
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

An exact method for shrinking pivot tables / Boschetti M.A.; Golfarelli M.; Graziani S.. - In: OMEGA. - ISSN
0305-0483. - STAMPA. - 93:(2020), pp. 102044.1-102044.18. [10.1016/j.omega.2019.03.002]

Published Version:

An exact method for shrinking pivot tables

Published:
DOI: http://doi.org/10.1016/j.omega.2019.03.002

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/702179 since: 2020-03-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.omega.2019.03.002
https://hdl.handle.net/11585/702179

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Boschetti, M. A., Golfarelli, M., & Graziani, S. (2020). An exact method for
shrinking pivot tables. Omega (United Kingdom), 93

The final published version is available online at:
http://dx.doi.org/10.1016/j.omega.2019.03.002

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.omega.2019.03.002

An Exact Method for Shrinking Pivot Tables

Marco A. Boschettia,∗, Matteo Golfarellib, Simone Grazianib

aDepartment of Mathematics, University of Bologna, 47521 Cesena, Italy
bDISI, Department of Computer Science and Engineering, University of Bologna, 47521

Cesena, Italy

Abstract

Pivot tables are one of the most popular tools for data visualization in both

business and research applications. Although they are in general easy to

use, their comprehensibility becomes progressively lower when the quantity

of cells to be visualized increases (i.e., information flooding problem). Pivot

tables are largely adopted in OLAP, the main approach to multidimensional

data analysis. To cope with the information flooding problem in OLAP,

the shrink operation enables users to balance the size of query results with

their approximation, exploiting the presence of multidimensional hierarchies.

The only implementation of the shrink operator proposed in the literature

is based on a greedy heuristic that, in many cases, is far from reaching a

desired level of effectiveness.

In this paper we propose a model for optimizing the implementation of

the shrink operation which considers two possible problem types. The first

type minimizes the loss of precision ensuring that the resulting data do not

exceed the maximum allowed size. The second one minimizes the size of

the resulting data ensuring that the loss of precision does not exceed a given

maximum value. We model both problems as set partitioning problems with

a side constraint. To solve the models we propose a dual ascent procedure

based on a Lagrangian pricing approach, a Lagrangian heuristic, and an

exact method. Experimental results show the effectiveness of the proposed

approaches, that is compared with both the original greedy heuristic and a

commercial general-purpose MIP solver.

Keywords: OLAP, Integer Linear Programming, Set Partitioning,

Lagrangian Relaxation, Pricing

∗Corresponding author, marco.boschetti@unibo.it

Preprint submitted to Elsevier March 4, 2019

1. Introduction

Pivot tables are one of the most popular and powerful tools for data

visualization in both business and research applications. Although they are

in general easy to use, their comprehensibility becomes progressively lower

when the quantity of cells to be visualized increases. Human operators have

difficulties in understanding issues and effectively making decisions when

they have too much information. This problem is known as information

flooding and it can be solved by properly tuning the quantity of data to be

visualized.

Pivot tables have been widely adopted in Business Intelligence (BI) sys-

tems, becoming the primary mode of viewing On-Line Analytical Processing

(OLAP) data. In the context of BI data are mainly modeled using a multidi-

mensional paradigm. Figure 1 shows a multidimensional cube, where events

to be analyzed (e.g., census outcomes) are associated with multidimensional

cube cells, while cube edges represent the analysis dimensions (e.g., RESI-

DENCE, TIME, OCCUPATION). For each cube cell, a value is given for each

measure describing the event (e.g., citizen incomes, number of children).

On top of each dimension, a hierarchy is built that defines groupings of its

values. Figure 2 reports hierarchies associated with the dimensions of the

cube shown in Figure 1. Multidimensional cubes are queried through OLAP

queries, which typically ask for the values of one or more numerical measures

(e.g., income of citizens) grouped by a given set of attributes in the hierar-

chies (e.g., City and Year), possibly with reference to a subset of dimensional

values (e.g., State=’FL’). The results of OLAP queries also take the form

of multidimensional cubes and they are typically visualized through pivot

tables, which usually consist of rows, columns, and data fields (see Figure

3).

As argued in more detail in [27], one of the critical issues affecting OLAP

analyses, especially using pivot tables, is the achievement of a satisfactory

compromise between the precision and the size of the data being visualized.

In other words, the goal is to return the maximum quantity of information

while avoiding information flooding. Queries that return results at a very

fine-grained aggregation level (i.e., a cube with many cells) give more in-

formation, but they also require a greater effort from the user to analyze

them. An excessive level of detail hinders the comprehension of the overall

picture, which would be apparent when exploiting queries at coarse-grained

2

TIME

RESIDENCE

OCCUPATION

2016

clerk

Miami

15

Figure 1: An example of a three dimensional cube.

All

South-Atlantic

FL VA

Miami
Orlando

Tampa

Washington
Richmond

Arlington

All

2014
2015

2016

City

State

Region

AllCity

Year

AllYear

RESIDENCE TIME

Figure 2: Two examples of hierarchies showing both their values and their aggregation
structures (see [15])

aggregation levels, thus losing some precision.

In contrast with the general case, the presence of hierarchies in multidi-

mensional cubes permits to deal with the problem of information flooding in

pivot tables through an optimization process. Hierarchies define how dimen-

sional values (e.g., Miami, Arlington) can be grouped to create semantically

relevant clusters of elements (e.g., Tampa and Orlando can be grouped since

they are both located in Florida). Compliance with the hierarchy structure

when grouping dimensional values is not only recommended, but it is also

mandatory for ensuring summarizzability [23]. This is a core property of

OLAP applications that ensures the correctness and meaningfulness of val-

ues when progressive grouping is applied (e.g., income values for the cluster

of citizens including Miami and Arlington can not be used to calculate the

income of FL citizens). Based on this property/constraint and on the obser-

vation that approximation is a key to balance data precision with data size,

in [15] the authors proposed a novel OLAP operation called shrink. Shrink

3

Shrink

Figure 3: A pivot table resulting from an OLAP query (left), and its shrunk version when
applied to the RESIDENCE dimension (right).

can be applied to the dimensions of a cube resulting from an OLAP query

to decrease its size while controlling the loss in precision. The main idea is

to fuse/cluster those dimensional values whose cells have similar values and

replace them with a single representative satisfying the constraints imposed

by hierarchies. As a consequence, the corresponding slices of cells will be

fused and the measure values will be substituted by an approximated value,

computed as their average.

We propose a simple example to help readers that are not familiar with

OLAP queries. Let us suppose that an OLAP query has been issued against

the CENSUS cube in Figure 1. The query asks for the average citizen incomes

for each city in different years. Since the returned pivot table (Figure 3 left)

is too large, due to the high number of cities, the user applies the shrink

operator to the RESIDENCE dimension. This permits to fuse rows related

to those cities that show similar values and comply with the structure of the

hierarchy to be shrunk. The right side of Figure 3 shows a possible result.

Miami and Orlando are clustered, since they show similar average incomes

and belong to the same state. Similarly, all the cities in Virginia have been

clustered and their names have been replaced by the state name to improve

readability. Finally, Tampa remains a singleton since the income behavior

differs too much from the other ones. Overall, the number of cells to be

visualized drops from 18 to 9. As a side effect, we have a loss of precision.

The shrink operation can have two different but related goals:

• Size-bound shrink: minimize the loss in precision without exceeding

the maximum size allowed for the resulting data.

• Loss-bound shrink: minimize the size of the resulting data without

4

exceeding the maximum loss of precision.

The shrink operation is ruled by a parameter expressing either the max-

imum size allowed for the resulting data (i.e., the maximum number of

returned cells) or the maximum loss of precision. Due to hierarchical con-

straints (better defined in Section 2) not all the slice fusions are feasible for

shrinking, thus an additional constraint must be defined.

The shrink implementation proposed in [15] is based on a simple greedy

algorithm, which is able to find a solution in a small amount of computing

time. Unfortunately, as shown in Section 7, the greedy heuristic may gen-

erate solutions too weak for some target applications as the percentage gap

from the optimal solution could be of some units. In this paper we propose:

• An original formulation of the problem as a set partitioning problem

with side constraints.

• A new matheuristic algorithm (see [6, 26]) based on a dual ascent

procedure that exploits pricing and Lagrangian relaxation. The dual

ascent procedure provides a near optimal solution for the dual problem

and the Lagrangian heuristic generates feasible solutions of very good

quality. The percentage gap from the optimal solution value of the

proposed approach is much better than that of the greedy heuristic

and for many instances the best solution found is also optimal.

• An exact method which solves the problem using only a limited subset

of variables generated by a pricing procedure based on the dual solu-

tion found by the dual ascent procedure. This exact method performs

better than IBM ILOG CPLEX, a commercial general-purpose MIP

solver, that also fails in solving some very large instances.

Our contributions create a bridge between BI and optimization tech-

niques. This approach has become very common in recent years since BI

approaches have become more sophisticated and often require the support

of optimization techniques for an effective implementation, as witnessed by

several papers on the subject proposed in the literature.

One of the classical application of optimization in BI is the design of

learning algorithms, where classification, clustering, and regression problems

must be solved (e.g., [21], [34]). An interesting introduction to operations

research and data mining can be found in the special issue [31] and in the

5

survey [32]. Some mathematical formulations and challenges are also dis-

cussed in [10] and [33]. Operational research inspired techniques have been

also adopted during the design of BI solutions; for example the problem

of selecting the most effective subset of materialized views in Data Ware-

house is discussed in [25] and [36]. Operations research is also very useful

for optimizing query execution (e.g., [22], [24]) or data visualization and

discretization (e.g., [1], [18], [19]). This article focuses on the latter topic.

Among the proposed solutions to this problem there are those that make use

of On-Line Analytical Mining (OLAM) techniques. OLAM corresponds to

an OLAP paradigm that is coupled with data mining techniques to create an

approach where multidimensional data can be mined “on-the-fly” to extract

concise patterns for user evaluation, but at the price of an increased com-

putational complexity and an overhead for analyzing the generated patterns

(see [16]).

A problem that shares some similarities with shrink operation (SH) is

microaggregation (MA), which is a statistical disclosure control technique

aimed at producing groups of microdata records with cardinality greater

than a given parameter k, such that an intruder cannot identify individuals.

For each variable in the microdata, the average value over the group is

reported. The goal is to obtain groups that are as homogenous as possible.

For this reason, an optimal MA minimizes within-group sum squared error.

Several different formulations of the basic problem have been proposed:

• Fixed vs Variable group size: in the fixed version, all the groups must

have the same size k.

• Univariate vs Multivariate aggregation: in the univariate version, group-

ing is based on a single variable.

While optimal MA for univariate data relies on polynomial algorithms

[17], the optimal solution for multivariate one has been proven to be NP-hard

[30]. The MA formulation that is closest to the SH one involves multivariate

data and produces groups with variable size. The main difference between

SH and MA is that, while the SH limits the overall number of groups or the

overall error, MA constrains the cardinality of each single group. Since the

cardinality of an optimal cluster is not constrained between k and 2k, there

exist a much higher number of feasible solutions. Differences in constraints

make most of the findings reported in [14] not applicable to the SH prob-

6

lem. Consequently, while the heuristic proposed in [14] for multivariate MA

relies on the same clustering principle as the one we proposed in [15], the

differences in constraints make the specific optimizations proposed in [14]

not applicable in [15].

To the best of our knowledge, no commercial OLAP tools implements

techniques similar to our ones to address the visualization of pivot tables,

therefore, the problem is open. The main approaches adopted so far are:

(i) splitting the tables in several parts through selection predicates and vi-

sualizing each of them separately; (ii) representing the pivot table through

smart visualization techniques [20] that exploit colors and shapes to increase

the readability when many data are represented. Solution (i) directly rep-

resents pivot tables but lacks in providing an overall picture of the data.

Solution (ii) typically provides an overall picture of the data but requires

further analysis steps to obtain numeric details (e.g., zoom in, details-on-

demand operators [3]). Conversely, the proposed matheuristic algorithm

based on a Lagrangian relaxation does not make use of expensive commer-

cial solvers and provides effective results, therefore it is a good candidate to

be integrated in a commercial OLAP tool.

The paper outline is as follows. Section 2 introduces the shrink operator

together with its greedy implementation [15]. In Section 3 we define the set

partitioning formulation of the problem, whereas the dual ascent procedure

and the Lagrangian heuristic are described in Sections 4 and 5, respectively.

The exact method is presented in Section 6. In Section 7 we discuss the

computational results and in Section 8 we draw the conclusions.

2. OLAP Shrink Operation

Given a multidimensional cube and chosen one of its dimensions, the

shrink operation works by merging the dimensional values, together with the

corresponding slices of cells. The aim is to obtain a compact representation

of the input data while minimizing the approximation error (or size) and

satisfying a given size (or error) threshold. The resulting representation

must also be compliant with the constraints imposed by the structure of

the involved hierarchy. Before describing the greedy implementation of the

shrink operation proposed in [15], we need to briefly introduce the concept

of hierarchy compliance and how we compute the approximation error (for

an exhaustive and formal definition see [15]).

7

Year
2014 2015 2016

C
ity

 Miami, Orlando 45.5 44 51

Tampa 39 50 41

VA 45 46 50.6

Year
2014 2015 2016

South-Atlantic 44 46 49.2

(a) (b)

Figure 4: Two reductions of the same cube

Intuitively, given a cluster C composed by the values of a dimension on

top of which a hierarchy h is built, we say that C is hierarchy-compliant

(or h-compliant) if and only if the elements of C are values of h belong-

ing to a same level and with the same parent. The complete enumera-

tion of the h-compliant clusters associated to the RESIDENCE hierarchy

of Figure 2 is listed in Table 1. An example of a non h-compliant clus-

ter is instead {Miami ,Washington}, because in order to have Miami and

Washington in the same cluster it would be necessary to also merge to-

gether Orlando, Tampa, Richmond , and Arlington. When a cluster in-

cludes all and only the children of one or more elements of the parent level,

it can be represented as the set of the corresponding parent values (i.e.,

{Miami ,Washington,Orlando,Tampa,Richmond ,Arlington} ' {FL,VA}).
Each hierarchical value at the finest level of detail (i.e., a dimensional

value) has an associated slice of cells, e.g., with reference to Figure 1, the

slice associated with the value Miami of the City attribute is composed by

values 47, 45, and 50. To compactly represent cells of several hierarchical

values that have been merged together, the shrink operator uses their av-

erage. The approximation error introduced by representing a set of slices

with an average slice is computed as the Sum Squared Error (SSE) be-

tween the average and the original values. Two different examples of reduc-

tions induced by the shrink operator are shown in Figure 4. Specifically,

the SSE associated to the average slice {Miami ,Orlando} in Figure 4.a is

(1.52 + 1.52) + (12 + 12) + (12 + 12) = 8.5. Notice that the SSE given by

merging two or more values is never negative.

The greedy implementation of the shrink operation for both size- and

error-constrained problems is based on agglomerative hierarchical clustering.

Specifically, the algorithm works bottom-up by merging at each iteration the

8

Table 1: Clusters for the example reported in Figures 1 and 2

Level 0

C1 = {South-Atlantic} ' {FL,VA}
Level 1

C2 = {Miami ,Orlando,Tampa} ' {FL}
C3 = {Washington,Richmond ,Arlington} ' {VA}
Level 2

C4 = {Miami}
C5 = {Orlando}
C6 = {Tampa}
C7 = {Miami ,Orlando}
C8 = {Orlando,Tampa}
C9 = {Miami ,Tampa}
C10 = {Washington}
C11 = {Richmond}
C12 = {Arlington}
C13 = {Washington,Richmond}
C14 = {Richmond ,Arlington}
C15 = {Washington,Arlington}

two clusters of hierarchical values (and their slices) that lead to the minimum

increase in SSE. Of course the two clusters can be merged only if the result

is still h-compliant. This iterative process ends when the size constraint is

satisfied or, conversely, when the result is such that no more values can be

merged without violating the error threshold.

Consider again the cube in Figure 1. In the following we show in detail

how the greedy shrink algorithm computes a reduction that solves the error-

constrained problem with a maximum total SSE of 20 (Figure 5).

1. First, six singleton clusters are created, one for each member.

2. The most promising merge is the one between the Arlington and the

Washington clusters, that yields SSE equal to 2.5 (Figure 5.a, right).

The SSE of the resulting reduction (Figure 5.b, left) is 2.5, which meets

the SSE constraint, so there is still room for shrinking.

3. The most promising merge is now the one between the Miami and

the Orlando clusters (Figure 5.b, right). The total SSE is 11, so the

iterative approach can be repeated.

9

4. At the next iteration, the algorithm merges Richmond cluster with the

Washington−Arlington cluster (Figure 5.c, right). Since the resulting

reduction has SSE higher than 20 (Figure 5.d), the algorithm stops.

The reduction returned is the one shown in Figure 5.c, left.

 Year

 2010 2011 2012 SSE

C
it
y

Miami, Orlando 45.5 44 51 8.5

Tampa 39 50 41 0

Washington, Arlington 47 46 51.5 2.5

Richmond 43 46 49 0

 Year

 2010 2011 2012 SSE

C
it
y

Miami 47 45 50 0

Orlando 44 43 52 0

Tampa 39 50 41 0

Washington, Arlington 47 46 51.5 2.5

Richmond 43 46 49 0







SSE M
ia

m
i

O
rl

a
n

d
o

T
a

m
p

a

W
a

sh
in

g
to

n

R
ic

h
m

o
n
d

A
rl

in
g

to
n

Miami

Orlando 8.5

Tampa 85 97.5

Washington

Richmond 10.5

Arlington 2.5 5

 





SSE

M
ia

m
i

O
rl

a
n

d
o

T
a

m
p

a

W
a

sh
.,
 A

rl
in

.

R
ic

h
m

o
n
d

Miami

Orlando 8.5

Tampa 85 97.5

Wash., Arlin.

Richmond 14.7

 Year

 2010 2011 2012 SSE

C
it
y

Miami 47 45 50 0

Orlando 44 43 52 0

Tampa 39 50 41 0

Washington 47 45 51 0

Richmond 43 46 49 0

Arlington — 47 52 0









SSE M
ia

m
i,

 O
rl

a
n
d

o

T
a

m
p

a

W
a

sh
.,
 A

rl
in

.

R
ic

h
m

o
n
d

Miami, Orlando

Tampa 127.3

Wash., Arlin.

Richmond 14.7

(a)

(b)

(c)

(d)

 Year

 2010 2011 2012 SSE

C
it
y
 Miami, Orlando 45.5 44 51 8.5

Tampa 39 50 41 0

VA 45 46 50.6 14.7

Figure 5: Applying the greedy algorithm for shrinking. The left column shows the pivot
tables, the right column reports the SSE increase for each feasible merge. Grey cells
correspond to non h-compliant merges.

10

Shrink

h-compliant

cluster generator

C, ej

V

goal, α

Figure 6: The shrink optimization process.

3. Mathematical Formulation

In order to achieve a better understanding of the model for optimizing

the shrink operator, in Figure 6 we provide a graphical representation of

the optimization process. The algorithms proposed in the next sections are

implemented by the main computational module denoted with Shrink. The

input for such a module are:

• The index set V = {1, . . . , n} of the n dimensional values of the hier-

archy involved in the shrink operation.

• The index set C of all the feasible (i.e., h-compliant) clusters together

with the associated loss of precision, which are computed as described

in Section 2. For each cluster j ∈ C the loss of precision is denoted by

ej .

• The parameter α denoting the maximum size or the maximum loss

allowed, depending on whether you are solving the size-bound (goal =

S) or loss-bound (goal = L) version of the problem, respectively.

The h-compliant cluster generator module is in charge of generating in

advance the whole set of h-compliant clusters induced by the involved hi-

erarchy. As we will show in Section 7, this task can be accomplished in a

negligible time when compared with the one required by the Shrink module.

We denote with Ci ⊆ C the subset of clusters involving the value i, for

each i ∈ V . Cj represents the index set of the values contained in the cluster

j ∈ C. Let xj be a 0−1 binary variable equal to one if and only if the cluster

11

j ∈ C is in the optimal solution. The problem can be formulated as a set

partitioning problem with a side constraint as follows:

(P) zP = min
∑
j∈C

cjxj (1)

s.t.
∑
j∈Ci

xj = 1, i ∈ V (2)

∑
j∈C

ajxj ≤ α (3)

xj ∈ {0, 1}, j ∈ C. (4)

If goal = S, setting cj = ej the objective function (1) minimizes the loss of

precision; conversely, if goal = L, setting cj = 1 the objective function (1)

minimizes the size of the resulting data. Constraints (2) ensure that each

original dimensional value is included in a cluster. Constraint (3) guarantees

that the resulting data do not exceed the maximum size allowed by setting

aj = 1 and α = MaxSize, if goal = S, or the maximum loss of precision by

setting aj = ej and α = MaxLoss, if goal = L.

Let ui and v be the dual variables associated to constraints (2) and (3),

respectively. The dual of the LP-relaxation of problem P is the following:

(D) zD = min
∑
i∈V

ui + αv (5)

s.t.
∑
i∈Cj

ui + ajv ≤ cj , j ∈ C (6)

ui unconstrained, i ∈ V (7)

v ≤ 0. (8)

The dual D is used for defining the dual ascent procedure, described in

Section 4, which is based on a Lagrangian relaxation of the problem P . The

dual ascent procedure iteratively improves the dual solution which is used

for defining a core subset of clusters by means of a pricing procedure. The

dual ascent ends providing a near optimal dual solution for the problem D.

The dual solution is also used to define a core subproblem for the exact

method proposed in Section 6. The exact method solves the problem P

using only a limited subset of variables generated by a pricing procedure

based on the dual solution found by the dual ascent procedure.

12

4. A Dual Ascent

The dual ascent procedure is based on a parametric relaxation of prob-

lem P and its Lagrangian relaxation. The resulting problem is solved by

a subgradient algorithm that uses only a subset of variables defined by a

pricing procedure and embeds an effective Lagrangian heuristic.

4.1. Parametric Relaxation

Parametric relaxation is a well-known approach in the literature. Some

interesting applications are described by Christofides et al. [12] for vehi-

cle routing and by Mingozzi et al. [28] and Boschetti et al. [7] for crew

scheduling. Recently, dual ascent procedures based on a parametric relax-

ation have been proposed by Boschetti et al. [8] for the set partitioning

problem and by Boschetti and Maniezzo [5] for the set covering problem

with side constraints. The proposed dual ascent generalizes the approach

of Boschetti et al. [8], which does not consider side constraints, and it uses

an approach similar to the one used by Boschetti and Maniezzo [5] for the

set covering problem. It also generalizes the dual ascent approach proposed

by Christofides et al. [12], Mingozzi et al. [28], Boschetti et al. [7]. In this

section we describe the parametric relaxation of problem P used by the

proposed dual ascent.

We associate with each dimensional values i ∈ V a positive real weight

qi. Let q(Cj) =
∑

i∈Cj qi be the total weight of column (cluster) j ∈ C.

Since weights {qi} are positive, q(Cj) > 0 for every column j ∈ C. We

replace each variable xj by a new set of |Cj | variables yij , i ∈ Cj , as follows:

xj =
∑
i∈Cj

qi
q(Cj)

yij , j ∈ C (9)

and the resulting mathematical formulation of the parametric relaxation of

problem P is the following:

(PR(q)) zPR(q) = min
∑
j∈C

∑
i∈Cj

cj
qi

q(Cj)
yij (10)

s.t.
∑
j∈Ci

∑
h∈Cj

qh
q(Cj)

yhj = 1, i ∈ V (11)

∑
j∈C

aj
∑
h∈Cj

qh
q(Cj)

yhj ≤ α, (12)

13

yij ∈ {0, 1}, j ∈ C, i ∈ Cj . (13)

Constraints (11) and (12) correspond to constraints (2) and (3) of problem

P , respectively. Notice that if yij = 1 no constraint imposes that yhj = 1

for every value h ∈ Cj covered by column j, therefore PR(q) is a relaxation

of problem P , because in this case the corresponding variable xj of P is

fractional (see equation (9)).

4.2. Lagrangian Relaxation

Problem PR(q) can be relaxed by dualizing constraints (11) and (12) in

a Lagrangian fashion, by means of the penalty vector λ ∈ Rn+1 having the

first n components λi, i ∈ V , unconstrained and λn+1 ≤ 0.

The resulting Lagrangian problem is:

(LR(λ, q)) zLR(λ, q) = min
∑
j∈C

∑
i∈Cj

(
cj − λ′(Cj)

) qi
q(Cj)

yij +
∑
i∈V

λi + αλn+1

(14)

s.t. yij ∈ {0, 1}, i ∈ V, j ∈ C (15)

where λ′(Cj) = λ(Cj) + ajλn+1 and λ(Cj) =
∑

h∈Cj λh. The optimal value

of problem LR(λ, q) is a valid lower bound for the original problem P and

it can be strengthened adding the constraint
∑

j∈Ci y
i
j = 1 for every i ∈ V .

Problem LR(λ, q) is decomposable into |V | subproblems, one for each

row i ∈ V :

(LRi(λ, q)) ziLR(λ, q) = min
∑
j∈Ci

cij(λ, q)yij + λi (16)

s.t.
∑
j∈Ci

yij = 1 (17)

yij ∈ {0, 1}, j ∈ Ci (18)

where the cost of each variable yij is cij(λ, q) = c′j
qi

q(Cj)
and c′j = cj−λ(Cj)−

ajλn+1. Hence, the overall value of the Lagrangian problem is zLR(λ, q) =∑
i∈V z

i
LR(λ, q) + αλn+1.

Theorem 1 shows that any optimal solution of problem LR(λ, q) provides

a feasible solution (u, v) of cost zLR(λ, q) for the dual problem D.

14

Theorem 1. Let λ be a vector of n+ 1 real numbers, where λi, i ∈ V , are

unconstrained and λn+1 ≤ 0. Let q be a vector of n positive real numbers,

i.e., qi > 0, for every i ∈ V . A feasible dual solution (u, v) of cost zLR(λ, q)

for dual problem D can be obtained by means of the following expressions:

ui = qi minj∈Ci

{
c′j

Q(Cj)

}
+ λi, i ∈ V

v = λn+1,
(19)

where c′j = cj − λ(Cj)− ajλn+1, λ(Cj) =
∑

i∈Cj λi, and Q(Cj) =
∑

i∈Cj qi.

Proof. Let us consider the dual constraint (6) corresponding to column j ∈
C of the LP-relaxation of P . For every column j, the following inequalities

hold:

min
h∈Ci

{
c′h

Q(Ch)

}
≤

c′j
Q(Cj)

, for every i ∈ Cj . (20)

From expression (19) we obtain

ui ≤ qi
c′j

Q(Cj)
+ λi, i ∈ Cj , j ∈ C (21)

and by adding inequalities (21) we derive

∑
i∈Cj

ui ≤
∑
i∈Cj

(
qi

c′j
Q(Cj)

+ λi

)
, j ∈ C. (22)

Therefore, considering the dual constraint (6) for every j ∈ C, we have

∑
i∈Cj

ui + ajv ≤
c′j

Q(Cj)

∑
i∈Cj

qi +
∑
i∈Cj

λi + ajv

≤
c′j

Q(Cj)
Q(Cj) + λ(Cj) + ajv

≤ c′j + λ(Cj) + ajv (23)

≤ cj − λ(Cj)− ajv + λ(Cj) + ajv

≤ cj .

It is straightforward to show that the dual solution (u, v) is of cost

zD(u, v) =
∑

i∈V ui + αv = zLR(λ, q). �

15

The dual solution obtained according to Theorem 1 can be further im-

proved by applying the greedy procedure described in Balas and Carrera [2]

or Caprara et al. [11].

Corollary 1 shows that the best lower bound that can be achieved using

expression (19) is equal to the optimal solution cost zD of the dual problemD

and that this value can be obtained searching the maximum of the function

zLR(λ, q) with respect to λ.

Corollary 1. For every q > 0, q ∈ Rn, the following equality holds:

max{zLR(λ, q) : λ ∈ Rn+1, λn+1 ≤ 0} = zD. (24)

Proof. Let (u∗, v∗) be an optimal solution of problem D of cost zD. For

every j ∈ C, we have

cj −
∑
h∈Cj

u∗h − ajv∗ ≥ 0 (25)

and for every i ∈ V , there exists at least a column j′ ∈ Ci such that

cj′ −
∑
h∈Cj′

u∗h − aj′v∗ = 0. (26)

If for a given i ∈ V a column j′ satisfying equality (26) does not exist, we

can improve the “optimal dual solution” by increasing the corresponding

dual variable ui, in contradiction with the hypothesis.

By setting λ = (u∗, v∗), when we evaluate the dual solution by expres-

sion (19) we have ui = qi minj∈Ci

{
c′j

Q(Cj)

}
+ui = 0+ui, for every i ∈ V , and

v = v∗. Therefore, zLR(λ, q) =
∑

i∈V z
i
LR(λ, q) + αλn+1 =

∑
i∈V ui + αv =

zD. �

In order to find the optimal (or near optimal) dual solution of cost zD we

need to solve the Lagrangian Dual max{zLR(λ, q) : λ ∈ Rn+1, λn+1 ≤ 0}.
We propose a dual ascent procedure based on a subgradient algorithm

that only considers a subset of problem variables. These variables are defined

by a pricing procedure following the approach proposed by Boschetti et al.

[8] for the set partitioning problem (without side constraint). We also use

a simple variant where the subgradient θk at iteration k is smoothed by the

16

direction defined by the subgradient θk−1 at previous iteration k−1 (see Boyd

and Mutapcic [9] and Crainic et al. [13]). This variant slightly improves the

convergence of the subgradient algorithm and generates a better sequence

of dual variables for the Lagrangian heuristic, which helps improving the

quality of its solutions. A possible interesting future research direction could

be the use of a bundle method instead of the subgradient.

Dual Ascent Procedure

Step 1. Initial setup

Set zLB = −∞, β = β0, the initial penalty vector λ = 0, ρ = 0.5,

and s = 0.

Generate an initial core subset of columns C′ ⊆ C.

Step 2. Solve Lagrangian Problem

Solve LR(λ, q) using only the columns in the core C′.
Compute (u, v) according to Theorem 1 and improve it using the

greedy algorithm described in Caprara et al. [11].

Step 3. Pricing

Generate a subset Q ⊆ C of columns having negative reduced costs

with respect to (u, v), i.e., Q = {j ∈ C : cj −
∑

i∈Cj ui − ajv < 0}.
Add subset Q to the core C′, i.e., C′ = C′ ∪Q.

If Q = ∅, then (u, v) is a feasible dual solution for problem D,

therefore zLB = max{zLB ,LR(λ, q)} and all columns of reduced

cost larger than ε0zLB are removed from C′.

Step 4. Update Lagrangian penalties

Compute subgradient components:

• θi = 1−
∑

j∈Ci
∑

h∈Cj
qh

q(Cj)
yhj , for every i ∈ V

• θn+1 = α−
∑

j∈C
∑

h∈Cj aj
qh

q(Cj)
yhj

Compute the step size σ = β
0.01×zLR(λ,q)∑n+1

i=1 θ
2
i

and update vector λ:

• λi = λi + ρ(σθi) + (1− ρ)si, for every i ∈ V

• λn+1 = min{0, λn+1 + ρ(σθn+1) + (1− ρ)sn+1}

Save s = σθ.

17

Step 5. Stop Conditions

If the maximum number of iterations MaxIter is not reached and the

lower bound has improved enough (i.e., the improvement is larger

than ε1zLB) during last MaxIter0 iterations, go to Step 2.

In this paper we generate the full set C in advance, before starting the

Dual Ascent Procedure, because the full generation is not time con-

suming, but the dual ascent procedure works with a small subset of columns,

called core, adding new columns only when required. Working with a core

of small size allows a large computing time saving. The initial core is gen-

erated by considering in turns the columns in C sorted by non-decreasing

order of the values cj/|Cj |. If the column covers a row already covered by

another column in the core or violates the side constraint, then it is ignored,

otherwise it is added to the core.

Notice that zLR(λ, q) is a valid lower bound for problem P if and only if

no columns of negative reduced costs exist (i.e., Q = ∅), with respect to the

corresponding dual solution (u, v), which is feasible in this case. When the

dual solution (u, v) is feasible, we remove from C′ all columns of reduced

cost larger than ε0zLB to maintain the core as small as possible. Instead,

the parameter ε1 is used in the stop conditions to check if the lower bound

has been improved enough during the last MaxIter0 iterations.

In order to improve the convergence to a near optimal dual solution,

we update the step-size parameter β during the execution. If, after a given

number of iterations MaxIter1, the lower bound is not improved, we decrease

β, i.e, β = γ1β, where γ1 < 1. As soon as the lower bound is improved we

increase β, i.e, β = γ2β, where γ2 > 1.

The complete definition of the parameter values can be found at Section

7, where the computational results are described.

5. A Lagrangian Heuristic

The dual ascent procedure provides an effective lower bound for problem

P . While following a “matheuristic” approach (see [4, 6, 26]) to obtain an

upper bound of good quality, we develop a Lagrangian heuristic algorithm.

The proposed Lagrangian heuristic is based on a simple greedy algorithm

that makes use of the solution of the Lagrangian problem LR(λ, q) and of

18

the corresponding penalized costs. It is applied at each iteration of the dual

ascent procedure when the current lower bound is good enough.

At the beginning, the procedure builds an initial partial solution using

the columns (i.e., configurations) C′′ =
{
j′ = argminj∈Ci

{
c′j

Q(Cj)

}
: i ∈ V

}
.

To build the initial solution, we start with an empty solution (i.e., x′j = 0,

for every j ∈ C) and we consider each of the columns in C′′ in turns. Given

a column j ∈ C′′, if we have x′j = 0 for every i ∈ Cj , we can add the column

to the current emerging solution (i.e, x′j = 1). Since the order in which the

columns of C′′ are considered is very important, we have considered four

different sortings. Notice that C′′ is generated by selecting one column for

each row i ∈ V , therefore we order its columns by sorting the rows in one of

the following ways:

• for increasing val(i) = i (i.e., the index i ∈ V);

• for non-decreasing val(i) = minj∈Ci

{
c′j

Q(Cj)

}
;

• for non-increasing val(i) = qi
Q(Cj′)

yi, where j′ = argminj∈Ci

{
c′j

Q(Cj)

}
and yi =

∣∣∣{i′ ∈ V : j′ = argminj∈Ci′

{
c′j

Q(Cj)

}}∣∣∣;
• for non-increasing val(i) = λi.

The procedure tries to complete the emerging solution considering the re-

maining columns sorted in non-decreasing order of their normalized cost
cj
|Cj | .

We use this sorting because the number of columns can be huge and we can

save time computing it at the beginning of the dual ascent. We perform

two iterations: the first one only considering the columns of the core C′; the

second one considering all columns C.

Lagrangian Heuristic

Step 1. Initial setup

Let zbestUB be the best upper bound found so far.

Set zUB = 0, x′j = 0, for every j ∈ C, and iter = 1.

Step 2. Phase 1: Build a partial solution from the LR solution

For each i ∈ V , following one of the four sorting criteria, try to add

to the emerging solution column j′ = argminj∈Ci

{
c′j

Q(Cj)

}
.

If
∑

i′∈Cj′
∑

j∈Ci′
x′j = 0,

∑
j∈C ajx

′
j ≤ α−aj′ , and zUB +cj′ < zbestUB ,

19

column j′ is added to the emerging solution, i.e., x′j′ = 1 and zUB =

zUB + cj′ .

Step 3. Check if the emerging solution is complete

If
∑

j∈Ci x
′
j = 1 for every i ∈ V , the solution is feasible, therefore

update the current best solution zbestUB = zUB , xbest = x′, and STOP.

Step 4. Phase 2: Complete the emerging solution

If there exists at least a row i ∈ V such that
∑

j∈Ci x
′
j = 0, we

try to complete the emerging solution by considering the remain-

ing columns sorted in non-decreasing order of their normalized cost
cj
|Cj | . We perform two iterations: the first one only considering the

columns of the core C′; and a second one considering all columns C.

If
∑

i′∈Cj′
∑

j∈Ci′
x′j = 0,

∑
j∈C ajx

′
j ≤ α−aj′ , and zUB+cj′ < zbestUB ,

column j′ is added to the emerging solution, i.e., x′j′ = 1 and

zUB = zUB + cj′ .

Step 5. Check if the emerging solution is complete

If
∑

j∈Ci x
′
j = 1 for every i ∈ V , the solution is feasible, therefore

update the current best solution zbestUB = zUB , xbest = x′; otherwise

the Lagrangian heuristic was not able to find a feasible solution of

cost smaller than zbestUB .

Notice that when the Lagrangian Heuristic adds a column j′ to the

emerging solution all the rows are covered by at most one column, the side

constraint is satisfied, and its cost zUB is less than zbestUB . Therefore, as soon

as the emerging solution covers all rows, it is certainly feasible and better

than the current best solution of cost zbestUB .

In the computational results, the Lagrangian Heuristic is run only

when the percentage gap between the current lower and upper bounds

is under the 10% and LR(λ, q) ≥ H1
GapzLB or it is under the 5% and

LR(λ, q) ≥ H2
GapzLB. The idea is to apply the Lagrangian Heuris-

tic only when the dual solution is sufficiently good (i.e., H1
Gap > H2

Gap).

The parameter values H1
Gap and H2

Gap can be found at Section 7, where the

computational results are described.

When the Lagrangian Heuristic is run, it is repeated four times, one

for each criterion for sorting the dimensional values i ∈ V in phase 1.

20

6. An Exact Method

Using heuristic algorithms we can obtain effective feasible solutions in a

small computing time, and by means of the dual ascent procedure we can

evaluate the maximum distance from the optimal solution value. But when

we need to evaluate the optimal value, the only possibility is the use of an

exact method.

In this paper we propose an exact method based on an approach similar

to the ones described in [7] and [8].

The proposed approach computes a near optimal dual solution by the

Dual Ascent Procedure. It uses the corresponding reduced costs c′j =

cj −
∑

i∈Cj ui − ajv and generates a reduced problem P ′ by replacing in P

the set C with the subset C′ and the original cost cj with the reduced cost c′j .

The subset C′ is the largest subset of the lowest reduced cost variables such

that c′j < min{gmax, zUB − zLB} and |C′| < ∆max. We solve the resulting

reduced problem P ′ by a MIP solver. Given the solution of P ′, we are able

to check if it is optimal for the original problem P . If it is not optimal, we

enlarge the subset C′ and we solve the new reduced problem again.

The resulting exact method can be summarized as follows.

Exact Algorithm

Step 1. Initial setup

Set zLB = −∞, zUB =∞, iter = 1, and ∆max = ∆0.

Step 2. Computing a lower bound z′D
Compute a solution (u′, v′) of the dual problem D of cost zLB = z′D
using the Dual Ascent embedding the Lagrangian Heuristic

which provides an upper bound zUB. Set gmax = µ1zLB .

If zLB = zUB , then STOP.

Step 3. Define a reduced problem P ′

Let c′j = cj −
∑

i∈Cj ui − ajv be the reduced cost of cluster j ∈ C
with respect to the dual solution (u′, v′).

Let C′ be the largest subset of the lowest reduced cost variables such

that c′j < min{gmax, zUB − zLB} and |C′| < ∆max.

Define the reduced problem P ′ replacing in P the set C with C′ and

replacing the original cost cj with the reduced cost c′j .

21

Step 4. Solve problem P ′

Solve problem P ′ using a general purpose MIP solver (e.g., IBM Ilog

Cplex).

Let z∗P ′ be the cost of the optimal solution x∗ obtained (we assume

z∗P ′ =∞ if the set C′ does not contain any feasible solution).

Update zUB = min{zUB, z∗P ′ + z′D}.

Step 5. Test if x∗ is optimal for the original problem P

Let cmax = max{c′j : j ∈ C′}, if C′ ⊂ C, otherwise cmax = ∞, if

C′ = C. We have two cases:

(a) z∗P ′ ≤ cmax, then Stop because x∗ is guaranteed to be an optimal

solution for the original problem P .

(b) z∗P ′ > cmax, then x∗ is not guaranteed to be an optimal solution

for the original problem P , however z′D + cmax is a valid lower

bound on the optimal solution value of problem P .

Step 6. Update the parameters If iter < MaxIter , then increase ∆max =

µ2∆
max and gmax = µ2g

max, µ2 > 1, set iter = iter + 1 and go to

Step 3.

At Steps 3 and 4 we use the reduced cost c′j instead of the original cost

cj , because the solution of the LP-relaxation of P ′, at node zero, is usually

faster (i.e., we incorporate the dual information in P ′, see [8]).

The procedure terminates when the optimal solution of P is obtained

or the maximum number of iterations is reached. Notice that if we set

MaxIter = ∞, the procedure converges to the optimal solution because in

the worst case at a given iteration C′ = C.

7. Computational Results

The algorithms presented in this paper were coded in C++ using Mi-

crosoft Visual Studio Community 2017, and run on a workstation equipped

with an Intel Core i7-3770, 3.40 GHz, 32Gb of RAM, and operating system

Windows 10 Educational (version 1803) 64bit. IBM Ilog CPLEX 12.5 is

used as LP and MIP solver.

For our experiments we considered four different hierarchies: RESIDENCE,

OCCUPATION, PROD DEPARTMENT, and PROD BRAND. The former two

22

come from the IPUMS database [29], while the others two are extracted from

the Foodmart database that can be found with the Pentaho suite [35]. After

aggregating input data along these hierarchies (e.g., by state or by city), we

generated, by means of sampling, several test instances with varying char-

acteristics, such as size and average fan-out (i.e., children per parent ratio).

In the remainder of this paper we refer to these instances using the name

of the attribute used to aggregate the data, followed by a progressive num-

ber; for example, CITY-1 means that the data has been first aggregated by

city, and then a sampling process has been performed to create the dataset.

To observe how the algorithms behave not only with different problem sizes

(i.e., number of clusters) but also with different data distributions, we gener-

ated instances CITY UNI and OCCUPATION UNI by reusing the hierarchical

structure of RESIDENCE and OCCUPATION, but with uniformly random

data slices. Finally, we generated some hard instances to show that the new

proposed algorithm solves instances where a general-purpose solver fails. A

thorough description of the dataset can be found in [15].

For every test instance we solve both versions of the problem: the prob-

lem of Type A, where the objective function minimizes the size of the result-

ing data and the side constraint guarantees that the loss of precision does not

exceed a given maximum value; the problem of Type B, where the objective

function minimizes the loss of precision and the side constraint guarantees

that the size of the resulting data does not exceed a given maximum value.

For every problem type we solve the problem for different values of the

maximum loss of precision or of the maximum size of the data.

In this section we summarize the computational results in Tables 2 and

3, while the complete description of the results are reported in the Ap-

pendix A in Tables A.4–A.11. When we report in the tables the value of

the the maximum loss of precision, we use the notation 1.00M and 1.00G

for representing the values 1.00× 106 and 1.00× 109, respectively. When a

computing time or a percentage gap is equal to 0.00, it means that its real

value is smaller that 0.01.

In Tables 2 and 3 the test instances are grouped by the value of the right-

hand side α of the side constraint, which is the maximum loss of precision

for problem of Type A and the maximum size of the data for problem of

Type B. For each group, these tables report the average Avg, the maximum

Max, and the standard deviation s.d. for each column.

23

Notice that groups having very small values of α (i.e., α = 1.00M and

α = 10.00M , for problems of Type A, and α = 10 and α = 15, for problems

of Type B) correspond to few small size instances.

7.1. Dual Ascent procedure

In our computational experiments the parameters of the dual ascent are

set as follows. The parameters for defining the step size are β0 = 20, γ1 =

0.90, γ2 = 1.10, for problems of Type A, and β0 = 1, γ1 = 0.90, γ2 = 1.005,

for problems of Type B. The parameter ε0 used for reducing the size of the

subset C′ is 0.05, i.e., 5% of the value of the current lower bound. Instead,

the parameter ε1 used to check if the lower bound has improved enough

during the last MaxIter0 iterations is ε1 = 0.001. The maximum number of

iterations are MaxIter = 100000 (i.e., virtually unlimited), MaxIter0 = 200,

and MaxIter1 = 5.

The choice of the parameter values is made empirically, because the

purpose of the computational tests is to show that just with a good choice

we can achieve effective results. Therefore, a better analysis on the choice

of the parameter values is outside of the scope of this paper, but it will be

an interesting research direction for the future.

In Table 2 we compare the results obtained by the CPLEX LP solvers

and by the dual ascent procedure, described in Section 4.

For the CPLEX solvers we report the computing times Timex for each

solver available: primal (P), dual (D), network (N), barrier (B), and sifting

(S). For the dual ascent we report the percentage gap between the best lower

bound zLB , corresponding to the best feasible dual solution generated, and

the LP-relaxation optimal value zLP , GapLP = 100× zLP−zLB
zLP

, the number

of iterations Iter , the computing time Time, and the size of subset C′ at the

end of the execution.

The more effective CPLEX LP solver is the network simplex, in par-

ticular for problems of Type B, at the contrary the barrier is very time

consuming for both problem types. To improve the results provided by the

barrier algorithm we also tried to apply all the barrier algorithms available

by the parameter CPX PARAM BARALG, without any improvement. The

total number of barrier iterations, returned by function “CPXgetbaritcnt”,

ranges from few tens to some hundreds, for the most difficult instances, and

in the worst case it reaches 648 iterations (i.e., instance “city11”, see Ap-

24

pendix A). We are not able to explain the poor performance of the barrier

algorithm. It is an another interesting topic for future research.

Even the primal and the dual simplex do not work as expected. The

difference in the performance is more evident for medium-large size instances

and seems to depend by the number of clusters in the optimal solution: the

smaller the number of clusters the greater the difference in the performance.

Notice that for a problem of Type A a greater value of α allows for a smaller

number of clusters in the optimal solutions. The reason for these differences

in performance is unclear and further investigation will be needed to provide

an explanation. Perhaps, these instances have a particular structure that

gives an advantage to the network simplex.

The dual ascent provides near optimal solutions in a smaller computing

time with respect to CPLEX LP solvers for problems of type A. It generates

lower bounds having an average percentage gap GapLP from the optimal

solution value zLP equal to 0.02% and it is on average faster than the better

CPLEX LP solver (see Table A.4). For problems of Type B, the dual ascent

is a little worse only with respect to the network simplex and the average

percentage gap GapLP is under 0.01% (see Table A.5). Even the results on

the hard instances, reported in Tables A.6 and A.7, confirm these figures.

Setting a smaller MaxIter0 and a more aggressive value for β0 we can

obtain a faster convergence of the dual ascent with a smaller worsening of

the lower bound provided. However, the convergence is more erratic and the

quality of the solutions generated by the embedded Lagrangian heuristic is

a little worse. Since we are mainly interested in the heuristic or optimal

solution of the problem, we prefer a slower dual ascent which enhances the

quality of the solutions generated by the Lagrangian heuristic.

7.2. Greedy and Lagrangian Heuristics

In Table 3 we compare the greedy and the Lagrangian heuristics, de-

scribed in Sections 2 and 5. The results of the Lagrangian heuristic include

the dual ascent procedure which embeds it.

For each group of test instances we report the percentage gap between the

best upper bound found zUB and the value of the optimal integer solution,

Gap = 100× zUB−zOpt

zOpt
, and the computing time Time. For the dual ascent

with the Lagrangian heuristic we also report the number of iterations Iter ,

and the size of C′.

25

T
a
b
le

2
:
D
u
a
l
A
sc
en

t
p
ro
ce
d
u
re

is
co
m
p
a
re
d
w
it
h
C
P
L
E
X

L
P

so
lv
er
s:

P
ro
b
le
m

T
y
p
e
A

a
n
d
B
.

C
p
le

x
D

u
a
l
A

s
c
e
n
t

T
im

e
P

T
im

e
D

T
im

e
N

T
im

e
B

T
im

e
S

G
a
p
L
P

It
e
r

T
im

e
|C

′ |
T
y
p
e
A

α
=

1
.0
0
M

a
v
g

0
.6
7

0
.6
8

0
.6
8

0
.6
7

1
.0
6

0
.0
8

9
6
8

0
.1
0

1
3
9
3

m
a
x

0
.6
7

0
.6
8

0
.6
8

0
.6
7

1
.0
6

0
.0
8

9
6
8

0
.1
0

1
3
9
3

s.
d
.

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
0
.0
0

0
α

=
1
0
.0
0
M

a
v
g

0
.7
2

0
.7
6

0
.7
2

1
.2
1

1
.7
7

0
.0
6

8
9
7

0
.1
9

3
9
8

m
a
x

0
.7
2

0
.7
6

0
.7
2

1
.2
1

1
.7
7

0
.0
6

8
9
7

0
.1
9

3
9
8

s.
d
.

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
0
.0
0

0
α

=
1
0
0
.0
0
M

a
v
g

6
.3
9

6
.3
7

6
.3
5

6
.2
9

7
.4
2

0
.0
2

9
6
5

3
.5
9

9
9
5

m
a
x

2
7
.3
7

2
7
.4
2

2
7
.2
1

2
5
.1
8

3
1
.2
3

0
.0
6

1
1
6
9

1
4
.2
2

1
5
7
1

s.
d
.

8
.1
0

8
.0
9

8
.0
2

7
.3
8

9
.1
9

0
.0
1

1
4
3

4
.2
2

3
4
9

α
=

1
0
0
0
.0
0
M

a
v
g

0
.7
3

0
.7
3

0
.7
5

0
.9
7

0
.8
9

0
.0
2

7
5
9

0
.4
8

7
1
3

m
a
x

1
.7
7

1
.7
6

1
.8
2

2
.4
2

2
.1
9

0
.0
3

9
9
1

1
.2
4

1
4
0
3

s.
d
.

0
.6
5

0
.6
4

0
.6
6

0
.8
4

0
.7
8

0
.0
1

2
7
1

0
.4
2

5
6
7

α
=

1
0
.0
0
G

a
v
g

1
4
.1
3

1
0
.8
9

1
5
.1
1

2
4
3
.3
2

1
3
.0
1

0
.0
2

9
8
7

6
.9
2

1
2
1
3
0

m
a
x

5
3
.3
6

3
9
.8
4

6
5
.2
3

1
0
1
4
.2
9

4
4
.9
6

0
.0
4

1
2
1
9

2
4
.4
3

3
4
0
5
7

s.
d
.

1
6
.0
6

1
2
.2
6

1
8
.5
5

3
0
0
.5
7

1
3
.4
3

0
.0
1

1
8
4

7
.1
8

1
0
0
0
5

α
=

1
0
0
.0
0
G

a
v
g

2
4
.6
1

3
0
.0
1

2
9
.3
9

5
6
6
.7
5

2
8
.2
9

0
.0
3

9
5
0

1
1
.0
2

8
3
3
4
4

m
a
x

1
2
6
.6
4

1
6
3
.8
3

1
7
8
.7
3

3
0
9
7
.5
0

1
1
5
.0
7

0
.0
7

1
1
7
9

4
6
.1
3

2
6
8
1
1
1

s.
d
.

3
3
.3
3

4
3
.8
7

4
5
.0
8

8
6
1
.8
9

3
2
.9
7

0
.0
2

9
3

1
2
.4
6

8
0
7
8
7

α
=

1
0
0
0
.0
0
G

a
v
g

5
.0
6

4
.7
8

3
.6
9

6
8
.9
6

8
.4
2

0
.0
3

9
7
6

4
.1
5

6
2
5
7
6

m
a
x

8
.0
1

9
.4
7

6
.4
3

1
0
8
.0
5

1
2
.8
3

0
.0
3

1
1
7
6

5
.8
0

8
0
1
1
2

s.
d
.

2
.3
8

2
.9
9

1
.9
9

3
5
.6
2

2
.8
6

0
.0
1

1
3
1

1
.7
0

1
6
7
5
8

T
y
p
e
B

α
=

1
0

a
v
g

0
.0
4

0
.0
4

0
.0
4

0
.1
1

0
.0
4

0
.0
0

6
3
5

0
.0
4

1
4

m
a
x

0
.0
8

0
.0
7

0
.0
7

0
.2
0

0
.0
7

0
.0
0

6
8
9

0
.0
4

1
4

s.
d
.

0
.0
4

0
.0
4

0
.0
4

0
.1
0

0
.0
3

0
.0
0

5
4

0
.0
0

1
α

=
1
5

a
v
g

0
.0
4

0
.0
3

0
.0
3

0
.6
0

0
.0
5

0
.0
0

9
1
7

0
.0
3

2
3

m
a
x

0
.0
7

0
.0
6

0
.0
6

1
.1
9

0
.0
7

0
.0
0

1
3
1
7

0
.0
4

3
1

s.
d
.

0
.0
4

0
.0
3

0
.0
3

0
.5
9

0
.0
3

0
.0
0

4
0
1

0
.0
2

8
α

=
5
0

a
v
g

2
7
.7
6

8
2
.1
0

3
1
.0
6

4
4
3
.1
5

1
0
5
.6
4

0
.0
0

1
2
2
3

3
2
.2
1

1
6
9
1

m
a
x

1
4
6
.1
9

5
1
6
.5
1

2
4
2
.3
1

2
4
1
9
.1
1

5
9
6
.3
8

0
.0
0

1
4
8
0

1
5
2
.9
9

4
5
5
3

s.
d
.

3
9
.5
0

1
3
5
.5
3

5
8
.2
9

6
5
8
.3
3

1
4
4
.5
7

0
.0
0

1
7
6

4
2
.9
6

6
9
4

α
=

1
0
0

a
v
g

3
0
.7
8

6
1
.8
7

3
3
.9
0

5
3
.9
1

2
5
.7
5

0
.0
0

1
1
4
5

2
7
.9
3

1
3
6
6

m
a
x

1
4
8
.8
5

4
2
5
.2
4

2
0
5
.8
2

3
0
8
.0
2

9
2
.9
8

0
.0
1

1
5
2
2

1
3
8
.9
4

1
9
7
5

s.
d
.

4
3
.7
3

1
0
2
.5
5

5
5
.0
4

7
6
.8
8

3
0
.1
8

0
.0
0

1
7
2

3
7
.4
2

3
2
0

α
=

1
5
0

a
v
g

3
0
.9
5

4
4
.1
5

2
5
.6
4

8
4
.8
8

1
3
.2
5

0
.0
0

1
1
2
7

2
0
.8
4

1
2
1
6

m
a
x

1
4
8
.6
1

2
3
0
.6
2

1
5
2
.5
3

4
3
9
.1
9

6
2
.7
3

0
.0
4

1
3
1
3

1
0
4
.1
7

1
8
0
5

s.
d
.

4
3
.7
5

6
5
.8
9

3
8
.5
2

1
2
1
.2
2

1
7
.4
7

0
.0
1

1
0
3

2
7
.5
6

3
1
5

26

The computing time of the greedy heuristic is negligible but the percent-

age gap from the optimal solution value is on average 1.28% and 3.74% for

the problems of type A and B (reported in Tables A.8 and A.9, respectively),

and is on average 0.57% and 5.09% for the hard instances of type A and B

(reported in Tables A.10 and A.11). The maximum gap is the 25% and is

often greater than 5%.

For the Lagrangian heuristic we have set the parameters H1
Gap = 0.1%

and H2
Gap = 0.001%, for problems of Type A, and H1

Gap = 1% and H2
Gap =

0.001%, for problems of Type B (see Section 5). The Lagrangian heuristic is

more time consuming but the percentage gap from the optimal solution value

is much smaller. For problems of type A it finds the optimal solution for all

the instances. The quality of the upper bound is a little worse for problems

of type B, where only some instances having α = 50 and α = 100 are not

solved to optimality: the average gap is 0.17% and 1.65%, respectively. For

the very large instances of Type B, the maximum gap is 8.66%, but it is still

much better than the greedy heuristic.

7.3. Exact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, de-

scribed in Section 5, and of the exact method, described in Section 6, in

Table 3 we compare them with the CPLEX MIP solver.

For the proposed exact method in our computational results we set

MaxIter = 10, ∆0 = 1000, µ1 = 0.001, and µ2 = 10. For the exact method

we setup a less aggressive setting for the Lagrangian heuristic by setting the

parameters H1
Gap = H2

Gap = 0.001%, for both problems of Type A and B (see

Section 5). We made this choice because the exact method requires a small

computing time for closing a possible gap between the upper bound and the

optimal solution. In this case it is convenient to avoid a time consuming

most aggressive setting.

For the CPLEX MIP solver we report the computing time Time. How-

ever, for two instances of Type A and for five instances of Type B the CPLEX

MIP solver fails because of an “out of memory”. For these instances column

Time reports the computing time spent to generate the error (see Tables

A.10 and A.11 in Appendix A for more details).

27

T
a
b
le

3
:
C
o
m
p
a
ri
so
n
a
m
o
n
g
C
P
L
E
X

M
IP

so
lv
er
,
D
u
a
l
A
sc
en
t
w
it
h
L
a
g
ra
n
g
ia
n
H
eu

ri
st
ic
,
a
n
d
E
x
a
ct

m
et
h
o
d
:
P
ro
b
le
m

T
y
p
e
A

a
n
d
B
.

G
r
e
e
d
y

C
p
le

x
D

u
a
l
A

s
c
e
n
t

+
L
a
g
r
.

H
e
u
.

E
x
a
c
t

M
e
t
h
o
d

G
a
p

T
im

e
T
im

e
G
a
p

It
e
r

T
im

e
|C

′ |
G
a
p

|C
′ |

It
e
r

T
A

T
E

T
T
o
t

T
y
p
e
A

α
=

1
.0
0
M

a
v
g

0
.6
0

0
.0
1

0
.7
3

0
.0
0

7
6
6

0
.1
6

1
3
9
3

0
.0
0

0
1
.0
0

0
.1
4

0
.0
0

0
.1
4

m
a
x

0
.6
0

0
.0
1

0
.7
3

0
.0
0

7
6
6

0
.1
6

1
3
9
3

0
.0
0

0
1
.0
0

0
.1
4

0
.0
0

0
.1
4

s.
d
.

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
0
.0
0

0
0
.0
0

0
0
.0
0

0
.0
0

0
.0
0

0
.0
0

α
=

1
0
.0
0
M

a
v
g

8
.8
2

0
.0
1

1
.4
9

0
.0
0

8
9
7

0
.3
9

3
9
8

0
.0
0

2
8
2

2
.0
0

0
.2
4

0
.3
4

0
.5
8

m
a
x

8
.8
2

0
.0
1

1
.4
9

0
.0
0

8
9
7

0
.3
9

3
9
8

0
.0
0

2
8
2

2
.0
0

0
.2
4

0
.3
4

0
.5
8

s.
d
.

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
0
.0
0

0
0
.0
0

0
0
.0
0

0
.0
0

0
.0
0

0
.0
0

α
=

1
0
0
.0
0
M

a
v
g

0
.1
1

0
.0
1

7
.1
0

0
.0
0

6
9
4

2
4
.7
2

9
9
5

0
.0
0

4
5

1
.0
0

1
9
.8
1

0
.1
1

1
9
.9
1

m
a
x

0
.3
2

0
.0
1

2
9
.3
7

0
.0
0

8
7
8

7
6
.5
8

1
5
7
0

0
.0
0

8
0
5

1
.0
0

7
6
.5
8

1
.8
9

7
6
.5
8

s.
d
.

0
.1
4

0
.0
0

8
.5
9

0
.0
0

1
8
4

2
5
.2
3

3
4
9

0
.0
0

1
8
4

0
.0
0

2
3
.8
8

0
.4
3

2
4
.0
5

α
=

1
0
0
0
.0
0
M

a
v
g

4
.1
7

0
.0
0

1
.2
5

0
.0
0

5
2
5

3
.3
5

7
1
3

0
.0
0

0
1
.0
0

2
.0
4

0
.0
0

2
.0
4

m
a
x

2
5
.0
0

0
.0
1

2
.9
3

0
.0
0

7
3
6

9
.5
2

1
4
0
3

0
.0
0

0
1
.0
0

5
.6
5

0
.0
0

5
.6
5

s.
d
.

9
.3
2

0
.0
0

0
.9
8

0
.0
0

2
5
4

3
.3
2

5
6
7

0
.0
0

0
0
.0
0

1
.9
8

0
.0
0

1
.9
8

α
=

1
0
.0
0
G

a
v
g

0
.5
8

0
.0
1

1
1
8
.5
0

0
.0
0

7
2
1

2
8
.9
6

1
2
1
3
0

0
.0
3

5
6

1
.0
0

2
4
.4
5

0
.0
3

2
4
.4
9

m
a
x

1
.5
4

0
.0
2

5
2
5
.4
0

0
.0
0

1
0
4
6

1
0
9
.7
9

3
4
0
5
7

0
.5
8

1
0
0
0

1
.0
0

1
0
9
.7
9

0
.5
9

1
0
9
.7
9

s.
d
.

0
.4
6

0
.0
0

1
5
5
.7
7

0
.0
0

2
1
8

3
1
.2
8

1
0
0
0
5

0
.1
3

2
2
9

0
.0
0

3
0
.3
2

0
.1
4

3
0
.3
2

α
=

1
0
0
.0
0
G

a
v
g

1
.3
1

0
.0
1

1
7
9
.4
2

0
.0
0

6
5
4

2
0
.4
2

8
3
3
4
4

0
.0
0

9
1
.0
0

1
9
.2
6

0
.0
0

1
9
.2
6

m
a
x

2
.7
4

0
.0
2

8
1
4
.7
3

0
.0
0

9
7
9

9
3
.6
6

2
6
8
1
0
9

0
.0
0

1
9
8

1
.0
0

9
3
.6
6

0
.0
6

9
3
.6
6

s.
d
.

0
.8
3

0
.0
0

2
4
8
.1
9

0
.0
0

1
1
2

2
3
.7
7

8
0
7
8
6

0
.0
0

4
2

0
.0
0

2
3
.8
5

0
.0
1

2
3
.8
5

α
=

1
0
0
0
.0
0
G

a
v
g

1
.3
8

0
.0
1

1
2
9
.2
9

0
.0
0

7
5
3

6
.7
8

6
2
5
7
6

0
.3
7

1
9
4

1
.0
0

5
.5
5

0
.1
2

5
.6
7

m
a
x

2
.7
4

0
.0
1

3
0
3
.5
6

0
.0
0

1
0
0
1

9
.9
5

8
0
1
1
2

1
.4
7

4
6
1

1
.0
0

9
.5
1

0
.3
2

9
.8
3

s.
d
.

0
.9
7

0
.0
0

1
1
2
.4
3

0
.0
0

1
4
9

3
.2
6

1
6
7
5
8

0
.6
4

2
0
0

0
.0
0

2
.7
9

0
.1
3

2
.9
0

T
y
p
e
B

α
=

1
0

a
v
g

0
.0
0

0
.0
0

0
.7
1

0
.0
0

6
3
5

0
.0
5

1
4

0
.0
0

0
1
.0
0

0
.0
5

0
.0
0

0
.0
5

m
a
x

0
.0
0

0
.0
0

1
.2
8

0
.0
0

6
8
9

0
.0
5

1
4

0
.0
0

0
1
.0
0

0
.0
5

0
.0
0

0
.0
5

s.
d
.

0
.0
0

0
.0
0

0
.5
7

0
.0
0

5
4

0
.0
0

1
0
.0
0

0
0
.0
0

0
.0
0

0
.0
0

0
.0
0

α
=

1
5

a
v
g

3
.6
4

0
.0
0

0
.7
1

0
.0
0

9
1
7

0
.0
6

2
3

0
.0
0

4
3

2
.0
0

0
.0
6

0
.1
2

0
.1
7

m
a
x

7
.2
8

0
.0
0

1
.2
7

0
.0
0

1
3
1
7

0
.0
8

3
1

0
.0
0

8
6

3
.0
0

0
.0
8

0
.2
3

0
.3
0

s.
d
.

3
.6
4

0
.0
0

0
.5
7

0
.0
0

4
0
1

0
.0
2

8
0
.0
0

4
3

1
.0
0

0
.0
2

0
.1
2

0
.1
3

α
=

5
0

a
v
g

5
.3
0

0
.0
1

1
8
9
.2
0

1
.6
5

1
2
0
4

8
6
.6
6

1
6
9
1

2
.1
1

4
7
8
3
0

1
.4
1

6
0
.5
7

3
5
.7
2

9
6
.2
9

m
a
x

8
.6
6

0
.0
2

9
7
4
.3
7

8
.6
6

1
4
8
0

3
5
1
.2
2

4
5
5
3

8
.6
6

1
0
0
0
0
0
0

4
.0
0

3
0
1
.3
6

7
6
2
.6
5

1
0
6
4
.0
2

s.
d
.

1
.8
7

0
.0
0

2
5
4
.3
8

2
.6
9

1
9
6

1
0
1
.9
5

6
9
4

2
.7
1

2
0
7
8
1
8

0
.7
2

9
0
.2
1

1
5
8
.6
4

2
2
4
.0
8

α
=

1
0
0

a
v
g

4
.2
5

0
.0
1

1
5
0
.5
8

0
.1
7

1
0
7
2

5
2
.6
8

1
3
6
6

0
.3
9

2
4
8

1
.0
5

3
8
.6
9

0
.6
0

3
9
.2
9

m
a
x

8
.7
8

0
.0
2

7
8
9
.5
7

3
.4
5

1
5
2
2

2
2
8
.6
0

1
9
7
5

3
.4
5

2
9
4
9

2
.0
0

2
0
9
.7
5

3
.3
0

2
1
3
.0
4

s.
d
.

2
.2
2

0
.0
0

2
0
9
.3
0

0
.7
2

1
7
8

6
3
.9
7

3
2
0

0
.9
7

5
9
2

0
.2
1

5
3
.6
6

0
.8
5

5
4
.4
4

α
=

1
5
0

a
v
g

2
.7
0

0
.0
1

1
2
6
.5
5

0
.0
0

1
0
3
7

4
4
.9
9

1
2
1
6

0
.0
6

1
7
9

1
.0
0

3
0
.3
7

0
.6
7

3
1
.0
4

m
a
x

5
.2
6

0
.0
2

7
2
1
.9
0

0
.0
0

1
2
5
8

1
7
5
.0
0

1
8
0
5

1
.3
4

2
8
7

1
.0
0

1
7
5
.0
0

3
.2
3

1
7
8
.2
3

s.
d
.

1
.4
6

0
.0
0

1
7
2
.8
1

0
.0
0

8
8

4
7
.6
5

3
1
5

0
.2
9

6
4

0
.0
0

4
3
.9
4

0
.8
8

4
4
.7
9

28

For the dual ascent embedding the Lagrangian heuristic, we report the

gap between the best upper bounds found and the optimal solution, Gap =

100× zUB−zOpt

zOpt
and the computing time TA. For the exact method, we report

the size of the subset of columns C′ considered in the integer reduced problem

P ′, the number of iterations Iter , the computing time TE for solving the

reduced problem P ′ (even more than one time if Iter > 1), and the overall

computing time TTot which also includes the computing time of the dual

ascent procedure and of the embedded Lagrangian heuristic. When the

problem is solved by the dual ascent, we report |C′| = 0.

Notice that we used a less aggressive setting for the Lagrangian heuristic

for the exact method, therefore the Gap between the best upper bounds

found and the optimal solution is sometimes greater than the one found

by the more aggressive Lagrangian heuristic. The advantage is a smaller

computing time.

The exact method performs very well for problems of Type A, where it

needs to solve the integer reduced problem P ′ only for six instances using

a very small subset of columns C′. Only for one instance the exact method

requires two iterations. The proposed exact method is on average about

seven times faster than the CPLEX MIP solver and for two hard instances

the CPLEX MIP solver runs out of memory.

Problems of Type B are more difficult to solve, but the exact method is

on average about five times faster than the CPLEX MIP solver. As shown

in Appendix A by Table A.9, for many instances the exact method needs

to solve the integer reduced problem P ′. However, the size of the subset C′

is still small and the computing time for solving the reduced problem P ′ is

very small. We need two iterations only for seven instances, three iterations

for one instance, and four iterations for one hard instance. All the remaining

instances are solved in one iteration. For only one hard instance of type B,

the exact method requires about 18 minutes, but for the same instance the

CPLEX MIP solver fails. Overall, the CPLEX MIP solver fails for five hard

instances of Type B.

The most difficult medium-large instances are the ones having a small

number of clusters in the optimal solution. For problems of Type A, they

are imposed by the side constraint with a small right-hand-side (i.e., the

maximum number of clusters). For problems of Type B, they are obtained

by minimizing the number of clusters having a side constraint that allows a

29

large error with a large right-hand-side.

8. Conclusions

In this paper we have proposed an integer linear programming model for

solving the problem of implementing effectively the OLAP shrink operator.

We have modelled the problem as a set partitioning problem with one

side constraint and we have considered two different approaches for finding

its solution. In the first one (problem of Type A), we minimize the size

of the resulting data, while the side constraint guarantees that the loss of

precision does not exceed a given maximum value. In the second approach

(problem of Type B), we minimize the loss of precision, while the side con-

straint guarantees that the size of the resulting data does not exceed a given

maximum value.

The proposed mathematical formulation is able to model both problem

types. For switching from one type to the other, it is sufficient to modify

the coefficients of the objective function and of the side constraint, along

with its right-hand side.

The first solution method considered is a dual ascent which embeds a

Lagrangian heuristic. The dual ascent generates at each iteration a hopefully

feasible dual solution of the LP-relaxation of the problem. The dual ascent

only considers a reduced subset of columns to solve the problem and uses the

generated feasible dual solutions for adding columns to the reduced problem

using the pricing. The computing time allows an operational use of the

procedure and the quality of the solution generated is of very good quality.

For problems of Type A the dual ascent significantly outperforms general

purpose LP solvers as CPLEX. It is able to generate a near optimal dual

solution in a short computing time.

We have also proposed an exact method to use when the optimal solu-

tion is required. After running the dual ascent embedding the Lagrangian

heuristic, the proposed exact procedure generates, with a very small addi-

tional computing time, an optimal solution using a very small subset of the

columns of the original instance. Therefore, the exact procedure has the po-

tential for an operational use, while a general purpose solver, like CPLEX,

is time consuming and fails for some instances.

The computational results show the maximum instance sizes that can

be solved to optimality and they are much smaller than the size of instances

30

of similar problems such as the microaggregation (see Section 1).

For the instances used in this paper, the computing time for generating

the clusters is almost negligible with respect to the time for solving the

problem, even if the number of columns is huge for many instances. The use

of pricing to select a small subset of columns allows a huge reduction of the

overall computing time without compromising the optimal solution of the

problem. However, future developments could embed a column generation

procedure in the proposed algorithms in order to solve much larger instances,

at least of one further order of magnitude, where the complete generation

of clusters takes time and requires a huge amount of memory.

Appendix A. Complete computational results

For each instance, the number of values in the hierarchy and the number

of generated clusters are shown alongside the results of the experiments in

Tables A.4–A.7.

For every test instance we solve both versions of the problem. In Tables

A.4, A.6, A.8, and A.10 we solve the problem of Type A. Whereas, in Tables

A.5, A.7, A.9, and A.11 we solve the problem of Type B.

Appendix A.1. Dual Ascent procedure

In Tables A.4, A.5, A.6, and A.7 we compare the CPLEX LP solvers and

the dual ascent procedure, described in Section 4.

For each test instance we report the number of clusters m, the number of

dimensional values n, the computing time for generating the clusters TGen ,

and the right-hand side α of the side constraint, which is the maximum loss

of precision for problem of Type A and the maximum size of the data for

problem of Type B. For the CPLEX solvers we report the optimal value

zLP of the LP-relaxation of the problem P and the computing times Timex

for each solver available: primal (P), dual (D), network (N), barrier (B),

and sifting (S). For the dual ascent we report the best lower bound zLB

corresponding to the best feasible dual solution generated, its percentage

gap from zLP GapLP = 100 × zLP−zLB
zLP

, the number of iterations Iter , the

computing time Time, and the size of subset C′ at the end of the execution.

31

T
a
b
le

A
.4
:
D
u
a
l
A
sc
en
t
p
ro
ce
d
u
re

is
co
m
p
a
re
d
w
it
h
C
P
L
E
X

L
P

so
lv
er
s:

P
ro
b
le
m

T
y
p
e
A
.

S
iz

e
a
n
d

G
e
n
e
r
a
t
io

n
S
id

e
C
o
n
s
.

C
p
le

x
D

u
a
l
A

s
c
e
n
t

I
n
s
t
a
n
c
e
s

m
n

T
G
e
n

α
z
L
P

T
im

e
P

T
im

e
D

T
im

e
N

T
im

e
B

T
im

e
S

z
L
B

G
a
p
L
P

It
e
r

T
im

e
|C

′ |
st
a
te

6
2
9

4
6

0
.0
0

1
0
.0
0
G

2
9
.6
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
9
.6
0

0
.0
0

3
6
5

0
.0
0

3
6

st
a
te

6
2
9

4
6

0
.0
0

1
0
0
0
.0
0
M

3
2
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

3
2
.0
0

0
.0
0

2
0
2

0
.0
4

3
2

p
ro
d
d
ep

ar
tm

en
t

3
2
8
0
9

2
8

0
.0
4

1
0
0
0
.0
0
M

3
.5
1

0
.0
6

0
.0
9

0
.0
9

0
.2
2

0
.1
1

3
.5
1

0
.0
3

6
7
6

0
.0
6

2
0

p
ro
d
d
ep

ar
tm

en
t

3
2
8
0
9

2
8

0
.0
4

1
0
0
.0
0
M

9
.3
1

0
.0
4

0
.0
4

0
.0
4

0
.0
4

0
.0
6

9
.3
1

0
.0
1

5
1
9

0
.0
6

3
4

p
ro
d
b
ra
n
d

3
7
2
3
3

6
9
7

0
.0
6

1
0
.0
0
M

3
3
.0
1

0
.7
2

0
.7
6

0
.7
2

1
.2
1

1
.7
7

3
2
.9
8

0
.0
6

8
9
7

0
.1
9

3
9
8

p
ro
d
b
ra
n
d

3
7
2
3
3

6
9
7

0
.0
6

1
.0
0
M

1
6
7
.7
0

0
.6
7

0
.6
8

0
.6
8

0
.6
7

1
.0
6

1
6
7
.5
7

0
.0
8

9
6
8

0
.1
0

1
3
9
3

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

1
0
0
.0
0
G

7
2
.0
4

0
.2
9

0
.3
4

0
.3
0

2
.0
1

1
.3
9

7
2
.0
0

0
.0
7

9
7
9

0
.3
2

6
9
0
3

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

1
0
.0
0
G

1
4
0
.3
4

0
.2
0

0
.2
2

0
.3
0

1
.6
5

0
.4
0

1
4
0
.3
2

0
.0
2

1
0
0
1

0
.2
1

2
7
2
5

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

1
0
0
.0
0
M

3
0
6
.2
2

0
.0
9

0
.0
9

0
.1
0

0
.1
3

0
.1
5

3
0
6
.1
8

0
.0
1

1
0
0
8

0
.1
0

8
0
2

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

1
0
0
.0
0
G

7
5
.5
5

0
.7
8

0
.5
2

0
.4
1

6
.5
8

2
.3
6

7
5
.5
0

0
.0
7

1
0
4
9

0
.7
9

1
9
2
2
1

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

1
0
.0
0
G

1
4
8
.6
9

0
.4
7

0
.3
7

0
.4
1

4
.0
0

0
.6
7

1
4
8
.6
9

0
.0
0

1
0
6
9

0
.4
0

4
6
2
9

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

1
0
0
.0
0
M

3
2
4
.5
6

0
.1
7

0
.1
6

0
.1
7

0
.2
4

0
.2
5

3
2
4
.5
4

0
.0
1

1
0
8
7

0
.1
6

9
3
0

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

1
0
0
.0
0
G

7
7
.9
1

1
.5
6

1
.1
7

0
.9
4

1
4
.9
2

3
.7
6

7
7
.8
7

0
.0
5

9
2
4

1
.2
3

2
1
6
6
9

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

1
0
.0
0
G

1
5
3
.9
7

0
.9
7

0
.7
2

0
.8
7

1
0
.3
6

1
.4
6

1
5
3
.9
1

0
.0
4

8
7
8

0
.5
2

4
3
6
7

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

1
0
0
.0
0
M

3
4
1
.6
0

0
.3
2

0
.3
2

0
.3
3

0
.4
3

0
.4
3

3
4
1
.5
6

0
.0
1

9
1
8

0
.2
3

9
8
5

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

1
0
0
.0
0
G

8
2
.4
6

3
.0
6

2
.5
8

2
.3
9

3
4
.0
8

7
.7
7

8
2
.4
5

0
.0
2

1
0
7
4

2
.8
1

4
9
2
0
4

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

1
0
.0
0
G

1
5
8
.0
9

1
.9
3

1
.3
7

1
.8
4

2
2
.9
3

2
.4
5

1
5
8
.0
8

0
.0
1

1
1
0
3

1
.2
4

6
0
5
6

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

1
0
0
.0
0
M

3
5
3
.6
5

0
.6
0

0
.6
1

0
.6
3

0
.8
4

0
.7
7

3
5
3
.4
4

0
.0
6

9
1
3

0
.4
1

1
1
3
1

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

1
0
0
.0
0
G

8
1
.2
3

4
.8
0

4
.3
5

3
.8
2

6
5
.2
3

1
0
.5
7

8
1
.1
7

0
.0
7

1
0
2
4

3
.2
0

4
0
8
6
4

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

1
0
.0
0
G

1
5
8
.4
5

2
.8
4

2
.3
3

2
.8
8

3
1
.6
1

3
.2
8

1
5
8
.4
1

0
.0
3

9
4
1

1
.7
6

9
3
9
0

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

1
0
0
.0
0
M

3
5
5
.7
3

0
.9
2

0
.9
2

0
.9
5

1
.3
1

1
.2
6

3
5
5
.6
8

0
.0
2

9
0
5

0
.5
9

1
1
4
9

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

1
0
0
.0
0
G

8
4
.2
6

5
.4
7

5
.8
1

3
.6
3

7
6
.9
4

8
.8
5

8
4
.2
3

0
.0
4

8
4
8

4
.4
1

7
2
6
7
6

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

1
0
.0
0
G

1
6
1
.7
9

3
.3
8

2
.6
1

3
.8
9

4
6
.5
5

3
.8
6

1
6
1
.7
5

0
.0
3

1
0
2
8

2
.3
5

1
0
2
8
3

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

1
0
0
.0
0
M

3
6
4
.9
3

1
.1
3

1
.1
3

1
.1
7

1
.5
5

1
.5
1

3
6
4
.9
0

0
.0
1

9
2
4

0
.7
4

1
2
7
4

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

1
0
0
.0
0
G

7
1
.7
1

7
.9
4

1
2
.3
8

6
.1
8

1
0
0
.7
2

1
5
.6
8

7
1
.6
9

0
.0
3

8
9
1

5
.8
6

9
1
5
2
8

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

1
0
.0
0
G

1
3
2
.3
4

5
.0
9

4
.0
0

4
.7
1

7
0
.6
9

5
.1
0

1
3
2
.2
9

0
.0
3

9
0
6

3
.2
3

1
5
8
6
7

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

1
0
0
.0
0
M

3
1
3
.6
3

1
.7
5

1
.7
4

1
.7
7

2
.1
4

2
.2
0

3
1
3
.5
9

0
.0
1

1
0
2
5

1
.2
1

1
1
9
0

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

1
0
0
.0
0
G

7
2
.3
0

1
4
.6
6

1
5
.1
6

1
2
.8
8

2
5
1
.3
6

2
4
.4
5

7
2
.2
7

0
.0
4

8
2
4

8
.9
4

1
3
5
0
1
5

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

1
0
.0
0
G

1
3
3
.6
2

8
.5
5

7
.7
2

1
0
.1
5

1
6
0
.9
2

1
1
.2
6

1
3
3
.5
9

0
.0
2

8
1
5

5
.1
7

3
1
8
7
7

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

1
0
0
.0
0
M

3
1
8
.9
5

3
.4
2

3
.4
2

3
.4
4

4
.2
8

4
.2
6

3
1
8
.9
4

0
.0
0

1
0
9
6

2
.4
0

1
0
9
9

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

1
0
0
.0
0
G

7
8
.8
3

3
0
.0
2

3
4
.6
9

3
8
.6
7

6
4
8
.9
0

3
8
.1
9

7
8
.8
2

0
.0
1

9
2
3

1
7
.1
4

1
0
8
3
8
4

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

1
0
.0
0
G

1
4
6
.9
0

2
2
.4
5

1
5
.8
0

2
2
.5
9

3
9
8
.0
5

1
7
.3
0

1
4
6
.8
9

0
.0
1

1
0
0
0

9
.7
1

2
5
1
2
4

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

1
0
0
.0
0
M

3
4
7
.4
1

7
.0
1

6
.9
6

6
.9
9

7
.9
2

8
.3
6

3
4
7
.3
6

0
.0
2

1
1
6
9

4
.9
3

1
2
2
7

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

1
0
0
.0
0
G

9
3
.3
7

2
2
.3
7

1
6
.0
1

1
8
.3
6

4
3
5
.5
0

4
0
.2
2

9
3
.3
6

0
.0
2

9
2
8

1
5
.2
8

2
0
0
3
4
6

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

1
0
.0
0
G

1
7
2
.9
1

1
2
.0
2

9
.7
6

1
2
.6
0

1
9
1
.9
7

1
7
.0
7

1
7
2
.8
6

0
.0
3

9
2
9

6
.7
7

2
1
0
7
3

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

1
0
0
.0
0
M

3
9
9
.5
0

4
.2
9

4
.2
9

4
.3
2

5
.2
3

5
.1
3

3
9
9
.4
5

0
.0
1

1
1
5
0

3
.2
1

1
3
3
5

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

1
0
0
.0
0
G

9
3
.8
9

4
0
.4
2

5
2
.4
1

4
6
.3
8

8
5
0
.8
9

5
1
.9
8

9
3
.8
7

0
.0
2

9
3
8

1
7
.8
9

1
4
2
6
0
0

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

1
0
.0
0
G

1
7
4
.1
2

2
6
.8
2

1
9
.8
9

2
6
.6
0

4
7
9
.0
6

2
6
.9
1

1
7
4
.1
0

0
.0
1

9
9
3

1
1
.7
6

3
4
0
5
7

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

1
0
0
.0
0
M

4
0
5
.8
5

8
.3
3

8
.2
9

8
.3
4

9
.5
4

9
.8
5

4
0
5
.7
6

0
.0
2

1
0
8
3

5
.5
4

1
5
7
1

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

1
0
0
.0
0
G

6
6
.8
2

5
.8
7

6
.2
3

4
.4
7

9
7
.9
0

7
.1
2

6
6
.7
9

0
.0
4

9
6
0

3
.1
5

1
7
5
5
7

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

1
0
.0
0
G

1
2
9
.3
2

2
.2
9

1
.8
5

2
.0
8

2
2
.2
5

2
.5
4

1
2
9
.2
8

0
.0
3

1
1
2
4

1
.4
9

1
3
8
6

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

1
0
0
.0
0
M

2
5
9
.2
0

1
.2
7

1
.2
6

1
.2
5

1
.1
3

1
.5
0

2
5
9
.1
8

0
.0
1

9
4
6

0
.6
9

4
6
9

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

1
0
0
.0
0
G

6
9
.5
4

2
4
.9
3

3
1
.9
7

2
3
.6
8

6
2
2
.1
7

2
7
.2
9

6
9
.5
2

0
.0
2

1
1
7
9

1
1
.5
5

2
4
1
0
9

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

1
0
.0
0
G

1
3
5
.6
7

9
.4
5

9
.1
6

9
.4
0

1
1
6
.0
3

8
.6
2

1
3
5
.6
6

0
.0
1

1
2
1
7

5
.8
9

1
5
2
3

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

1
0
0
.0
0
M

2
7
9
.6
5

5
.5
6

5
.5
5

5
.5
2

5
.0
2

6
.4
6

2
7
9
.6
4

0
.0
0

8
0
9

2
.5
1

5
0
8

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

1
0
0
0
.0
0
G

6
7
.7
2

8
.0
1

9
.4
7

6
.4
3

1
0
8
.0
5

1
2
.8
3

6
7
.7
0

0
.0
3

8
9
4

5
.8
0

7
7
9
8
0

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

1
0
0
.0
0
G

1
2
6
.7
1

5
.3
8

4
.2
1

6
.0
1

7
9
.8
4

6
.7
1

1
2
6
.6
9

0
.0
1

8
6
0

3
.3
9

2
8
6
3
1

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

1
0
0
0
.0
0
M

3
0
3
.5
7

1
.7
7

1
.7
6

1
.8
2

2
.4
2

2
.1
9

3
0
3
.5
2

0
.0
2

9
9
1

1
.2
4

1
2
0
5

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

1
0
0
0
.0
0
G

7
2
.0
7

1
.4
7

1
.1
4

0
.8
3

1
4
.5
9

4
.9
5

7
2
.0
5

0
.0
3

8
3
1

1
.4
8

4
1
8
6
4

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

1
0
0
.0
0
G

1
4
7
.1
9

1
.0
4

0
.7
1

0
.8
9

9
.8
0

1
.5
4

1
4
7
.1
8

0
.0
1

9
5
8

0
.5
5

4
1
7
0

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

1
0
0
0
.0
0
M

3
3
7
.3
4

0
.3
2

0
.3
2

0
.3
5

0
.5
0

0
.4
5

3
3
7
.3
0

0
.0
1

9
3
8

0
.2
5

1
1
6
0

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

1
0
0
0
.0
0
G

7
4
.9
9

4
.7
6

4
.2
8

3
.4
7

6
1
.1
8

8
.5
8

7
4
.9
7

0
.0
3

1
0
0
1

3
.8
8

5
0
3
4
7

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

1
0
0
.0
0
G

1
5
1
.6
9

3
.0
4

2
.6
6

3
.1
7

3
2
.4
1

3
.6
5

1
5
1
.6
7

0
.0
2

8
7
7

1
.5
8

7
4
2
9

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

1
0
0
0
.0
0
M

3
5
2
.7
5

0
.9
5

0
.9
4

1
.0
0

1
.5
6

1
.2
0

3
5
2
.6
8

0
.0
2

9
4
9

0
.6
7

1
4
0
3

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

1
0
0
0
.0
0
G

6
4
.2
4

6
.0
1

4
.2
2

4
.0
3

9
2
.0
2

7
.3
2

6
4
.2
3

0
.0
1

1
1
7
6

5
.4
3

8
0
1
1
2

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

1
0
0
.0
0
G

1
2
4
.1
1

2
.6
2

1
.9
2

2
.3
0

2
6
.3
3

2
.3
5

1
2
4
.1
1

0
.0
0

1
0
7
4

1
.3
8

1
3
2
3

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

1
0
0
0
.0
0
M

2
5
3
.4
1

1
.2
5

1
.2
5

1
.2
4

1
.1
2

1
.4
0

2
5
3
.3
3

0
.0
3

7
9
7

0
.5
9

4
5
8

A
v
g

0
.7
6

5
.8
2

5
.7
7

5
.7
6

9
1
.8
4

7
.7
0

0
.0
2

9
3
9

3
.3
8

2
4
7
3
9

M
a
x

2
.9
3

4
0
.4
2

5
2
.4
1

4
6
.3
8

8
5
0
.8
9

5
1
.9
8

0
.0
8

1
2
1
7

1
7
.8
9

2
0
0
3
4
6

s
.d

.
0
.8
1

8
.4
4

9
.4
4

9
.2
2

1
7
9
.7
5

1
0
.7
2

0
.0
2

1
7
6

4
.2
7

4
1
1
6
3

32

T
a
b
le

A
.5
:
D
u
a
l
A
sc
en
t
p
ro
ce
d
u
re

is
co
m
p
a
re
d
w
it
h
C
P
L
E
X

L
P

so
lv
er
s:

P
ro
b
le
m

T
y
p
e
B
.

S
iz

e
a
n
d

G
e
n
e
r
a
t
io

n
S
id

e
C
o
n
s
.

C
p
le

x
D

u
a
l
A

s
c
e
n
t

I
n
s
t
a
n
c
e
s

m
n

T
G
e
n

α
z
L
P

T
im

e
P

T
im

e
D

T
im

e
N

T
im

e
B

T
im

e
S

z
L
B

G
a
p
L
P

It
e
r

T
im

e
|C

′ |
st
a
te

6
2
9

4
6

0
.0
0

1
0

8
2
9
5
.0
8
G

0
.0
0

0
.0
0

0
.0
0

0
.0
1

0
.0
1

8
2
9
5
.0
8
G

0
.0
0

6
8
9

0
.0
4

1
3

st
a
te

6
2
9

4
6

0
.0
0

1
5

3
2
7
4
.1
1
G

0
.0
0

0
.0
0

0
.0
0

0
.0
1

0
.0
2

3
2
7
4
.0
6
G

0
.0
0

1
3
1
7

0
.0
1

3
1

p
ro
d
d
ep

ar
tm

en
t

3
2
8
0
9

2
8

0
.0
4

1
0

6
5
.3
7
M

0
.0
8

0
.0
7

0
.0
7

0
.2
0

0
.0
7

6
5
.3
7
M

0
.0
0

5
8
1

0
.0
4

1
4

p
ro
d
d
ep

ar
tm

en
t

3
2
8
0
9

2
8

0
.0
4

1
5

4
.7
0
M

0
.0
7

0
.0
6

0
.0
6

1
.1
9

0
.0
7

4
.7
0
M

0
.0
0

5
1
6

0
.0
4

1
5

p
ro
d
b
ra
n
d

3
7
2
3
3

6
9
7

0
.0
6

5
0

4
.6
3
M

1
.5
5

1
.2
6

1
.1
4

8
9
.6
7

1
.0
2

4
.6
3
M

0
.0
0

7
1
0

0
.1
2

1
2
1
3

p
ro
d
b
ra
n
d

3
7
2
3
3

6
9
7

0
.0
6

1
0
0

1
.8
1
M

1
.4
4

1
.2
5

1
.2
1

1
5
.7
9

1
.0
0

1
.8
1
M

0
.0
0

8
0
8

0
.0
9

1
1
7
4

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

5
0

1
9
8
.4
0
G

0
.3
7

0
.5
4

0
.2
2

4
.8
7

2
.6
4

1
9
8
.3
9
G

0
.0
0

1
3
2
5

0
.5
9

1
1
2
0

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

1
0
0

3
9
.5
7
G

0
.3
5

0
.4
6

0
.2
6

1
.4
4

0
.6
0

3
9
.5
7
G

0
.0
0

1
2
2
0

0
.4
9

1
0
7
2

ci
ty
-1

6
4
0
6
9

4
9
5

0
.0
9

1
5
0

7
.5
0
G

0
.3
1

0
.3
9

0
.2
7

1
.2
5

0
.3
0

7
.5
0
G

0
.0
0

9
9
8

0
.3
6

9
4
3

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

5
0

2
1
4
.2
2
G

0
.8
4

1
.0
8

0
.4
1

8
.7
3

1
2
.6
8

2
1
4
.2
2
G

0
.0
0

1
3
0
3

1
.1
4

1
2
9
5

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

1
0
0

4
5
.7
8
G

0
.7
7

0
.9
8

0
.4
8

2
.5
9

1
.4
7

4
5
.7
8
G

0
.0
0

9
1
5

0
.9
6

1
1
6
5

ci
ty
-2

1
2
1
4
1
3

5
2
3

0
.0
7

1
5
0

9
.6
5
G

0
.6
8

0
.8
3

0
.5
1

2
.3
8

0
.6
0

9
.6
5
G

0
.0
0

1
0
2
5

0
.7
9

1
1
9
9

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

5
0

2
3
0
.6
4
G

1
.4
8

2
.4
3

0
.8
6

1
7
.6
3

2
4
.5
8

2
3
0
.6
4
G

0
.0
0

1
1
0
8

2
.0
8

1
3
7
2

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

1
0
0

5
0
.6
2
G

1
.4
7

2
.0
0

0
.9
7

4
.1
1

2
.2
9

5
0
.6
2
G

0
.0
0

1
4
7
3

2
.0
9

1
2
9
9

ci
ty
-3

2
2
7
9
0
9

5
4
9

0
.2
2

1
5
0

1
1
.1
5
G

1
.2
4

1
.6
8

1
.0
3

4
.4
7

1
.0
1

1
1
.1
5
G

0
.0
0

1
2
5
5

1
.6
6

1
1
4
0

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

5
0

2
5
9
.8
8
G

3
.2
6

5
.1
9

2
.1
9

3
3
.2
3

2
1
.6
0

2
5
9
.8
8
G

0
.0
0

1
2
8
2

3
.9
1

1
4
8
8

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

1
0
0

5
7
.2
5
G

3
.0
6

4
.4
0

2
.2
0

6
.8
1

4
.7
3

5
7
.2
5
G

0
.0
1

1
2
9
8

3
.9
1

1
3
9
3

ci
ty
-4

4
3
2
7
0
9

5
7
4

0
.2
4

1
5
0

1
2
.4
0
G

3
.1
9

3
.6
5

2
.2
1

6
.6
5

1
.9
1

1
2
.4
0
G

0
.0
0

1
1
1
2

2
.9
5

1
2
9
0

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

5
0

2
5
6
.8
4
G

5
.4
3

9
.1
2

2
.9
6

5
9
.9
7

2
9
.0
4

2
5
6
.8
3
G

0
.0
0

1
3
2
8

6
.0
0

1
5
8
4

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

1
0
0

5
6
.7
0
G

5
.5
6

7
.4
9

3
.5
4

8
.9
5

1
2
.9
5

5
6
.7
0
G

0
.0
0

1
1
3
5

5
.5
7

1
4
4
3

ci
ty
-5

6
4
7
7
4
9

5
8
4

0
.3
5

1
5
0

1
2
.5
6
G

4
.1
2

6
.2
8

3
.5
1

1
2
.1
5

2
.6
4

1
2
.5
6
G

0
.0
0

1
1
5
7

4
.3
4

1
2
7
0

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

5
0

2
7
5
.4
3
G

5
.9
3

1
3
.6
5

3
.4
2

8
2
.1
6

3
5
.9
3

2
7
5
.4
3
G

0
.0
0

1
3
2
5

7
.5
1

1
5
5
0

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

1
0
0

6
1
.6
2
G

6
.6
3

9
.4
7

4
.3
9

9
.5
2

7
.3
6

6
1
.6
2
G

0
.0
0

1
2
5
7

7
.0
9

1
5
1
9

ci
ty
-6

7
9
3
1
5
7

5
9
6

0
.5
6

1
5
0

1
3
.6
8
G

5
.1
9

8
.1
1

4
.4
8

1
1
.8
0

3
.4
0

1
3
.6
8
G

0
.0
0

1
2
4
1

5
.8
1

1
5
5
2

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

5
0

2
2
2
.2
5
G

9
.4
9

1
9
.2
6

5
.7
0

1
6
6
.0
9

5
2
.0
1

2
2
2
.2
5
G

0
.0
0

1
3
2
5

1
1
.7
3

1
4
0
3

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

1
0
0

3
3
.0
8
G

1
0
.2
7

1
6
.2
2

7
.9
5

2
1
.7
1

9
.8
8

3
3
.0
8
G

0
.0
0

9
6
1

9
.7
2

1
3
5
4

ci
ty
-7

1
1
8
4
1
5
7

5
1
6

0
.6
9

1
5
0

5
.8
3
G

9
.4
3

9
.8
8

7
.8
3

1
9
.0
2

4
.4
8

5
.8
3
G

0
.0
0

8
9
4

5
.8
9

1
0
9
7

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

5
0

2
2
4
.6
4
G

1
5
.6
4

4
0
.4
7

1
1
.3
2

3
5
5
.2
3

9
2
.5
8

2
2
4
.6
4
G

0
.0
0

1
2
8
6

2
2
.2
1

2
2
6
5

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

1
0
0

3
4
.1
6
G

1
9
.4
2

2
9
.3
0

1
4
.9
2

3
9
.3
3

2
5
.2
3

3
4
.1
6
G

0
.0
0

1
0
3
2

1
8
.3
5

1
2
9
5

ci
ty
-8

2
1
6
7
1
9
7

5
3
1

1
.2
9

1
5
0

6
.0
7
G

1
5
.7
8

1
9
.4
2

1
4
.9
9

4
3
.5
6

7
.3
2

6
.0
7
G

0
.0
4

1
1
0
6

1
2
.1
2

1
1
3
0

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

5
0

2
6
6
.6
2
G

3
6
.2
3

9
9
.1
3

2
4
.2
7

7
8
8
.0
3

1
3
6
.2
4

2
6
6
.6
2
G

0
.0
0

9
8
5

4
2
.6
3

1
5
6
1

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

1
0
0

4
7
.2
2
G

4
1
.8
9

7
8
.0
5

4
2
.3
8

8
5
.3
8

5
9
.1
2

4
7
.2
2
G

0
.0
0

1
5
2
2

4
1
.5
7

1
6
2
9

ci
ty
-9

4
1
3
3
8
0
1

5
7
3

2
.1
2

1
5
0

9
.1
7
G

3
5
.1
0

4
9
.0
1

2
8
.4
1

9
4
.6
4

1
5
.4
0

9
.1
7
G

0
.0
0

1
1
3
3

2
7
.2
3

1
3
4
4

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

5
0

3
5
7
.9
8
G

2
1
.0
7

4
9
.4
4

1
6
.8
3

4
3
6
.5
7

1
0
6
.6
4

3
5
7
.9
8
G

0
.0
0

1
0
6
3

2
7
.7
7

1
8
6
2

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

1
0
0

8
2
.4
1
G

2
2
.3
9

4
2
.3
3

2
1
.3
2

4
5
.2
4

3
2
.1
3

8
2
.4
1
G

0
.0
0

1
0
9
2

2
6
.7
2

1
7
9
0

ci
ty
-1
0

2
6
9
3
7
0
1

6
3
5

1
.5
7

1
5
0

1
7
.9
1
G

2
1
.1
9

3
4
.5
5

1
8
.8
6

6
5
.2
9

1
2
.1
1

1
7
.9
1
G

0
.0
0

1
1
9
5

2
1
.2
9

1
5
0
1

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

5
0

3
6
1
.6
0
G

4
0
.7
6

1
2
4
.9
5

4
8
.4
0

1
0
0
4
.7
3

2
5
8
.6
4

3
6
1
.6
0
G

0
.0
0

1
4
8
0

5
6
.2
8

1
8
9
0

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

1
0
0

8
4
.0
1
G

4
3
.5
2

1
0
5
.6
5

4
1
.1
5

9
5
.5
3

5
9
.1
7

8
4
.0
1
G

0
.0
0

1
1
0
1

4
8
.7
7

1
7
6
5

ci
ty
-1
1

4
9
2
1
9
2
5

6
5
2

2
.9
3

1
5
0

1
8
.1
7
G

4
7
.4
7

7
6
.6
0

4
5
.0
7

1
1
7
.6
2

2
2
.9
3

1
8
.1
7
G

0
.0
0

1
1
8
4

3
8
.4
5

1
5
7
5

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

5
0

2
1
4
.3
0
G

6
.0
1

8
.2
8

4
.1
2

9
7
.6
8

7
.0
5

2
1
4
.3
0
G

0
.0
0

1
4
0
0

8
.9
7

1
1
4
8

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

1
0
0

2
6
.1
2
G

5
.6
7

5
.1
3

3
.5
8

1
1
.1
3

2
.5
2

2
6
.1
2
G

0
.0
0

1
2
2
4

6
.1
5

7
3
0

o
cc
u
p
a
ti
o
n
-1

8
7
5
9
9
5

3
5
7

0
.5
3

1
5
0

5
.1
5
G

5
.3
1

3
.6
8

2
.8
2

1
2
.4
0

2
.2
9

5
.1
5
G

0
.0
0

1
0
2
5

3
.1
0

5
7
4

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

5
0

2
3
1
.2
2
G

2
6
.3
8

4
8
.8
0

1
8
.4
5

6
0
6
.5
5

2
6
.8
3

2
3
1
.2
2
G

0
.0
0

1
1
8
0

3
4
.5
7

1
5
0
2

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

1
0
0

3
0
.4
9
G

2
8
.4
4

2
4
.9
1

1
6
.3
0

6
8
.0
4

1
2
.0
3

3
0
.4
9
G

0
.0
0

1
1
5
5

2
5
.5
4

8
3
2

o
cc
u
p
a
ti
o
n
-2

3
3
0
0
8
2
7

3
8
2

2
.0
1

1
5
0

6
.6
6
G

2
4
.8
0

1
7
.2
8

1
4
.0
5

8
6
.6
7

1
0
.6
5

6
.6
6
G

0
.0
0

1
0
1
0

1
2
.2
2

6
5
6

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

5
0

1
8
2
8
.5
3
G

9
.2
8

2
0
.4
9

5
.7
8

1
5
5
.9
8

4
4
.1
4

1
8
2
8
.5
3
G

0
.0
0

1
0
6
2

1
1
.5
9

1
4
3
6

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

1
0
0

2
6
9
.7
3
G

8
.3
3

1
4
.2
6

7
.7
7

1
8
.9
2

1
2
.9
4

2
6
9
.7
3
G

0
.0
0

9
6
3

9
.7
5

1
3
5
3

ci
ty

u
n
i-
1

1
1
8
4
1
5
7

5
1
6

0
.6
7

1
5
0

4
7
.4
7
G

8
.3
2

9
.4
1

6
.5
7

2
2
.8
0

3
.8
1

4
7
.4
7
G

0
.0
0

1
0
9
6

6
.4
1

1
1
0
4

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

5
0

1
9
2
0
.0
7
G

1
.5
1

2
.3
9

0
.7
9

1
8
.2
2

2
4
.2
5

1
9
2
0
.0
4
G

0
.0
0

1
2
9
5

2
.1
0

1
5
9
3

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

1
0
0

4
1
6
.0
4
G

1
.7
3

1
.9
8

1
.0
1

3
.3
3

2
.3
1

4
1
6
.0
4
G

0
.0
0

1
2
8
3

2
.0
5

1
2
8
4

ci
ty

u
n
i-
2

2
2
7
9
0
9

5
4
9

0
.1
3

1
5
0

9
2
.1
8
G

1
.4
9

1
.7
1

1
.0
5

3
.3
3

1
.2
2

9
2
.1
8
G

0
.0
0

1
3
1
3

1
.6
6

1
2
3
6

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

5
0

2
1
0
9
.6
1
G

5
.4
0

8
.5
9

2
.7
5

6
2
.9
4

2
0
.2
1

2
1
0
9
.6
1
G

0
.0
0

1
0
8
7

6
.2
2

1
6
9
2

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

1
0
0

4
6
9
.8
4
G

5
.0
9

7
.4
3

3
.4
2

1
0
.3
9

7
.0
1

4
6
9
.8
4
G

0
.0
0

9
9
3

5
.6
9

1
4
8
2

ci
ty

u
n
i-
3

6
4
7
7
4
9

5
8
4

0
.3
7

1
5
0

1
0
4
.7
7
G

3
.9
3

5
.7
9

3
.2
8

1
2
.2
8

2
.6
6

1
0
4
.7
7
G

0
.0
0

1
1
0
0

4
.6
2

1
3
6
9

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

5
0

1
8
3
1
.3
5
G

6
.5
2

7
.9
5

4
.2
4

1
0
0
.4
7

7
.0
4

1
8
3
1
.3
5
G

0
.0
0

1
0
7
8

8
.1
6

1
0
0
5

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

1
0
0

2
2
9
.5
9
G

5
.6
4

5
.0
6

3
.5
8

1
2
.8
8

2
.6
0

2
2
9
.5
9
G

0
.0
0

1
0
8
5

5
.8
6

7
4
0

o
cc
u
p
a
ti
o
n
u
n
i

8
7
5
9
9
5

3
5
7

0
.5
2

1
5
0

4
2
.4
1
G

5
.3
2

3
.6
5

2
.9
3

1
5
.1
4

2
.2
0

4
2
.4
1
G

0
.0
2

1
0
8
4

3
.0
7

5
7
8

A
v
g

0
.7
6

1
0
.5
6

1
8
.8
0

8
.5
7

8
9
.1
7

2
1
.9
9

0
.0
0

1
1
2
6

1
0
.9
8

1
2
2
7

M
a
x

2
.9
3

4
7
.4
7

1
2
4
.9
5

4
8
.4
0

1
0
0
4
.7
3

2
5
8
.6
4

0
.0
4

1
5
2
2

5
6
.2
8

2
2
6
5

s
.d

.
0
.8
1

1
2
.6
7

2
8
.0
5

1
1
.8
9

1
8
8
.3
6

4
1
.5
1

0
.0
1

2
0
3

1
3
.5
8

4
6
1

33

T
a
b
le

A
.6
:
D
u
a
l
A
sc
en
t
p
ro
ce
d
u
re

is
co
m
p
a
re
d
w
it
h
C
P
L
E
X

L
P

so
lv
er
s:

P
ro
b
le
m

T
y
p
e
A
.

S
iz

e
a
n
d

G
e
n
e
r
a
t
io

n
S
id

e
C
o
n
s
.

C
p
le

x
D

u
a
l
A

s
c
e
n
t

I
n
s
t
a
n
c
e
s

m
n

T
G
e
n

α
z
L
P

T
im

e
P

T
im

e
D

T
im

e
N

T
im

e
B

T
im

e
S

z
L
B

G
a
p
L
P

It
e
r

T
im

e
|C

′ |
C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

1
0
0
.0
0
G

1
0
3
.7
6

8
6
.1
5

1
2
5
.5
8

1
0
9
.4
4

2
6
4
2
.4
7

1
0
8
.2
5

1
0
3
.7
4

0
.0
2

8
0
1

3
4
.9
9

2
5
6
2
1
2

C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

1
0
.0
0
G

1
8
0
.1
2

4
5
.1
5

3
7
.6
7

5
4
.3
9

8
5
4
.8
6

3
6
.7
8

1
8
0
.1
1

0
.0
1

9
9
8

1
9
.2
4

1
5
5
4
8

C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

1
0
0
.0
0
M

3
6
4
.5
1

2
3
.3
5

2
3
.2
9

2
3
.1
8

2
1
.5
3

2
6
.5
4

3
6
4
.4
6

0
.0
2

1
0
0
1

1
2
.3
7

9
2
1

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

1
0
0
.0
0
G

1
2
0
.8
7

5
7
.7
3

6
8
.2
8

7
0
.5
2

1
3
4
6
.7
3

5
2
.1
9

1
2
0
.8
5

0
.0
1

8
7
7

2
3
.4
8

1
6
0
3
2
0

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

1
0
.0
0
G

2
1
0
.7
0

2
8
.2
9

1
9
.7
4

2
5
.5
3

4
3
7
.3
3

2
3
.5
7

2
1
0
.6
7

0
.0
1

1
2
1
9

1
4
.7
0

8
8
3
9

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

1
0
0
.0
0
M

4
1
8
.1
4

1
3
.4
9

1
3
.4
6

1
3
.4
2

1
2
.4
8

1
5
.7
0

4
1
8
.0
9

0
.0
1

9
7
5

7
.2
7

1
0
3
5

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

1
0
0
.0
0
G

1
2
3
.5
4

1
2
6
.6
4

1
6
3
.8
3

1
7
8
.7
3

3
0
9
7
.5
0

1
1
5
.0
7

1
2
3
.5
0

0
.0
3

9
2
1

4
6
.1
3

2
6
8
1
1
1

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

1
0
.0
0
G

2
1
3
.9
9

5
3
.3
6

3
9
.8
4

6
5
.2
3

1
0
1
4
.2
9

4
4
.9
6

2
1
3
.9
3

0
.0
3

1
0
5
2

2
4
.4
3

1
5
7
6
4

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

1
0
0
.0
0
M

4
2
6
.8
0

2
7
.3
7

2
7
.4
2

2
7
.2
1

2
5
.1
8

3
1
.2
3

4
2
6
.7
0

0
.0
2

9
6
4

1
4
.2
2

1
0
8
7

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

1
0
0
.0
0
G

1
3
8
.3
4

7
1
.9
4

7
9
.4
2

8
4
.0
6

1
4
5
9
.4
4

6
4
.8
0

1
3
8
.3
2

0
.0
1

1
0
3
5

2
7
.3
6

9
3
9
5
0

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

1
0
.0
0
G

2
4
2
.0
9

3
1
.1
2

2
2
.9
2

2
8
.5
9

5
1
7
.2
7

2
7
.9
9

2
4
2
.0
8

0
.0
1

1
1
2
4

1
5
.6
2

9
7
9
7

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

1
0
0
.0
0
M

4
7
4
.0
1

1
5
.8
7

1
5
.7
2

1
5
.5
0

1
4
.3
1

1
7
.9
0

4
7
3
.8
3

0
.0
4

8
7
8

7
.9
4

1
1
5
9

A
v
g

1
.8
2

4
8
.3
7

5
3
.1
0

5
7
.9
8

9
5
3
.6
2

4
7
.0
8

0
.0
2

9
8
7

2
0
.6
5

6
9
3
9
5

M
a
x

2
.4
6

1
2
6
.6
4

1
6
3
.8
3

1
7
8
.7
3

3
0
9
7
.5
0

1
1
5
.0
7

0
.0
4

1
2
1
9

4
6
.1
3

2
6
8
1
1
1

s
.d

.
0
.4
6

3
1
.9
8

4
6
.0
0

4
6
.5
4

9
9
2
.8
1

3
1
.9
4

0
.0
1

1
0
9

1
0
.9
4

9
7
8
6
8

34

T
a
b
le

A
.7
:
D
u
a
l
A
sc
en
t
p
ro
ce
d
u
re

is
co
m
p
a
re
d
w
it
h
C
P
L
E
X

L
P

so
lv
er
s:

P
ro
b
le
m

T
y
p
e
B
.

S
iz

e
a
n
d

G
e
n
e
r
a
t
io

n
S
id

e
C
o
n
s
.

C
p
le

x
D

u
a
l
A

s
c
e
n
t

I
n
s
t
a
n
c
e
s

m
n

T
G
e
n

α
z
L
P

T
im

e
P

T
im

e
D

T
im

e
N

T
im

e
B

T
im

e
S

z
L
B

G
a
p
L
P

It
e
r

T
im

e
|C

′ |
C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

1
5
0

2
2
.8
7
G

1
2
9
.2
6

1
5
7
.1
5

9
4
.5
2

3
3
8
.9
5

5
0
.0
8

2
2
.8
7
G

0
.0
0

1
0
4
9

6
0
.1
9

1
2
4
3

C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

1
0
0

1
1
5
.0
8
G

1
3
3
.7
3

2
0
5
.8
4

1
3
8
.8
4

3
0
8
.0
2

8
9
.7
5

1
1
5
.0
8
G

0
.0
0

1
1
3
4

1
0
5
.1
4

1
5
0
5

C
it
y4

8
0

1
2
8
8
3
0
6
1

5
3
6

2
.0
1

5
0

7
7
4
.0
4
G

1
1
7
.6
2

4
0
1
.8
7

1
5
7
.2
7

1
1
1
8
.5
4

3
4
6
.3
0

7
7
4
.0
3
G

0
.0
0

1
4
0
7

1
3
2
.7
6

4
5
5
3

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

1
5
0

4
4
.7
8
G

7
5
.9
0

1
0
9
.1
9

6
0
.7
6

2
0
4
.6
3

3
2
.5
0

4
4
.7
8
G

0
.0
0

1
2
4
3

5
3
.9
1

1
4
6
4

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

1
0
0

2
0
5
.7
6
G

7
6
.5
3

1
6
1
.4
1

9
7
.8
2

1
9
1
.6
6

5
2
.5
4

2
0
5
.7
6
G

0
.0
0

9
9
1

6
6
.5
5

1
5
6
5

C
it
y5

3
8

7
8
0
4
0
7
7

5
9
8

1
.2
4

5
0

1
0
9
7
.7
9
G

6
6
.4
9

1
9
3
.5
1

7
6
.4
2

2
0
8
3
.1
2

2
3
1
.5
2

1
0
9
7
.7
8
G

0
.0
0

1
4
2
8

7
9
.0
8

1
8
8
5

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

1
5
0

4
6
.9
8
G

1
4
8
.6
1

2
3
0
.6
2

1
5
2
.5
3

4
3
9
.1
9

6
2
.7
3

4
6
.9
8
G

0
.0
0

1
2
6
6

1
0
4
.1
7

1
4
6
1

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

1
0
0

2
1
7
.8
4
G

1
4
8
.8
5

4
2
5
.2
4

2
0
5
.8
2

3
9
.8
4

9
2
.9
8

2
1
7
.8
4
G

0
.0
0

1
3
0
0

1
3
8
.9
4

1
6
9
5

C
it
y5

5
2

1
5
1
4
4
1
0
9

6
1
2

2
.4
6

5
0

1
1
1
2
.7
2
G

1
4
6
.1
9

5
1
6
.5
1

2
4
2
.3
1

3
9
.7
3

5
9
6
.3
8

1
1
1
2
.7
2
G

0
.0
0

1
3
2
3

1
5
2
.9
9

1
8
1
0

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

1
5
0

7
4
.4
3
G

1
0
3
.3
2

1
7
8
.2
7

7
2
.7
2

2
6
8
.2
5

3
7
.9
4

7
4
.4
3
G

0
.0
0

1
1
7
6

6
7
.3
4

1
8
0
5

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

1
0
0

3
2
3
.0
5
G

1
0
6
.4
0

2
1
2
.2
0

1
2
6
.8
7

1
8
5
.4
9

7
5
.9
6

3
2
3
.0
4
G

0
.0
0

1
2
4
9

8
3
.5
3

1
9
7
5

C
it
y6

0
4

9
1
1
6
2
2
9

6
6
8

1
.5
8

5
0

1
4
3
7
.3
4
G

8
3
.2
6

2
3
1
.1
8

5
3
.4
6

2
4
1
9
.1
1

2
4
6
.7
5

1
4
3
7
.3
4
G

0
.0
0

1
1
2
3

9
0
.1
0

1
9
7
1

A
v
g

1
.8
2

1
1
1
.3
5

2
5
1
.9
2

1
2
3
.2
8

6
3
6
.3
8

1
5
9
.6
2

0
.0
0

1
2
2
4
.0
8

9
4
.5
6

1
9
1
1

M
a
x

2
.4
6

1
4
8
.8
5

5
1
6
.5
1

2
4
2
.3
1

2
4
1
9
.1
1

5
9
6
.3
8

0
.0
0

1
4
2
8
.0
0

1
5
2
.9
9

4
5
5
3

s
.d

.
0
.4
6

2
9
.2
0

1
2
0
.2
4

5
6
.4
6

7
7
3
.1
8

1
6
2
.9
2

0
.0
0

1
2
8
.7
6

3
1
.3
4

8
2
6

35

In Tables A.4, A.5, A.6, and A.7 column |C′| shows that the size of the

subset of columns C′ evaluated in the dual ascent procedure is always very

small with respect to the total number of columns n of the original instances.

Notice that the computing time for generating the full set of column C is

usually very small and it never dominates the time for solving the instances.

Appendix A.2. Greedy and Lagrangian Heuristics

In Tables A.8, A.9, A.10, and A.11 we compare the greedy and the

Lagrangian heuristics, described in Sections 2 and 5. The results of the

Lagrangian heuristic include the dual ascent procedure which embeds it.

For each test instance we report the right-hand side α of the side con-

straint, which is the maximum loss of precision for problem of Type A and

the maximum size of the data for problem of Type B, and for both heuris-

tics we report the best upper bound provided zUB , the percentage gap from

the value of the optimal integer solution Gap = 100 × zUB−zOpt

zOpt
, and the

computing time Time. For the dual ascent with the Lagrangian heuristic

we also report the best lower bound zLB corresponding to the best feasible

dual solution generated, the number of iterations Iter , and the size of C′.

Appendix A.3. Exact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, de-

scribed in Section 5, and of the exact method, described in Section 6, in

Tables A.8, A.9, A.10, and A.11 we compare them with the CPLEX MIP

solver. For the CPLEX MIP solver we report the integer optimal solution

value zOpt and the computing time Time. We report the symbol “–” in

column zOpt when the CPLEX MIP solver fails because of an “out of mem-

ory”. For these instances column Time reports the computing time spent

to generate the error.

For the exact method we report the integer optimal solution value zOpt ,

the gap Gap between the best upper bound found by the Lagrangian heuris-

tic and the optimal solution, the size of the subset of columns C′ considered

in the integer reduced problem P ′, the number of iterations Iter , the com-

puting time TA for the Lagrangian heuristic, the computing time TE for

solving the reduced problem P ′ (even more than one time if Iter > 1), and

the overall computing time TTot which also includes the computing time of

the dual ascent procedure and of the embedded Lagrangian heuristic. When

the problem is solved by the dual ascent we report |C′| = 0.

36

T
a
b
le

A
.8
:
C
o
m
p
a
ri
so
n
a
m
o
n
g
C
P
L
E
X

M
IP

so
lv
er
,
D
u
a
l
A
sc
en

t
w
it
h
L
a
g
ra
n
g
ia
n
H
eu

ri
st
ic
,
a
n
d
E
x
a
ct

m
et
h
o
d
:
P
ro
b
le
m

T
y
p
e
A
.

S
id

e
C
o
n
.

G
r
e
e
d
y

C
p
le

x
D

u
a
l
A

s
c
e
n
t

+
L
a
g
r
.

H
e
u
.

E
x
a
c
t

M
e
t
h
o
d

I
n
s
t
a
n
c
e
s

α
z
U
B

G
a
p

T
im

e
z
o
p
t

T
im

e
z
L
B

z
U
B

G
a
p

It
e
r

T
im

e
|C

′ |
z
o
p
t

G
a
p

|C
′ |

It
e
r

T
A

T
E

T
T
o
t

st
a
te

1
0
.0
0
G

3
0

0
.0
0

0
.0
0

3
0

0
.0
1

2
9
.5
0

3
0

0
.0
0

3
0
.0
3

3
4

3
0

0
.0
0

0
1

0
.0
3

0
.0
0

0
.0
3

st
a
te

1
0
0
0
.0
0
M

3
2

0
.0
0

0
.0
0

3
2

0
.0
3

3
2
.0
0

3
2

0
.0
0

0
0
.0
3

3
2

3
2

0
.0
0

0
1

0
.0
3

0
.0
0

0
.0
3

p
ro
d
d
ep

ar
tm

en
t

1
0
0
0
.0
0
M

5
2
5
.0
0

0
.0
0

4
0
.4
1

3
.5
0

4
0
.0
0

4
3
8

0
.0
6

2
0

4
0
.0
0

0
1

0
.0
6

0
.0
0

0
.0
6

p
ro
d
d
ep

ar
tm

en
t

1
0
0
.0
0
M

1
0

0
.0
0

0
.0
0

1
0

0
.2
0

9
.0
5

1
0

0
.0
0

5
1

0
.0
3

3
3

1
0

0
.0
0

0
1

0
.0
3

0
.0
0

0
.0
3

p
ro
d
b
ra
n
d

1
0
.0
0
M

3
7

8
.8
2

0
.0
1

3
4

1
.4
9

3
2
.9
8

3
4

0
.0
0

8
9
7

0
.3
9

3
9
8

3
4

0
.0
0

2
8
2

2
0
.2
4

0
.3
4

0
.5
8

p
ro
d
b
ra
n
d

1
.0
0
M

1
6
9

0
.6
0

0
.0
1

1
6
8

0
.7
3

1
6
7
.4
3

1
6
8

0
.0
0

7
6
6

0
.1
6

1
3
9
3

1
6
8

0
.0
0

0
1

0
.1
4

0
.0
0

0
.1
4

ci
ty
-1

1
0
0
.0
0
G

7
5

2
.7
4

0
.0
1

7
3

1
.0
6

7
2
.0
0

7
3

0
.0
0

9
7
9

0
.5
0

6
9
0
3

7
3

0
.0
0

1
9
8

1
0
.3
7

0
.0
6

0
.4
3

ci
ty
-1

1
0
.0
0
G

1
4
1

0
.0
0

0
.0
1

1
4
1

0
.8
7

1
4
0
.1
0

1
4
1

0
.0
0

6
2
5

0
.3
0

2
7
2
5

1
4
1

0
.0
0

0
1

0
.2
5

0
.0
0

0
.2
5

ci
ty
-1

1
0
0
.0
0
M

3
0
7

0
.0
0

0
.0
0

3
0
7

0
.2
1

3
0
6
.0
3

3
0
7

0
.0
0

8
0
6

0
.3
8

8
0
2

3
0
7

0
.0
0

0
1

0
.1
9

0
.0
0

0
.1
9

ci
ty
-2

1
0
0
.0
0
G

7
8

2
.6
3

0
.0
1

7
6

1
.9
9

7
5
.2
9

7
6

0
.0
0

7
1
3

0
.6
9

1
9
2
2
1

7
6

0
.0
0

0
1

0
.7
5

0
.0
0

0
.7
5

ci
ty
-2

1
0
.0
0
G

1
5
0

0
.6
7

0
.0
1

1
4
9

1
.4
8

1
4
8
.1
4

1
4
9

0
.0
0

6
6
2

0
.6
9

4
6
2
9

1
4
9

0
.0
0

0
1

0
.7
1

0
.0
0

0
.7
1

ci
ty
-2

1
0
0
.0
0
M

3
2
5

0
.0
0

0
.0
1

3
2
5

0
.3
1

3
2
4
.1
4

3
2
5

0
.0
0

6
6
3

0
.5
8

9
3
0

3
2
5

0
.0
0

0
1

0
.3
6

0
.0
0

0
.3
6

ci
ty
-3

1
0
0
.0
0
G

8
0

2
.5
6

0
.0
1

7
8

4
.5
5

7
7
.5
3

7
8

0
.0
0

7
1
2

1
.5
1

2
1
6
6
9

7
8

0
.0
0

0
1

1
.4
0

0
.0
0

1
.4
0

ci
ty
-3

1
0
.0
0
G

1
5
5

0
.6
5

0
.0
1

1
5
4

3
.2
1

1
5
3
.8
8

1
5
4

0
.0
0

8
1
8

2
.9
0

4
3
6
7

1
5
4

0
.0
0

0
1

1
.1
5

0
.0
0

1
.1
5

ci
ty
-3

1
0
0
.0
0
M

3
4
3

0
.2
9

0
.0
0

3
4
2

0
.4
8

3
4
1
.2
9

3
4
2

0
.0
0

6
3
6

1
.1
9

9
8
5

3
4
2

0
.0
0

0
1

0
.6
9

0
.0
0

0
.6
9

ci
ty
-4

1
0
0
.0
0
G

8
4

1
.2
0

0
.0
1

8
3

1
2
7
.5
5

8
2
.1
5

8
3

0
.0
0

6
6
2

2
.7
8

4
9
2
0
4

8
3

0
.0
0

0
1

2
.6
9

0
.0
0

2
.6
9

ci
ty
-4

1
0
.0
0
G

1
5
9

0
.0
0

0
.0
1

1
5
9

5
.8
3

1
5
8
.0
0

1
5
9

0
.0
0

8
6
8

7
.0
6

6
0
5
6

1
5
9

0
.0
0

0
1

2
.9
4

0
.0
0

2
.9
4

ci
ty
-4

1
0
0
.0
0
M

3
5
4

0
.0
0

0
.0
1

3
5
4

0
.8
5

3
5
3
.0
7

3
5
4

0
.0
0

6
9
4

2
.7
4

1
1
3
1

3
5
4

0
.0
0

0
1

1
.6
7

0
.0
0

1
.6
7

ci
ty
-5

1
0
0
.0
0
G

8
3

1
.2
2

0
.0
1

8
2

1
8
.0
0

8
1
.0
3

8
2

0
.0
0

6
9
1

4
.3
2

4
0
8
6
4

8
2

0
.0
0

0
1

4
.0
6

0
.0
0

4
.0
6

ci
ty
-5

1
0
.0
0
G

1
6
0

0
.6
3

0
.0
1

1
5
9

1
0
.9
0

1
5
8
.3
3

1
5
9

0
.0
0

7
6
7

6
.3
0

9
3
9
0

1
5
9

0
.0
0

0
1

3
.8
8

0
.0
0

3
.8
8

ci
ty
-5

1
0
0
.0
0
M

3
5
6

0
.0
0

0
.0
1

3
5
6

1
.2
8

3
5
5
.0
0

3
5
6

0
.0
0

6
2
5

3
.6
9

1
1
4
9

3
5
6

0
.0
0

0
1

2
.6
6

0
.0
0

2
.6
6

ci
ty
-6

1
0
0
.0
0
G

8
6

1
.1
8

0
.0
1

8
5

1
7
.7
3

8
4
.1
8

8
5

0
.0
0

6
4
6

5
.2
6

7
2
6
7
6

8
5

0
.0
0

0
1

5
.1
9

0
.0
0

5
.1
9

ci
ty
-6

1
0
.0
0
G

1
6
3

0
.6
2

0
.0
1

1
6
2

1
2
.2
7

1
6
1
.4
0

1
6
2

0
.0
0

7
4
0

8
.1
3

1
0
2
8
3

1
6
2

0
.0
0

0
1

5
.1
1

0
.0
0

5
.1
1

ci
ty
-6

1
0
0
.0
0
M

3
6
6

0
.2
7

0
.0
1

3
6
5

1
.5
3

3
6
4
.8
0

3
6
5

0
.0
0

7
3
1

7
.8
1

1
2
7
4

3
6
5

0
.0
0

0
1

3
.8
0

0
.0
0

3
.8
0

ci
ty
-7

1
0
0
.0
0
G

7
3

1
.3
9

0
.0
1

7
2

3
4
.6
5

7
1
.2
5

7
2

0
.0
0

5
8
2

8
.1
4

9
1
5
2
8

7
2

0
.0
0

0
1

7
.6
7

0
.0
0

7
.6
7

ci
ty
-7

1
0
.0
0
G

1
3
3

0
.0
0

0
.0
1

1
3
3

1
5
.7
8

1
3
2
.0
2

1
3
3

0
.0
0

6
1
1

1
0
.2
6

1
5
8
6
6

1
3
3

0
.0
0

0
1

6
.5
7

0
.0
0

6
.5
7

ci
ty
-7

1
0
0
.0
0
M

3
1
5

0
.3
2

0
.0
1

3
1
4

2
.2
1

3
1
3
.0
9

3
1
4

0
.0
0

8
0
0

1
0
.5
2

1
1
9
0

3
1
4

0
.0
0

0
1

6
.6
2

0
.0
0

6
.6
2

ci
ty
-8

1
0
0
.0
0
G

7
3

0
.0
0

0
.0
1

7
3

2
2
0
.0
7

7
2
.0
5

7
3

0
.0
0

5
7
0

1
4
.8
9

1
3
5
0
1
5

7
3

0
.0
0

0
1

1
4
.0
7

0
.0
0

1
4
.0
7

ci
ty
-8

1
0
.0
0
G

1
3
5

0
.7
5

0
.0
1

1
3
4

5
8
.8
3

1
3
3
.0
6

1
3
4

0
.0
0

5
0
4

1
5
.0
1

3
1
8
7
8

1
3
4

0
.0
0

0
1

1
2
.1
5

0
.0
0

1
2
.1
5

ci
ty
-8

1
0
0
.0
0
M

3
2
0

0
.3
1

0
.0
1

3
1
9

4
.0
9

3
1
8
.5
5

3
1
9

0
.0
0

7
3
6

2
2
.0
1

1
0
9
9

3
1
9

0
.0
0

0
1

1
2
.8
1

0
.0
0

1
2
.8
1

ci
ty
-9

1
0
0
.0
0
G

8
0

1
.2
7

0
.0
1

7
9

1
9
8
.7
3

7
8
.6
3

7
9

0
.0
0

6
6
9

3
0
.5
9

1
0
8
3
8
4

7
9

0
.0
0

0
1

2
7
.2
1

0
.0
0

2
7
.2
1

ci
ty
-9

1
0
.0
0
G

1
4
8

0
.6
8

0
.0
1

1
4
7

1
5
2
.2
9

1
4
6
.7
4

1
4
7

0
.0
0

7
0
8

4
4
.8
4

2
5
1
2
3

1
4
7

0
.0
0

0
1

2
7
.1
8

0
.0
0

2
7
.1
8

ci
ty
-9

1
0
0
.0
0
M

3
4
9

0
.2
9

0
.0
1

3
4
8

8
.1
4

3
4
7
.1
0

3
4
8

0
.0
0

8
3
9

4
9
.6
6

1
2
2
7

3
4
8

0
.0
0

0
1

2
7
.2
3

0
.0
0

2
7
.2
3

ci
ty
-1
0

1
0
0
.0
0
G

9
6

2
.1
3

0
.0
1

9
4

1
4
0
.4
9

9
3
.0
7

9
4

0
.0
0

6
4
0

2
1
.3
0

2
0
0
3
4
6

9
4

0
.0
0

0
1

1
9
.1
9

0
.0
0

1
9
.1
9

ci
ty
-1
0

1
0
.0
0
G

1
7
4

0
.5
8

0
.0
1

1
7
3

7
1
.5
3

1
7
2
.6
6

1
7
3

0
.0
0

6
8
2

3
1
.1
2

2
1
0
7
2

1
7
3

0
.5
8

1
0
0
0

1
2
4
.0
6

0
.5
9

2
4
.6
5

ci
ty
-1
0

1
0
0
.0
0
M

4
0
1

0
.2
5

0
.0
1

4
0
0

5
.2
6

3
9
9
.0
3

4
0
0

0
.0
0

8
2
4

3
0
.2
9

1
3
3
5

4
0
0

0
.0
0

0
1

1
7
.3
5

0
.0
0

1
7
.3
5

ci
ty
-1
1

1
0
0
.0
0
G

9
6

2
.1
3

0
.0
2

9
4

2
9
5
.7
4

9
3
.6
0

9
4

0
.0
0

6
6
0

3
4
.2
7

1
4
2
6
0
0

9
4

0
.0
0

0
1

3
0
.1
3

0
.0
0

3
0
.1
3

ci
ty
-1
1

1
0
.0
0
G

1
7
5

0
.0
0

0
.0
2

1
7
5

2
3
9
.6
5

1
7
4
.0
0

1
7
5

0
.0
0

7
8
0

6
6
.5
7

3
4
0
5
7

1
7
5

0
.0
0

0
1

3
3
.6
3

0
.0
0

3
3
.6
3

ci
ty
-1
1

1
0
0
.0
0
M

4
0
7

0
.2
5

0
.0
1

4
0
6

1
0
.1
8

4
0
5
.0
3

4
0
6

0
.0
0

8
3
4

5
9
.2
6

1
5
7
0

4
0
6

0
.0
0

0
1

3
6
.9
9

0
.0
0

3
6
.9
9

o
cc
u
p
a
ti
o
n
-1

1
0
0
.0
0
G

6
8

1
.4
9

0
.0
0

6
7

5
3
.8
8

6
6
.7
1

6
7

0
.0
0

7
0
5

7
.6
2

1
7
5
5
7

6
7

0
.0
0

0
1

5
.9
2

0
.0
0

5
.9
2

o
cc
u
p
a
ti
o
n
-1

1
0
.0
0
G

1
3
2

1
.5
4

0
.0
0

1
3
0

1
1
.4
0

1
2
9
.0
8

1
3
0

0
.0
0

8
0
0

6
.4
4

1
3
8
6

1
3
0

0
.0
0

0
1

4
.8
2

0
.0
0

4
.8
2

o
cc
u
p
a
ti
o
n
-1

1
0
0
.0
0
M

2
6
0

0
.0
0

0
.0
0

2
6
0

1
.4
6

2
5
9
.0
7

2
6
0

0
.0
0

6
3
9

5
.3
0

4
6
9

2
6
0

0
.0
0

0
1

2
.6
1

0
.0
0

2
.6
1

o
cc
u
p
a
ti
o
n
-2

1
0
0
.0
0
G

7
1

1
.4
3

0
.0
1

7
0

2
0
3
.9
2

6
9
.2
1

7
0

0
.0
0

6
7
2

2
5
.7
6

2
4
1
0
9

7
0

0
.0
0

0
1

2
1
.7
4

0
.0
0

2
1
.7
4

o
cc
u
p
a
ti
o
n
-2

1
0
.0
0
G

1
3
8

1
.4
7

0
.0
1

1
3
6

5
1
.9
4

1
3
5
.1
7

1
3
6

0
.0
0

7
1
7

2
2
.5
9

1
5
2
3

1
3
6

0
.0
0

0
1

1
8
.6
9

0
.0
0

1
8
.6
9

o
cc
u
p
a
ti
o
n
-2

1
0
0
.0
0
M

2
8
0

0
.0
0

0
.0
1

2
8
0

6
.0
0

2
7
9
.1
9

2
8
0

0
.0
0

4
7
8

1
5
.1
5

5
0
8

2
8
0

0
.0
0

0
1

7
.2
5

0
.0
0

7
.2
5

ci
ty

u
n
i-
1

1
0
0
0
.0
0
G

6
9

1
.4
7

0
.0
1

6
8

1
4
7
.7
8

6
7
.6
6

6
8

0
.0
0

7
3
3

9
.9
5

7
7
9
8
0

6
8

1
.4
7

4
6
1

1
9
.5
1

0
.3
2

9
.8
3

ci
ty

u
n
i-
1

1
0
0
.0
0
G

1
2
7

0
.0
0

0
.0
1

1
2
7

2
8
.2
0

1
2
6
.1
2

1
2
7

0
.0
0

4
6
8

7
.1
7

2
8
6
3
4

1
2
7

0
.0
0

0
1

6
.5
4

0
.0
0

6
.5
4

ci
ty

u
n
i-
1

1
0
0
0
.0
0
M

3
0
4

0
.0
0

0
.0
1

3
0
4

2
.9
3

3
0
3
.0
4

3
0
4

0
.0
0

7
2
0

9
.5
2

1
2
0
5

3
0
4

0
.0
0

0
1

5
.6
5

0
.0
0

5
.6
5

ci
ty

u
n
i-
2

1
0
0
0
.0
0
G

7
5

2
.7
4

0
.0
1

7
3

7
.7
1

7
2
.0
2

7
3

0
.0
0

6
2
9

1
.5
9

4
1
8
6
4

7
3

0
.0
0

0
1

1
.6
2

0
.0
0

1
.6
2

ci
ty

u
n
i-
2

1
0
0
.0
0
G

1
4
9

0
.6
8

0
.0
1

1
4
8

6
.9
3

1
4
7
.0
1

1
4
8

0
.0
0

6
5
8

1
.3
8

4
1
7
0

1
4
8

0
.0
0

0
1

1
.1
3

0
.0
0

1
.1
3

ci
ty

u
n
i-
2

1
0
0
0
.0
0
M

3
3
8

0
.0
0

0
.0
0

3
3
8

0
.7
7

3
3
7
.0
5

3
3
8

0
.0
0

7
3
6

1
.5
2

1
1
6
0

3
3
8

0
.0
0

0
1

0
.8
8

0
.0
0

0
.8
8

ci
ty

u
n
i-
3

1
0
0
0
.0
0
G

7
7

1
.3
2

0
.0
1

7
6

3
0
3
.5
6

7
4
.9
7

7
6

0
.0
0

1
0
0
1

9
.0
9

5
0
3
4
7

7
6

0
.0
0

3
1
3

1
5
.5
3

0
.1
4

5
.6
7

ci
ty

u
n
i-
3

1
0
0
.0
0
G

1
5
4

1
.3
2

0
.0
1

1
5
2

1
8
.6
5

1
5
1
.3
6

1
5
2

0
.0
0

6
0
1

4
.9
2

7
4
2
9

1
5
2

0
.0
0

0
1

3
.4
6

0
.0
0

3
.4
6

ci
ty

u
n
i-
3

1
0
0
0
.0
0
M

3
5
3

0
.0
0

0
.0
1

3
5
3

1
.9
0

3
5
2
.0
7

3
5
3

0
.0
0

6
5
9

4
.3
0

1
4
0
3

3
5
3

0
.0
0

0
1

2
.8
8

0
.0
0

2
.8
8

o
cc
u
p
a
ti
o
n
u
n
i

1
0
0
0
.0
0
G

6
5

0
.0
0

0
.0
0

6
5

5
8
.1
1

6
4
.0
4

6
5

0
.0
0

6
4
8

6
.4
7

8
0
1
1
2

6
5

0
.0
0

0
1

5
.5
4

0
.0
0

5
.5
4

o
cc
u
p
a
ti
o
n
u
n
i

1
0
0
.0
0
G

1
2
5

0
.0
0

0
.0
1

1
2
5

1
1
.6
4

1
2
4
.0
4

1
2
5

0
.0
0

8
4
2

9
.3
7

1
3
2
3

1
2
5

0
.0
0

0
1

4
.6
0

0
.0
0

4
.6
0

o
cc
u
p
a
ti
o
n
u
n
i

1
0
0
0
.0
0
M

2
5
4

0
.0
0

0
.0
0

2
5
4

1
.4
7

2
5
3
.1
1

2
5
4

0
.0
0

5
9
5

4
.6
8

4
5
8

2
5
4

0
.0
0

0
1

2
.7
6

0
.0
0

2
.7
6

A
v
g

1
.2
8

0
.0
1

4
5
.4
2

0
.0
0

6
6
5
.4
9

1
1
.5
6

2
4
7
3
9

0
.0
4

4
0

7
.9
4

0
.0
3

7
.9
6

M
a
x

2
5
.0
0

0
.0
2

3
0
3
.5
6

0
.0
0

1
0
0
1
.0
0

6
6
.5
7

2
0
0
3
4
6

1
.4
7

1
0
0
0

3
6
.9
9

0
.5
9

3
6
.9
9

s
.d

.
3
.4
4

0
.0
0

7
8
.5
6

0
.0
0

1
8
8
.2
4

1
5
.0
0

4
1
1
6
3

0
.2
1

1
5
3

9
.6
3

0
.1
0

9
.6
5

37

T
a
b
le

A
.9
:
C
o
m
p
a
ri
so
n
a
m
o
n
g
C
P
L
E
X
,
D
u
a
l
A
sc
en
t
w
it
h
L
a
g
ra
n
g
ia
n
H
eu

ri
st
ic
,
a
n
d
E
x
a
ct

m
et
h
o
d
:
P
ro
b
le
m

T
y
p
e
B
.

S
id

e
C
o
n
.

G
r
e
e
d
y

C
p
le

x
D

u
a
l
A

s
c
e
n
t

+
L
a
g
r
.

H
e
u
.

E
x
a
c
t

M
e
t
h
o
d

I
n
s
t
a
n
c
e
s

α
z
U
B

G
a
p

T
im

e
z
o
p
t

T
im

e
z
L
B

z
U
B

G
a
p

It
e
r

T
im

e
|C

′ |
z
o
p
t

G
a
p

|C
′ |

It
e
r

T
A

T
E

T
T
o
t

st
a
te

1
0

8
2
9
5
.0
8
G

0
.0
0

0
.0
0

8
2
9
5
.0
8
G

0
.1
4

8
2
9
5
.0
8
G

8
2
9
5
.0
8
G

0
.0
0

6
8
9

0
.0
5

1
3

8
2
9
5
.0
8
G

0
.0
0

0
1

0
.0
5

0
.0
0

0
.0
5

st
a
te

1
5

3
5
9
3
.4
7
G

7
.2
8

0
.0
0

3
3
4
9
.6
6
G

0
.1
4

3
2
7
4
.0
6
G

3
3
4
9
.6
6
G

0
.0
0

1
3
1
7

0
.0
8

3
1

3
3
4
9
.6
6
G

0
.0
0

8
6

3
0
.0
8

0
.2
3

0
.3
0

p
ro
d
d
ep

ar
tm

en
t

1
0

6
5
.3
7
M

0
.0
0

0
.0
0

6
5
.3
7
M

1
.2
8

6
5
.3
7
M

6
5
.3
7
M

0
.0
0

5
8
1

0
.0
5

1
4

6
5
.3
7
M

0
.0
0

0
1

0
.0
5

0
.0
0

0
.0
5

p
ro
d
d
ep

ar
tm

en
t

1
5

4
.7
0
M

0
.0
0

0
.0
0

4
.7
0
M

1
.2
7

4
.7
0
M

4
.7
0
M

0
.0
0

5
1
6

0
.0
4

1
5

4
.7
0
M

0
.0
0

0
1

0
.0
4

0
.0
0

0
.0
4

p
ro
d
b
ra
n
d

5
0

4
.8
2
M

4
.1
6

0
.0
1

4
.6
3
M

7
.7
5

4
.6
3
M

4
.6
3
M

0
.0
0

7
1
0

0
.1
9

1
2
1
3

4
.6
3
M

0
.0
0

0
1

0
.1
3

0
.0
0

0
.1
3

p
ro
d
b
ra
n
d

1
0
0

1
.8
2
M

0
.6
1

0
.0
1

1
.8
1
M

7
.8
0

1
.8
1
M

1
.8
1
M

0
.0
0

7
2
0

0
.1
8

1
1
7
4

1
.8
1
M

0
.0
0

2
0
4

1
0
.1
0

0
.1
6

0
.2
6

ci
ty
-1

5
0

2
0
8
.5
0
G

4
.9
3

0
.0
1

1
9
8
.7
0
G

5
.2
9

1
9
8
.3
9
G

2
0
2
.7
3
G

2
.0
3

1
3
2
5

1
.3
7

1
1
2
0

1
9
8
.7
0
G

2
.0
3

3
3
0
3

2
0
.7
1

0
.3
8

1
.1
0

ci
ty
-1

1
0
0

4
0
.9
1
G

3
.2
6

0
.0
1

3
9
.6
1
G

6
.4
8

3
9
.5
7
G

3
9
.6
7
G

0
.1
3

1
2
2
0

1
.0
8

1
0
7
2

3
9
.6
1
G

0
.1
3

2
9
4
9

2
0
.5
4

0
.3
3

0
.8
7

ci
ty
-1

1
5
0

7
.5
3
G

0
.3
8

0
.0
1

7
.5
0
G

2
.8
4

7
.5
0
G

7
.5
0
G

0
.0
0

9
3
7

0
.5
6

9
4
3

7
.5
0
G

0
.0
0

1
7
8

1
0
.4
0

0
.1
4

0
.5
4

ci
ty
-2

5
0

2
2
4
.7
7
G

4
.7
4

0
.0
1

2
1
4
.6
0
G

1
6
.8
3

2
1
4
.2
2
G

2
1
4
.6
0
G

0
.0
0

1
3
0
3

3
.5
8

1
2
9
5

2
1
4
.6
0
G

4
.4
3

7
9
7
5

2
1
.5
5

1
.2
8

2
.8
3

ci
ty
-2

1
0
0

4
7
.6
3
G

4
.0
4

0
.0
1

4
5
.7
8
G

5
.3
0

4
5
.7
8
G

4
5
.7
8
G

0
.0
0

9
1
5

1
.4
8

1
1
6
5

4
5
.7
8
G

0
.0
0

0
1

1
.0
7

0
.0
0

1
.0
7

ci
ty
-2

1
5
0

9
.8
1
G

1
.6
7

0
.0
1

9
.6
5
G

5
.0
4

9
.6
5
G

9
.6
5
G

0
.0
0

9
8
1

1
.3
1

1
1
9
9

9
.6
5
G

0
.0
0

1
8
6

1
0
.8
8

0
.1
4

1
.0
2

ci
ty
-3

5
0

2
3
7
.7
1
G

3
.0
6

0
.0
1

2
3
0
.6
4
G

9
.7
3

2
3
0
.6
4
G

2
3
0
.6
4
G

0
.0
0

1
0
3
7

7
.0
8

1
3
7
2

2
3
0
.6
4
G

0
.0
0

8
9

1
2
.5
1

0
.1
6

2
.6
7

ci
ty
-3

1
0
0

5
4
.6
4
G

7
.8
5

0
.0
1

5
0
.6
6
G

2
7
.4
1

5
0
.6
2
G

5
0
.7
5
G

0
.1
7

1
4
7
3

7
.5
3

1
2
9
9

5
0
.6
6
G

0
.1
7

1
2
4

1
3
.3
6

0
.1
6

3
.5
2

ci
ty
-3

1
5
0

1
1
.4
6
G

2
.8
3

0
.0
1

1
1
.1
5
G

9
.1
3

1
1
.1
5
G

1
1
.1
5
G

0
.0
0

1
1
0
8

3
.8
4

1
1
4
0

1
1
.1
5
G

0
.0
0

2
0
2

1
2
.0
0

0
.1
7

2
.1
7

ci
ty
-4

5
0

2
6
4
.3
3
G

1
.5
3

0
.0
1

2
6
0
.3
5
G

3
4
.5
0

2
5
9
.8
8
G

2
6
4
.3
3
G

1
.5
3

1
2
8
2

2
6
.3
6

1
4
8
8

2
6
0
.3
5
G

1
.5
3

1
0
0
0
0

2
5
.6
0

1
.8
1

7
.4
1

ci
ty
-4

1
0
0

5
8
.9
8
G

2
.9
9

0
.0
1

5
7
.2
7
G

5
0
.5
9

5
7
.2
5
G

5
7
.2
7
G

0
.0
0

1
2
9
8

1
9
.6
7

1
3
9
3

5
7
.2
7
G

2
.6
2

1
2
1

1
6
.1
8

0
.2
0

6
.3
8

ci
ty
-4

1
5
0

1
2
.8
3
G

3
.5
0

0
.0
1

1
2
.4
0
G

1
6
.4
2

1
2
.3
9
G

1
2
.4
0
G

0
.0
0

1
0
1
8

7
.5
5

1
2
9
0

1
2
.4
0
G

0
.0
0

1
8
5

1
3
.4
4

0
.1
1

3
.5
5

ci
ty
-5

5
0

2
6
4
.1
0
G

2
.8
0

0
.0
1

2
5
6
.9
2
G

6
3
.5
0

2
5
6
.8
3
G

2
6
1
.9
6
G

1
.9
6

1
3
2
8

4
5
.3
1

1
5
8
4

2
5
6
.9
2
G

1
.9
6

8
4

1
9
.8
2

0
.1
4

9
.9
6

ci
ty
-5

1
0
0

5
9
.2
6
G

4
.5
1

0
.0
1

5
6
.7
0
G

2
3
.8
9

5
6
.7
0
G

5
6
.7
0
G

0
.0
0

1
0
1
3

1
4
.9
2

1
4
4
3

5
6
.7
0
G

0
.0
0

1
2
9

1
6
.7
3

0
.1
4

6
.8
7

ci
ty
-5

1
5
0

1
2
.9
1
G

2
.7
7

0
.0
1

1
2
.5
6
G

2
2
.3
2

1
2
.5
6
G

1
2
.5
6
G

0
.0
0

9
8
2

1
1
.3
7

1
2
7
0

1
2
.5
6
G

0
.0
0

2
0
4

1
5
.1
5

0
.1
4

5
.2
9

ci
ty
-6

5
0

2
8
7
.0
5
G

4
.1
6

0
.0
1

2
7
5
.5
9
G

9
2
.8
5

2
7
5
.4
3
G

2
8
0
.9
5
G

1
.9
5

1
3
2
5

5
5
.9
3

1
5
5
0

2
7
5
.5
9
G

2
.4
9

8
2

1
1
3
.9
1

0
.1
5

1
4
.0
6

ci
ty
-6

1
0
0

6
3
.8
2
G

3
.5
7

0
.0
1

6
1
.6
2
G

2
8
.9
0

6
1
.6
1
G

6
1
.6
2
G

0
.0
0

1
0
6
8

2
6
.4
4

1
5
1
9

6
1
.6
2
G

0
.0
0

1
2
9

1
8
.8
0

0
.1
6

8
.9
6

ci
ty
-6

1
5
0

1
4
.1
4
G

3
.3
3

0
.0
1

1
3
.6
8
G

2
7
.6
8

1
3
.6
8
G

1
3
.6
8
G

0
.0
0

1
1
0
3

1
8
.7
1

1
5
5
2

1
3
.6
8
G

0
.0
0

2
0
1

1
7
.5
9

0
.2
5

7
.8
4

ci
ty
-7

5
0

2
3
3
.4
8
G

5
.0
1

0
.0
1

2
2
2
.3
5
G

1
4
1
.9
6

2
2
2
.2
5
G

2
2
2
.3
5
G

0
.0
0

1
3
2
5

7
3
.5
2

1
4
0
3

2
2
2
.3
5
G

1
.1
4

9
0

1
1
6
.1
8

0
.2
1

1
6
.4
0

ci
ty
-7

1
0
0

3
3
.3
2
G

0
.7
3

0
.0
1

3
3
.0
8
G

4
2
.0
1

3
3
.0
8
G

3
3
.0
8
G

0
.0
0

9
4
4

2
4
.3
4

1
3
5
4

3
3
.0
8
G

0
.0
0

1
2
1

1
1
1
.8
0

0
.2
2

1
2
.0
3

ci
ty
-7

1
5
0

5
.8
9
G

0
.9
2

0
.0
1

5
.8
3
G

3
6
.3
3

5
.8
3
G

5
.8
3
G

0
.0
0

8
9
4

1
5
.4
5

1
0
9
7

5
.8
3
G

0
.0
0

0
1

7
.0
1

0
.0
0

7
.0
1

ci
ty
-8

5
0

2
3
5
.5
1
G

4
.8
1

0
.0
1

2
2
4
.6
9
G

2
6
5
.3
5

2
2
4
.6
4
G

2
2
7
.2
2
G

1
.1
2

1
2
8
6

1
3
8
.9
8

2
2
6
5

2
2
4
.6
9
G

1
.1
2

1
0
1

1
2
7
.7
1

0
.3
8

2
8
.0
9

ci
ty
-8

1
0
0

3
4
.6
6
G

1
.4
7

0
.0
1

3
4
.1
6
G

8
1
.6
1

3
4
.1
6
G

3
4
.1
6
G

0
.0
0

9
3
0

4
4
.5
2

1
2
9
5

3
4
.1
6
G

0
.0
0

1
2
1

1
2
1
.9
8

0
.3
8

2
2
.3
6

ci
ty
-8

1
5
0

6
.1
5
G

1
.3
4

0
.0
1

6
.0
7
G

6
7
.8
8

6
.0
7
G

6
.0
7
G

0
.0
0

1
1
0
6

5
5
.7
2

1
1
3
0

6
.0
7
G

1
.3
4

1
8
1

1
1
9
.4
1

0
.3
9

1
9
.7
9

ci
ty
-9

5
0

2
8
9
.1
9
G

8
.4
7

0
.0
1

2
6
6
.6
2
G

2
2
4
.6
3

2
6
6
.6
0
G

2
6
6
.6
2
G

0
.0
0

8
7
8

6
2
.0
3

1
5
6
0

2
6
6
.6
2
G

0
.0
0

8
5

1
4
8
.7
1

0
.7
8

4
9
.4
9

ci
ty
-9

1
0
0

4
9
.7
4
G

5
.2
7

0
.0
1

4
7
.2
5
G

4
0
2
.6
8

4
7
.2
2
G

4
8
.8
8
G

3
.4
5

1
5
2
2

2
2
8
.6
0

1
6
2
9

4
7
.2
5
G

3
.4
5

1
3
3

1
9
1
.6
7

0
.7
4

9
2
.4
2

ci
ty
-9

1
5
0

9
.3
5
G

2
.0
2

0
.0
1

9
.1
7
G

2
2
2
.4
0

9
.1
7
G

9
.1
7
G

0
.0
0

9
3
1

8
0
.5
1

1
3
4
4

9
.1
7
G

0
.0
0

1
9
2

1
3
4
.1
9

0
.8
1

3
5
.0
0

ci
ty
-1
0

5
0

3
7
8
.3
3
G

5
.6
8

0
.0
1

3
5
7
.9
8
G

1
3
2
.5
1

3
5
7
.9
6
G

3
5
7
.9
8
G

0
.0
0

1
0
0
8

6
5
.1
8

1
8
6
2

3
5
7
.9
8
G

0
.0
0

1
1
3

1
3
5
.9
1

0
.5
1

3
6
.4
2

ci
ty
-1
0

1
0
0

8
7
.0
4
G

5
.6
2

0
.0
1

8
2
.4
1
G

1
3
2
.1
5

8
2
.4
1
G

8
2
.4
1
G

0
.0
0

1
0
5
9

7
1
.7
3

1
7
9
0

8
2
.4
1
G

0
.0
0

1
4
3

1
3
3
.7
2

0
.5
7

3
4
.2
9

ci
ty
-1
0

1
5
0

1
8
.1
8
G

1
.5
0

0
.0
1

1
7
.9
1
G

1
1
6
.5
0

1
7
.9
1
G

1
7
.9
1
G

0
.0
0

1
0
5
5

7
5
.1
1

1
5
0
1

1
7
.9
1
G

0
.0
0

1
9
7

1
2
6
.5
4

0
.4
9

2
7
.0
3

ci
ty
-1
1

5
0

3
8
1
.7
5
G

5
.4
9

0
.0
2

3
6
1
.8
7
G

9
7
4
.3
7

3
6
1
.6
0
G

3
6
8
.6
4
G

1
.8
7

1
4
8
0

3
5
1
.2
2

1
8
9
0

3
6
1
.8
7
G

1
.8
7

1
1
0

1
1
6
2
.2
0

0
.9
7

1
6
3
.1
7

ci
ty
-1
1

1
0
0

8
8
.8
5
G

5
.7
7

0
.0
2

8
4
.0
1
G

3
1
3
.7
5

8
4
.0
0
G

8
4
.0
1
G

0
.0
0

1
0
0
3

8
3
.3
1

1
7
6
5

8
4
.0
1
G

0
.0
0

1
7
2

1
6
3
.7
6

1
.0
0

6
4
.7
7

ci
ty
-1
1

1
5
0

1
8
.4
0
G

1
.2
5

0
.0
2

1
8
.1
7
G

3
0
5
.6
7

1
8
.1
7
G

1
8
.1
7
G

0
.0
0

9
8
2

1
2
8
.1
0

1
5
7
5

1
8
.1
7
G

0
.0
0

1
9
0

1
4
8
.8
1

0
.9
0

4
9
.7
1

o
cc
u
p
a
ti
o
n
-1

5
0

2
2
4
.9
7
G

4
.9
5

0
.0
0

2
1
4
.3
7
G

8
2
.6
5

2
1
4
.3
0
G

2
1
4
.3
7
G

0
.0
0

1
4
0
0

5
0
.6
1

1
1
4
8

2
1
4
.3
7
G

4
.1
0

6
9

1
1
8
.5
9

0
.2
7

1
8
.8
6

o
cc
u
p
a
ti
o
n
-1

1
0
0

2
6
.7
2
G

2
.2
9

0
.0
1

2
6
.1
2
G

2
8
.8
0

2
6
.1
2
G

2
6
.1
2
G

0
.0
0

1
0
7
3

1
9
.5
0

7
3
0

2
6
.1
2
G

2
.2
9

1
3
6

1
8
.0
5

0
.1
8

8
.2
3

o
cc
u
p
a
ti
o
n
-1

1
5
0

5
.4
0
G

5
.0
2

0
.0
0

5
.1
5
G

2
7
.1
7

5
.1
5
G

5
.1
5
G

0
.0
0

9
5
7

1
0
.2
1

5
7
4

5
.1
5
G

0
.0
0

0
1

4
.0
3

0
.0
0

4
.0
3

o
cc
u
p
a
ti
o
n
-2

5
0

2
4
5
.8
0
G

6
.3
0

0
.0
1

2
3
1
.2
2
G

1
7
9
.2
4

2
3
1
.2
2
G

2
3
1
.2
2
G

0
.0
0

1
1
8
0

5
0
.0
1

1
5
0
2

2
3
1
.2
2
G

0
.0
0

0
1

5
0
.0
7

0
.0
0

5
0
.0
7

o
cc
u
p
a
ti
o
n
-2

1
0
0

3
2
.1
1
G

5
.3
3

0
.0
1

3
0
.4
9
G

1
3
7
.4
0

3
0
.4
9
G

3
0
.4
9
G

0
.0
0

1
1
3
2

3
4
.6
3

8
3
2

3
0
.4
9
G

0
.0
0

1
3
2

1
3
4
.5
3

0
.5
9

3
5
.1
2

o
cc
u
p
a
ti
o
n
-2

1
5
0

6
.9
6
G

4
.4
1

0
.0
1

6
.6
6
G

1
4
9
.0
5

6
.6
6
G

6
.6
6
G

0
.0
0

9
5
2

4
7
.5
5

6
5
6

6
.6
6
G

0
.0
0

1
7
2

1
1
5
.8
1

0
.6
1

1
6
.4
3

ci
ty

u
n
i-
1

5
0

1
9
4
3
.6
9
G

6
.3
0

0
.0
1

1
8
2
8
.5
3
G

4
5
.0
5

1
8
2
8
.3
8
G

1
8
2
8
.5
3
G

0
.0
0

9
7
3

2
6
.1
7

1
4
3
6

1
8
2
8
.5
3
G

0
.0
0

9
7

1
1
3
.7
4

0
.2
3

1
3
.9
6

ci
ty

u
n
i-
1

1
0
0

2
7
5
.6
7
G

2
.2
0

0
.0
1

2
6
9
.7
3
G

4
2
.9
2

2
6
9
.7
3
G

2
6
9
.7
3
G

0
.0
0

9
6
3

2
3
.5
1

1
3
5
3

2
6
9
.7
3
G

0
.0
0

0
1

1
1
.4
3

0
.0
0

1
1
.4
3

ci
ty

u
n
i-
1

1
5
0

4
8
.3
6
G

1
.8
9

0
.0
1

4
7
.4
7
G

3
6
.4
0

4
7
.4
6
G

4
7
.4
7
G

0
.0
0

9
8
7

1
9
.1
1

1
1
0
4

4
7
.4
7
G

0
.0
0

1
8
3

1
7
.9
7

0
.2
1

8
.1
8

ci
ty

u
n
i-
2

5
0

1
9
9
3
.3
9
G

3
.7
0

0
.0
1

1
9
2
2
.2
4
G

2
4
.6
9

1
9
2
0
.0
4
G

1
9
5
2
.3
5
G

1
.5
7

1
2
9
5

1
0
.9
7

1
5
9
3

1
9
2
2
.2
4
G

1
.5
7

1
0
0
0
0

2
3
.1
7

1
.6
7

4
.8
4

ci
ty

u
n
i-
2

1
0
0

4
5
2
.5
8
G

8
.7
8

0
.0
1

4
1
6
.0
4
G

8
.9
9

4
1
6
.0
0
G

4
1
6
.0
4
G

0
.0
0

1
1
0
8

3
.0
0

1
2
8
4

4
1
6
.0
4
G

0
.0
0

1
1
4

1
2
.2
0

0
.0
8

2
.2
7

ci
ty

u
n
i-
2

1
5
0

9
6
.6
9
G

4
.8
9

0
.0
1

9
2
.1
8
G

8
.7
9

9
2
.1
7
G

9
2
.1
8
G

0
.0
0

1
1
1
1

2
.9
7

1
2
3
6

9
2
.1
8
G

0
.0
0

1
7
9

1
1
.9
0

0
.0
8

1
.9
8

ci
ty

u
n
i-
3

5
0

2
1
9
6
.9
4
G

4
.1
4

0
.0
1

2
1
0
9
.6
1
G

2
6
.2
2

2
1
0
9
.4
4
G

2
1
0
9
.6
1
G

0
.0
0

1
0
6
8

2
4
.5
4

1
6
9
2

2
1
0
9
.6
1
G

0
.0
0

0
1

8
.6
2

0
.0
0

8
.6
2

ci
ty

u
n
i-
3

1
0
0

5
0
1
.8
2
G

6
.8
1

0
.0
1

4
6
9
.8
4
G

2
4
.2
5

4
6
9
.8
1
G

4
6
9
.8
4
G

0
.0
0

9
2
1

8
.2
3

1
4
8
2

4
6
9
.8
4
G

0
.0
0

1
3
0

1
6
.3
1

0
.2
2

6
.5
3

ci
ty

u
n
i-
3

1
5
0

1
1
0
.2
9
G

5
.2
6

0
.0
1

1
0
4
.7
7
G

2
3
.4
0

1
0
4
.7
6
G

1
0
4
.7
7
G

0
.0
0

1
0
1
8

1
1
.6
2

1
3
6
9

1
0
4
.7
7
G

0
.0
0

1
8
7

1
5
.2
8

0
.1
5

5
.4
3

o
cc
u
p
a
ti
o
n
u
n
i

5
0

1
9
7
3
.0
3
G

7
.7
4

0
.0
0

1
8
3
1
.3
5
G

3
1
.4
7

1
8
3
1
.3
3
G

1
8
3
1
.3
5
G

0
.0
0

1
0
0
6

9
.6
7

1
0
0
5

1
8
3
1
.3
5
G

0
.0
0

7
2

1
9
.6
5

0
.1
7

9
.8
2

o
cc
u
p
a
ti
o
n
u
n
i

1
0
0

2
3
5
.4
6
G

2
.5
6

0
.0
0

2
2
9
.5
9
G

2
7
.7
7

2
2
9
.5
6
G

2
2
9
.5
9
G

0
.0
0

9
5
5

1
3
.9
6

7
4
0

2
2
9
.5
9
G

0
.0
0

1
2
0

1
6
.5
8

0
.2
6

6
.8
3

o
cc
u
p
a
ti
o
n
u
n
i

1
5
0

4
2
.8
8
G

1
.1
0

0
.0
0

4
2
.4
1
G

2
6
.7
4

4
2
.4
1
G

4
2
.4
1
G

0
.0
0

1
0
8
4

1
1
.9
1

5
7
8

4
2
.4
1
G

0
.0
0

1
7
1

1
4
.2
1

0
.2
6

4
.4
8

A
v
g

3
.7
4

0
.0
1

8
5
.2
3

0
.2
8

1
0
6
7

3
7
.3
9

1
2
2
7

0
.5
7

7
0
4

1
6
.5
3

0
.3
4

1
6
.8
8

M
a
x

8
.7
8

0
.0
2

9
7
4
.3
7

3
.4
5

1
5
2
2

3
5
1
.2
2

2
2
6
5

4
.4
3

1
0
0
0
0

1
6
2
.2
0

1
.8
1

1
6
3
.1
7

s
.d

.
2
.2
3

0
.0
0

1
4
8
.4
1

0
.7
1

2
1
0

5
8
.5
1

4
6
1

1
.1
0

2
1
1
9

2
6
.4
9

0
.3
9

2
6
.6
5

38

T
a
b
le

A
.1
0
:
C
o
m
p
a
ri
so
n
a
m
o
n
g
C
P
L
E
X

M
IP

so
lv
er
,
D
u
a
l
A
sc
en
t
w
it
h
L
a
g
ra
n
g
ia
n
H
eu

ri
st
ic
,
a
n
d
E
x
a
ct

m
et
h
o
d
:
P
ro
b
le
m

T
y
p
e
A
.

S
id

e
C
o
n
.

G
r
e
e
d
y

C
p
le

x
D

u
a
l
A

s
c
e
n
t

+
L
a
g
r
.

H
e
u
.

E
x
a
c
t

M
e
t
h
o
d

I
n
s
t
a
n
c
e
s

α
z
U
B

G
a
p

T
im

e
z
o
p
t

T
im

e
z
L
B

z
U
B

G
a
p

It
e
r

T
im

e
|C

′ |
z
o
p
t

G
a
p

|C
′ |

It
e
r

T
A

T
E

T
T
o
t

C
it
y4

8
0

1
0
0
.0
0
G

1
0
5

0
.9
6

0
.0
1

–
8
1
4
.7
3

1
0
3
.2
3

1
0
4

0
.0
0

4
3
7

5
4
.6
3

2
5
6
2
1
1

1
0
4

0
.0
0

0
1

5
2
.1
7

0
.0
0

5
2
.1
7

C
it
y4

8
0

1
0
.0
0
G

1
8
2

0
.5
5

0
.0
1

1
8
1

2
7
9
.5
6

1
8
0
.0
0

1
8
1

0
.0
0

7
9
6

1
6
2
.1
8

1
5
5
4
8

1
8
1

0
.0
0

0
1

6
6
.7
3

0
.0
0

6
6
.7
3

C
it
y4

8
0

1
0
0
.0
0
M

3
6
5

0
.0
0

0
.0
0

3
6
5

2
4
.7
5

3
6
4
.0
1

3
6
5

0
.0
0

7
1
1

1
0
2
.6
1

9
2
1

3
6
5

0
.0
0

0
1

6
2
.7
5

0
.0
0

6
2
.7
5

C
it
y5

3
8

1
0
0
.0
0
G

1
2
3

1
.6
5

0
.0
1

1
2
1

6
5
5
.1
0

1
2
0
.5
0

1
2
1

0
.0
0

5
4
4

5
3
.5
3

1
6
0
3
1
7

1
2
1

0
.0
0

0
1

4
5
.0
9

0
.0
0

4
5
.0
9

C
it
y5

3
8

1
0
.0
0
G

2
1
3

0
.9
5

0
.0
1

2
1
1

3
0
5
.5
2

2
1
0
.1
4

2
1
1

0
.0
0

8
0
0

7
9
.9
4

8
8
3
9

2
1
1

0
.0
0

0
1

5
0
.3
2

0
.0
0

5
0
.3
2

C
it
y5

3
8

1
0
0
.0
0
M

4
1
9

0
.0
0

0
.0
1

4
1
9

1
4
.6
0

4
1
8
.0
1

4
1
9

0
.0
0

8
3
8

1
4
2
.7
8

1
0
3
5

4
1
9

0
.0
0

0
1

4
0
.6
1

0
.0
0

4
0
.6
1

C
it
y5

5
2

1
0
0
.0
0
G

1
2
4

0
.0
0

0
.0
1

–
1
4
1
.0
8

1
2
3
.0
6

1
2
4

0
.0
0

6
0
6

1
0
3
.7
3

2
6
8
1
0
9

1
2
4

0
.0
0

0
1

9
3
.6
6

0
.0
0

9
3
.6
6

C
it
y5

5
2

1
0
.0
0
G

2
1
6

0
.9
3

0
.0
1

2
1
4

3
8
6
.4
7

2
1
3
.6
5

2
1
4

0
.0
0

8
1
2

1
6
5
.9
5

1
5
7
6
4

2
1
4

0
.0
0

0
1

1
0
9
.7
9

0
.0
0

1
0
9
.7
9

C
it
y5

5
2

1
0
0
.0
0
M

4
2
7

0
.0
0

0
.0
1

4
2
7

2
9
.3
7

4
2
6
.1
9

4
2
7

0
.0
0

7
0
2

1
3
0
.4
9

1
0
8
7

4
2
7

0
.0
0

0
1

7
6
.5
8

0
.0
0

7
6
.5
8

C
it
y6

0
4

1
0
0
.0
0
G

1
4
1

1
.4
4

0
.0
1

1
3
9

7
7
3
.0
6

1
3
8
.0
1

1
3
9

0
.0
0

6
7
9

7
5
.9
1

9
3
9
4
9

1
3
9

0
.0
0

0
1

5
7
.4
5

0
.0
0

5
7
.4
5

C
it
y6

0
4

1
0
.0
0
G

2
4
4

0
.4
1

0
.0
1

2
4
3

5
2
5
.4
0

2
4
2
.0
2

2
4
3

0
.0
0

9
9
9

1
8
7
.8
7

9
7
9
7

2
4
3

0
.0
0

0
1

7
2
.1
6

0
.0
0

7
2
.1
6

C
it
y6

0
4

1
0
0
.0
0
M

4
7
5

0
.0
0

0
.0
1

4
7
5

1
6
.9
5

4
7
3
.8
3

4
7
5

0
.0
0

8
7
8

2
1
8
.8
0

1
1
5
9

4
7
5

0
.0
0

8
0
5

1
5
6
.3
4

1
.8
9

5
8
.2
3

A
v
g

0
.5
7

0
.0
1

3
3
0
.5
5

0
.0
0

7
5
7

6
5
.3
0

6
9
3
9
5

0
.0
0

6
7

6
5
.3
0

0
.1
6

6
5
.4
6

M
a
x

1
.6
5

0
.0
1

8
1
4
.7
3

0
.0
0

1
0
4
6

1
0
9
.7
9

2
6
8
1
0
9

0
.0
0

8
0
5

1
0
9
.7
9

1
.8
9

1
0
9
.7
9

s
.d

.
0
.5
8

0
.0
0

2
8
8
.4
1

0
.0
0

1
7
6

1
9
.4
1

9
7
8
6
7

0
.0
0

2
2
2

1
9
.4
1

0
.5
2

1
9
.3
5

39

T
a
b
le

A
.1
1
:
C
o
m
p
a
ri
so
n
a
m
o
n
g
C
P
L
E
X
,
D
u
a
l
A
sc
en

t
w
it
h
L
a
g
ra
n
g
ia
n
H
eu

ri
st
ic
,
a
n
d
E
x
a
ct

m
et
h
o
d
:
P
ro
b
le
m

T
y
p
e
B
.

S
id

e
C
o
n
.

G
r
e
e
d
y

C
p
le

x
D

u
a
l
A

s
c
e
n
t

+
L
a
g
r
.

H
e
u
.

E
x
a
c
t

M
e
t
h
o
d

I
n
s
t
a
n
c
e
s

α
z
U
B

G
a
p

T
im

e
z
o
p
t

T
im

e
z
L
B

z
U
B

G
a
p

It
e
r

T
im

e
|C

′ |
z
o
p
t

G
a
p

|C
′ |

It
e
r

T
A

T
E

T
T
o
t

C
it
y4

8
0

1
5
0

2
3
.1
7
G

1
.3
4

0
.0
1

2
2
.8
7
G

3
6
2
.1
8

2
2
.8
7
G

2
2
.8
7
G

0
.0
0

1
0
3
2

3
2
8
.8
2

1
2
4
3

2
2
.8
7
G

0
.0
0

1
9
5

1
8
8
.8
0

2
.6
1

9
1
.4
1

C
it
y4

8
0

1
0
0

1
1
7
.3
4
G

1
.9
6

0
.0
1

1
1
5
.0
8
G

6
0
3
.5
2

1
1
5
.0
8
G

1
1
5
.0
8
G

0
.0
0

1
0
0
0

4
4
1
.0
2

1
5
0
5

1
1
5
.0
8
G

0
.0
0

1
3
0

1
1
3
9
.7
5

2
.6
2

1
4
2
.3
6

C
it
y4

8
0

5
0

8
3
6
.7
1
G

7
.0
1

0
.0
1

–
3
8
3
.0
0

7
7
4
.0
3
G

8
3
6
.7
1
G

7
.0
1

1
4
0
7

3
0
1
.2
1

4
5
5
3

7
8
1
.8
8
G

7
.0
1

1
0
0
0
0
0
0

4
3
0
1
.3
6

7
6
2
.6
5

1
0
6
4
.0
2

C
it
y5

3
8

1
5
0

4
6
.3
6
G

3
.5
4

0
.0
1

4
4
.7
8
G

3
0
9
.5
0

4
4
.7
7
G

4
4
.7
8
G

0
.0
1

1
1
3
3

2
9
2
.7
1

1
4
6
4

4
4
.7
8
G

0
.0
0

2
3
2

1
8
1
.1
3

1
.5
4

8
2
.6
8

C
it
y5

3
8

1
0
0

2
1
7
.4
3
G

5
.6
7

0
.0
1

2
0
5
.7
6
G

3
6
7
.8
5

2
0
5
.7
6
G

2
0
5
.7
6
G

0
.0
0

9
9
1

1
3
7
.8
5

1
5
6
5

2
0
5
.7
6
G

0
.0
0

0
1

8
2
.5
4

0
.0
0

8
2
.5
4

C
it
y5

3
8

5
0

1
1
9
4
.9
5
G

8
.6
1

0
.0
1

–
4
3
4
.9
8

1
0
9
7
.7
8
G

1
1
9
4
.9
5
G

8
.6
1

1
4
2
8

1
6
5
.4
6

1
8
8
5

1
1
0
0
.1
9
G

8
.6
1

1
0
0
0
0

2
1
6
5
.5
4

4
.9
1

1
7
0
.4
5

C
it
y5

5
2

1
5
0

4
8
.8
7
G

4
.0
3

0
.0
1

–
1
6
0
.2
9

4
6
.9
8
G

4
6
.9
8
G

0
.0
0

1
2
1
4

6
8
0
.6
6

1
4
6
1

4
6
.9
8
G

0
.0
0

2
3
9

1
1
7
5
.0
0

3
.2
3

1
7
8
.2
3

C
it
y5

5
2

1
0
0

2
2
9
.8
3
G

5
.5
0

0
.0
1

–
1
5
9
.1
2

2
1
7
.8
2
G

2
1
7
.8
5
G

0
.0
0

1
1
4
5

2
8
5
.9
6

1
6
9
5

2
1
7
.8
4
G

0
.0
0

1
8
4

1
2
0
9
.7
5

3
.3
0

2
1
3
.0
4

C
it
y5

5
2

5
0

1
2
1
1
.5
9
G

8
.6
6

0
.0
1

–
1
5
8
.5
5

1
1
1
2
.7
2
G

1
2
1
1
.5
9
G

8
.6
6

1
3
2
3

2
9
4
.2
5

1
8
1
0

1
1
1
5
.0
7
G

8
.6
6

1
0
0
0
0

2
2
9
4
.4
1

9
.0
8

3
0
3
.4
9

C
it
y6

0
4

1
5
0

7
7
.2
0
G

3
.7
3

0
.0
1

7
4
.4
3
G

7
2
1
.9
0

7
4
.4
2
G

7
4
.4
3
G

0
.0
0

1
0
8
6

3
1
3
.8
0

1
8
0
5

7
4
.4
3
G

0
.0
0

2
8
7

1
9
8
.2
7

1
.8
4

1
0
0
.1
1

C
it
y6

0
4

1
0
0

3
4
4
.8
5
G

6
.7
5

0
.0
1

3
2
3
.0
5
G

7
8
9
.5
7

3
2
3
.0
4
G

3
2
3
.0
5
G

0
.0
0

1
0
4
7

2
8
4
.9
0

1
9
7
5

3
2
3
.0
5
G

0
.0
0

1
6
0

1
1
0
0
.3
5

1
.8
0

1
0
2
.1
5

C
it
y6

0
4

5
0

1
4
9
8
.4
4
G

4
.2
5

0
.0
1

1
4
3
7
.3
4
G

8
2
7
.3
7

1
4
3
7
.3
4
G

1
4
3
7
.3
4
G

0
.0
0

1
1
2
3

4
7
3
.9
4

1
9
7
1

1
4
3
7
.3
4
G

0
.0
0

0
1

1
4
2
.5
2

0
.0
0

1
4
2
.5
2

A
v
g

5
.0
9

0
.0
1

4
3
9
.8
2

2
.0
2

1
1
7
8

1
5
6
.6
2

1
9
1
1

2
.0
2

8
5
1
1
9

1
5
6
.6
2

6
6
.1
3

2
2
2
.7
5

M
a
x

8
.6
6

0
.0
1

8
2
7
.3
7

8
.6
6

1
4
2
8

3
0
1
.3
6

4
5
5
3

8
.6
6

1
0
0
0
0
0
0

3
0
1
.3
6

7
6
2
.6
5

1
0
6
4
.0
2

s
.d

.
2
.2
7

0
.0
0

2
3
2
.0
9

3
.5
3

1
3
8

7
4
.1
7

8
2
6

3
.5
3

2
7
5
8
7
1

7
4
.1
7

2
1
0
.0
2

2
6
1
.1
0

40

Acknowledgement

The authors would like to thank the anonymous referees for their useful

comments and suggestions which contributed to improve this paper.

References

[1] Abbiw-Jackson, R., Golden, B., Raghavan, S., Wasil, E., 2006. A divide-

and-conquer local search heuristic for data visualization. Computers &

Operations Research 33 (11), 3070–3087.

[2] Balas, E., Carrera, M., 1996. A dynamic subgradient-based branch-and-

bound procedure for the set covering. Operations Research 44, 875–890.

[3] Börner, K., 2015. Atlas of knowlegde: anyone can map. MIT Press.

[4] Boschetti, M., Maniezzo, V., 2009. Benders decomposition, Lagrangean

relaxation and metaheuristic design. Journal of Heuristics 15, 283–312.

[5] Boschetti, M., Maniezzo, V., 2015. A set covering based matheuristic

for a real world city logistics problem. International Transactions in

Operational Research 22 (1), 169–195.

[6] Boschetti, M., Maniezzo, V., Roffilli, M., Bolufe Rohler, A., 2009.

Matheuristics: Optimization, simulation and control. In: Blesa, M.,

Blum, C., Di Gaspero, L., Roli, A., Samples, M., A., S. (Eds.), Hybrid

Metaheuristics. Vol. 5818 of LNCS. Springer, pp. 171–177.

[7] Boschetti, M., Mingozzi, A., Ricciardelli, S., 2004. An exact algorithm

for the simplified multiple depot crew scheduling problem. Annals of

Operations Research 127, 177–201.

[8] Boschetti, M., Mingozzi, A., Ricciardelli, S., 2008. A dual ascent pro-

cedure for the set partitioning problem. Discrete Optimization 5 (4),

735–747.

[9] Boyd, S., Mutapcic, A., 2008. Subgradient method, Lecture notes for

EE364b, Winter 2006-07.

[10] Bradley, P. S., Fayyad, U. M., Mangasarian, O. L., 1999. Mathematical

programming for data mining: Formulations and challenges. INFORMS

Journal on Computing 11 (3), 217–238.

41

[11] Caprara, A., Fischetti, M., Toth, P., 2000. Algorithms for the set cov-

ering problem. Annals of Operations Research 98, 353–371.

[12] Christofides, N., Mingozzi, A., Toth, P., 1981. Exact algorithms for

the vehicle routing problem, based on spanning tree and shortest path

relaxations. Mathematical Programming 20, 255–282.

[13] Crainic, T. G., Frangioni, A., Gendron, B., 2001. Bundle-based relax-

ation methods for multicommodity capacitated fixed charge network

design. Discrete Applied Mathematics 112 (1), 73–99, combinatorial

Optimization Symposium, Selected Papers.

URL http://www.sciencedirect.com/science/article/pii/

S0166218X00003103

[14] Domingo-Ferrer, J., Mateo-Sanz, J. M., 2002. Practical data-oriented

microaggregation for statistical disclosure control. IEEE Transactions

on Knowledge and data Engineering 14 (1), 189–201.

[15] Golfarelli, M., Graziani, S., Rizzi, S., 2014. Shrink: An OLAP operation

for balancing precision and size of pivot tables. Data & Knowledge

Engineering 93, 19–41.

[16] Han, J., 1997. OLAP mining: Integration of OLAP with data mining.

In: Proc. Working Conf. on Database Semantics. Leysin, Switzerland,

pp. 3–20.

[17] Hansen, S. L., Mukherjee, S., 2003. A polynomial algorithm for op-

timal univariate microaggregation. IEEE Transactions on Knowledge

and Data Engineering 15 (4), 1043–1044.

[18] Huang, C.-C., Tseng, T.-L. B., Li, M.-Z., Gung, R. R., 2006. Models

of multi-dimensional analysis for qualitative data and its application.

European Journal of Operational Research 174 (2), 983–1008.

[19] Janssens, D., Brijs, T., Vanhoof, K., Wets, G., 2006. Evaluating the per-

formance of cost-based discretization versus entropy- and error-based

discretization. Computers & Operations Research 33 (11), 3107 – 3123.

[20] Keim, D., 2014. Exploring big data using visual analytics. In: Proc.

EDBT/ICDT Workshops.

42

[21] Kros, J. F., Brown, M. L., Lin, M., 2006. Effects of the neural network s-

Sigmoid function on KDD in the presence of imprecise data. Computer

& Operations Research 33 (11), 3136—-3149.

[22] Latuszko, M., Pytlak, R., 2015. Methods for solving the mean query

execution time minimization problem. European Journal of Operational

Research 246, 582—-596.

[23] Lenz, H.-J., Shoshani, A., 1997. Summarizability in olap and statistical

data bases. In: Scientific and Statistical Database Management, 1997.

Proceedings., Ninth International Conference on. IEEE, pp. 132–143.

[24] Lu, X., Lowenthala, F., 2004. Arranging fact table records in a data

warehouse to improve query performance. Computer & Operations Re-

search 31, 2165—-2182.

[25] Mami, I., Bellahsene, Z., Apr. 2012. A survey of view selection methods.

SIGMOD Rec. 41 (1), 20–29.

[26] Maniezzo, V., Stützle, T., Voss, S., 2009. Matheuristics: Hybridizing

Metaheuristics and Mathematical Programming. Vol. 10 of Annals of

Information Systems. Springer.

[27] Marcel, P., Missaoui, R., Rizzi, S., 2012. Towards intensional answers

to OLAP queries for analytical sessions. In: Proceedings of the 15th

international workshop on DW and OLAP. ACM, pp. 49–56.

[28] Mingozzi, A., Boschetti, M., Bianco, L., Ricciardelli, S., 1999. A set

partitioning approach to the crew scheduling problem. Operations Re-

search 47, 883–888.

[29] Minnesota Population Center, 2016. Integrated public use microdata

series. http://www.ipums.org.

[30] Oganian, A., Domingo-Ferrer, J., 2001. On the complexity of optimal

microaggregation for statistical disclosure control. Statistical Journal of

the United Nations Economic Commission for Europe 18 (4), 345–353.

[31] Ólafsson, S., 2006. Introduction to operations research and data mining.

Computer & Operations Research 33 (11), 3067–3069.

43

[32] Ólafsson, S., Li, X., Wu, S., 2008. Operations research and data mining.

European Journal of Operational Research 187 (3), 1429—-1448.

[33] Padmanabhan, B., Tuzhilin, A., 2003. On the use of optimization for

data mining: Theoretical interactions and eCRM opportunities. Man-

agement Science 49 (10), 1327–1343.

[34] Pendharkar, P. C., 2006. A data mining constraint satisfaction opti-

mization problem for cost effective classification. Computer & Opera-

tions Research 33 (11), 3124––3135.

[35] Pentaho Corporation, 2016. Pentaho Web Site. www.pentaho.com.

[36] Yu, J. X., Yao, X., Choi, C.-H., Gou, G., 2003. Materialized view selec-

tion as constrained evolutionary optimization. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews)

33 (4), 458–467.

44

