the instances used in this paper, the computing time for generating the clusters is almost negligible with respect to the time for solving the problem, even if the number of columns is huge for many instances. The use of pricing to select a small subset of columns allows a huge reduction of the overall computing time without compromising the optimal solution of the problem. However, future developments could embed a column generation procedure in the proposed algorithms in order to solve much larger instances, at least of one further order of magnitude, where the complete generation of clusters takes time and requires a huge amount of memory.

Appendix A. Complete computational results

For each instance, the number of values in the hierarchy and the number of generated clusters are shown alongside the results of the experiments in Tables A.4-A.7.

For every test instance we solve both versions of the problem. In Tables A.4, A.6, A.8, and A. 10 we solve the problem of Type A. Whereas, in Tables A.5, A.7, A.9, and A. 11 we solve the problem of Type B.

Appendix A.1. Dual Ascent procedure

In Tables A.4, A.5, A.6, and A. 7 we compare the CPLEX LP solvers and the dual ascent procedure, described in Section 4.

For each test instance we report the number of clusters m, the number of dimensional values n, the computing time for generating the clusters $T_{\text {Gen }}$, and the right-hand side α of the side constraint, which is the maximum loss of precision for problem of Type A and the maximum size of the data for problem of Type B. For the CPLEX solvers we report the optimal value $z_{L P}$ of the LP-relaxation of the problem P and the computing times Time x_{x} for each solver available: primal (P), dual (D), network (N), barrier (B), and sifting (S). For the dual ascent we report the best lower bound $z_{L B}$ corresponding to the best feasible dual solution generated, its percentage gap from $z_{L P} G a p_{L P}=100 \times \frac{z_{L P}-z_{L B}}{z_{L P}}$, the number of iterations Iter, the computing time Time, and the size of subset \mathbb{C}^{\prime} at the end of the execution.
Table A.4: Dual Ascent procedure is compared with CPLEX LP solvers: Problem Type A.

Table A.5: Dual Ascent procedure is compared with CPLEX LP solvers: Problem Type B.

Table A.6: Dual Ascent procedure is compared with CPLEX LP solvers: Problem Type A

	Size and Generation			Side Cons.	Cplex						Dual Ascent				
Instances	m	n	T_{G}	α	$z_{L P}$	Time $_{P}$	Time $_{\text {D }}$	Time $_{N}$	Time $_{B}$	Time $_{S}$	$z_{L B}$	Gap_{L}	Iter	Time	$\left\|\mathrm{C}^{\prime}\right\|$
City480	12883061	536	2.01	100.00 G	103.76	86.15	125.58	109.44	2642.47	108.25	103.74		801	34.99	256212
City480	12883061	536	2.01	10.00G	180.12	45.15	37.67	54.39	854.86	36.78	180.11	0.01	998	19.24	15548
City480	12883061	536	2.01	100.00 M	364.51	23.35	23.29	23.18	21.53	26.54	364.46	0.02	1001	12.37	921
City538	7804077	598	1.24	100.00G	120.87	57.73	68.28	70.52	1346.73	52.19	120.85	0.01	877	23.48	160320
City538	7804077	598	1.24	10.00G	210.70	28.29	19.74	25.53	437.33	23.57	210.67	0.01	1219	14.70	8839
City538	7804077	598	1.24	100.00 M	418.14	13.49	13.46	13.42	12.48	15.70	418.09	0.01	975	7.27	1035
City552	15144109	612	2.46	100.00G	123.54	126.64	163.83	178.73	3097.50	115.07	123.50	0.03	921	46.13	268111
City552	15144109	${ }_{612}$	${ }^{2} .46$	10.00 G	213.99	53.36	39.84	${ }^{65.23}$	1014.29	${ }^{44.96}$	213.93	0.03	1052	24.43	15764
City552	15144109	612	2.46	100.00 M	426.80	27.37	27.42	27.21	25.18	31.23	426.70	0.02	964	14.22	1087
City604	9116229	668	1.58	100.00G	138.34	71.94	79.42	84.06	1459.44	64.80	138.32	0.01	1035	27.36	93950
City604	9116229	668	1.58	10.00 G	242.09	31.12	22.92	28.59	517.27	27.99	242.08	0.01	1124	15.62	9797
City604	9116229	668	1.58	100.00 M	474.01	15.87	15.72	15.50	14.31	17.90	473.83	0.04	878	7.94	1159
Avg			${ }^{1.82}$			${ }^{48.37}$	${ }^{53.10}$	157.98	${ }^{953.62}$	47.08		0.02	987	20.65	${ }^{69395}$
Max			2.46			${ }^{126.64}$	163.83	178.73	3097.50	115.07		0.04	1219	46.13	268111
s.d.			0.46			31.98	46.00	46.54	992.81	31.94		0.01	109	10.94	97868

Table A.7: Dual Ascent procedure is compared with CPLEX LP solvers: Problem Type B.

	Size and Generation			$\frac{\text { Side Cons. }}{\alpha}$	Cplex						Dual Ascent				
Instances	m	n	$T_{\text {Gen }}$		$z_{L P}$	Time $_{P}$	Time $_{\text {d }}$	Time $_{N}$	Time_{B}	Time $_{S}$	$z_{L B}$	$G_{\text {Gap }}^{L P}$	Iter	Time	$\left\|C^{\prime}\right\|$
City480	12883061	536	2.01	150	22.87 G	${ }^{129.26}$	157.15	94.52	338.95	50.08	${ }^{22.87 \mathrm{G}}$	0.00	1049	60.19	1243
City480	12883061	536	2.01	100	115.08 G	133.73	205.84	138.84	308.02	89.75	115.08 G	0.00	1134	105.14	1505
City480	${ }^{12883061}$	536	2.01	50	${ }^{774.04 \mathrm{G}}$	117.62	401.87	157.27	1118.54	346.30	${ }^{774.03 \mathrm{G}}$	0.00	1407	132.76	4553
City538	7804077	598	1.24	150	44.78 G	75.90	109.19	60.76	204.63	32.50	44.78 G	0.00	1243	53.91	1464
City538	7804077	598	1.24	100	205.76 G	76.53	161.41	97.82	191.66	52.54	205.76 G	0.00	991	66.55	1565
City538	7804077	598	1.24	50	1097.79G	66.49	193.51	76.42	2083.12	231.52	1097.78G	0.00	428	79.08	1885
City552	15144109	612	2.46	150	46.98 G	148.61	230.62	152.53	439.19	62.73	46.98 G	0.00	1266	104.17	1461
City552	15144109	612	2.46	100	${ }^{217.84 G}$	148.85	425.24	205.82	39.84	92.98	${ }^{217.84 G}$	0.00	1300	1388.94	1695
City552	15144109	612	2.46	50	1112.72 G	146.19	516.51	242.31	39.73	596.38	1112.72 G	0.00	1323	152.99	1810
City604	9116229	668	1.58	150	74.43 G	103.32	178.27	72.72	268.25	37.94	${ }^{74.43 \mathrm{G}}$	0.00	1176	67.34	1805
City604	9116229	668	1.58	100	${ }^{323.05 G}$	106.40	212.20	126.87	185.49	75.96	${ }^{323.04 \mathrm{G}}$	0.00	1249	83.53	1975
City604	9116229	668	1.58	50	1437.34 G	83.26	231.18	53.46	2419.11	246.75	1437.34 G	0.00	1123	90.10	1971
Avg			1.82			111.35	251.92	123.28	636.38	159.62		0.00	1224.08	${ }^{94.56}$	1911
Max			2.46			148.85	516.51	242.31	2419.11	596.38		0.00	1428.00	152.99	4553
s.d.			0.46			29.20	120.24	56.46	773.18	162.92		0.00	128.76	31.34	826

In Tables A.4, A.5, A.6, and A. 7 column $\left|\mathbb{C}^{\prime}\right|$ shows that the size of the subset of columns \mathbb{C}^{\prime} evaluated in the dual ascent procedure is always very small with respect to the total number of columns n of the original instances.

Notice that the computing time for generating the full set of column \mathbb{C} is usually very small and it never dominates the time for solving the instances.

Appendix A.2. Greedy and Lagrangian Heuristics

In Tables A.8, A.9, A.10, and A. 11 we compare the greedy and the Lagrangian heuristics, described in Sections 2 and 5. The results of the Lagrangian heuristic include the dual ascent procedure which embeds it.

For each test instance we report the right-hand side α of the side constraint, which is the maximum loss of precision for problem of Type A and the maximum size of the data for problem of Type B, and for both heuristics we report the best upper bound provided $z_{U B}$, the percentage gap from the value of the optimal integer solution $G a p=100 \times \frac{z_{U B}-z_{O p t}}{z_{O p t}}$, and the computing time Time. For the dual ascent with the Lagrangian heuristic we also report the best lower bound $z_{L B}$ corresponding to the best feasible dual solution generated, the number of iterations Iter, and the size of \mathbb{C}^{\prime}.

Appendix A.3. Exact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, described in Section 5, and of the exact method, described in Section 6, in Tables A.8, A.9, A.10, and A. 11 we compare them with the CPLEX MIP solver. For the CPLEX MIP solver we report the integer optimal solution value $z_{O p t}$ and the computing time Time. We report the symbol "-" in column $z_{\text {Opt }}$ when the CPLEX MIP solver fails because of an "out of memory". For these instances column Time reports the computing time spent to generate the error.

For the exact method we report the integer optimal solution value $z_{O p t}$, the gap Gap between the best upper bound found by the Lagrangian heuristic and the optimal solution, the size of the subset of columns \mathbb{C}^{\prime} considered in the integer reduced problem P^{\prime}, the number of iterations Iter, the computing time T_{A} for the Lagrangian heuristic, the computing time T_{E} for solving the reduced problem P^{\prime} (even more than one time if Iter >1), and the overall computing time $T_{T o t}$ which also includes the computing time of the dual ascent procedure and of the embedded Lagrangian heuristic. When the problem is solved by the dual ascent we report $\left|\mathbb{C}^{\prime}\right|=0$.
Table A.8: Comparison among CPLEX MIP solver, Dual Ascent with Lagrangian Heuristic, and Exact method: Problem Type A.

	Side Con.	Greedy			Cplex		Dual Ascent + Lagr. Heu.						Exact Method						
Instances	${ }^{\alpha}$	${ }^{z_{U B}}$	Gap	Time	$z_{\text {opt }}$	Time	$z_{L B}$	$z_{\text {UB }}$	Gap	Iter	Time	$\left\|C^{\prime}\right\|$	$z_{\text {opt }}$	Gap	$\left\|C^{\prime}\right\|$		T_{A}	T_{E}	$T_{\text {Tot }}$
state	10.00G		0.00	0.00		0.01	${ }^{29.50}$		0.00	${ }^{3}$	0.03			0.00		1	0.03	0.00	0.03
state	1000.00 M	32	0.00	0.00	32	0.03	32.00	32	0.00	0	0.03	32	32	0.00	0	1	0.03	0.00	0.03
prod_department	1000.00M	${ }^{5}$	25.00	0.00	4	0.41	3.50	4	0.00	438	0.06	${ }^{20}$	4	0.00	0	1	${ }^{0.06}$	0.00	0.06
prod_department	100.00M	10	0.00	0.00	10	0.20	9.05	10	0.00	51	0.03	33	10	0.00	0	1	0.03	0.00	0.03
prod_brand	10.00M	37	8.82	0.01	34	1.49	32.98	34	0.00	897	0.39	398	34	0.00	282		0.24	0.34	0.58
prod_brand	1.00 M	169	0.60	0.01	168	0.73	167.43	168	0.00	766	0.16	1393	168	0.00		1	0.14	0.00	0.14
city-1	100.00G	75	2.74	0.01	${ }^{73}$	1.06	${ }^{72.00}$	73	0.00	979	0.50	6903	73	0.00	198	1	0.37	0.06	0.43
city-1	10.00G	141	0.00	0.01	141	0.87	140.10	141	0.00	625	0.30	2725	141	0.00	0	,	0.25	0.00	0.25
city-1	100.00M	307	0.00	0.00	307	0.21	306.03	307	0.00	806	0.38	802	307	0.00	0	1	0.19	0.00	0.19
city-2	100.00G	78	2.63	0.01	76	1.99	75.29	76	0.00	713	0.69	19221	76	0.00	0	1	0.75	0.00	0.75
city-2	10.00 G	150	0.67	0.01	149	1.48	148.14	149	0.00	662	0.69	4629	149	0.00	0	1	0.71	0.00	0.71
city-2	100.00M	325	0.00	0.01	${ }^{325}$	0.31	${ }^{324.14}$	325	0.00	${ }_{712}^{663}$	0.58	930	325	0.00	0	1	${ }^{0.36}$	0.00	${ }^{0.36}$
city-3	100.00G	80	2.56	0.01	78	4.55	77.53	78	0.00	712	1.51	21669	78	0.00	0	1	1.40	0.00	1.40
city-3	10.00 G	155	0.65	0.01	154	3.21	153.88	154	0.00	818	2.90	4367	154	0.00	0	1	1.15	0.00	1.15
city-3	100.00 M	343	0.29	0.00	342	0.48	341.29	342	0.00	636	1.19	985	342	0.00	0	1	0.69	0.00	0.69
city-4	100.00G	84	1.20	0.01	83	127.55	82.15	83	0.00	662	2.78	49204	83	0.00	0	1	2.69	0.00	2.69
city-4	10.00G	159	0.00	0.01	159	5.83	${ }^{158.00}$	159	0.00	868	7.06	6056	159	0.00	0	1	2.94	0.00	2.94
city-4	100.00M	354	0.00	0.01	354	0.85	${ }^{353.07}$	354	0.00	${ }_{694}$	2.74	1131	354	0.00	0	1	${ }_{4}^{1.67}$	${ }^{0.00}$	${ }_{4}^{1.67}$
city-5	100.00G	83	1.22	0.01	82	18.00	81.03	82	0.00	${ }_{791}$	4.32	40864	82	0.00	0	1	4.06	0.00	${ }^{4.06}$
city-5	10.00G	160	0.63	0.01	159	10.90	${ }^{158.33}$	159	0.00	767	${ }^{6.30}$	9390	159	0.00	0	1	3.88	0.00	3.88
city-5	100.00M	356	0.00	0.01	356	1.28	355.00	356	0.00	625	3.69	1149	356	0.00	0	1	2.66	0.00	2.66
city-6	${ }^{1000.00 \mathrm{G}}$	86	1.18	0.01	85	17.73	84.18	85	0.00	${ }_{7}^{646}$	${ }^{5.26}$	${ }_{7}^{72676}$	85	0.00	0	1	5.19	${ }^{0.00}$	${ }_{5}^{5.19}$
city-6	10.00G	163	0.62	0.01	162	12.27	161.40	162	0.00	740	8.13	10283	162	0.00	0	1	5.11 3 3 80	0.00 0.00	5.11 380 3
city-6	100.00 M	366	0.27	0.01	365	1.53	364.80	365	0.00	731	7.81	1274	365	0.00	0	1	3.80	0.00	3.80
city-7	100.00G	${ }^{73}$	1.39	0.01	${ }^{72}$	${ }^{34.65}$	${ }^{71.25}$	${ }^{72}$	0.00	582	8.14	91528	${ }^{72}$	0.00	0	1	7.67	0.00	7.67
city-7	10.00 G	133	0.00	0.01	133	15.78	${ }^{132.02}$	133	0.00	${ }_{6}^{611}$	10.26	15866	${ }^{133}$	0.00	0	1	${ }^{6.57}$	0.00	${ }^{6.57}$
city-7	100.00M	${ }^{315}$	0.32	0.01	${ }^{314}$	2.21	${ }^{313.09}$	314	0.00	800	10.52	1190	314	0.00	0	1	6.62	0.00	${ }^{6.62}$
city-8	100.00G	73	0.00	0.01	73	220.07	${ }^{72.05}$	73	0.00	570	14.89	135015	73	0.00	0	1	14.07	0.00	14.07
city-8	10.00G	135	0.75	0.01	134	58.83	133.06	134	0.00	504	15.01	31878	134	0.00	0	1	12.15	0.00	12.15
city-8	100.00 M	320	0.31	0.01	319	4.09	318.55	319	0.00	736	22.01	1099	319	0.00	0	1	12.81	0.00	12.81
city-9	${ }^{1000.00 G}$	80	${ }^{1.27}$	0.01	79	198.73	-78.63	79	0.00 0.00	${ }_{7}^{669}$	30.59 44.84	108384 25123	79 147	0.00 0.00	0	1	${ }^{27.21}$	0.00 0.00	${ }^{27.21}$
city-9	10.00 G	148	0.68	0.01	147	152.29	146.74	147	0.00	708 839	44.84	${ }_{2} 25123$	147	0.00	0	1	${ }^{27.18}$	${ }^{0.00}$	${ }^{27.18}$
city-9	100.00M	349	0.29	0.01	348	8.14	347.10	348	0.00	839	49.66	1227	348	0.00	0		27.23	0.00	27.23
city-10 city-10	100.00G	96	2.13	0.01	94	140.49	93.07	94	0.00	640	21.30	200346	94	0.00	0	1	19.19	0.00	19.19
city-10 city	10.00 G	174	0.58	0.01	173	71.53	172.66	173	0.00	682	31.12	21072	173	0.58	1000	1	24.06	0.59	24.65
city-10	100.00M	401	0.25	0.01	400	5.26	399.03	400	0.00	824	30.29	1335	400	0.00		1	17.35	0.00	17.35
city-11	100.00G	96	2.13	0.02	94	295.74	${ }^{93.60}$	94	0.00	${ }_{6} 60$	34.27	142600	94	0.00	0	1	30.13	0.00	${ }^{30.13}$
${ }_{\text {city-11 }}$	10.00G	175	0.00	0.02	175	239.65	174.00	175	0.00	780	66.57	34057	175	0.00		1	33.63	0.00	33.63
city-11	100.00 M	407	0.25	0.01	406	10.18	405.03	406	0.00	834	59.26	1570	406	0.00	0	1	36.99	0.00	36.99
occupation-1	100.00G	68	1.49	0.00	67	53.88	66.71	67	0.00	705	7.62	17557	67	0.00	0	,	5.92	0.00	5.92
occupation-1	10.00 G	132	1.54	0.00	130	11.40	129.08	130	0.00	800	${ }^{6.44}$	1386	130	0.00	0	1	4.82	0.00	4.82
occupation-1	100.00M	${ }^{260}$	${ }^{0.00}$	0.00	${ }^{260}$	1.46	${ }^{259.07}$	260	0.00	639	${ }^{5.30}$	$\stackrel{469}{ }$	260	0.00 0.00	0	1	${ }_{21}^{2.61}$	${ }^{0.00}$	${ }_{21}^{2.61}$
occupation-2	100.00G	71	1.43	0.01	70	203.92	69.21	70	0.00	672	25.76	24109	70	0.00	0	1	21.74	0.00	21.74
occupation-2	10.00G	138	1.47	0.01	136	51.94	135.17	136	0.00	717	22.59	1523	136	0.00	0	1	18.69	0.00	18.69
occupation-2	100.00 M	280	0.00	0.01	280	6.00	279.19	280	0.00	478	15.15	508	280	0.00	0	1	7.25	0.00	7.25
	${ }^{1000.00 \mathrm{G}}$	${ }_{1}^{69}$	1.47	${ }_{0}^{0.01}$	${ }^{68}$	147.78	${ }^{67.66}$	${ }_{1}^{68}$	${ }^{0.00}$	${ }_{7}^{733}$	${ }^{9.95}$	${ }_{27980}^{77980}$	${ }^{68}$	1.47	461	1	${ }_{6}^{9.51}$	${ }^{0.32}$	${ }^{9.83}$
city_uni-1	100.00G	127	0.00	0.01	127	28.20	126.12	127	0.00	468	7.17	28634	127	0.00	${ }_{0}$	1	${ }^{6.54}$	0.00	${ }^{6.54}$
city-uni-1 cit_uni-2	1000.00 M	304	0.00	0.01	304	2.93	303.04	304	0.00	720	9.52	1205	304	0.00	0	1	5.65	0.00	5.65
city-uni-2	1000.00G	75	2.74	0.01	73	7.71	${ }^{72.02}$	73	0.00	629	1.59	41864	73	0.00	0	1	1.62	0.00	1.62
city_uni-2 city-uni-2	100.00G	149	0.68	0.01	148	${ }^{6.93}$	${ }^{147.01}$	148	0.00	${ }_{736}^{658}$	1.38	4170	148	0.00	0	1	${ }_{1}^{1.13}$	0.00	1.13
city-uni-2 cityuni-3	1000.00M	338	0.00	0.00	${ }^{338}$		${ }^{337.05}$	338	0.00	${ }^{736}$	1.52	1160	338	0.00	0	1	${ }^{0.88}$	0.00	${ }^{0.88}$
city-uni-3 cityuni-3	1000.00G	77	1.32	0.01	76	303.56	74.97	76	0.00	1001	9.09	50347	76	0.00	313	1	5.53	0.14	5.67
city-uni-3 city-uni-3	100.00G	154	1.32	0.01	152	18.65	151.36	152	0.00	601	4.92	7429	152	0.00	0	1	3.46	0.00	3.46
city-uni-3 occupation_uni	1000.00 M 1000.00 G	353 65	0.00 0.00	0.01 0.00	353 65	1.90 58.11	352.07 64.04	353 65	0.00 0.00	659 648	4.30 6.47	1403 80112	353 65	0.00 0.00	${ }_{0}^{0}$	1	2.88 5.54	0.00 0.00	2.88 5.54
occupation_uni occupation_uni	1000.00 G 100.00 G	${ }_{125}^{65}$	0.00 0.00	0.00 0.01	${ }_{125}^{65}$	${ }_{11.64}^{58.11}$	${ }_{124.04}^{64.04}$	${ }_{125}^{65}$	0.00 0.00	648 842	${ }_{9.37}^{6.47}$	${ }_{1323}$	125	${ }_{0}^{0.00}$	${ }_{0}$	1	${ }_{4}{ }_{4} .60$	${ }_{0}$	4.60 4.6
occupation_uni	1000.00 M	254	0.00	0.00	254	1.47	253.11	254	0.00	595	4.68	458	254	0.00	0	1	2.76	0.00	2.76
Avg			1.28	0.01		45.42			0.00	665.49	11.56	24739		0.04	40		7.94	0.03	7.96
$\underset{\text { s.d. }}{\text { Max }}$			25.00 3.44	0.02		303.56 78.56				1001.00	66.57 15.00	200346 41163		$\begin{aligned} & 1.47 \\ & { }_{0}^{2} \end{aligned}$	$\begin{gathered} 1000 \\ 153 \end{gathered}$		36.99 9.63	0.59	36.99 9.65

Table A.9: Comparison among CPLEX, Dual Ascent with Lagrangian Heuristic, and Exact method: Problem Type B.

Table A.10: Comparison among CPLEX MIP solver, Dual Ascent with Lagrangian Heuristic, and Exact method: Problem Type A

	Side Con.	Greedy			Cplex		ual Ascent + Lagr. Heu.						Exact Method						
Instances	α	$z_{U B}$		Time	$z_{\text {opt }}$	Time	$z_{L B}$		Gap	Iter	Time	$\left\|C^{\prime}\right\|$	$z_{\text {opt }}$	Gap	'1	Iter	T_{A}	T_{E}	$T_{\text {Tot }}$
City480	${ }^{100.00 G}$	105	0.96	0.01		814.73	103.23	104	0.00	437	54.63	256211	104	0.00	0	1	${ }^{52.17}$	${ }^{0.00}$	${ }^{52.17}$
City480	10.00G	182	0.55	0.01	181	279.56	180.00	181	0.00	796	162.18	15548	181	0.00	0	1	66.73	0.00	66.73
City480	100.00M	365	0.00	0.00	365	24.75	364.01	365	0.00	711	102.61	921	365	0.00	0	1	62.75	0.00	62.75
City538	100.00 G	123	1.65	0.01	121	655.10	120.50	121	0.00	544	53.53	160317	121	0.00	0	1	45.09	0.00	45.09
City538	10.00G	213	0.95	0.01	211	305.52	210.14	211	0.00	800	79.94	8839	211	0.00	0	1	50.32	0.00	50.32
City 538	100.00 M	419	0.00	0.01	419	14.60	418.01	419	0.00	838	142.78	1035	419	0.00	0	1	40.61	0.00	40.61
City552	100.00 G	124	0.00	0.01		141.08	123.06	124	0.00	${ }_{6} 06$	103.73	268109	124	0.00	0	1	${ }^{93.66}$	0.00	${ }^{93.66}$
City55	10.00G	216	0.93	0.01	214	386.47	213.65	214	0.00	812	165.95	15764	214	0.00	0	1	109.79	0.00	109.79
City552	100.00 M	427	0.00	0.01	427	29.37	426.19	427	0.00	702	130.49	1087	427	0.00	0	1	76.58	0.00	76.58
City604	100.00 G	141	1.44	0.01	139	773.06	138.01	139	0.00	679	75.91	93949	139	0.00	0	1	57.45	0.00	57.45
City604	10.00G	244	0.41	0.01	243	525.40	242.02	243	0.00	999	187.87	9797	243	0.00	0	1	72.16	0.00	72.16
City604	100.00M	475	0.00	0.01	475	16.95	473.83	475	0.00	878	218.80	1159	475	0.00	805	1	56.34	1.89	58.23
${ }_{\text {Avg }}^{\text {Max }}$			${ }^{0.57}$	${ }^{0.01}$					0.00 0.00	$\begin{array}{r}757 \\ 1046 \\ \hline\end{array}$				0.00 0.00	$\begin{array}{r}67 \\ 805 \\ \hline\end{array}$		${ }^{65.30}$	0.16	65.46 1097
s.d.			${ }_{0.58}$	0.0					,		19.41	${ }_{97867}$		0.00	\%				

Table A.11: Comparison among CPLEX, Dual Ascent with Lagrangian Heuristic, and Exact method: Problem Type B.

Acknowledgement

The authors would like to thank the anonymous referees for their useful comments and suggestions which contributed to improve this paper.

References

[1] Abbiw-Jackson, R., Golden, B., Raghavan, S., Wasil, E., 2006. A divide-and-conquer local search heuristic for data visualization. Computers \& Operations Research 33 (11), 3070-3087.
[2] Balas, E., Carrera, M., 1996. A dynamic subgradient-based branch-andbound procedure for the set covering. Operations Research 44, 875-890.
[3] Börner, K., 2015. Atlas of knowlegde: anyone can map. MIT Press.
[4] Boschetti, M., Maniezzo, V., 2009. Benders decomposition, Lagrangean relaxation and metaheuristic design. Journal of Heuristics 15, 283-312.
[5] Boschetti, M., Maniezzo, V., 2015. A set covering based matheuristic for a real world city logistics problem. International Transactions in Operational Research 22 (1), 169-195.
[6] Boschetti, M., Maniezzo, V., Roffilli, M., Bolufe Rohler, A., 2009. Matheuristics: Optimization, simulation and control. In: Blesa, M., Blum, C., Di Gaspero, L., Roli, A., Samples, M., A., S. (Eds.), Hybrid Metaheuristics. Vol. 5818 of LNCS. Springer, pp. 171-177.
[7] Boschetti, M., Mingozzi, A., Ricciardelli, S., 2004. An exact algorithm for the simplified multiple depot crew scheduling problem. Annals of Operations Research 127, 177-201.
[8] Boschetti, M., Mingozzi, A., Ricciardelli, S., 2008. A dual ascent procedure for the set partitioning problem. Discrete Optimization 5 (4), 735-747.
[9] Boyd, S., Mutapcic, A., 2008. Subgradient method, Lecture notes for EE364b, Winter 2006-07.
[10] Bradley, P. S., Fayyad, U. M., Mangasarian, O. L., 1999. Mathematical programming for data mining: Formulations and challenges. INFORMS Journal on Computing 11 (3), 217-238.
[11] Caprara, A., Fischetti, M., Toth, P., 2000. Algorithms for the set covering problem. Annals of Operations Research 98, 353-371.
[12] Christofides, N., Mingozzi, A., Toth, P., 1981. Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming 20, 255-282.
[13] Crainic, T. G., Frangioni, A., Gendron, B., 2001. Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. Discrete Applied Mathematics 112 (1), 73-99, combinatorial Optimization Symposium, Selected Papers.
URL http://www.sciencedirect.com/science/article/pii/ S0166218X00003103
[14] Domingo-Ferrer, J., Mateo-Sanz, J. M., 2002. Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and data Engineering 14 (1), 189-201.
[15] Golfarelli, M., Graziani, S., Rizzi, S., 2014. Shrink: An OLAP operation for balancing precision and size of pivot tables. Data \& Knowledge Engineering 93, 19-41.
[16] Han, J., 1997. OLAP mining: Integration of OLAP with data mining. In: Proc. Working Conf. on Database Semantics. Leysin, Switzerland, pp. 3-20.
[17] Hansen, S. L., Mukherjee, S., 2003. A polynomial algorithm for optimal univariate microaggregation. IEEE Transactions on Knowledge and Data Engineering 15 (4), 1043-1044.
[18] Huang, C.-C., Tseng, T.-L. B., Li, M.-Z., Gung, R. R., 2006. Models of multi-dimensional analysis for qualitative data and its application. European Journal of Operational Research 174 (2), 983-1008.
[19] Janssens, D., Brijs, T., Vanhoof, K., Wets, G., 2006. Evaluating the performance of cost-based discretization versus entropy- and error-based discretization. Computers \& Operations Research 33 (11), 3107-3123.
[20] Keim, D., 2014. Exploring big data using visual analytics. In: Proc. EDBT/ICDT Workshops.
[21] Kros, J. F., Brown, M. L., Lin, M., 2006. Effects of the neural network sSigmoid function on KDD in the presence of imprecise data. Computer \& Operations Research 33 (11), 3136--3149.
[22] Latuszko, M., Pytlak, R., 2015. Methods for solving the mean query execution time minimization problem. European Journal of Operational Research 246, 582--596.
[23] Lenz, H.-J., Shoshani, A., 1997. Summarizability in olap and statistical data bases. In: Scientific and Statistical Database Management, 1997. Proceedings., Ninth International Conference on. IEEE, pp. 132-143.
[24] Lu, X., Lowenthala, F., 2004. Arranging fact table records in a data warehouse to improve query performance. Computer \& Operations Research 31, 2165--2182.
[25] Mami, I., Bellahsene, Z., Apr. 2012. A survey of view selection methods. SIGMOD Rec. 41 (1), 20-29.
[26] Maniezzo, V., Stützle, T., Voss, S., 2009. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. Vol. 10 of Annals of Information Systems. Springer.
[27] Marcel, P., Missaoui, R., Rizzi, S., 2012. Towards intensional answers to OLAP queries for analytical sessions. In: Proceedings of the 15th international workshop on DW and OLAP. ACM, pp. 49-56.
[28] Mingozzi, A., Boschetti, M., Bianco, L., Ricciardelli, S., 1999. A set partitioning approach to the crew scheduling problem. Operations Research 47, 883-888.
[29] Minnesota Population Center, 2016. Integrated public use microdata series. http://www.ipums.org.
[30] Oganian, A., Domingo-Ferrer, J., 2001. On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Commission for Europe 18 (4), 345-353.
[31] Ólafsson, S., 2006. Introduction to operations research and data mining. Computer \& Operations Research 33 (11), 3067-3069.
[32] Ólafsson, S., Li, X., Wu, S., 2008. Operations research and data mining. European Journal of Operational Research 187 (3), 1429-1448.
[33] Padmanabhan, B., Tuzhilin, A., 2003. On the use of optimization for data mining: Theoretical interactions and eCRM opportunities. Management Science 49 (10), 1327-1343.
[34] Pendharkar, P. C., 2006. A data mining constraint satisfaction optimization problem for cost effective classification. Computer \& Operations Research 33 (11), 3124-3135.
[35] Pentaho Corporation, 2016. Pentaho Web Site. www.pentaho.com.
[36] Yu, J. X., Yao, X., Choi, C.-H., Gou, G., 2003. Materialized view selection as constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 33 (4), 458-467.

[^0]: *Corresponding author, marco.boschetti@unibo.it

