
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

StreamDrive: A Dynamic Dataflow Framework for Clustered Embedded Architectures / arthur stoutchinin;
luca benini. - In: JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL, IMAGE, AND VIDEO
TECHNOLOGY. - ISSN 1939-8115. - ELETTRONICO. - 91:3-4(2019), pp. 275-301. [10.1007/s11265-018-
1351-1]

Published Version:

StreamDrive: A Dynamic Dataflow Framework for Clustered Embedded Architectures

Published:
DOI: http://doi.org/10.1007/s11265-018-1351-1

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/702075 since: 2019-10-11

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s11265-018-1351-1
https://hdl.handle.net/11585/702075

This is a post-peer-review, pre-copyedit version of an article published in the Journal

of Signal Processing Systems. The final authenticated version is available online at:

https://doi.org/10.1007/s11265-018-1351-1

This version is subjected to Springer Nature terms for reuse that can be found at: https://www.springer.com/gp/open-

access/authors-rights/aam-terms-v1

https://doi.org/10.1007/s11265-018-1351-1

Journal of Signal Processing Systems manuscript No.
(will be inserted by the editor)

StreamDrive: A Dynamic Dataflow Framework For
Clustered Embedded Architectures

Arthur Stoutchinin · Luca Benini

the date of receipt and acceptance should be inserted later

Abstract In this paper, we present StreamDrive, a dy-

namic dataflow framework for programming clustered

embedded multicore architectures. StreamDrive sim-

plifies development of dynamic dataflow applications

starting from sequential reference C code and allows

seamless handling of heterogeneous and application-

specific processing elements by applications. We ad-

dress issues of efficient implementation of the dynamic

dataflow runtime system in the context of constrained

embedded environments, which have not been suffi-

ciently addressed by previous research. We conducted

a detailed performance evaluation of the StreamDrive

implementation on our Application Specific MultiPro-

cessor (ASMP) cluster using the Oriented FAST and

Rotated BRIEF (ORB) algorithm typical of image pro-

cessing domain. We have used the proposed incremental

development flow for the transformation of the ORB

original reference C code into an optimized dynamic

dataflow implementation. Our implementation has less

than 10% parallelization overhead, near-linear speedup

when the number of processors increases from 1 to 8,

and achieves the performance of 15 VGA frames per

Arthur Stoutchinin
ST Microelectronics,
Grenoble France
Tel.: +33-4-76586276
ORCiD: 0000-0002-7650-9570
E-mail: arthur.stoutchinin@st.com

Luca Benini
Electrical, Electronic, and Information Engineering Depart-
ment,
University of Bologna, Italy,
and
Integrated Systems Laboratory,
Swiss Federal Institute of Technology (ETH), Zurich
ORCiD: 0000-0001-8068-3806
E-mail: luca.benini@unibo.it

second with a small cluster configuration of 4 process-

ing elements and 64KB of shared memory, and of 30

VGA frames per second with 8 processors and 128KB

of shared memory.

Keywords embedded, multicore, shared memory,

dataflow, kahn process, heterogeneous, accelerator

1 Introduction

Advanced embedded computing platforms are often de-

signed as clustered multi-cores [33, 43, 36, 10]. In a clus-

tered architecture, processing elements are grouped in

tightly-coupled clusters sharing a finite amount of re-

sources such as local memory, a DMA, external access

ports, etc. The main disadvantage of such platforms is

that software engineers must explicitly deal with par-

allelism, with heterogeneous and application-specific

computing elements, with limited in-cluster memory

constraints, and with data transfers across the memory

hierarchy. In this paper, we address the programming

issues with clustered multi-core platforms.

The dataflow computing model aims at addressing

the aforementioned programming challenges for em-

bedded applications that exhibit streaming behavior,

eg. image and video processing, multimedia, network-

ing, etc. However, adoption of the dataflow program-

ming model by industry has been hindered by two

important issues: (i) the necessity to drastically mod-

ify the existing sequential software and software de-

velopment flow, and (ii) an unappealing trade-off be-

tween model expressiveness and efficient implementa-

tion. Indeed, restricted dataflow models, such as the

Synchronous Dataflow Model (SDF) [30], the Cyclo

Static Dataflow Model [5], or the Parameterized Syn-

chronous Dataflow Model [3] are amenable to analysis,

2 Arthur Stoutchinin, Luca Benini

automation techniques, and efficient implementation,

but are too constrained in expressiveness to meet the

needs of many real-time industrial applications. On the

other hand, dynamic dataflow models, such as Kahn

Process Networks (KPN) [27], Boolean Dataflow [26]

and Dynamic Dataflow (DDN) [6] are difficult to de-

velop and often do not result in an efficient implemen-

tation [19, 50, 34].

In a preliminary publication [55], we presented the

StreamDrive framework that supports parallelization of

streaming applications and aims at reducing the effort

required in doing this. StreamDrive supports two exe-

cution modes: preemptive for KPN execution, and co-

operative for DDN execution. Based on the simultane-

ous support for these two execution modes, we propose

an incremental transformation flow starting from a se-

quential reference application and moving towards an

optimized dynamic dataflow implementation. Support-

ing the two execution modes simultaneously is essen-

tial for providing such incremental transformation flow

because the initial transformation of a sequential algo-

rithm into a KPN often requires minimal modification

of the original code. Moreover, the process of trans-

forming the KPN into a DDN by adding dataflow fir-

ing rules is relatively straightforward. Another benefit

of this methodology is that application-specific hard-

ware blocks, acting as KPN processes, can be seam-

lessly integrated together with software DDN actors at

the application level.

The StreamDrive application programming inter-

face (API) is built on top of the C language and re-

lies on familiar standard development tools, and the

resulting parallel code is not radically different from

the initial reference software. Although several dataflow

APIs have been proposed in the past (see section 2),

none simultaneously combines the support for the KPN

and DDN execution modes, while relying on standard

C development tools without introducing language re-

strictions, and remains sufficiently lightweight for tar-

geting constrained embedded platforms. The Stream-

Drive communication API allows actors to share the

dataflow buffers and efficiently supports data-parallel

actors. Finally, the StreamDrive provides a lightweight

runtime execution environment where particular atten-

tion is paid to minimize the overhead for the run-time

support in terms of both, execution cycles and memory

footprint requirements. Specific challenges addressed in

our work include a low-overhead scheduler, dealing with

small memories and the memory hierarchy that needs

to be explicitly managed by software. Generally, these

issues are insufficiently addressed in existing run-time

environments and embedded real-time operating sys-

tems.

In [55], we also presented a detailed performance

analysis of the dynamic dataflow execution model using

a real-life application in a context of a small-scale em-

bedded platform. We have implemented StreamDrive

on the embedded Application Specific MultiProcessor

(ASMP) platform from ST Microelectronics [52]. We

present the results of the evaluation carried out over the

Oriented FAST and Rotated BRIEF (ORB) application

use cases, which are commonly used in mobile and au-

tomotive camera image processing pipelines [49]. Our

evaluation showed that the StreamDrive-based ORB

implementation achieves real-time performance, low par-

allelization overhead, small memory footprint, scales

near linearly from 1 to 8 processing cores, and main-

tains performance even with long external memory la-

tency and limited available bandwidth. Compared to

other reported publications, our runtime implementa-

tion has lower overhead, and our speedup is closer to

linear due to efficient combination of two types of par-

allelism: functional and data parallelism.

This article extends the preliminary version [55]

in the following ways. First, we explain in details the

StreamDrive communication protocol. Second, we pro-

vide a detailed description of the incremental trans-

formation flow starting from the reference code and

ending with optimized dataflow implementation, using

the ORB as a running example. We explain the de-

tails of all the key aspects of the proposed methodol-

ogy. Finally, we quantify and analyze the performance

improvement of a dataflow execution with respect to

the KPN execution, and demonstrate that the KPN

scheduling overhead is relatively important in a typical

embedded multiprocessor context.

The article is organized as follows: related work is

explained in section 2; in section 3 we give the overview

of the ASMP platform, explain its shared memory ar-

chitecture and its support for the application-specific

hardware; in section 4 we present the StreamDrive API

and its implementation choices, and we illustrate the

StreamDrive incremental transformation flow with an

example; finally, we discuss our evaluation results in

section 5.

2 Related Work

The dataflow execution model is a popular research

topic in the embedded domain because it is a good

match for many applications and hardware platforms.

Several approaches of dataflow programming have been

proposed with the objective to balance conflicting con-

cerns of expressiveness, analyzability, and implementabil-

ity [54]. Table 1 summarizes selected representative re-

lated dataflow publications.

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 3

Framework Model Target Programming
Ptholemy II Most existing dataflow models Simulation and Specialized Language

design environment
LWDF CFDF Modeling Framework C API
StreamIT SDF Software development StreamIT Language
Sesame KPN Simulation and C API

design environment
Kaapi Dynamic dataflow HPC C API
TideFlow Dynamic dataflow HPC C API
OpenStream Control driven dataflow HPC OpenMP Extension
YAPI KPN Workstation C API
Nornir KPN Workstation C API
PREESM PiSDF Simulation and code Graphical GUI + C

generation embedded
Kalray MPPA CSDF Embedded ΣC Language
CAL SDF,CSDF, Dynamic dataflow Embedded Specialized Language
Shim Restricted KPN Embedded C Extension
DOL KPN Embedded C Restricted

Table 1 Selected related work summary

A large number of frameworks propose specialized

languages and tools for developing dataflow applica-

tions (the reader is referred to [4] for a comprehensive

survey). The premise of these frameworks is that an

application can be specified at a high abstraction level

and automatically transformed into an efficient imple-

mentation. However, in practice there has been a no-

ticeable gap between a high-level description and the ef-

ficient implementation that the automated tools failed

to close. As a result, often restricted dataflow mod-

els are used such as Synchronous Dataflow (SDF) [30],

Cyclo Static Dataflow [5], Parameterized SDF [3], Het-

erochronous Dataflow [20], etc., while achieving the effi-

ciency with more expressive Kahn Process Networks [27],

or Dynamic Dataflow [26] remains difficult [19, 50, 34].

Another major inconvenience of these frameworks is

that they requires significant changes to reference soft-

ware and to the existing software development flow -

reference applications are typically specified as sequen-

tial programs using imperative programming languages

such as C/C++ or Matlab. The disruptive changes in

software development flow and being able to only de-

liver efficient implementation for a restricted set of the

dataflow models hinders adoption of these technologies

by industry.

An alternative is to integrate coarse grain dynamic

dataflow programming structures into familiar languages,

using a lightweight API with an associated runtime en-

vironment. Several such KPN and dynamic dataflow

APIs have been proposed in the literature. Many of

them target large computing systems and often rely on

off-the-shelf OSes. Kaapi [17], Sesame [40], Shim [12]

are based on POSIX threads. The QUARK (QUeing

And Runtime for Kernels) [61], TIDeFlow [38], and

OpenStream [44], have been developed in the context of

the High-Performance Computing (HPC) applications.

YAPI [28] and Nornir [60] support the KPN execution

model on workstation computers. These runtime envi-

ronments come with heavy performance and memory

footprint overheads. This is an acceptable choice for

running applications in big-size computers. In the em-

bedded domain we need a lightweight approach: the

small memory and the high performance requirements

preclude using the full OS, a kernel-level scheduler, and

dynamic data structures.

One example of a minimalist dataflow API similar

to StreamDrive is the lightweight dataflow (LWDF) [53].

The LWDF implements the core functional dataflow

(CFDF) model [41]. In the CFDF, an actor has a set of

valid modes in which it can execute. The actor specifi-

cation is divided into separate enable and invoke func-

tions. The enable is designed to be used as a “hook” for

the dynamic scheduler to rapidly query actors at run-

time, and check whether or not they are executable. The

invoke function implements actor functionality and can

generally change the mode of the actor for the next in-

vocation. This is similar to the StreamDrive, where ac-

tors proceed deterministically to some “next mode” of

execution while changing their firing rules. Plishker et

al. [42] have presented an analysis method that can ex-

ploit the core functional dataflow to improve the sched-

uler. The LWDF focus is on providing a framework for

modeling and exploring the scheduler strategies, and it

does not address the implementation efficiency issues of

dynamic dataflow applications.

Several publications addressed supporting static and

quasi-static dataflow execution model on embedded plat-

forms. For example, the Parallel and Real-time Em-

bedded Executives Scheduling Method (PREESM) is

a framework offering rapid prototyping and automatic

4 Arthur Stoutchinin, Luca Benini

code generation for heterogeneous multi-core embedded

systems. PREESM targets the TI’s Keystone DSP ar-

chitecture and supports the PiSDF model [39]. Another

example is the Kalray MPPA system programmed us-

ing the specialized ΣC language [21] and implementing

the Cyclo Static Dataflow [5].

In order to overcome the limitations of the static

dataflow, the Scenario-Aware Dataflow (SADF) [56]

views applications as collections of different SDF graphs.

SADF is able to perform some worst-case and stochastic

analyses, and to provide implementation with limited

run-time overhead, while relaxing some of the limita-

tions of the SDF. However, this approach is still lim-

ited to a range of applications that follow a sequence

of fairly static scenarios. From a syntactic perspec-

tive, the SADF model resembles the Heterochronous

Dataflow [20], and therefore requires complete re-write

of application reference code and usage of specialized

development tools.

The above approaches are different from the Stream-

Drive in that they restrict the computation model to a

subclass of dataflow process networks and rely on static

scheduling for achieving efficiency.

In order to support dynamic dataflow execution,

several research leverage on CAL programming lan-

guage [14, 15], and its ISO-standardized subset, RVC-

CAL [31, 32]. The RVC-CAL provides a dataflow frame-

work with high level of abstraction and modularity as a

basis for platform independent description of dataflow

programs for execution on multicore platforms.

In [18, 58], the Actor Machine is used to gener-

ate an application-specific runtime dataflow scheduler

from CAL targeting the Epiphany architecture [37].

The generated scheduler is less efficient compared to the

StreamDrive because the actor machine does not mem-

orize actors blocking conditions and therefore reeval-

uates these blocking conditions multiple times, while

explicit enumeration of actor states leaves large mem-

ory footprint. The communication library is tailored

to Epiphany’s distributed shared memory and does

not support sharing of communication buffers. Finally,

work in [18] does not support the dynamic mapping of

actors on processing elements.

Yviquel et al [62, 63] use the RVC-CAL infras-

tructure for developing a dynamic dataflow framework

targeting a shared memory multi-core platform. The

framework pays particular attention to the efficient im-

plementation of dataflow communication functions. In

particular, the shared memory is used to implement

the zero-copy communication channels. The essential

difference from StreamDrive lies in how the race con-

ditions are avoided: while StreamDrive defines a com-

munication protocol that ensures the race-free execu-

tion, the work in [63] guarantees the atomicity of the

sequence read-input/execute/write-output by postpon-

ing the update of dataflow channels state until the ac-

tor has finished execution. Apart from potential per-

formance overhead, this would be incompatible with

the KPN mode of execution. This framework also sup-

ports broadcasting single data to several target actors

(if all concerned FIFO channels are mapped to the same

shared memory bank) that reminds the StreamDrive

broadcast operation. However, there is no equivalent

to the collect operation and no support for the data

parallelism. Finally, the work in [63] relies on static

scheduling of actors to platform processing elements.

The RVC-CAL offers a standardized framework for

developing dynamic dataflow applications. However,

there are very few applications available in CAL, mostly

video codecs, while the majority of new applications

continue to be developed in standard languages. Thus,

the most important difficulty of using CAL is that it

requires a complete re-write of the reference applica-

tions. CAL tools are also less mature that standard

development tools such as the gcc compiler, etc.

Shim [12, 13, 59] and the Distributed Operation

Layer (DOL) [23, 22] addressed implementation issues

of the KPN execution model in the embedded context.

Shim implements a KPN restricted to support only

synchronous (rendezvous) communication. This choice

eases scheduling, and programs are, by definition, al-

ways executable in finite space because synchronous

communication does not need buffering. Shim language

is based on C (but is not a C subset) augmented with

few constructs for concurrency, communication, and ex-

ceptions. Compared to the StreamDrive, Shim imposes

many syntactic restrictions on the input language which

makes porting existing reference applications more dif-

ficult. Furthermore, Shim does not address the runtime

implementation issues, instead it relies on costly stan-

dard runtime support such as Pthreads library.

DOL implements the KPN execution model using

cooperative protothreads [11]. While cooperative schedul-

ing eliminates context-switching overhead and simpli-

fies the runtime stack handling, the protothreads im-

pose a number of important language restrictions lead-

ing to additional performance overhead and to artifi-

cial changes to the sequential reference code. Using the

protothreads precludes implementation of real-time sys-

tems that may require preemptive scheduling. DOL as-

signment of actors to processors is static reducing load

balancing ability. Unlike StreamDrive, DOL only im-

plements the KPN execution model which leads to ad-

ditional performance penalty compared to the dataflow

execution because there are no firing rules: the sched-

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 5

uler keeps trying to execute actors even when their

blocking condition persists.

Like the work in [63] cited earlier, DOL takes advan-

tage of shared memory in order to implement copy-free

dataflow communication channels. In particular, DOL’s

windowed FIFOs [25] give actors direct access to data

buffers to avoid copying. However, the windowed FIFO

buffers cannot be shared between multiple actors, and

do not support the broadcast and collect operations.

Gangwal et al [16] proposed the query/claim/release

protocol, similar to the StreamDrive communication

protocol. One important difference between the Stream-

Drive implementation and the query/claim/release pro-

tocol is that the StreamDrive synchronization counters

count actual data bytes present in the communication

buffers instead of tokens. This enables communicating

actors to refer to different token sizes while still bene-

fiting from an efficient synchronization support. Most

importantly, the query/claim/release protocol do not

allow buffers to be shared between multiple actors.

StreamDrive actors’ ability to share data buffers is

essential for reducing memory requirements and the

communication overhead, but also for supporting the

data parallelism. Zaki et al [64] developed Partial Ex-

pansion Graphs (PEGs) to help exploit the data par-

allelism in addition to functional/pipeline parallelism

for SDF graphs. Similar to the StreamDrive, several

instances of dataflow actors may be instantiated de-

pending on relative load of the actor in terms of the

execution time. Compared to StreamDrive, the PEG

methodology has a number of important restrictions:

(1) it is applicable to SDF graphs, (2) the data-parallel

actors cannot have internal state, and (3) the data-

parallel actor instances must execute in different pro-

cessing cores. The work in [64] also develops a dynamic

scheduling heuristics and shows that this scheduler per-

forms better than the static one when actor execution

loads are variable. However, their runtime implementa-

tion incurs higher performance overhead compared to

StreamDrive: the synchronization and scheduling are

ensured by a special buffer manager actor built on top

of the underlying RTOS services, while StreamDrives’

broadcast and collect synchronization is built into the

scheduler itself. Finally, proposed Particle Swarm Op-

timization (PSO) approach for calculating the degree

of the data parallelism for dataflow actors is general

enough and can be applied on top of the StreamDrive

as well.

Dynamic dataflow scheduling in the context of multi-

core systems has been studied by Michalska at al [34,

35]. The techniques proposed in these publications can

be easily integrated with the StreamDrive distributed

scheduler.

The above mentioned published research has not

fully addressed the question of efficient execution of

dynamic dataflow models, such as DDN and KPN, in

small-scale clustered embedded architectures. Further-

more, they do not address the integration of specialized

hardware blocks with programmable components in a

single dataflow representation.

The integration of the application-specific hardware

blocks has been previously addressed in the context of

the high level synthesis (HLS) design flow. Several au-

thors used RVC-CAL language as a single starting point

for description of SW and HW components in a hetero-

geneous platform [47, 1, 2, 51]. Serot et Al [57] devel-

oped CAPH programming language for describing and

implementing stream-processing applications on recon-

figurable hardware, such as FPGAs. CAPH is based

upon the dynamic dataflow model, supports an auto-

mated compilation producing VHDL code, and struc-

turally reminds CAL.

These methodologies propose the software/hardware

co-design flow that automates analysis, synthesis, op-

timization, and design space exploration for a given

dataflow application. While targeting an application-

specific solution, they pursue three design objectives:

(1) higher degree of program analyzability and fast de-

sign cycle, (2) platform independent description that

can be utilized for any implementation platform, and

(3) rapid exploration of design alternatives. However,

as explained earlier, CAL (and similarly, CAPH) is a

specialized language with limited code base. The main-

stream programming languages for heterogeneous com-

puting are C and C-like languages. Porting a C appli-

cation to CAL requires considerable effort and invest-

ment, comparable to developing a dynamic dataflow

application from scratch.

On the other hand, we are interested in develop-

ing specialized hardware blocks for a particular target

platform that can be reused accross a given application

domain, eg. the convolution for image processing. This

requires analyzing multiple applications and a “generic”

hardware block development approach. The hardware-

software partitioning and architecture exploration in

our work has been conducted using higher-level simu-

lation, with hardware block models derived from refer-

ence C functions with minimal modifications of original

code. The specialized hardware blocks in our work have

been designed using traditional RTL development flow.

If desired, in order to speed-up the design cycle and to

make the design technology-independent, the HLS tools

such as CatapultC can also be used for these hardware

blocks implementation.

6 Arthur Stoutchinin, Luca Benini

3 Target Platform

StreamDrive targets small-scale clustered embedded ar-

chitectures, where heterogeneous processing elements

(PEs) are grouped into small clusters sharing a finite

amount of resources including local memory. In this

paper, we focus on programming a single cluster of

such PEs. We are targeting image processing domain

with real-time requirements of processing multiple im-

age frames per second, we adopt the strategy of dis-

tributing computations of different image frames on dif-

ferent clusters. Thus, in a multicluster configuration,

each cluster executes the same dataflow application ap-

plied to different image frame.

Fig. 1 shows the block diagram of our target ar-

chitecture, the STMicroelectronics’ ASMP cluster. It is

composed by a number of programmable cores, spe-

cialized hardware blocks (HWPEs), and a DMA, all

connected together to a shared Tightly-Coupled Data

Memory (TCDM). The HWPEs are essential for achiev-

ing the required performance while keeping the cost and

the power consumption low. In order to even further op-

timize power-efficiency of the system, the HWPEs can

run each in their own different dedicated clock domain,

thus allowing for the adjustment of their frequency in

accordance with application requirements. Seamless in-

tegration of the hardware blocks is one of the important

advantages of the StreamDrive framework.

The key element of the ASMP cluster is its logarith-

mic interconnect [45] that allows multiple concurrent

accesses to the multi-bank TCDM memory. In order to

minimize the number of stalls due to conflicting simul-

taneous accesses to the same bank, the banking factor
(i.e. the ratio between the number of TCDM memory

banks and the number of access ports), needs to be cor-

rectly dimensioned. Such shared memory organization,

although it has a limited scalability, corresponds well

to the small-scale cluster architecture that we target.

Our experience, confirmed by other studies on similar

architectures [8], shows that this type of interconnect

can support up to 32 access ports, each with a through-

put close to 32-bits/cycle with latency compatible with

the RISC core internal pipeline, under the embedded

IP target frequencies.

The connection between the HWPEs and the shared

memory is ensured by the hardware block interface (I/F

0, .. I/F K-1 in the figure) that serves as a bridge for

streaming hardware blocks. The programmable cores,

the hardware block interface, and the DMA, all sup-

port the StreamDrive communication protocol based

on shared memory - this creates a common infrastruc-

ture for the core-to-core, the core-to-hardware-block, or

the hardware-block-to-hardware-block communication.

To/From SoC

Interconnect

Shared Memory

STxP70

#0

I$ Subsystem

I/F #0

Core #N-1Core #0

I/F #K-1

HW

IP#0

HW

IP#K-1

IP
-s

p
e

ci
fi

c
In

te
rc

o
n

n
e

ct

DMA

IP-specific

Peripherals

IP
-s

p
e

ci
fi

c

In
te

rf
ac

e
s

Peripherals

~d]u���U�Y�

T
ig

h
tl

y-
co

u
p

le
d

(s
yn

ch
ro

,e
ve

n
ts

,
e

tc
.)

b
an

k0

b
an

k1

b
an

k2

b
an

k3

b
an

kM

Fig. 1 The ASMP Cluster Block Diagram

The shared tightly-coupled memory organization is im-

portant for taking full advantage of the StreamDrive

features.

The size of the TCDM has important impact on

area-efficiency (GOPS/mm2) of the system: the larger

the TCDM the lower area-efficiency. Generally, rela-

tively small TCDM memory cannot fit the entire appli-

cation working set. The StreamDrive cluster includes a

DMA used for data movement between the TCDM and

larger external off-chip memory. The DMA ensures ad-

ditional function of synchronizing data transfers with

the rest of the processing.

Finally, the ASMP cluster includes a small num-

ber of tightly-coupled peripherals aiming at accelerat-

ing synchronization, event handling, etc.

The current ASMP cluster implementation targets

mobile image processing applications and includes 8

RISC processor cores running at relatively low fre-

quency (500 MHz), with 32K of instruction cache each.

The processor cores are extended with a small dedicated

set of specialized instructions resulting in a 2-4X accel-

eration of important image processing functions 1 The

cluster also includes two hardware blocks: the Gaussian

filter and the Scaler interpolation block, - along with

256 KB of the TCDM memory. Overall, one ASMP

cluster delivers up to 8Gops at 500 MHz not counting

the hardware blocks, while the TCDM peak bandwidth

reaches 32 GB per second. A predecessor of this ar-

chitecture, featuring 4 clusters and 16 processors per

cluster, with no hardware blocks, achieved power con-

sumption of 2W in 28nm technology [33]. ASMP targets

an even lower power and silicon area budget, position-

1 This set includes relatively generic instructions, such as
a MAC4CLIP which performs SIMD multiplication on bytes of
two input operands, saturates the two 16-bit results, and ac-
cumulates them with the result operand; as well as instruc-
tions dedicated to specific image processing functions, such
as a XORSBCW, used in Support Vector Machine (SVM), which
calculate the Hamming distance between two vectors.

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 7

ing this platform well within the low-power, low-cost

embedded profile.

Although the logarithmic interconnect technology

constraints limit the scale of a tightly-coupled cluster

to a couple of dozens of processing elements, multiple

clusters can be put together allowing massive up-scaling

in performance while maintaining the initial power- and

area- efficiency. However, the multi-cluster aspects are

out of this paper’s scope.

As described in this section, our StreamDrive imple-

mentation leverages the tightly-coupled shared memory

available in clustered platformes similar to ASMP. How-

ever, the StreamDrive framework can be retargeted to

other architectures, for example, to distributed shared

memory clusters. In this case, attention should be payed

to efficiently implementing StreamDrive communica-

tion layer, in particular the broadcast and the collect

connections (refer to next section). The StreamDrive

scheduler is already distributed, however the global

scheduling list will need to be implemented differently,

perhaps using a work-stealing approach. As a bottom

line, it is important to keep in mind that StreamDrive

targets systems with small-scale clusters, not exceeding

douzens of processing elements, as opposed to large-

scale massively parallel systems.

4 StreamDrive Overview

In this section, we discuss the StreamDrive API and the

runtime system, and illustrate the incremental trans-

formation flow of a sequential code into a dynamic

dataflow implementation.

In the dataflow model of computation, an applica-

tion is represented as a graph of actors 2 connected by

the communication channels, or dataflow buffers. The

actors carry the actual computation while exchanging

application-specific units of data, called tokens, over the

communication channels. Tokens are written and read

onto the communication channels in FIFO order. In

StreamDrive, actors are connected to communication

channels via input and output ports. Reading from an

input port blocks the actor until all required tokens are

available in the channel, and writing to an output port

blocks the actor until enough empty room is available

in the channel for the writing. For example, an actor

performing an image filtering operation could be read-

ing an input image line-by-line and writing the filtered

image line-by-line. Then, the input and output commu-

nication tokens correspond to one line of the image.

2 In this paper, we also use term actor for the KPN pro-
cesses for the sake of coherence.

Two major dataflow models of computation sup-

ported by the StreamDrive are the Kahn Process Net-

works and the Dynamic Dataflow Networks.

4.1 The StreamDrive API

The StreamDrive API is based on the C program-

ming language and provides methods for defining the

dataflow actors, for constructing the dataflow graph,

and for controlling the runtime scheduler.

Each StreamDrive actor defines its private variables

and its input and output ports. Actor ports specify the

size of tokens exchanged on the given port. The actor’s

private variables and its communication ports are ac-

cessible from inside the actor functions via the THIS

pointer. StreamDrive actors also define four basic func-

tions: CONSTRUCTOR, DESTRUCTOR, INIT, and WORK. The

CONSTRUCTOR and the DESTRUCTOR perform all actions

required at actor creation and release time, in particular

the actor ports are created inside the actor constructor

function. The INIT function configures the actor for ex-

ecution by initializing actor’s internal state. Finally, the

WORK implements the actor functionality.

The StreamDrive uses a copy-free communication

protocol, leveraging on the shared TCDM available in

hardware. The API defines four communication func-

tions: reserve and push for writing the data to an out-

put channel, and pop and release for reading the data

from an input channel. Before writing into an output

channel, a source actor must acquire a pointer to an

available empty buffer entry via the reserve call. The

function is blocking if no room is available inside the

given output buffer. When the data have been written

to the buffer, the source actor signals the availability of

new tokens via the push call. On the destination side,

an actor must acquire a pointer to an input token via

the pop call before reading the data. The pop function is

blocking if there is not enough available tokens in the

FIFO. The destination actor does not need to make

a copy of the data but instead can use data directly

from the shared communication buffer. When the des-

tination actor no longer needs the data, it must signal

the source actor that the buffer can be reused via the

release function.

The StreamDrive API also provides methods for cre-

ating actors and their ports, and for connecting actors

via communication buffers. The StreamDrive graph de-

scription can be parameterized in number of actor in-

stances and their connections. The API supports the

configuration of dataflow graphs between executions by

disabling actors, actor connections and by changing ac-

tor parameters. It is important to note that the ap-

plication graph does not need to change depending on

8 Arthur Stoutchinin, Luca Benini

whether actors are implemented as software functions

or as hardware blocks.

The StreamDrive model requires explicit manage-

ment of the memory hierarchy, in particular of trans-

ferring data between the external and the local shared

memory. Our experience is that streaming applications

have regular memory access patterns and the advan-

tages of explicit memory hierarchy management out-

weigh its inconveniences. The StreamDrive API imple-

ments a specific DMA support. A DMA function is simi-

lar to that of an actor: its implementation ensures that

a synchronization is generated upon the DMA trans-

fer completion in order to signal that a token is ready.

In section 5 we show that using this mechanism, a

very efficient hiding of external memory latency can

be achieved.

Finally, the API provides a few functions for control-

ling the runtime scheduler. Of particular importance is

the function for specifying the dataflow firing rules. A

firing rule is specified by requiring certain number of

free slots (output ports) or ready tokens (input ports)

to be available in a given communication port before the

next firing of the actor can take place. The firing rules

can change for each new actor firing, supporting fully

dynamic dataflow model. In the absence of firing rules,

an actor behaves as a KPN process, possibly blocking

during execution.

4.2 The Incremental Parallelization Flow

One important objective of the StreamDrive is to sup-

port the incremental transformation of a sequential ref-

erence code into an optimized dataflow form. In order

to facilitate such transformation, the process is divided

into a number of conceptually simple steps, each con-

secutive step is an incremental improvement over the

previous one:

1. Identification of the dataflow part of the sequential

application.

2. Identification of the dataflow actors and building

the initial Kahn Process Network, KPN.

3. Refinement of the initial KPN by reducing actors

granularity.

4. Identification and implementation of data parallel

actors.

5. Conversion of the Kahn Process Network into the

Dataflow Network by introducing the dataflow firing

rules.

6. Optimization of the performance vs memory foot-

print trade-off.

The initial transformation of a sequential reference

code into KPN form is facilitated by the fact that

1static unsigned int n_levels = 8; // RO
2static size_t n_features = 500;
3...
4int * n_features_per_level;

// to be transformed
5...
6main (int argc , char **argv) {
7char * scene_obj = argv [1];
8char * scene_db = argv [2];
9Image_t img;
10Descr_t descr_db;
11Match_t match_db;
12Point_t * keypoints = (Point_t *) malloc(n_levels*

sizeof(Point_t));
13orb_init (&img , scene_obj , &descr_db , scene_db , &

match_db);
14orb_run (&img , keypoints , &descr_db);
15match (&descr_db , &match_db);
16... show results ...
17orb_deinit (&img , keypoints , &descr_db , &match_db)

;
18}

1void orb_run (Image_t img , Point_t * keypoints ,
Descr_t * descriptors) {

2Image_t * img_pyramid = (Image_t *) malloc(
n_levels*sizeof(Image_t));

3... compute rescaled image pyramid from the img
...

4computeKeyPoints(img_pyramid , keypoints);
5for (level = 0; level < n_levels; ++ level) {
6Point_t * keyp = &keypoints[level];
7computeOrientation(level , &img_pyramid[level],

keyp);
8Descr_t * descr = &descriptors[level];
9Image_t * blur_img = (Image_t *) malloc(sizeof(

Image_t));
10computeGaussianFilter(level , &img_pyramid[level

], blur_img , ...);
11computeDescriptors(level , blur_img , keyp , desc)

;
12free (blur_img);
13}
14free (img_pyramid);
15}

Fig. 2 Extract from the reference ORB application

streaming applications are typically structured into a

sequence of processing kernels that roughly correspond

to parallel Kahn processes. Transforming a sequential

kernel into a Kahn process often requires minimal mod-

ifications to the code, consisting mostly of inserting

KPN communication statements at appropriate places.

The biggest effort goes into achieving good perfor-

mance vs memory footprint trade-off beyond the initial

basic level. In this respect, the StreamDrive is not dif-

ferent from other parallelization approaches - usually a

good understanding of the model is required in order

to achieve high performance levels.

Importantly, all transformation steps can be per-

formed incrementally, one actor at a time, allowing at

each stage to debug and verify functional correctness

of the transformation. In order to gain a more pre-

cise idea of the StreamDrive incremental parallelization

flow, we illustrate the process using a real-life exam-

ple. Figures 2 and 3 refer to the code for the Oriented

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 9

1 void computeKeyPoints (Image_t * img_pyramid ,
Point_t * keypoints) {

2 ...
3 for (level = 0; level < n_levels; ++ level) {
4 Point_t * keyp = &keypoints[level];
5 int cornerCount;
6 Keyp_t * results = fast9_nonmax(level , &

img_pyramid[level], ..., &cornerCount);
7 keyp ->data = (Keyp_t *) malloc(cornerCount *

sizeof(Keyp_t));
8 copy (keyp ->data , results , cornerCount);
9 computeHarrisResponse(level , img_pyramid[level

], keyp , ...);
10 cullKeypoints(level , keyp , n_features_per_level[

level], ...);
11 free (results);
12 }
13 }

1 Keyp_t * fast9_nonmax (int level , Image_t * img ,
..., int * n_corners) {

2 int nCorners;
3 Keyp_t * corners = fast9_detect (img , ..., &

nCorners);
4 int * scores = fast9_score (corners , nCorners ,

...);
5 Keyp_t * nonmax = nonmax_suppress (corners ,

scores , nCorners , ..., n_corners);
6 return nonmax;
7 }

1 Keyp_t * fast9_detect (Image_t img , ..., int *
num_corners) {

2 int xsize = img ->width;
3 int ysize = img ->height;
4 int rsize =512;
5 *num_corners = 0;
6 Keyp_t * corners = (Keyp_t *) malloc(sizeof(Keyp_t)

*rsize);
7 for (y = edge_threshold; y < ysize -

edge_threshold; y++) {
8 for (x = edge_threshold; x < xsize -

edge_threshold; x++) {
9 ... compute keypoint or not ...

10 if (corner) {
11 if (* num_corners == rsize) {
12 rsize *=2;
13 corners = (Keyp_t *) realloc(corners , sizeof(

Keyp_t)*rsize);
14 }
15 corners [* num_corners] = *corner;
16 *num_corners ++;
17 }
18 }
19 }
20 return corners;
21 }

1 Keyp_t * nonmax_suppress (Keyp_t * corners , int *
scores , int num_corners , ..., int * num_nonmax)
{

2 *num_nonmax =0;
3 Keyp_t * nonmax = (Keyp_t *) malloc(num_corners *

sizeof(Keyp_t));
4 ... compute nonmax corners ...
5 free (corners);
6 return nonmax;
7 }

Fig. 3 Compute Keypoints function from the ORB applica-
tion

Fast and Rotated Brief (ORB) application. The ORB

algorithm identifies a set of objects inside an image

and matches their descriptors to the descriptors of ob-

1void orb_run (Image_t img , Point_t * keypoints ,
Descr_t * descriptors) {

2Image_t * img_pyramid = (Image_t *) malloc(
n_levels*sizeof(Image_t));

3... compute rescaled image pyramid from the img
...

4GraphBuild_t build_parm;
5GraphExec_t exec_parm;
6build_parm.img_pyramid = img_pyramid;
7build_parm.n_levels = n_levels;
8...
9Build_Graph (build_parm);
10Exec_Graph (exec_parm);
11Term_Graph ();
12free (img_pyramid);
13}

Fig. 4 The orb run function modified to execute under the
StreamDrive runtime.

jects in a trained database. The objects are identified

by detecting keypoints of interest via the FAST algo-

rithm [48]. The corner keypoints are selected via the

nonmax suppression and then sorted using Harris re-

sponse measure [24] to retain only the “best” keypoints.

For these keypoints, the algorithm computes object ori-

entation, and objects’ BRIEF descriptor of the object

associated with each keypoint. The descriptor compu-

tation requires the Gaussian filtered image. In order to

be independent from the distance-to-object, processing

is repeated over a series of images representing scaled

down original image, the pyramid. ORB puts to evi-

dence several important parallelization challenges: (1)

ORB computation is irregular - some parts of the im-

age may not have any keypoints, while others contain

many; progressively reduced pyramid image sizes; (2)

the nonmax and the sort computations are inherently

serial; (3) the working set footprint is larger than can

fit with the small L1 level memory, therefore our imple-

mentation extensively. uses DMA for transferring data

to and from the external memory.

As a preparation step, the ORB application has

been transformed from the floating-point version to the

fixed-point suitable for an embedded implementation.

The shown extract has been slightly amended for the

purpose of the illustrating important points.

4.2.1 Identification of the dataflow graph

The ORB main function (line 6 in the top listing) re-

ceives the names of the image to process and of the ob-

jects database as arguments. Inside the main function,

the orb init loads the input image from a file; loads

the trained objects database initializing the match db

for matching image objects vs the database objects; and

initializes some global parameters. The orb run com-

putes the keypoints and the object descriptors. The

match function compares the descr db vs the match db

10 Arthur Stoutchinin, Luca Benini

classifying the objects found inside the input image. Fi-

nally, the orb deinit releases resources allocated dur-

ing the processing.

The very first step for transforming this code is

to identify the part of the code which will become a

dataflow graph. We will focus on the orb run func-

tion where the compute intensive processing is required.

The match function, accounting for about half of the

processing requirements of the application, is another

good candidate but is more communication than com-

pute bound. In our actual implementation, the orb run

and the match have been implemented as two separate

dataflow graphs. In order to simplify the illustration,

we do not include building the scaled image pyramid

(lines 2-3 inside the orb run function) as part of the

graph. Thus, we assume that the pyramid has been built

during a pre-processing step and the results have been

stored in external memory 3. We divide the ORB ap-

plication into two parts: (1) the main part which takes

care of the input and output, user interactions, allo-

cating and freeing resources, etc., and (2) the dataflow

part which corresponds to the compute intensive part

of the application. This dataflow part is executed as a

dataflow graph under the control of the StreamDrive

dataflow scheduler.

Figure 4 shows the transformed orb run function

from the main part of the application, The ORB com-

putation has been replaced with the StreamDrive API

calls for building, executing and releasing the dataflow

graph. The Build Graph API call takes an application-

specific structure as a parameter used to pass construc-

tion time arguments to the graph such as the pointer

at the image pyramid, number of pyramid levels, image

dimensions, etc. A dataflow graph, once built, can be

executed multiple times, for example looping over sev-

eral input images. In this case, the Exec Graph param-

eter can be used to pass different execution parameters

for each graph execution.

The Figure 5 shows the dataflow part of the ap-

plication. The single ORB actor is defined via two files,

the orbActor.h shown in the top of the figure, and the

orbActor.c, second listing from the top. The .h file de-

fines actor’s private data structure and actor ports. This

actor has neither input, no output ports. The .c file de-

fines four functions: the actor constructor and destruc-

tor, called at actor construction and termination time,

respectively; the init function called before the graph

execution starts; and the work function which performs

3 In actual implementation, we have implemented two vari-
ants of the ORB: (1) with a rescaler tightly-coupled HW
block and where the pyramid construction is part of the
dataflow graph, and (2) with the pyramid construction as
a pre-processing step.

1typedef struct {
2int32_t dummy;
3} orb_t;
4
5STREAM_DECLARE_ACTOR_TYPE(ORB ,orb_t);
6#define ORB_ACTOR_PORT_COUNT 0

1#define ACTOR_NAME ORB
2
3#include <stream.h>
4
5STREAM_CONSTRUCTOR (void * arg) {}
6STREAM_DESTRUCTOR (void) {}
7STREAM_INIT () {}
8STREAM_WORK () {
9uint32_t n_levels = cfg ->n_levels;
10Image_t * img_pyramid = cfg ->img_pyramid;
11Point_t * keypoints = cfg ->keypoints;
12Descr_t * descriptors = cfg ->descriptors;
13computeKeyPoints(img_pyramid , keypoints);
14for (level = 0; level < n_levels; ++ level) {
15Point_t * keyp = &keypoints[level];
16computeOrientation(level , &img_pyramid[level],

keyp);
17Descr_t * descr = &descriptors[level];
18Image_t * blur_img = (Image_t *) malloc(sizeof(

Image_t));
19computeGaussianFilter(level , &img_pyramid[level

], blur_img , ...);
20computeDescriptors(level , blur_img , keyp , desc)

;
21free (blur_img);
22}
23return 0;
24}

1STREAM_DECLARE_ACTOR(ORB ,ORB_ACTOR_PORT_COUNT ,2048)
;

2
3static ORB_t * orbActor;
4
5GlobalParam_t cfg;
6
7int32_t Build_Graph (GraphBuild_t * arg) {
8... initialize the cfg from arg ...
9orbActor = STREAM_ACTOR_MAKE(ORB , "orb", NULL);
10}
11
12int32_t Exec_Graph (GraphExec_t * arg) {
13uint32_t timeout = arg ->timeout;
14
15STREAM_ACTOR_ENABLE (orbActor);
16STREAM_ACTOR_SET_PRIORITY(orbActor , 0);
17
18STREAM_GRAPH_SET_TIMEOUT (timeout);
19}
20
21int32_t Graph_Term () {
22STREAM_ACTOR_TERM(orbActor);
23}

Fig. 5 The ORB code wrapped into dataflow graph with
single actor

the actors’ workload. Notice that for the initial ORB ac-

tor, the constructor, destructor and init functions re-

main empty, while the work function is a copy-paste

of the code from sequential reference. The only slight

change from the reference code is that arguments such

as pointers to the img pyramid, to the keypoints, etc.

are read from the global cfg structure. This structure

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 11

is setup during the dataflow graph construction from

Build Graph arguments (line 8 in the bottom listing).

The three dataflow graph function corresponding to

the StreamDrive API, the Build Graph, the Exec Graph,

and the Term Graph are shown in the bottom listing of

the Figure 5. The STREAM DECLARE ACTOR function de-

clares an actor, with the last parameter specifying how

much stack room this actor needs to have allocated. The

STREAM ACTOR MAKE function from the Build Graph al-

locates resources for the actor and calls its construc-

tor. Similarly, the STREAM ACTOR TERM function from

the Term Graph calls actor destructor before releasing

actor resources. The Exec Graph function configures

the dataflow graph by enabling actors - it is possible

to only enable a subset of all actors for any particular

execution. Each actor is given a scheduling priority, the

default is 0. Finally, there are no graph connections in

our initial single-actor dataflow graph.

Notice two important points about our transformed

application: (1) apart from little “syntactic sugar”, the

code changes to the initial sequential version are min-

imal; (2) the dataflow part runs under the control of

our StreamDrive scheduler and executed in the KPN

mode (there are no firing rules yet). It is clear that

the process of identification of the main part and the

dataflow part of the application is application-specific.

The global variables that are used in the dataflow part

need to be identified and declared with the cfg struc-

ture.

4.2.2 Building the initial dataflow graph

As next transformation step, the initial dataflow graph

is built: we need to (1) identify sections of code (kernels)

which can be transformed into dataflow actors, and (2)

introduce the communication channels connecting the

actors. This step is facilitated by the fact that streaming

applications are typically structured into a sequence of

processing kernels that are a natural choice for paral-

lel Kahn actors. For example, from the Figure 2, the

ComputeOrientation, ComputeGaussianFilter, and

ComputeDescriptors seem to be good candidates for

dataflow actors. The ComputeKeyPoints shown in Fig-

ure 3 is itself composed of kernels, the fast9 detect,

the nonmax suppress, the ComputeHarrisResponse,

and the CullKeypoints. These will be our initial choice

of the dataflow actors.

The channel introduction requires identifying, for

the input channels, of the data that are read by this

actor but written outside of it, and for the output chan-

nels, the data that are written by the actor and read

elsewhere. This remains a manual task, although tools,

such as Sprint [7] may be considered in future work.

1typedef struct {
2uint32_t _cFastThreshold;
3} fast_t;
4STREAM_DECLARE_ACTOR_TYPE(FAST ,fast_t);
5
6#define FAST_IN_ESIZE (sizeof(Image_t))
7#define FAST_OUT_ESIZE (sizeof(Keyp_t))
8#define FAST_PORT_IN 0
9#define FAST_PORT_OUT 1
10#define FAST_PORT_COUNT 2

1STREAM_CONSTRUCTOR (void * arg) {
2STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN , "in_p",

FAST_IN_ESIZE);
3STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT , "out_p

", FAST_OUT_ESIZE);
4}
5STREAM_DESTRUCTOR (...) {
6STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);
7STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);
8}
9STREAM_INIT () {}
10STREAM_WORK () {
11int16_t fastThreshold = THIS ->_cFastThreshold;
12uint8_t n_levels = cfg ->n_levels;
13Image_t * img_pyramid = cfg ->img_pyramid;
14uint32_t level;
15
16for (level = 0; level < n_levels; ++ level) {
17int cornerCount;
18fast9_detect(level , &img_pyramid[level], ..., &

cornerCount);
19}
20}

1void fast9_detect (Image_t * img , ..., int *
num_corners) {

2int xsize = img ->width;
3int ysize = img ->height;
4// int rsize =512;
5Keyp_t * header = (Keyp_t *) STREAM_OUT_RESERVE (

FAST_PORT_OUT , 1);
6*num_corners = 0;
7// Keyp_t * corners = (Keyp_t *) malloc(sizeof(

Keyp_t)*rsize);
8for (y = edge_threshold; y < ysize -

edge_threshold; y++) {
9for (x = edge_threshold; x < xsize -

edge_threshold; x++) {
10... compute keypoint or not ...
11if (corner) {
12Keyp_t * token = (Keyp_t *)

STREAM_OUT_RESERVE (FAST_PORT_OUT , 1);
13//if (* num_corners == rsize) {
14// rsize *=2;
15// corners = (Keyp_t *) realloc(corners , sizeof(

Keyp_t)*rsize);
16//}
17// corners [* num_corners] = *corner;
18*token = *corner;
19*num_corners ++;
20}
21}
22}
23header ->... = *num_corners;
24STREAM_OUT_PUSH(FAST_PORT_OUT , *num_corners +1);
25return;
26}

Fig. 6 Initial FAST dataflow actor

Once again, due to the intrinsic structure of the stream-

ing applications, the channel introduction turns often

to be relatively straightforward. From the ORB exam-

ple, the fast9 detect kernel takes one image from the

12 Arthur Stoutchinin, Luca Benini

image pyramid in its input channel, and produces the

array of cornerCount FAST keypoints with their FAST

scores. The nonmax suppress takes the keypoints gen-

erated by the fast9 detect as input and generates

the set of corner keypoints by removing “uninteresting”

keypoints from the set. The ComputeHarrisResponse

reads these corners and computes the Harris response

for each of them, which is a measure of “relevance”

of each keypoint. The ComputeHarrisResponse output

is the set of keypoints with their associated Harris re-

sponse. The CullKeypoints performs the sorting of the

keypoints with respect to their Harris response and re-

duces the keypoint set further by retaining at most the

n features per level best keypoints. From these re-

maining keypoints, the ComputeOrientation computes

each keypoint orientation. The ComputeOrientation

has two input channels, the keypoints generated by

the CullKeypoints and the scaled input image from

corresponding image pyramid level. The output of the

ComputeOrientation is a set of keypoints with their as-

sociated orientation measure. The ComputeDescriptors

takes two input channels as well, the output keypoints

from the ComputeOrientation and the Gauss filtered

input image. The ComputeDescriptors output is the

final set of keypoints and their descriptors.

In order to introduce new actors, each processing

kernel needs to be wrapped into the StreamDrive syn-

tactic structure similar to the earlier ORB actor. Fig-

ure 6 shows as example the FAST actor corresponding

to the fast9 detect kernel. Inside the actor .h file,

the actor ports are declared, where the XXX ESIZE de-

fines port token size. The FAST input tokens are of type

Image t and output tokens are corners of type Keyp t.

Inside the .c file, the actor constructor and destruc-

tor functions create and destroy, respectively, the actor

ports. The change to the original fast9 detect func-

tion is minimal and consists in inserting the Stream-

Drive communication primitives for writing the out-

put data to the output port. At this point we do not

use the input port yet, because we did not create an

actor that can write the data to this port, therefore

our FAST actor keeps reading the img pyramid directly

from external memory. The STREAM OUT RESERVE and

the STREAM OUT PUSH implement the StreamDrive com-

munication protocol. Thus, a reserve is called for every

new corner and at the end all corners are pushed to the

output channel. In order to communicate the number of

corners to the downstream actor, the FAST reserves one

header token at the beginning of the processing. When

the number of corners is known at the end of the outer-

most loop, the header is pushed to the output channel

FAST
NON

MAX

HAR

RIS
CULL ANGLE BRIEF

GAUSS

Fig. 7 Initial ORB dataflow graph: The actors correspond
to the original kernels; FAST, GAUSS, HARRIS, and ANGLE read
input image data directly from the external memory, BRIEF

writes result descriptors directly to the external memory.

together with the corner tokens 4. It is interesting to

notice that using the streaming style communication

allows us to get rid of inefficient malloc, realloc, and

free calls.

The dataflow graph refinement is performed incre-

mentally, one actor at a time, verifying the transforma-

tion correctness at each graph transformation. At the

end of the process, the initial ORB actor is no longer

needed and is removed from the graph. The resulting

ORB graph is drawn in the Figure 7.

Figure 8 shows the corresponding Build Graph func-

tion with seven actors. The STREAM BIND function con-

nects the output port of a source actor to the input

port of the destination actor, while specifying the com-

munication buffer depth and the memory level at which

the buffer needs to be allocated. So far we have not ad-

dressed the memory size and actor granularity issues,

therefore all buffers have been allocated in large exter-

nal memory.

Notice that several ports remain unused in the cur-

rent graph. These are ports that do not have actors

to connect to. For example, the FAST actor input port

which reads the input image from memory does not

have a matching output port to connect to. Similarly,

the GAUSS input port, the HARRIS and ANGLE ports that

read input images from memory, as well as the BRIEF

output port that writes final descriptors out to mem-

ory, do not have matching ports to connect to. All these

ports correspond to input and output channels to the

dataflow graph. This data initiate inside the external

memory and need to be copied from this external mem-

ory to the L1 memory for processing.

We use the DMA engine to copy the external data

to the L1 memory. For this, we use the StreamDrive

DMA API. For the input channels, we introduce the

new SRC actor which implements the DMA transfers.

The SRC actor does not have input ports and has one

output port to which data from the DMA transfer are

sent. For transferring results from the BRIEF actor to

the external memory, we add the StreamDrive DMA

4 any field of the Keyp t structure can be used to commu-
nicate the number of corners.

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 13

1 STREAM_DECLARE_ACTOR(GAUSS ,GAUSS_ACTOR_PORT_COUNT
,1024);

2 STREAM_DECLARE_ACTOR(FAST ,FAST_ACTOR_PORT_COUNT
,1024);

3 STREAM_DECLARE_ACTOR(NONMAX ,NONMAX_ACTOR_PORT_COUNT
,1024);

4 STREAM_DECLARE_ACTOR(HARRIS ,HARRIS_ACTOR_PORT_COUNT
,1024);

5 STREAM_DECLARE_ACTOR(CULL ,CULL_ACTOR_PORT_COUNT
,1024);

6 STREAM_DECLARE_ACTOR(ANGLE ,ANGLE_ACTOR_PORT_COUNT
,1024);

7 STREAM_DECLARE_ACTOR(BRIEF ,BRIEF_ACTOR_PORT_COUNT
,1024);

8
9 static GAUSS_t * gaussActor;

10 static FAST_t * fastActor;
11 static NONMAX_t * nonmaxActor;
12 static HARRIS_t * harrisActor;
13 static CULL_t * cullActor;
14 static ANGLE_t * angleActor;
15 static BRIEF_t * briefActor;
16
17 GlobalParam_t cfg;
18
19 int32_t Build_Graph (GraphBuild_t * arg) {
20 ... initialize the cfg from arg ...
21
22 gaussActor = STREAM_ACTOR_MAKE(GAUSS , "gauss",

NULL);
23 fastActor = STREAM_ACTOR_MAKE(FAST , "fast", NULL)

;
24 nonmaxActor = STREAM_ACTOR_MAKE(NONMAX , "nonmax",

NULL);
25 harrisActor = STREAM_ACTOR_MAKE(HARRIS , "harris",

NULL);
26 cullActor = STREAM_ACTOR_MAKE(CULL , "cull", NULL)

;
27 angleActor = STREAM_ACTOR_MAKE(ANGLE , "angle",

NULL);
28 briefActor = STREAM_ACTOR_MAKE(BRIEF , "brief",

NULL);
29
30 STREAM_BIND (fastActor , FAST_PORT_OUT ,

nonmaxActor , NONMAX_PORT_IN , FAST_OUT_DEPTH ,
MEM_EXT);

31 STREAM_BIND (nonmaxActor , NONMAX_PORT_OUT ,
harrisActor , HARRIS_PORT_IN , NONMAX_OUT_DEPTH
, MEM_EXT);

32 STREAM_BIND (harrisActor , HARRIS_PORT_OUT ,
cullActor , CULL_PORT_IN , HARRIS_OUT_DEPTH ,
MEM_EXT);

33 STREAM_BIND (cullActor , CULL_PORT_OUT , angleActor
, ANGLE_PORT_IN , CULL_OUT_DEPTH , MEM_EXT);

34 STREAM_BIND (angleActor , ANGLE_PORT_OUT ,
briefActor , BRIEF_PORT_IN , ANGLE_OUT_DEPTH ,
MEM_EXT);

35 STREAM_BIND (gaussActor , GAUSS_PORT_OUT ,
briefActor , BRIEF_PORT_BLUR , GAUSS_OUT_DEPTH ,
MEM_EXT);

36 }

Fig. 8 Listing of the Build Graph function that constructs
the initial ORB graph.

API calls inside the BRIEF actor. Figure 9 shows the

ORB graph with the SRC actor broadcasting the input

image to several ORB actors.

At the end of this step, the initial dataflow graph is

built with several dataflow actors identified. Following

important points facilitate this transformation step: (1)

the actor granularity of execution of the original appli-

cation has been preserved; (2) we have avoided dealing

with limited memory constraints by allocating all com-

SRC FAST
NON

MAX

HAR

RIS
CULL ANGLE BRIEF

GAUSS

Fig. 9 ORB dataflow graph with the DMA actor added: the
input image data are read via the DMA by the SRC actor and
are broadcast to the FAST, GAUSS, HARRIS, and ANGLE actors.
The BRIEF actor uses the StreamDrive DMA API for writing
result descriptors to the external memory.

munication buffers in sufficiently large external mem-

ory; (3) the actor execution order corresponds to that

of the original application because we have preserved

the sequential code granularity and dependencies.

4.2.3 The dataflow graph refinement

The next transformation step is the dataflow graph re-

finement by reducing actor granularity so that dataflow

communication buffers fit with limited L1 memory. The

dataflow actor granularity refers to the amount of data

that the actor needs for executing without being blocked,

and is directly related to the size of actor input and out-

put tokens.

Actor Port Token size
FAST IN One image line

OUT One keypoint
NONMAX IN One keypoint

OUT One keypoint
HARRIS IN One keypoint

REF One image line
OUT One keypoint

CULL IN One keypoint
OUT One keypoint

ANGLE IN One keypoint
REF One image patch
OUT One keypoint

GAUSS IN One image line
OUT One image line

BRIEF IN One keypoint
BLUR One image patch
OUT One descriptor

Table 2 Granularity of actors in the ORB application

Table 2 shows refined token sizes for the ORB graph

actors. Notice that we have chosen to fetch the ANGLE

and the BRIEF image data one patch at a time: a patch

is a small area around each keypoint. Because patches

for different keypoints may overlap, we end up fetching

same image pixels multiple times. However, the alter-

native of keeping the keypoints in raster scan order and

14 Arthur Stoutchinin, Luca Benini

1 typedef struct {
2 uint32_t cFastThreshold;
3 uint8_t * line_p [3];
4 } fast_t;
5 STREAM_DECLARE_ACTOR_TYPE(FAST ,fast_t);
6
7 // Ports
8 #define FAST_IN_ESIZE (sizeof(Line_t))
9 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

10 #define FAST_PORT_IN 0
11 #define FAST_PORT_OUT 1
12 #define FAST_PORT_COUNT 2

1 STREAM_CONSTRUCTOR (void * arg) {
2 STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN , "in_p",

FAST_IN_ESIZE);
3 STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT , "out_p

", FAST_OUT_ESIZE);
4 }
5 STREAM_DESTRUCTOR (...) {
6 STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);
7 STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);
8 }
9 STREAM_INIT () {}

10 STREAM_WORK () {
11 int16_t fastThreshold = THIS ->_cFastThreshold;
12 uint8_t n_levels = cfg ->n_levels;
13
14 Keyp_t * header = (Keyp_t *) STREAM_OUT_RESERVE (

FAST_PORT_OUT , 1);
15
16 uint32_t level;
17
18 for (level = 0; level < n_levels; ++ level) {
19 int xsize = cfg ->img_width[level];
20 int ysize = cfg ->img_height[level];
21 int cornerCount = 0;
22
23 // Build FAST window
24 for (i = 0; i < 3; i++) {
25 THIS ->line_p[i] = (Line_t *) STREAM_IN_POP(

FAST_PORT_IN , 1);
26 }
27
28 for (y = edge_threshold; y < ysize -

edge_threshold; y++) {
29 int count;
30 fast9_detect (level , THIS ->line_p , ..., &

count);
31 cornerCount += count;
32 // Rotate FAST window
33 STREAM_IN_RELEASE (FAST_PORT_IN , 1);
34 for (i = 0; i < 2; i++) {
35 THIS ->line_p[i] = THIS ->line_p[i+1];
36 }
37 THIS ->line_p [2] = (Line_t *) STREAM_IN_POP(

FAST_PORT_IN , 1);
38 }
39
40 STREAM_IN_RELEASE (FAST_PORT_IN , 2);
41
42 header ->... = cornerCount;
43 STREAM_OUT_PUSH(FAST_PORT_OUT , cornerCount +1);
44 }
45 }

Fig. 10 The FAST actor KPN definition.

fetching reference image line by line led to poor perfor-

mance.

Choosing actor granularity represents an important

trade-off: finer granularity reduces the actor memory

1void fast9_detect (int xsize , Line_t *line[3], ...,
int * num_corners) {

2*num_corners = 0;
3for (x = edge_threshold; x < xsize -

edge_threshold; x++) {
4... compute keypoint or not ...
5if (corner) {
6Keyp_t * token = (Keyp_t *) STREAM_OUT_RESERVE

(FAST_PORT_OUT , 1);
7*token = *corner;
8*num_corners ++;
9}
10}
11return;
12}

Fig. 11 The FAST actor fast9 detect function.

footprint while increasing the synchronization overhead 5;

coarser granularity suffers very little synchronization

overhead but may require too much memory. Although

granularity vs. performance is an application-specific

trade-off, the parallelization should preserve applica-

tion’s natural granularity. In this context natural means

as close to the intrinsic algorithm structure as possible.

In an image processing application, choosing one im-

age line as a dataflow token is natural because it cor-

responds to the second level in the image processing

nested loop: (1) frame, (2) line, (3) pixel. As an alter-

native, sets of lines, tiles, or similar, are less natural in

a sense that they are algorithm-specific, require some

non-intuitive changes to the initial application code,

and result is often radically different from the sequen-

tial algorithm.

Refining actors’ granularity requires changing its

WORK function. Figures 10 and 11 show the FAST ac-

tor with refined input granularity: the input token cor-

responds to one image line. Compared to the previ-

ous actor version from Figure 6, the outermost level

loop has been moved to the WORK function. Since the

fast9 detect works on three lines at a time, we pass

it a window of three lines, THIS->line p, which is

rotated on every iteration of the WORK function. The

STREAM IN POP and the STREAM IN RELEASE implement

the consumer side StreamDrive communication proto-

col.

Once the granularity of the actors has been reduced,

the communication channels can be moved to the L1

memory. However, some channels may need to buffer

too many tokens to fit with the L1 memory. For exam-

ple, the SRC actor transfers the input image from the

external to L1 memory one line at a time, while the

FAST and the HARRIS actors consume these lines also

one at a time. However, the ANGLE cannot start con-

5 The synchronization overhead includes actions required
to verify the token availability, and the associated scheduler
actions

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 15

SRC FAST
NON

MAX

HAR

RIS
CULL ANGLE BRIEF

GAUSS

SRC

BLUR

Fig. 12 Refined ORB dataflow graph: most communication
buffers have been moved to the L1 memory. The SRC to HARRIS,
and the GAUSS to BRIEF buffers do not fit with the L1 memory,
therefore two additional DMA actors are added, the second
SRC and the BLUR.

suming the input image lines until the entire image has

been seen and processed by the CULL actor. Therefore,

the communication channel needs to buffer the entire

image and is, thus, too big to fit the L1 memory. In

such cases, the communication channel buffer is allo-

cated in the external memory with the DMA actors

ensuring data transfer between the external and the L1

memories. The refined ORB dataflow graph is shown in

Figure 12.

The refinement transformation step enables parallel

execution for the first time: actors can execute their

work-functions in parallel, synchronizing at reserve and

at pop points.

4.2.4 Adding application-specific hardware blocks

Before further optimization and introduction of the fir-

ing rules, it is convenient to perform software-hardware

partitioning at this point. For example, Table 3 shows

the breakdown of ORB kernel’s execution time from the

original application (first image pyramid):

Kernel Execution Time, Mcycles
fast9 detect 3,77
fast9 score 0,39
nonmax suppress 0,32
ComputeHarrisResponse 0,81
CullKeypoints 0,34
ComputeOrientation 0,55
ComputeGaussFiltering 7,66
ComputeDescriptors 2,09
Total 15,93

Table 3 The ORB execution time breakdown.

The Gaussian filtering kernel largely dominates the

application execution time and, considering that fil-

tering is a quite common function in image process-

ing, is a good candidate for being implemented as an

application-specific hardware block.

With StreamDrive, integration of application-specific

hardware blocks does not require changing the dataflow

graph. Instead, it is sufficient to change actor decla-

ration from STREAM DECLARE ACTOR to the one declar-

ing a hardware block, the STREAM DECLARE HWBLK. The

StreamDrive runtime will transparently handle the hard-

ware block actor during the execution.

4.2.5 Data Parallelism

The above transformation steps build a dataflow graph

by identifying and exposing the functional parallelism,

where multiple actors form execution pipeline over the

input stream of data. Another important type of paral-

lelism is the data parallelism. In data parallelism, mul-

tiple instances of the same actor are simultaneously cre-

ated. The data parallelism leads to efficient execution

when the computations are not data dependent and

regular: (1) it is easy to identify and to expose, (2)

it has lower parallelization overhead compared to the

functional parallelism.

In the context of the StreamDrive, the data paral-

lelism also allows to balance actors workload facilitating

the work of the runtime scheduler. In the ORB applica-

tion, the fast9 detect, the ComputeHarrisResponse,

the ComputeOrientation, and the ComputeDescriptors

kernels are regular and are easy to data parallelize. Par-

allelizing these kernels into a number of data-parallel

instances has several advantages: (1) it balances the

workloads of graph actors, and (2) it creates more ac-

tors for the scheduler to choose from. From the Table 3,

the workload of the fast9 detect, is few times that of

the nonmax suppress or of the CullKeypoints kernels,

and dividing its workload among several data parallel

instances helps balancing the workload of all these ac-
tors.

Unlike the standard dataflow implementations, the

StreamDrive includes the broadcast and the collect con-

nections for efficiently supporting the data parallel ac-

tors (see section 4.4). The broadcast enables sharing of

the input tokens by the data-parallel actors, while the

collect allows sharing the output tokens. Using these

connections, it is very easy to build data-parallel ac-

tors. Two data sharing strategies can be considered:

1. The single token data parallel actors work all on the

same input or output token, but each on different

part of it, for example a different part of an image

line.

2. The multiple token data parallel actors work each

on one of N tokens in parallel and synchronize on all

N tokens simultaneously.

The data sharing strategies apply to individual in-

put or output ports, and therefore it is perfectly possi-

ble to mix different data parallel strategies within the

16 Arthur Stoutchinin, Luca Benini

SRC FAST

FAST

FAST

FAST

NON

MAX

HAR

RIS

HAR

RIS

CULL

ANGLE

ANGLE

ANGLE

ANGLE

BRIEF

BRIEF

BRIEF

BRIEF

GAUSS

SRC

BLUR

Fig. 13 The ORB dataflow graph with data-parallel actors:
the FAST, the ANGLE and the BRIEF actors are replicated 4 times,
and the HARRIS actor is replicated 2 times.

same actor, at the same time having channels which do

not implement any data parallel sharing.

The Figure 13 shows the ORB dataflow graph with

data-parallel actors. The broadcast connections are used

to share input tokens of these actors. The collect con-

nections are mostly optimized away, only the HARRIS

actor data-parallel instances use the collect connection

to share its output tokens. The FAST actor does not use

the collect connection for its output because the down-

stream NONMAX actor needs the FAST corners to arrive

in the raster scan order of the image. However, since

the number of the corners in each image line is not

known in advance, it is impossible for them to share

the communication channel. As a solution, the NONMAX

actor has 4 input ports, one for each upstream FAST

actor, and reads them in a round-robin order ensuring

that the FAST corners arrive in the raster scan order of

the input image. Similarly, instead of using the collect

connection for the output of the ANGLE actor, and then

re-broadcast it to the BRIEF actors, we connect each

ANGLE actor directly to the corresponding BRIEF actor,

thus gaining efficiency.

The dataflow graph in Figure 13 shows the version

with 4 FAST, 4 ANGLE, and 4 BRIEF data-parallel in-

stances, as well as 2 HARRIS instances. Our implemen-

tation is parameterized in terms of the number of ac-

tors, their granularities, and the communication buffer

sizes: it can be configured for 1 PE with one instance

of each actor up to 8 PEs with 8 instances of the FAST,

ANGLE, and BRIEF actors.

Figure 14 shows the data parallel FAST actor. The

new THIS->idx private field corresponds to the index

of this data parallel instance among the 4 data parallel

instances. This index is initialized via the actor con-

structor. The FAST actor implements the multiple to-

ken data parallel sharing in its input port. The changes

to the actor’s WORK function are minimal: the actors

handle a shared rotating input window of 6 lines in-

stead of 3 lines, while each actor processes only those

lines that correspond to this actors’ index. The actor

1typedef struct {
2uint8_t idx;
3uint32_t cFastThreshold;
4uint8_t * line_p [6];
5} fast_t;
6STREAM_DECLARE_ACTOR_TYPE(FAST ,fast_t);
7
8// Ports
9#define FAST_IN_ESIZE (sizeof(Line_t))
10#define FAST_OUT_ESIZE (sizeof(Keyp_t))
11#define FAST_PORT_IN 0
12#define FAST_PORT_OUT 1
13#define FAST_PORT_COUNT 2

1STREAM_CONSTRUCTOR (void *arg) {
2uint32_t idx = (uint32_t)arg;
3STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN , "in_p",

FAST_IN_ESIZE);
4STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT , "out_p

", FAST_OUT_ESIZE);
5THIS ->idx = idx;
6}
7STREAM_DESTRUCTOR (...) {
8STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);
9STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);
10}
11STREAM_INIT () {}
12STREAM_WORK () {
13int16_t fastThreshold = THIS ->_cFastThreshold;
14uint8_t n_levels = cfg ->n_levels;
15uint32_t level;
16
17for (level = 0; level < n_levels; ++ level) {
18int xsize = cfg ->img_width[level];
19int ysize = cfg ->img_height[level];
20
21Keyp_t * header = (Keyp_t *) STREAM_OUT_RESERVE (

FAST_PORT_OUT , 1);
22
23int cornerCount = 0;
24
25// Build FAST window
26for (i = 0; i < 4+2; i++) {
27THIS ->line_p[i] = (Line_t *) STREAM_IN_POP(

FAST_PORT_IN , 1);
28}
29
30for (y = edge_threshold; y < ysize -

edge_threshold; y++) {
31if (y % 4 == THIS ->idx) {
32int count;
33fast9_detect (level , &THIS ->line_p[THIS ->

idx], ..., &count);
34cornerCount += count;
35
36// Rotate FAST window
37STREAM_IN_RELEASE (FAST_PORT_IN , 4);
38for (i = 0; i < 2; i++) {
39THIS ->line_p[i] = THIS ->line_p[i+1];
40}
41for (i = 0; i < 4; i++) {
42THIS ->line_p[i+2] = (Line_t *)

STREAM_IN_POP(FAST_PORT_IN , 1);
43}
44}
45}
46
47STREAM_IN_RELEASE (FAST_PORT_IN , 4+2);
48
49header ->... = cornerCount;
50STREAM_OUT_PUSH(FAST_PORT_OUT , cornerCount +1);
51}
52}

Fig. 14 Data-parallel version of the FAST actor

output is not changed since every FAST data parallel

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 17

1 typedef struct {
2 uint8_t idx;
3 uint8_t state;
4 uint8_t level;
5 uint32_t cFastThreshold;
6 uint8_t * line_p [6];
7 Keyp_t * header;
8 uint16_t cornerCount;
9 uint16_t y;

10 } fast_t;
11 STREAM_DECLARE_ACTOR_TYPE(FAST ,fast_t);
12 // States
13 #define FAST_IDLE 0 // actor initial

state
14 #define FAST_LEVEL 1 // one iteration of

the outermost loop
15 #define FAST_LEVEL_END 2 // iteration control
16 #define FAST_LINE 3 // one iteration of

the second level loop
17 #define FAST_LINE_END 4 // iteration control
18 // Ports
19 #define FAST_IN_ESIZE (sizeof(Line_t))
20 #define FAST_OUT_ESIZE (sizeof(Keyp_t))
21 #define FAST_PORT_IN 0
22 #define FAST_PORT_OUT 1
23 #define FAST_PORT_COUNT 2

Fig. 15 ORB FAST dataflow actor definition.

instance handles its own (not shared) output channel.

The fast9 detect function remains unchanged.

It is worth noticing that the StreamDrive offers

great flexibility in connecting and synchronizing the

data parallel actors. By buffering the input and output

tokens, actors data parallel instances do not need to

start and stop processing simultaneously, thus benefit-

ing from the efficiency of pipelined execution. Finally,

creating a few data parallel actors, we remain within

the scope of a small-scale data parallelism (as opposed

to the massive data parallelism with hundreds or thou-

sands of parallel instances) matching well with the scale

of the target architecture cluster.

4.3 Optimizing Scheduling via Firing Rules

Execution of the refined and parallelized dataflow graph

can be optimized by introducing dataflow firing rules.

In KPN execution mode, software actors require the

ability to suspend an actor on a blocked pop (or re-

serve), and to resume its execution when sufficient to-

kens (or empty FIFO entries) are available. Suspending

and resuming actors implies costly context-switching.

In the dataflow execution mode the firing rules give pre-

conditions for actor execution by ensuring that there

are enough input tokens (or room in output FIFOs) for

the actor not to be blocked. Thus, dataflow mode allows

the context-switch free, cooperative, scheduling.

In the dataflow mode, actor’s WORK function is sub-

divided into a sequence of firings [9, 29]. During a firing,

the actors reserve and pop tokens similar to the KPN

mode, but the firing rules ensure that the actor is never

1STREAM_CONSTRUCTOR (void *arg) { ... }
2STREAM_DESTRUCTOR (...) { ... }
3STREAM_INIT () {
4SET_PORT_QUOTA (FAST_PORT_IN , 4+2);
5SET_PORT_QUOTA (FAST_PORT_OUT , MAX_IMAGE_WIDTH /2)

;
6THIS ->state = FAST_IDLE;
7}
8STREAM_WORK () {
9int16_t fastThreshold = THIS ->_cFastThreshold;
10uint8_t n_levels = cfg ->n_levels;
11switch (THIS ->state) {
12case FAST_IDLE:
13THIS ->level = 0;
14SET_PORT_QUOTA (FAST_PORT_IN , 4+2);
15THIS ->state = FAST_LEVEL;
16// Fallthrough to LEVEL
17case FAST_LEVEL:
18THIS ->header = (Keyp_t *) STREAM_OUT_RESERVE (

FAST_PORT_OUT , 1);
19for (i = 0; i < 2; i++) {
20THIS ->line_p[i] = (uint8_t *) STREAM_IN_POP(

FAST_PORT_IN , 1);
21}
22THIS ->cornerCount = 0;
23THIS ->y = edge_threshold;
24SET_PORT_QUOTA (FAST_PORT_IN , 4);
25THIS ->state = FAST_LINE;
26break;
27case FAST_LINE:
28int xsize = cfg ->img_width[THIS ->level];
29int ysize = cfg ->img_height[THIS ->level];
30int count;
31fast9_detect (level , &THIS ->line_p[THIS ->idx],

..., &count);
32THIS ->cornerCount += count;
33// Rotate FAST window
34STREAM_IN_RELEASE (FAST_PORT_IN , 4);
35for (i = 0; i < 2; i++) {
36THIS ->line_p[i] = THIS ->line_p[i+1];
37}
38for (i = 0; i < 4; i++) {
39THIS ->line_p[i+2] = (Line_t *) STREAM_IN_POP(

FAST_PORT_IN , 1);
40}
41THIS ->y += 4;
42if (THIS ->y < ysize) break;
43// Fallthrough to LINE_END
44case FAST_LINE_END:
45STREAM_IN_RELEASE (FAST_PORT_IN , 4+2);
46THIS ->header ->... = THIS ->cornerCount;
47STREAM_OUT_PUSH(FAST_PORT_OUT , THIS ->

cornerCount +1);
48THIS ->level += 1;
49if (level < n_levels) {
50SET_PORT_QUOTA (FAST_PORT_IN , 4+2);
51THIS ->state = FAST_LEVEL;
52break;
53}
54// Fallthrough to LEVEL_END
55case FAST_LEVEL_END:
56SET_PORT_QUOTA (FAST_PORT_IN , 0);
57STREAM_EXIT ();
58}
59STREAM_YIELD ();
60}

Fig. 16 ORB FAST actor with dataflow firing rules

blocked during the firing. When a firing is completed,

actor returns control to the scheduler without requir-

ing a context switch via the STREAM YIELD call. The

dataflow actor WORK function is “fired” by the sched-

uler until the STREAM EXIT call signals the scheduler

that actor completed its execution and does not require

anymore firings.

18 Arthur Stoutchinin, Luca Benini

Introducing firing rules requires to once more change

actor’s WORK function. Figures 15 and 16 show the ORB

FAST actor converted to the dataflow mode. The KPN

version of the actor from the Figure 14 consisted of a

loop nest with the outermost loop iterating over the im-

age pyramid levels, the second level over the input im-

age lines, and the innermost level iterating over the im-

age pixels. First, we need to choose what one actor firing

should be: the firing workload determines how many to-

kens this firing requires for the execution and therefore

directly impacts actor’s memory footprint. Thus, for

our FAST actor we choose the second level loop, iterating

over input image lines, as a firing unit. Next, all loops

in the loop-nest above the chosen level need to be con-

verted to a state machine. This conversion is relatively

straightforward. The state machine states correspond

to the loop-nest levels of the KPN actor: the FAST IDLE

corresponds to the initial state, the FAST LEVEL and

FAST LEVEL END to the outermost level loop, and the

FAST LINE and FAST LINE END to the second level loop.

Before the WORK function yields the control to the sched-

uler, a transition to the next state needs to be specified

by setting the private THIS->state variable. In addi-

tion, the firing rules can be given for the next firing via

the SET PORT QUOTA call. The SET PORT QUOTA function

takes two arguments, the input or output port id and

the number of tokens to expect in that port before the

firing can take place. The initial state and the initial fir-

ing rules can be specified inside the actors’ STREAM INIT

function. Notice that by default, unless set by the actor,

the firing rules are not set and the actors’ reserve and

pop calls become blocking similar to the KPN execution

mode.

One important point about converting the graph

into the dataflow form is that all variables live across

multiple actor firings need to be saved by the actor be-

fore the end of the firing and restored in the next firing.

For this, such variables need to be added to actors’ pri-

vate state, similar to local variables level, header, y,

and cornerCount from the FAST actor.

4.3.1 Further refinement and optimization

In the embedded domain, the cost of the system and

the power consumption are directly related to the sys-

tem memory size, and therefore reducing application

memory footprint is very important. The dataflow pro-

gram memory footprint depends on the communication

buffers size and is finally related to the actors’ granular-

ity. The coarser the actor granularity, the bigger is the

memory footprint. On the other hand, when the gran-

ularity of a program is very fine, the intrinsic overhead

of the runtime has a high impact on efficiency. Thus,

the optimization objective consists in finding the best

trade-off between the communication buffer sizes and

the parallelization overhead.

This step is the most time-consuming of the en-

tire transformation process since the developer needs

to choose from many different possibilities leading to

different trade-off results. For example, we have noticed

that processing the NONMAX, HARRIS, or CULL one key-

point per firing is inefficient because the amount of work

per keypoint is small relative to the actor invocation

overhead. One possibility that we explored was to com-

bine the three actors together thus creating larger work-

load per keypoint. While this works well with smaller

number of processing resources (less than 4 process-

ing elements), when the number of processing resources

increases, the resulting bulky actor is difficult to effi-

ciently schedule and balance with other actors. On the

other hand, we have noticed that several keypoint are

usually simultaneously available for processing by the

above actors. Therefore, we use the StreamDrive multi-

token version of the communication API for increas-

ing the firing working set of the actors and to reduce

the parallelization overhead. Notice that the Stream-

Drive flow treats increasing the working set granularity

as an optimization task within a well defined reference

frame - number of tokens per actor firing. At the same

time, preserving tokens natural granularity allows opti-

mized application keep algorithmic description close to

the original code.

As a general rule, the optimization process should

first search for the possibility to combine actors to-

gether - this has additional benefits of reducing the

overall buffer requirements since intermediate buffers

between the combined actors can often be eliminated,

and of reducing the schedulers’ workload since fewer

actors are active in the system. Then, the optimization

should work to increase the number of tokens used in

actors firings until an acceptable trade-off between the

performance and the memory footprint is found.

This sections’ example illustrates several important

points from the StreamDrive:

– The StreamDrive incremental transformation flow

facilitates parallelization of sequential applications

into the dataflow implementation. For example, the

original fast9 detect code incrementally under-

goes relatively simple modifications during the trans-

formation process: using the rotating window of im-

age lines instead of the full image; addition of the

StreamDrive communication primitives.

– The StreamDrive does not impose any specific lan-

guage restrictions on reference code in order to be

parallelized.

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 19

– Unlike canonical dataflow, the StreamDrive allows

usage of shared global variables. Shared variables

are very efficient way of communicating in a shared

memory environment and it facilitates porting ex-

isting sequential reference code. In our example, the

FAST actor relies on global cfg for retrieving param-

eters such as image width and height, etc. These pa-

rameters are also used by other actors and, instead

of duplicating the set of these parameters for each

actor, they are implemented as a shared data struc-

ture. The coherent use of the shared data remains

developer’s responsibility.

– The StreamDrive runtime simultaneously supports

two execution modes, the KPN and the dataflow

execution. This is essential for enabling our incre-

mental transformation flow.

Following sections describe important points of the

StreamDrive communication layer and runtime system

implementation.

4.4 The StreamDrive Communication Layer

In order to gain higher efficiency, StreamDrive relies

on a fixed-buffer implementation, i.e. token sizes and

buffer sizes need to be specified at graph construction

time and cannot change during graph execution. The

drawback of this is that deadlocks cannot be resolved

at runtime. However, the experience is that most appli-

cations exhibit a regular communication behavior that

allows software developer to quantify the capacity of the

FIFO buffers such that deadlock will not occur. Never-

theless, the StreamDrive provides the runtime timeout

service that allows detecting the deadlock condition.

Upon detecting a deadlock, the StreamDrive gives de-

bug information about the state of the dataflow graph

which helps the developer to eliminate the deadlock.

A standard dataflow FIFO implementation where

data must be copied from a source actor to the com-

munication buffer and then from the communication

buffer to the destination actor, causes a significant ex-

ecution overhead. Instead, the StreamDrive implemen-

tation leverages the cluster shared memory and gives

actors direct access to shared communication buffers

avoiding memory copy operations. The direct access to

communication buffers is enabled by using the Stream-

Drive communication protocol described in section 4.1.

The dataflow model of computation defines a single

source and a single destination communication FIFO

buffers. This is an essential requirement for ensuring

the dataflow execution properties and correctness. On

the other hand, this also creates a significant execution

overhead: when a source actor is connected to multiple

destination actors, a special copy actor needs to be in-

serted between them in order to copy-forward the data

from the source to each destination. As a result, several

copies of the same data must be made and several copy

operations executed, one for each destination actor.

Instead, the StreamDrive API defines a special broad-

cast connection which allows one source actor and mul-

tiple destination actors to share a single FIFO buffer.

A release operation on such buffer is valid when all

destination actors have released the buffer.

Finally, the baseline dataflow model does not pro-

vide efficient support for data-parallelism. Typically,

some sort of split and join actors need to be inserted

around a data-parallel actor to copy-forward tokens in

a round-robin order to multiple data-parallel actor in-

stances. This leads to significant overhead: the memory

overhead for holding multiple copies of the same token;

the performance overhead for performing multiple copy

operations and for scheduling the split and the join

actors.

In StreamDrive, we avoid having these additional

split and join actors by leveraging on the above

broadcast connection and its symmetric collect connec-

tion. The collect allows multiple source actors to be

connected to a single destination actor and share a com-

munication buffer. A push operation on such buffer is

valid when all source actors have signaled a ready token.

A data-parallel actor, then, can be constructed by con-

necting multiple parallel actor instances via the broad-

cast connection to source actors and via the collect con-

nections to destination actors. Sharing communication

buffers gives a choice of data-parallel implementation:

data-parallel actors may choose to process a sub-part of
a single token each, or to process a different token each,

whichever results in lower parallelization overhead.

The broadcast release and the collect push opera-

tions are internally supported by the StreamDrive run-

time system. Therefore, there is no need to schedule

these operations - the runtime knows when the broad-

cast release or the collect push needs to be executed. For

example, a broadcast release will only be executed if the

broadcasting output port is blocked on FIFO full con-

dition. Such dedicated support to the broadcast and the

collect connections ensures optimal runtime execution.

4.5 The StreamDrive Runtime System

The StreamDrive runtime system provides application

with a communication layer and the dynamic scheduler.

It is implemented as a user-level library avoiding costly

system calls and enabling optimization such as inlining

function calls, etc.

20 Arthur Stoutchinin, Luca Benini

The runtime system is fully distributed with regard

to the processors - there is no one process dedicated

to the runtime system duties. Instead, each processor

concurrently (1) performs its own scheduling and (2)

handles synchronization actions related to the actor be-

ing executed by the processor. As a result, the Stream-

Drive dataflow scheduler is fully dynamic: it assigns and

schedules actors for execution dynamically at runtime.

The scheduler uses a simple round-robin heuristic for

selecting next actor to execute. The StreamDrive run-

time system is still centralized from the point of view

of the memory because the runtime system uses a sin-

gle, global scheduling list. Our evaluation in section 5

shows that we achieved an efficient distributed imple-

mentation with respect to Amdahl’s upper bound.

As explained earlier, StreamDrive supports two ex-

ecution modes, the dynamic dataflow and the KPN. In

the dynamic dataflow mode, actors run-to-completion

and therefore one runtime stack per processing element

can be used during the execution, and these runtime

stacks are reasonably small and fit inside the shared

TCDM memory. In the KPN mode, actor execution can

be suspended on a blocking condition (they do not run-

to-completion) - therefore each actor requires its own

dedicated runtime stack. Placing too many actor stacks

inside the TCDM memory raises an important difficulty

because this memory is relatively small. For example,

the 8 processing elements version of ORB application

(see section 5) has 30 actors. Given a stack size of 2K

per actor, the total stack memory requirement would

be 60KB, which corresponds to almost a quarter of the

total available TCDM memory in the ASMP cluster.

The individual actor stacks should be allocated in

the larger external memory. On the other hand, plac-

ing the runtime stack inside the external memory with

long access latency, leads to a very inefficient, low per-

formance execution. We address this difficulty by im-

plementing a stack spilling strategy. For this, we allo-

cate one runtime stack per processing element inside the

shared TCDM memory in both execution modes (the

total number of these stacks is independent of the num-

ber of application actors). The individual actor stacks

are also allocated in the larger external memory. During

the execution, actors use the TCDM allocated runtime

stack. When an actor gets blocked during the execution,

a context switch occurs, where the actors’ register con-

text is saved to a location inside the external memory.

Together with saving actors’ register context, the cur-

rent runtime stack is also spilled to the actors’ external

stack location. When a blocked actor resumes execu-

tion, its register context is restored, and also its stack

content is reloaded to the runtime TCDM stack from

the external stack location. Notice that in the dataflow

execution mode, actors do not get blocked and no con-

text switch and stack spilling are necessary.

Using the above stack-spilling strategy increases the

cost of a context-switch: in addition to usual saving and

restoring registers, the stack contents need to be saved

and restored as well. In order to alleviate the problem,

StreamDrive optimizes the KPN execution as follows:

(1) our runtime scheduler minimizes the context-switch

occurrences, (2) we have implemented optimized, hand-

crafted code for the context switch routines. Moreover,

in our experiments we have observed that, typically, the

total number of bytes of stack that need to be spilled is

quite small, and penalty for stack spilling is comparable

to that of register context switching (see discussion in

section 5.5). As a result, this strategy remains more

efficient compared to executing a program with runtime

stack inside the external memory.

One side effect of the stack spilling approach is that

actor assignment to processing elements in KPN mode

is no longer dynamic. Indeed, because different process-

ing elements’ runtime stacks point at different addresses

in the TCDM memory, a suspended actor can only re-

sume its execution in the same processing element (ad-

dress space) where it has been suspended. As a result,

each KPN actor keeps execution in the same process-

ing element where it has begun its execution. In order

to optimize assignment of KPN actors to processing

elements, StreamDrive provides a special API for as-

signing processor affinities to dataflow actors. However

in general, we consider the KPN execution as an in-

termediate step during the incremental transformation

process from a sequential reference code into a dataflow

implementation with no context switching.

5 Performance Evaluation

To gain insight into the performance of the Stream-

Drive framework, we present the detailed analysis of

the ORB application [49] described in detail in section

4. The first StreamDrive implementation is targeting

small mobile camera systems with resolutions not ex-

ceeding VGA quality, 640x480 pixels. We present re-

sults obtained with a single, non-scaled, ORB pyramid

frame containing 2,651 FAST keypoints and limiting the

number of sorted keypoint to 764. This configuration

is representative of the most demanding processing re-

quirements for this scenario.

For our measurements we used a high level multi-

threaded simulator dedicated for modeling the ASMP

platform (see section 3) with the objective to evalu-

ate architectural trade-offs in earlier stage. Our sim-

ulation platform models the number and type of pro-

cessing elements, how they communicate and how the

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 21

memory is organized. The simulation platform is based

on proprietory multithreaded design with a schedul-

ing kernel which is responsible for the interaction with

the architecture model to drive the simulation pro-

cess. The platform integrates time-approximate simu-

lators for programmable cores, which run as dedicated

POSIX threads. The programmable cores are simulated

with execution time approximation accuracy error be-

low 10% compared to a cycle-accurate execution. All

other components use a single POSIX thread and are

scheduled in a cooperative fasion in order to speed-up

the simulation. Finally, our simulation platform also

models memory and interconnect conflicts giving a very

reasonable simulation accuracy at a decent simulation

speed.

The ORB actors’ execution times are largely unbal-

anced, eg. the BRIEF requires double processing time

compared to the ANGLE, the FAST is almost double

processing time of the BRIEF, while NONMAX, HAR-

RIS and SORT represent together less than 10% of the

application processing time. Therefore, our paralleliza-

tion strategy focused on balancing the actors execution

times by creating multiple data-parallel actor instances,

and pipelining actors in order to achieve the efficient

execution as we described in section 4.

Moving from a sequential reference C code to the

initial dataflow graph is a smooth process. Starting with

the initial dataflow graph, we have incrementally de-

rived the optimized dataflow implementations for the

application shown in the Figure 13. The biggest effort

went into optimizing the dataflow graph with the ob-

jective to strike the optimal trade-off between the par-

allelization overhead and the memory footprint.

As explained earlier, our ORB graph implementa-

tion is parameterized in terms of the number of ac-

tors, actor granularities and the communication buffer

sizes. In the parameterized dataflow graph, the num-

ber of data-parallel FAST, HARRIS, ANGLE, and BRIEF

instances is configured depending on the number of

processing cores available in the target platform. For

example, the smallest ORB configuration targeting a

single PE instantiates a single instance of each actor,

while the biggest one targeting 8 PEs instantiates eight

parallel instances of each, the FAST, ANGLE and BRIEF

actors, and two parallel instances of the HARRIS actor.

A choice of a particular dataflow graph configuration

is dictated by the optimization objectives and should

take into account the ease of developing, maintaining

and evolving the parallelized code. For example, the

dataflow graph in Fig. 13 resulted in best optimization

trade-off for a cluster containing 4 processing elements

and 64KB of the TCDM memory, while actor imple-

mentation remains very close to the initial reference

0

0,2

0,4

0,6

0,8

1

1,2

Computation Runtime Data Transfer

Fig. 17 ORB parallelization overhead: ratio of time spent in
computation vs. data transfer and runtime tasks

C code. The capacities of communication buffers are a

trade-off between the performance gain and the avail-

able TCDM memory size.

The order of application execution is deterministic,

therefore debugging the dataflow code is similar to de-

bugging the sequential one. One important difference

concerns the dataflow deadlock that can occur if the

communication buffers are incorrectly dimensioned. In

our experience, dataflow applications exhibit a regular

communication behavior so that quantifying the cor-

rect capacity of the buffers is relatively straightforward.

A more formal approach for determining the dataflow

buffer sizes has been proposed in [46], for example.

The following subsections analyze in details the Stream-

Drive parallelization overhead, memory footprint, and

performance scaling under the optimistic assumption

of external memory latency of 1 processor cycle and

available external memory bandwidth of 8 bytes per

processor cycle. We then show that StreamDrive main-

tains robust performance when we increase the exter-
nal memory latency and reduce the available external

memory bandwidth.

5.1 Parallelization Overhead

The parallelization overhead is a penalty paid for paral-

lelizing an application. The StreamDrive parallelization

overhead results from the runtime overhead including

the RESERVE, PUSH, POP, and RELEASE functions, and

from the DMA management for moving the data be-

tween external memory and the TCDM. This paral-

lelization overhead does not include scheduling, which

we evaluate later in this section. The parallelization

overhead is scalable, i.e. from Amdahl’s law perspective

it contributes to the parallelizable part of the applica-

tion.

In order to evaluate the StreamDrive paralleliza-

tion overhead, we measure the performance of the ORB

graph configured for 1 PE. The Figure 17 shows the

22 Arthur Stoutchinin, Luca Benini

breakdown of ORB actors execution into the computa-

tion, the runtime, and the data transfer management

time.

The FAST performs heavy computation for each im-

age pixel and therefore its parallelization overhead is

small, 4.7% of actor’s execution time. The NONMAX ac-

tor, on the other hand, has very little computation per

pixel and suffers the heaviest parallelization overhead

of all, 35.0%. Similar to NONMAX, the HARRIS and the

SORT actors perform relatively little computation per

token and suffer from higher parallelization overheads,

24.2% and 18.7% respectively. One possibility that we

explored is to merge the three actors into a single bigger

actor. However, this only works well when paralleliza-

tion degree is low (less than 4 processors) because the

NONMAX and the SORT require sequential processing and

the resulting actor is difficult to load balance with the

rest of the application. We decided to favor better load

balancing after having observed that the concerned ac-

tors’ combined processing time represents less than 10%

of the total application time (not counting the Gaussian

filter). Finally, the ANGLE and the BRIEF actors include

both the runtime and the data transfer management

overhead, because they manage the DMA for trans-

ferring reference windows around each keypoint from

external memory to the TCDM. Their runtime over-

head is 9.2% and 5.9%, while the data transfer man-

agement overhead is 6.2% and 6.7% respectively. Rela-

tively high data transfer management overhead corre-

sponds to many rather small transfer requests at the

chosen dataflow actor granularity.

5.2 Memory Footprint

Application memory footprint determines how much

memory the application needs for execution. The Stream-

Drive application memory footprint includes the appli-

cation data, the run-time system footprint including

the run-time stack, and the dataflow buffers.

In terms of the run-time system memory require-

ments, the debug version of the StreamDrive library

uses 944 bytes of static data. It also needs 64 bytes of

memory per actor in addition to actor private data, and

up to 60 bytes per communication channel, depending

on channel type. For comparison, an image line of a

VGA image has a size of 640 bytes, while the small-

est ORB keypoints buffer requires almost 300 bytes.

Altogether, the ORB graph with 30 actors configured

for 8 PEs required in total less than 8 KB of mem-

ory for the run-time system. The stack contribution is

application-specific and depends on the size of biggest

stack that any one actor may require. As explained in

section 4.5, the StreamDrive implementation allocates

one runtime stack per processing element inside the

TCDM. In ORB, we limit to 2KB the stack space per

actor, eg. the 8 PE ORB configuration required 16KB

of stack space for the 8 processing elements.

The application buffering requirements are deter-

mined by the actor granularity along with the size of

the communication buffers. Every dataflow channel re-

quires a minimal FIFO buffer size that ensures a dead-

lock free execution 6. Additional buffer capacity beyond

such minimal size helps improve performance by reduc-

ing scheduler overhead and by absorbing communica-

tion peaks when actor computation is irregular and un-

predictable.

PEs min 64KB 128KB 256KB
1 37132 1.04 1.09 1.10
2 45968 1.07 1.11 1.11
4 63964 1.00 1.11 1.14
8 99084 1.00 1.18

Table 4 Dataflow Performance Gain vs. Memory Footprint

Table 4 summarizes the ORB implementation mem-

ory footprint versus performance improvement associ-

ated with increasing the available memory size. For dif-

ferent ORB graph configurations from 1 PE to 8 PEs,

the min. column gives the minimal memory footprint,

while other columns show the performance gain (ratio

relative to the min.) that can be obtained by increas-

ing the total memory size. From the table, it can be

seen that performance gain due to adding more mem-

ory rapidly leads to diminishing returns. For example,

with 4 PEs, the performance increase is 11% between

64KB and 128KB, and only 3% when moving to 256KB.

Note that the 8 PE version of ORB does not fit in

64KB memory with the minimal requirement close to a

100KB, due to large total number of actors leading to

increased number of buffers.

5.3 Performance Scaling

The performance scaling of a parallel application in-

dicates how much performance increases when more

processing elements are added. In order to quantify the

StreamDrive performance scaling, we measured the per-

formance of the ORB graph configured for 8 PEs while

varying the number of PEs. Figure 18 plots the re-

sulting Amdahl’s curve. We are observing the speedup

very close to the theoretically optimal point. In the

figure, the second line from the top corresponds to

6 Unless there is uncontrolled accumulation of tokens in a
channel

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 23

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Linear Speedup Measured Amdahl 0.015 Amdahl 0.067

Fig. 18 ORB performance scaling: speed-up vs. number of
PEs.

the Amdahl’s speedup taking into account the 1.5%

of non-parallelizable SORT part in the ORB applica-

tion. The bottom line in the figure corresponds to the

Amdahl’s speedup taking into account additional 5.2%

of the scheduler overhead measured in a single PE, if

it were non-parallelizable. The measured ORB speedup

lies in between these two Amdahl’s curves, showing that

the StreamDrive scheduler is efficiently distributed over

multiple PEs such that its non-parallelizable fraction is

of the order of 1.5% of the total application execution

time.

In order to quantify the efficiency of our broadcast

and collect implementation, we have measured the

time that application spends inside these functions. The

broadcast and collect processing represent 4% and

3%, respectively, of the StreamDrive scheduling over-

head for scheduling 30 actors, i.e. the time for handling

a broadcast or a collect is less than scheduling an

actor, not even executing it.

Overall, we are observing the speedup very close to

the theoretically optimal point. Note that this results

have been achieved with a relatively small actor gran-

ularity. With larger input image sizes, the contribution

of the SORT part would decrease as well as the sched-

uler overhead, resulting in speedups even closer to the

linear.

It is interesting to compare our results with similar

runtime environments. Compared to [22], the Stream-

Drive custom scheduler implementation is more effi-

cient: among 30 ORB actors, we observe the average

actor scheduling time of 161 cycles, versus 300 cycles for

scheduling only 2 actors reported in [22]. The Stream-

Drive shared FIFO access is faster: less than 40 cycles

versus 150. Finally, our ORB implementation with 30

actors required less than 8KB of runtime system mem-

ory versus 9KB for 2 small synthetic actors reported in

[22].

Yviquel [63] reported performance scaling numbers

of their dataflow implementation for MPEG-4 video

1,00

1,01
1,01 1,01

1,02

1,05

1,07

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1 40 100 200 400 600 1000

Fig. 19 ORB execution time increase vs. increased external
memory latency

1,00 1,01 1,01

1,11

1,53

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

8 6 4 2 1

Fig. 20 ORB execution time increase vs. reduced external
memory bandwidth

decoder. For comparison, with 10 processors their re-

ported speedup is less than 6 times. The authors ex-

plain this relatively low speedup numbers by the limit

of functional parallelism in the application. This con-

firms our experience showing the importance of the data

parallelism.

The comparison with the work in [18] was not pos-

sible since the authors did not report their efficiency

numbers.

5.4 Performance w/r to External Memory

The above evaluation of the StreamDrive implemen-

tation has been carried based upon an optimistic as-

sumption of external memory latency of 1 processor

cycle and available external memory bandwidth of 8

bytes per cycle. In a System-on-Chip (SoC) environ-

ment, where multiple IPs compete for the access to the

DDR memory, this assumption is not valid. In order

to evaluate the StreamDrive performance with varying

external memory latency and bandwidth, we used the

8PE ORB configuration. This is the most demanding

configuration in terms of external memory bandwidth

because it requires data to be available simultaneously

for a large number of actors. Notice that the relatively

small ORB actor granularity results in many modest

size DMA transfers, such as one image line of only 640

24 Arthur Stoutchinin, Luca Benini

bytes, or the ANGLE computation reference window of

31x31 bytes.

Figure 19 plots ORB performance change versus

growing external memory latency from 1 to 1000 pro-

cessor cycles. The figure shows that there is almost

no performance degradation when external latency is

smaller than 400 processor cycles. Furthermore, even

when the latency is 1000 processor cycles, the perfor-

mance degradation is only 7% versus the 1 cycle la-

tency. Figure 20 plots the performance change when the

available external memory bandwidth is reduced from

8 down to 1 byte per processor cycle. The performance

starts to degrade visibly when the available bandwidth

drops below 2 bytes per processor cycle. At 500 MHz,

this corresponds to less than 2GB per second, which is

quite low for a typical SoC external memory.

Our evaluation results confirm that the Stream-

Drive performance holds well even under long external

memory latency and limited available external memory

bandwidth.

5.5 KPN vs. Dataflow Trade-off

Considering that the biggest parallelization effort is re-

quired by optimizing the dataflow graph after having

introduced the firing rules, we have also compared the

performance achievable with the KPN execution vs. the

optimized dataflow execution.

In the KPN execution mode, the number of context

switches during a program execution is proportional

to the available buffer sizes: the bigger are dataflow

FIFO buffers, the fewer are there context switches in the

KPN mode. On the other hand, our dataflow schedul-

ing heuristic is trying to fire a given actor as long as

it remains enabled. Similarly to KPN, the number of

times that the scheduler switches actors is also propor-

tional to the dataflow buffer sizes. Therefore, we observe

similar diminishing return behavior with the KPN ex-

ecution: there is a point at which adding more buffer

size to the dataflow graph leads to a negligible perfor-

mance gain. Unlike the dataflow execution, the KPN

performance results under the minimal buffer sizes are

considerably worse than the performance at the dimin-

ishing return point. Table 5 illustrates this point:

PEs min 64KB 128KB 256KB
1 37132 1.45 1.48 1.50
2 45968 1.24 1.42 1.44
4 63964 1.02 1.32 1.36
8 99084 1.05 1.22

Table 5 KPN Performance Gain vs. Memory Footprint

-0,05 0,00 0,05 0,10 0,15 0,20

1

2

4

8

P
E
s

64KB 128KB 256KB

Fig. 21 ORB KPN vs. dataflow execution time, external
memory latency 1 cycle

Unlike the DDN execution, the KPN execution is

very sensitive to the external memory latency (and

bandwidth). Figures 21 and 22 show the ratio of KPN

vs. DDN execution cycles for ORB processing of one

non-scaled VGA image when external memory latency

is of 1 processor cycle (the external memory as as ef-

ficient as the TCDM) and 40 processor cycles, respec-

tively. The Figures show measurements performed in

different ASMP cluster configurations: TCDM memory

size of 64, 128, and 256 KB, and using 1, 2, 4, and 8

processing elements. While with external latency of 1

cycle (and few processing elements), the KPN perfor-

mance may even be slightly better, the DDN clearly

outperforms the KPN execution in all ASMP configu-

rations when external memory latency is 40 processor

cycles. The explanation is straightforward: the cost of

the KPN context switch is directly related to the ex-

ternal memory access time because it is not possible

to hide the context saving and restoring by performing

it in parallel with other computation work. For exam-

ple, there were 202 context switches during the KPN

execution of the ORB in 1 processing element. With

external latency of 1 processor cycle, they account for

less than 2% of the total execution time. When the

external memory latency increases to 40 cycles, these

context switches account for 10% of the total execu-

tion time. Because the KPN performance is much more

affected by the external memory latency than the per-

formance of the DDN execution, the DDN would be

a better choice for real embedded systems, where the

external memory latency is often a bottleneck.

The KPN performance scales worse than the DDN

performance when the number of processing elements

increases. In Figure 21, the KPN performance is even

slightly better than the DDN, less than 5%, with 1 pro-

cessing element. When 8 processing elements are used,

the DDN outperforms the KPN by up to 18%. The

explanation is twofold: (1) the dynamic assignment of

dataflow actors to processing elements outperforms the

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 25

-0,10 0,10 0,30 0,50 0,70 0,90 1,10

1

2

4

8

P
E
s

64KB 128KB 256KB

Fig. 22 ORB KPN vs. dataflow execution time, external
memory latency 40 cycles

fixed KPN assignment, and (2) the relative contribution

of the KPN scheduler is increasing faster than the con-

tribution of the dataflow scheduler with more parallel

execution.

To put the above performance measurements in

prospective, notice that the execution time for pro-

cessing one non-scaled VGA frame should not exceed

1,6M cycles at 500MHz operating frequency in order to

achieve the real-time performance of 30 frames per sec-

ond 7. This level of performance can only be achieved

with 8 PEs and under the dataflow execution mode.

Thus, the effort spent in optimizing the dataflow graph

is certainly necessary in order to achieve the target real-

time objective.

6 Conclusion and Future Work

The StreamDrive framework implements the dynamic

dataflow computing model. Two main contributions of

the StreamDrive framework are: (1) simultaneous sup-

port for the KPN and the Dataflow execution modes,

which enables the incremental parallelization flow start-

ing with sequential reference code, and (2) an efficient

runtime implementation in a resource-constrained em-

bedded computing platform. StreamDrives’ distributed

runtime system provides low overhead, good scalability,

and is robust versus limiting external memory band-

width. The experience with the ORB application shows

that StreamDrive is an efficient approach for paralleliz-

ing and executing embedded streaming applications.

The StreamDrive is a work in progress. The aspects

of StreamDrive that need to be further investigated

are primarily related to automating the optimization of

the dataflow graph, and improvements to the runtime

scheduler.

7 This real-time requirement also takes the match part of
the application into account

Acknowledgements This research was partially funded by
the H2020 Project Opecomp (CA 732631) and by the ERC-
ADG Project Multitherman (CA 291125). Authors would
also like to thank the ST Microelectronics’ Embedded Com-
puting Systems management for supporting this research.

References

1. Bezati E (2015) High-level synthesis of dataflow

programs for heterogeneous platforms: design flow

tools and design space exploration. PhD thesis,

COLE POLYTECHNIQUE FDRALE DE LAU-

SANNE

2. Bezati E, Brunet SC, Mattavelli M, Janneck JW

(2016) High-level system synthesis and optimiza-

tion of dataflow programs for mpsocs. In: Matthews

MB (ed) ACSSC, IEEE, pp 417–421

3. Bhattacharya B, Battacharyya S (2001) Parame-

terized dataflow modelling for dsp systems. IEEE

Transactions on Signal Processing 49(10):2408 –

2421

4. Bhattacharyya SS, Deprettere EF, Leupers R,

Takala J (eds) (2013) Handbook of Signal Process-

ing Systems. Springer

5. Bilsen G, Engels M, Lauwereins R, Peperstraete JA

(1995) Cyclo-static data flow. In: ICASSP, vol 5, pp

3255–3258

6. Buck JT (1994) A dynamic dataflow model suit-

able for efficient mixed hardware and software im-

plementations of dsp applications. In: HSCD Work-

shop, pp 165–172

7. Cockx J, Denolf K, Vanhoof B, Stahl R (2007)

Sprint: A tool to generate concurrent transaction-

level models from sequential code. EURASIP Jour-

nal on Applied Signal Processing 1:213

8. Dehyadegari M, Marongiu A, Kakoee M, Benini L,

Mohammadi S, Yazdani N (2012) A tightly-coupled

multi-core cluster with shared memory hw acceler-

ators. In: ISCAMOS, pp 96–103

9. Dennis J (1974) First version data flow procedure

language. Tech. Rep. MAC TM61, MIT Laboratory

for Computer Science

10. de Dinechin BD, Ayrignac R, Beaucamps PE, Cou-

vert P, Ganne B, de Massas PG, Jacquet F, Jones S,

Chaisemartin NM, Riss F, Strudel T (2013) A clus-

tered manycore processor architecture for embed-

ded and accelerated applications. In: HPEC, IEEE,

pp 1–6

11. Dunkels A, Schmidt O, Voigt T, Ali M (2006) Pro-

tothreads: simplifying event-driven programming of

memory-constrained embedded systems. In: Sen-

sys, pp 29–42

26 Arthur Stoutchinin, Luca Benini

12. Edwards SA, Tardieu O (2006) Shim: A determin-

istic model for heterogeneous embedded systems.

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 14(8):854–867

13. Edwards SA, Vasudevan N, Tardieu O (2008) Pro-

gramming shared memory multiprocessors with de-

terministic message-passing concurrency: Compil-

ing shim to pthreads. In: Sciuto D (ed) DATE,

ACM, pp 1498–1503

14. Eker J, Janneck J (2002) Caltrop—language re-

port (draft). Technical memorandum, Electronics

Research Lab, Department of Electrical Engineer-

ing and Computer Sciences, University of California

at Berkeley California, Berkeley, CA 94720, USA,

http://www.gigascale.org/caltrop

15. Eker J, Janneck JW (2012) Dataflow programming

in cal – balancing expressiveness, analyzability, and

implementability. In: Asilomar Conference on Sig-

nals, Systems and Computers, pp 1120–1124

16. Gangwal OP, Nieuwland A, Lippens PER (2001) A

scalable and flexible data synchronization scheme

for embedded hw-sw shared-memory systems. In:

Hermida R, Aboulhamid EM (eds) ISSS, ACM /

IEEE Computer Society, pp 1–6

17. Gautier T, Besseron X, Pigeon L (2007) Kaapi:

A thread scheduling runtime system for data flow

computations on cluster of multi-processors. In:

PASCO, pp 15–23

18. Gebrewahid E, Yang M, Cedersjö G, Abdin ZU,

Gaspes V, Janneck JW, Svensson B (2014) Realiz-

ing efficient execution of dataflow actors on many-

cores. In: EUC, pp 321–328

19. Geilen M, Basten T (2003) Requirements on the

execution of kahn process networks. In: Degano P

(ed) ESOP, Springer, Lecture Notes in Computer

Science, vol 2618, pp 319–334

20. Girault A, Lee B, Lee EA (1999) Hierarchical finite

state machines with multiple concurrency models.

Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on 18(6):742–760

21. Goubier T, Sirdey R, Louise S, David V (2011) ΣC:

A programming model and language for embedded

manycores. In: ICA3PP, pp 385–394

22. Haid W (2010) Design and performance analysis of

multiprocessor streaming applications. PhD thesis,

ETH, Zurich

23. Haid W, Schor L, Huang K, Bacivarov I, Thiele L

(2009) Efficient execution of kahn process networks

on multi-processor systems using protothreads and

windowed fifos. In: ESTIMedia, pp 35–44

24. Harris C, Stephens M (1988) A combined corner

and edge detector. In: Proceedings of the 4th Alvey

Vision Conference, pp 147–151

25. Huang K, Grunert D, Thiele L (2007) Windowed

fifos for fpga-based multiprocessor systems. In:

ASAP, pp 36–41

26. JT B (1993) Scheduling dynamic dataflow graphs

with bounded memory using the token flow model.

PhD thesis, Department of Electrical Enginnering

and Computer Science, University of California at

Berkeley

27. Kahn G (1974) The semantics of a simple language

for parallel programming. In: IFIP Congress

28. de Kock EA, Smits W, van der Wolf P, Brunel

JY, Kruijtzer W, Lieverse P, Vissers KA, Essink G

(2000) Yapi: Application modeling for signal pro-

cessing systems. In: DAC, pp 402–405

29. Lee E (1997) A denotational semantics for dataflow

with firing. Memorandum UCB/ERL M97/3, Elec-

tronics Research Laboratory, U. C. Berkeley

30. Lee EA, Messerschmitt DG (1987) Synchronous

data flow. Proceedings of the IEEE 75(9):1235–

1245

31. Mattavelli M, Amer I, Raulet M (2010) The recon-

figurable video coding standard [standards in a nut-

shell]. IEEE Signal Processing Magazine 27(3):159–

167

32. Mattavelli M, Raulet M, Janneck JW (2013) Mpeg

reconfigurable video coding. In: Bhattacharyya SS,

Deprettere EF, Leupers R, Takala J (eds) Hand-

book of Signal Processing Systems, Springer, pp

281–314

33. Melpignano D, Benini L, Flamand E, Jego B, Lep-

ley T, Haugou G, Clermidy F, Dutoit D (2012)

Platform 2012, a many-core computing accelerator

for embedded socs: performance evaluation of vi-

sual analytics applications. In: DAC, pp 1137–1142

34. Michalska M, Bezati E, Brunet SC, Mattavelli M

(2016) A partition scheduler model for dynamic

dataflow programs. In: Connolly M (ed) ICCS,

Elsevier, Procedia Computer Science, vol 80, pp

2287–2291

35. Michalska M, Zufferey N, Boutellier J, Bezati E,

Mattavelli M (2016) Efficient scheduling policies

for dynamic data flow programs executed on multi-

core. In: 11th International Meeting on Logistics

Research

36. NVIDIA (2010) Next generation cuda com-

pute architecture: Fermi - white paper.

http://www.nvidia.com

37. Olofsson A, Nordström T, Ul-Abdin Z (2014) Kick-

starting high-performance energy-efficient many-

core architectures with epiphany. In: Asilomar Con-

ference on Signals, Systems and Computers, IEEE,

pp 1719–1726

StreamDrive: A Dynamic Dataflow Framework For Clustered Embedded Architectures 27

38. Orozco D, Garcia E, Pavel R, Khan R, Gao G

(2011) Tideflow: The time iterated dependency

flow execution model. In: Workshop on Data-Flow

Execution Models for Extreme Scale Computing

(DFM), pp 1–9

39. Pelcat M, Desnos K, Heulot J, Guy C, Nezan JF,

Aridhi S (2014) Preesm: A dataflow-based rapid

prototyping framework for simplifying multicore

dsp programming. In: EDERC, pp 36–40

40. Pimentel AD (2008) The artemis workbench for

system-level performance evaluation of embedded

systems. International Journal of Embedded Sys-

tems 3(3):181–196

41. Plishker W, Sane N, Kiemb M, Anand K, Bhat-

tacharyya SS (2008) Functional dif for rapid proto-

typing. In: IEEE International Workshop on Rapid

System Prototyping, IEEE Computer Society, pp

17–23

42. Plishker W, Sane N, Bhattacharyya SS (2009)

A generalized scheduling approach for dynamic

dataflow applications. In: Benini L, Micheli GD,

Al-Hashimi BM, Mller W (eds) DATE, IEEE, pp

111–116

43. Plurality (2011) Plurality hypercore.

http://www.plurality.com

44. Pop A, Cohen A (2013) Openstream: Expressive-

ness and data-flow compilation of openmp stream-

ing programs. ACM Transactions on Architecture

and Code Optimization 9(4):53

45. Rahimi A, Loi I, Kakoee MR, Benini L (2011) A

fully-synthesizable single-cycle interconnection net-

work for shared-l1 processor clusters. In: Design,

Automation & Test in Europe Conference & Exhi-

bition (DATE), 2011, IEEE, pp 1–6

46. Rahman AAHA, Brunet SC, Alberti C, Mattavelli

M (2014) A methodology for optimizing buffer sizes

of dynamic dataflow fpgas implementations. In:

ICASSP, IEEE, pp 5003–5007

47. Rahman AAHBA (2014) Optimizing dataflow pro-

grams for hardware synthesis. PhD thesis, COLE

POLYTECHNIQUE FDRALE DE LAUSANNE

48. Rosten E, Porter R, Drummond T (2010) Faster

and better: A machine learning approach to cor-

ner detection. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on 32(1):105–119

49. Rublee E, Rabaud V, Konolige K, Bradski G (2011)

Orb: An efficient alternative to sift or surf. In:

ICCV, pp 2564–2571

50. Sane N, Hsu CJ, Pino JL, Bhattacharyya SS (2010)

Simulating dynamic communication systems using

the core functional dataflow model. In: ICASSP,

IEEE, pp 1538–1541

51. Sau C, Meloni P, Raffo L, Palumbo F, Bezati E,

Brunet SC, Mattavelli M (2016) Automated design

flow for multi-functional dataflow-based platforms.

Signal Processing Systems 85(1):143–165

52. Schwambach V, Cleyet-Merle S, Issard A, Mancini

S (2015) Estimating the potential speedup of com-

puter vision applications on embedded multiproces-

sors. CoRR abs/1502.07446

53. Shen C, Plishker W, Bhattacharyya SS (2012)

Dataflow-based design and implementation of im-

age processing applications. Multimedia Image and

Video Processing pp 609–629

54. Sriram S, Bhattacharyya SS (2009) Embedded mul-

tiprocessors: Scheduling and synchronization. CRC

press

55. Stoutchinin A, Benini L (2017) Stream drive: A

dynamic dataflow framework for clustered embed-

ded architectures. In: Conf. Computing Frontiers,

ACM, pp 1–8

56. Stuijk S, Geilen M, Thelen B, Basten T (2011)

Scenario-aware dataflow: Modeling, analysis and

implementation of dynamic applications. In: Inter-

national Conference on Embedded Computer Sys-

tems, pp 404–411

57. Srot J, Berry F, Bourrasset C (2016) High-level

dataflow programming for real-time image process-

ing on smart cameras. Journal of Real-Time Image

Processing 12(4):635–647

58. Ul-Abdin Z, Yang M (2015) A radar signal process-

ing case study for dataflow programming of many-

cores. Journal of Signal Processing Systems pp 1–14

59. Vasudevan N, Edwards SA (2009) Celling shim:

Compiling deterministic concurrency to a heteroge-

neous multicore. In: ACM Symposium on Applied

Computing, pp 1626–1631

60. Vrba Z, Halvorsen P, Griwodz C, Beskow P, Es-

peland H, Johansen D (2013) The nornir run-time

system for parallel programs using kahn process

networks on multi-core machines - a flexible alter-

native to mapreduce. The Journal of Supercomput-

ing 63(1):191–217

61. YarKhan A (2012) Dynamic task execution on

shared and distributed memory architectures. PhD

thesis, the University of Tennessee, Knoxville

62. Yviquel H, Sanchez A, Jskelinen P, Takala J, Raulet

M, Casseau E (2014) Efficient software synthesis of

dynamic dataflow programs. In: ICASSP, IEEE, pp

4988–4992

63. Yviquel H, Sanchez A, Jskelinen P, Takala J, Raulet

M, Casseau E (2015) Embedded multi-core systems

dedicated to dynamic dataflow programs. Signal

Processing Systems 80(1):121–136

28 Arthur Stoutchinin, Luca Benini

64. Zaki GF, Plishker W, Bhattacharyya SS, Fruth F

(2017) Implementation, scheduling, and adaptation

of partial expansion graphs on multicore platforms.

Signal Processing Systems 87(1):107–125

