
11 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

On the Prediction of Smart Contracts’ Behaviours / Laneve, Cosimo; Coen, Claudio Sacerdoti; Veschetti,
Adele. - STAMPA. - 11865:(2019), pp. 397-415. (Intervento presentato al convegno Collquium in honour of
Stefania Gnesi tenutosi a Porto nel 08/10/2019) [10.1007/978-3-030-30985-5_23].

Published Version:

On the Prediction of Smart Contracts’ Behaviours

Published:
DOI: http://doi.org/10.1007/978-3-030-30985-5_23

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/701791 since: 2019-10-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-30985-5_23
https://hdl.handle.net/11585/701791

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Laneve C., Coen C.S., Veschetti A. (2019) On the Prediction of Smart Contracts’
Behaviours. In: ter Beek M., Fantechi A., Semini L. (eds) From Software Engineering
to Formal Methods and Tools, and Back. Lecture Notes in Computer Science, vol
11865. Springer, Cham, pp 397-41.

The final published version is available online at:

https://doi.org/10.1007/978-3-030-30985-5_23

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-30985-5_23

On the Prediction of Smart Contracts’
Behaviours

Cosimo Laneve[0000−0002−0052−4061]?, Claudio Sacerdoti
Coen[0000−0002−4360−6016], and Adele Veschetti[0000−0002−0403−1889]

Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus
{cosimo.laneve, claudio.sacerdoticoen, adele.veschetti2}@unibo.it

Abstract. Smart contracts are pieces of software stored on the blockchain
that control the transfer of assets between parties under certain condi-
tions. In this paper we analyze the bahaviour of smart contracts and
the interaction with external actors in order to maximize objective func-
tions. We define a core language of programs with a minimal set of smart
contract primitives and we describe the whole system as a parallel com-
position of smart contracts and users. We therefore express the system
behaviour as a first logic formula in Presburger arithmetics and study
the maximum profit for each actor by solving arithmetic constraints.

1 Introduction

Smart contracts are programs that run on distributed networks with nodes stor-
ing a common state in the form of a blockchain. These programs are gaining
more and more interest because they implement the so-called decentralized ap-
plications, which are applications that can handle and transfer assets of consid-
erable value (usually, in the form of cryptocurrency like Bitcoin). Several decen-
tralized applications have already been applied to asset management scenarios
ranging from food supply chain management to energy market management and
to identity notarization. The smart contracts of such applications are written
in programming languages that are targeted to different blockchains. Two such
languages are Solidity for Ethereum (which is imperative) [7] and Liquidity for
Tezos (which is functional) [14].

Decentralized applications consist of smart contracts and users, such as hu-
mans performing either computer actions or physical ones. Since they run on
systems that have no coercing central authority, the uncertainty of the overall
emerging behaviour is very high and this is a critical issue when asset movements
are at the core of applications. Therefore it becomes important to understand the
protocols between interacting parties and, when possible, use smart contracts to
regulate behaviours of users that systematically try to maximize their revenues
or to minimize losses. For example, a client behaves in different ways in order to
minimize the cost κ of a good (e.g. he may choose one company or another). On

? Research partly supported by the H2020-MSCA-RISE project ID 778233 “Be-
havioural Application Program Interfaces (BEHAPI)”.

1

the other hand, the interacting company tries to maximize its revenue; therefore
it strives for the greatest value κ such that the client has still a convenience in
acquiring its own good. Determining the least value κ is complex because it may
not only depend on the price, but also on the trademark, the delivery type, etc.

In this paper, to suitably address the foregoing issues, (i) we adhere to a
formal modelling approach, (ii) define an analysis technique and (iii) prototype
the verification process. A precise account of the work follows.

As regards the formal modelling, since (human) users and smart contracts
act concurrently and independently, we adopt methods and techniques from the
domain of process algebras. As such, we depart from most of the literature on
application of formal methods to smart contracts that study their properties
as sequential programs. In Section 2 we introduce a unified calculus of actors
– both contracts and users, the scl calculus – that is expressive enough (it is
Turing complete) and features method invocations, field updates, conditional
behaviour, recursion and failures. According to the semantics of scl, systems,
which are parallel compositions of smart contracts and users, perform transac-
tions, e.g. sequences of smart contract operations that are triggered by users.
Transactions may return a value or may fail; in the first case the states of smart
contracts that have taken part in the transaction are committed; in the second
case the states backtrack to the last committed one. In parallel to transactions,
users may evolve internally in a nondeterministic way (on the contrary, smart
contracts’ behaviours are deterministic). The model of scl is a transition sys-
tem that enables symbolic analysis of properties – see Section 3. In particular,
transitions retain two informations: one is a standard label, say µ, highlighting
the action performed, the other one, say ψ, is a formula that records the choices
and the guards of conditionals. The two labels play different roles in our analysis
technique.

Given the model of a scl program, in Section 4 we define an objective func-
tion as a map from labels µ to integer expressions. For example, such function
may return 1 if the label has a given type, or it may return some expression
on the symbolic names occurring in the label. In general we are interested in
determining computations that maximize or minimize the sum of the values of
an objective function on their labels and in selecting strategies that allow users
to behave correspondingly. Once this is done, we analyze whether tuning up and
down the symbolic names may generate more profit or reduce loss for one in-
teracting party. To this aim, we select a sensible state S and the corresponding
transition system rooted at S (we assume there is no cycle and that the transition
system is finite). By means of the labels µ and ψ of the transitions, we define a
first order logic formula, called the characteristic formula, that summarizes the
transition system describing concisely the values of the objective function for
every possible run.

When the model is Presburger (a decidable fragment of arithmetics where
formulas contains only integer numbers, equality, strict inequality, addition and
multiplication by a constant), the characteristic formula belongs to an extension
of Presburger arithmetics that can be decided via quantifier elimination. The

2

formula without quantifiers allows us to reason about strategies that bring to
goals with higher values (e.g. maximize the profit) for each actor by solving
arithmetic constraints. The general cases of infinite, acyclic models are addressed
in our technique by analyzing finite unfoldings.

We are currently terminating the implementation in OCaml of a tool that,
given a set of contracts, an initial state and an objective function, automatically
extracts the open model, computes the characteristic formula and applies quan-
tifier elimination over it. This elimination step also checks whether the formula
is satisfiable, i.e. it detects the reachable final states and computes the set of
values of the objective function that can be observed in runs that lead to them.
These sets are represented as linear mappings over domains that are union of
polytopes, i.e. solutions of a systems of linear inequations in normal form. The
inequations constrain the choices that users can take according to those of other
users or to external inputs to the system. Maximizing linear functions over linear
inequations is mathematically trivial.

We conclude in Section 5 by discussing future research directions.

Related works. In the past few years formal methods have been largely used
to analyze smart contracts with the aim of verifying the security of potentially
dangerous compositions with untrusted codes. One of the most cited motivation
has been the famous TheDAO attack [15] that stole several million dollars during
a crowdfunding procedure and caused an hard fork in the Ethereum blockchain.

An initial contribution is [2], which proposes an analysis framework based on
a compilation of Solidity to F∗, a functional language aimed at program verifica-
tion with a powerful type and effect system. Using F∗ types, they are able to trace
Ethers (the Ethereum cryptocurrency) and discover critical patterns in smart
contracts. A different technique has been followed by [10] and [11], sticking to
symbolic execution. Similarly to our technique, they use symbolic values for in-
puts and study symbolic computations by mean of the formula that accumulates
the constraints on the inputs. This formula is different from our characteristic
formula in Section 4. In particular, while our formula describes every possible
computation and we use constraints on symbols to determine values that max-
imize some quantity, in [10] and [11], they are interested in discovering critical
patterns of a single computation.

In the same line of verifying and validating smart contracts, the contribu-
tion [3] combines formal methods and game theory to analyze protocols that
also involve players (human users) with different/competing gaming strategies.
The technique is the following: game theory is used to analyze the behaviour
of the players in the protocol, then the resulting strategies are modelled in a
probabilistic system for automated validation. Our approach is somehow the op-
posite: we define the overall system (or part of it) in a formal model and derive
the strategies by analyzing the model. In this paper, we stick to a discrete model
(the choice operator in users’ behaviours is not probabilistic), leaving to future
research the extension to stochastic models.

3

Another contribution that is close to our one is [4]. In this case, the authors
define a simplified language for smart contracts that is loop-free. Then they pro-
vide an automatic translation into stateful concurrent games and analyze these
games by means of interval abstraction that is demonstrated to be sound. The
technique is very powerful and of practical relevance, considering that models of
concurrent games are very large. Unlike to this work, our modelling technique is
based on process algebra and our analysis relies on Presburger arithmetics for-
mulae. The evaluation of the practical relevance of our technique is postponed
to future research.

2 The calculus of smart contracts

In this section we define a core language of programs featuring a minimal set of
smart contract primitives, such as method invocations, field updates, conditional
behaviour, recursion and failures.

We use a countable set of variables, ranged over by x, y, z, a countable set
of smart contract names, ranged over by a, b, c, and a countable set of user
names, ranged over by id , id ′, id ′′. Smart contract names and user names are
generically addressed by α, α′, . . . and we assume they are partitioned into
disjoint sets such that names of a same set belong to a same class and those in
different sets belong to different classes. The property that a name α belongs to
a class C is expressed by α ∈ C.

Classes C have the form C : (F ,M) where F is a sequence of field definitions
T f, M is a sequence of method definitions T m(T x){ sm } with T x and sm
respectively being the formal parameters and the body of m. In the whole paper,
we assume that sequences of declarations T x and method declarations M do not
contain duplicate names. Types T are either naturals Nat or names α. Hereafter
we write k for possibly empty, finite sequences k1, . . . , kn of various entities.

The syntax of statements, rhs-expressions and expressions is given in Fig-
ure 1. A statement s may be either a return of an expression, or a field update
(plus a continuation), or a conditional or the nondeterministic choice s+ s′. We
assume that bodies of smart contract methods (i) do not have nondeterministic
choice (they are deterministic) and (ii) do not have expressions with fail, except
for return fail.

A rhs-expression z may be either an expression e or a synchronous method
invocation. An expression e may be either a standard expression or fail. In e op e′,
op is a standard operation on naturals. We assume that method bodies of users
also have the expression isfailed(e) that returns 1 if the value of e is fail, 0
otherwise.

The semantics of scl statements is defined by a transition relation

α : s, `
µ7−→
ψ

s′, `′

where s and s′, with an abuse of notation, are runtime statements, ` and `′ are
memories, e.g. maps from field names to values v, µ is either empty or v.m(v′),

4

Syntax:

s ::= return e | this.f = z;s | if e then s else s | s+ s (statements)
z ::= e | e.m(e) (rhs-expressions)
e ::= naturals | x | α | fail | this | this.f | e op e (expressions)

States and runtime statements:

` ::= [· · · , f 7→ v, · · ·] (memories)
v ::= naturals | α | fail (values)
s ::= · · · | 0 | id | id[v] | α.f = •;s | s;s | s+x s (runtime statements)

runtime statement transition
µ7−→
ψ

(µ may be empty or α; ψ is a formula):

[upd]

JeKα,` = v

α : α.f = e;s, ` 7−→
true

s, `[f 7→ v]

[meth]

JeKα,` = v Je′Kα,` = v′ fail /∈ v, v′

v ∈ C m(x) = sm ∈ C s′′ = sm{v
′,v/x,this}

α : α.f = e.m(e′);s, `
v.m(v′)7−→
true

s′′;α.f = •;s, `
[meth-fail]

JeKid,` = v Je′Kid,` = v′ fail ∈ v, v′

id : id.f = e.m(e′);s, ` 7−→
true

s, `[f 7→ fail]

[return]

JeKα,` = v

α : return e;s, ` 7−→
true

s[v], `

[if-true]

JeKα,` 6= 0

α : if e then s else s′;s′′, ` 7−→
true

s;s′′, `

[if-false]

JeKα,` = 0

α : if e then s else s′;s′′, ` 7−→
true

s′;s′′, `

[fix]

x fresh

id : (s1 + s2);s, ` 7−→
true

(s1 +x s2);s, `

[choice]

i ∈ {1, 2}
id : (s1 +x s2);s, ` 7−→

x=i
si;s, `

Fig. 1. Syntax and runtime statement semantics of scl.

and ψ is a formula. The transition means that executing s in an actor α with a
memory ` amounts to produce an action µ and a formula ψ and executing s′ in
`′. Actions µ are commitments to the context, formulas ψ are essential for our
analysis in the next sections.

Runtime statements, as reported in Figure 1, extend statements with 0 rep-
resenting termination, id recording the user that initiated the transaction, id [v]
returning a value to the user id , α.f = •;s representing a continuation waiting
for a value that will replace the symbol •, with s;s′ denoting the sequential
composition, and s +x s′, an alternative form of s + s′ that retains the fresh
variable to be used for recording the choice (this information is necessary in the
analysis of Section 4). Sequential composition is considered associative.

The following auxiliary functions are used in the semantic rules:

– `[f 7→ v] is the memory update, namely (`[f 7→ v])(f) = v and (`[f 7→
v])(g) = `(g), when g 6= f.

5

– s[v] is the delivery of a value v to a runtime statement s, namely

s[v]
def
=

α.f = v;s′ if s = α.f = •;s′ and v 6= fail

id .f = fail;s′ if s = id .f = •;s′ and v = fail

id [fail] if s = a.f = •;s′;id and v = fail

id [v] if s = id

It is worth to observe that (α.f = •;s′)[fail] behaves in different ways ac-
cording to α being a user or a smart contract. In the first case the field of
the user is updated with fail – which is possible for users –, in the second
case the whole statement fails and the failure is reported to the user that
triggered the whole transaction.

– JeKα,` is a partial function that returns the value of e. The value of fields
of α is retrieved in the memory ` of α: Jα.fKα,` = `(f). The function is
undefined if e tries to use fields of an actor 6= α. We omit the definition of
JeKα,` when e is an operation, but we require that it must be fail when one
of the arguments is fail. JeKα,` returns the tuple of values of e.

Let us comment some semantic rules in Figure 1. Rule [upd] defines the
semantics of a field update: the expression e is evaluated in an actor α with
a memory `; the resulting memory binds the value to the field f. Rule [meth]

defines method invocations α.f = e.m(e′);s when the evaluation of e and e′

does not return a failure. In this case, the method dispatch is performed by
using the value v of the carrier (because every name belongs to a class) and
the statement to evaluate becomes the instance of the body of m, followed by
the update α.f = •, where • represents a place-holder, and the continuation

s. The transition is labelled
v.m(v′)7−→
true

meaning that we are invoking the method

m of actor v with actual parameters v′. Rule [meth-fail] addresses failures in
the evaluation of expressions of a method invocation; in this case the invocation
is not performed and the field is updated with fail. Rule [return] defines the
semantics of return e. There are two types of return continuations s: one is
α.f = •;s′ – see rule [meth] –, the other one is id (this will be clear in the
semantics of scl programs). Additionally, the semantics depends on whether α
is a smart contract or a user, and on whether the value v is a failure or not.
To manage all these cases we use the auxiliary function s[v]. The semantics of
conditionals is standard. On the contrary, the semantics of nondeterminism is
not standard and deserves few comments. First of all, nondeterminism may only
occur in user codes, therefore the actor here is id . Then, we need to keep track of
the nondeterministic choices in order to study the behaviour of smart contract
programs. To this aim we use a fresh variable x each time a choice is about to be
performed and (s1 + s2);s transits into an intermediate statement (s1 +x s2);s.
In turn this statement becomes either s1;s or s2;s and the choice is recorded
by letting x = 1 or x = 2 in the formula labelling the transition, respectively.

6

States:

S ::= s | a(` · `′) | id(`, s) | S | S (states)

Auxiliary functions commit(·) and backtk(·) (the two functions are homomorphic with respect to |):

commit(s) = s commit(a(` · `′)) = a(` · `) commit(id(`, s)) = id(`, s)
backtk(s) = s backtk(a(` · `′)) = a(`′ · `′) backtk(id(`, s)) = id(`, s)

State transition
µ−→
ψ

(µ may be empty, α, X or fail; ψ is a formula):

[sc-move]

a : s, ` 7−→
ψ

s′, `′

a(` · `′′) | s −→
ψ

a(`′ · `′′) | s′

[id-move]

id : s, ` 7−→
ψ

s′, `′

id(`, s) −→
ψ

id(`′, s′)

[invk]

a : s, `
a′.m(v)7−→
ψ

s′, ` a 6= a′

a(` · `′) | a′(`′′ · `′′′) | s −→
ψ

a(` · `′) | a′(`′′ · `′′′) | s′

[invk-self]

a : s, `
a.m(v)7−→
ψ

s′, `

a(` · `′) | s −→
ψ

a(` · `′) | s′

[invk-sc]

id : s, `
a.m(v)7−→
ψ

s′′;id.f = •;s′, ` • /∈ s′′

id(`, s) | a(`′ · `′) | 0 −→
ψ

id(`, id.f = •;s′) | a(`′ · `′) | s′′;id

[invk-id-self]

id : s, `
id.m(v)7−→
ψ

s′, `

id(`, s) −→
ψ

id(`, s′)

[end-ok]

v 6= fail

id(`, s) | id[v] X−→
true

id(`, s[v]) | 0

[end-fail]

id(`, s) | id[fail] fail−→
true

id(`, s[fail]) | 0

[cmt]

S
X−→
ψ

S′

S′′ | S X−→
ψ

commit(S′′) | S′

[bkt]

S
fail−→
ψ

S′

S′′ | S fail−→
ψ

backtk(S′′) | S′

[tau]

S −→
ψ

S′

S′′ | S −→
ψ

S′′ | S′

Fig. 2. Semantics of scl.

2.1 Semantics of scl programs

A smart contract program is a pair
(
D,S

)
, where D is a finite set of class defi-

nitions and S is state. States, as defined in Figure 2, are parallel composition of
actors a(` ·`′), called smart contracts, or actors id(`, s), called users, and exactly
one runtime statement, called blockchain-statement. Smart contracts have pairs
of memories ` · `′ where ` is the current memory and `′ is the last committed
memory. In case of commits, the current memory ` becomes the last committed
memory; in case of failures, the system will backtrack by restoring `′. In a state,
names a and id are unique. As usual, parallel composition in states is associative
and commutative.

The semantics of a smart contract program is defined by means of transition

relation S
µ−→
ψ

S′, where µ may be either empty or X or fail, and ψ is a formula.

The class declarations are kept implicit in the transition relation. The reader

may find the formal definition of
µ−→
ψ

in Figure 2.

7

States may evolve in two ways: either by a transition of the blockchain-
statement or by a transition of a user.

The blockchain-statement may evolve because of an empty-labelled statement
transition – rule [sc-move] – or because of a method invocations of a smart
contract – see rules [invk] and [invk-self]. In this last case, the state must
contain the smart contract whose method is invoked in the label of the transition.
Users have a behaviour, which is modelled by a runtime statement, and evolve
concurrently either with empty-labelled transitions – rule [id-move] – or with self-
invocations – rule [invk-id] (therefore a user cannot invoke another user, e.g. user
interactions are always mediated by a smart contract). When the blockchain-
statement is 0, a user may invoke a smart contract’s method – rule [invk-sc].
This is the only way to start a blockchain transaction and, in this case, in order
to return the result to the caller, method’s body is suffixed with user’s name. The
transaction terminates either successfully returning a not-fail value to the user
that triggered it – rule [end-ok] – or with a failure – rule [end-fail]. In the first
case, the smart contracts that were involved in the transaction are committed
– rule [cmt] –, e.g. their current local memory is saved; in the second case the
smart contracts backtrack – rule [bkt] – e.g. their current memory is deleted and
the current one becomes the last memory that has been committed. Backtrack
and commit are defined by the auxiliary functions backtk(·) and commit(·) in
Figure 2.

We conclude by noticing that blockchain-statements are executed sequen-
tially and in a deterministic way (because they originated in smart contracts’
methods). On the contrary, users’ method are performed concurrently and are
nondeterministic (because the operator + may occur in their code).

Example 1. We use a simple example to illustrate the technicalities we have in-
troduced. The example is about garbage collection and defines the interactions
between a citizen and a smart bin. In particular, a citizen gets rid of the garbage
in two ways: either throwing the garbage bags into a smart bin or dumping it
(littering the street, for instance). The throwing in the bin is performed by invok-
ing a method “throw”; this invocation returns a natural value that corresponds
to a cash prize for having behaved well. If the garbage bag is dumped, the prize
is 0. Every two garbage bags, the cash owned by the citizen is deposited in his
bank account (in order to reduce his overall garbage taxes). The classes of the
citizen and of the smart bin are displayed in Figure 3 (notice that the citizen
is a user, while the bin is a smart contract). For simplicity, the management of
failures has been removed by the codes of Figure 3. The smart bin class has a
method throw whose behaviour depends on the value of the field h. When h is
0, two bags can be taken: the field h is set to 1 and a prize k is returned to the
citizen, subtracting it from the field a that represents the money hold by the
bin. When the second bag arrives, a value k′ is returned to the citizen (notice
that k may be different from k′), after having re-charged the field a and asked
to the truck to empty the bin, re-setting h to 0.

Let us discuss a possible state and its transitions. Let man ∈ Citizen,
bin ∈ Garbage bin, bank ∈ Bank and truck ∈ Truck. We assume that Bank

8

Citizen = (
Nat v1, v2, tmp ;
Nat behaviour(Id bin , Id bank) =

this.v1 = bin.throw () ; (this.v2 = bin.throw () ; CONT
+ this.v2 = 0 ; CONT)

+ this.v1 = 0 ; (this.v2 = bin.throw() ; CONT
+ this.v2 = 0 ; CONT)

where CONT = this.tmp = bank.deposit(v1+v2); this.v1 = 0; this.v2 = 0;
this.tmp = this.behaviour(bin ,bank); return this.tmp

)

Garbage_bin = (
Nat h, a, tmp ;
Nat throw() =

if (this.h == 0) then this.h = 1 ; this.a = this.a - k ; return k
else this.a = this.a + bank.withdraw(k + k’); this.h = 0 ;

this.tmp = truck.empty (); this.a = this.a - k’; return k’
)

Fig. 3. The citizen and garbage bin classes

has methods deposit and withdraw (with the obvious meanings); Truck has a
method empty that empties the bin and returns 0. Let also

`m = [v1 7→ 0, v2 7→ 0, tmp 7→ 0]
`b = [h 7→ 0, a 7→ k′ + k, tmp 7→ 0]
s = man.tmp = man.behaviour(bin, bank);return 0
S = man(`m, s) | bin(`b · `b) | bank(` · `) | truck(`′ · `′) | 0

We have

S −→
true

man(`m, s
′) | bin(`b · `b) | bank(` · `) | truck(`′ · `′) | 0

where s′ = sbh;man.tmp = •;return 0 and sbh is the body of behaviour with
the instantiation {bin,bank ,man/bin,bank,this}. In this state, sbh may evolve either
by invoking bin.throw() (throwing the garbage into the bin) or by updating v1
to 0 (illegal dumping of garbage). Let us discuss the first alternative, which is
more interesting. Therefore, let s′′ = s′bh;man.tmp = •;return 0, where

s′bh = man.v1 = •;(man.v2 = bin.throw();CONT + man.v2 = 0;CONT)

Then we have the following transitions (x1 and x2 are two fresh variables for
tracing the choices that has been done):

man(`m, s
′) | bin(`b · `b) | bank(` · `) | truck(`′ · `′) | 0

−→
true
−→
x1=1

man(`m, s
′
bh) | bin(`b · `b) | bank(` · `) | truck(`′ · `′) | sthw;man

−→
true

4 man(`m, s
′
bh) | bin(`′b · `b) | bank(` · `) | truck(`′ · `′) | man[k]

X−→
true

man(`′m, s
′
bh{k/•}) | bin(`′b · `′b) | bank(` · `) | truck(`′ · `′) | 0

−→
true
−→
x2=1

man(`′m, s
′′
bh) | bin(`′b · `′b) | bank(` · `) | truck(`′ · `′) | sthw;man

where sthw is the instance of the body of throw with the name bin for this;
`′m = `m[v1 7→ k], `′b = `b[h 7→ 1, a 7→ k′] and s′′bh = man.v2 = •;CONT. The
continuation is omitted.

9

3 The open semantics and the analysis model

A decentralized application is never a closed system: smart contract’s methods
can always be invoked not only by users and the smart contracts designed to
interact with them, but also by unknown actors. Therefore, to study properties
of our systems, we need to analyse open configurations. In particular, we need
to reason on invocations without any knowledge of the actual parameters of the
caller. A standard solution of this problem is to use symbolic variables – see
Figure 4 –, i.e. extending values with (unbound) variables and admitting that
operators return terms, such as x + 1, in addition to integers and actor names.
Therefore the evaluation function JeKα,` may now return terms with symbolic
variables and it follows that actor’s fields may also record terms with symbolic
variables.

The extensions of runtime statements transitions in Figure 1 and of state
transitions in Figure 2 are given in Figure 4. As regards runtime statements, the
rules [if-true] and [if-false] are replaced by [if-open-true] and [if-open-false]

where the formulas of transitions report whether the guard is true (6= 0) or false
(= 0). These formulas and those of the rule [choice] will enable the analysis of
smart contract systems in Section 4.

As regards the open state transition, we extend the rules of Figure 2 with
those for invoking a method of a unspecified smart contract – rules [invk-open]

and [invk-open-id]. We discuss the former, the latter one is similar. The function
• /∈ s′′ returns true if • does not occur in the runtime statement s′′ (which is
always the case when a method body is istantiated). This expedient is used to
select in s′′;a.f = •;s′, a, ` the prefix representing the instance of method’s body
and to drop it because we don’t want to analyze behaviours of unspecified actors.
Henceforth, the rule delivers to the continuation either a symbolic variable or
fail, therefore covering every possible output of the invocation.

Rule [input-open-sc] defines the invocation of a smart contract method by a
hypothetical user. In this case, actual parameters are all fresh symbolic variables
and the instance of method body is suffixed by the name of the hypothetical user.
According to the returned value is fail or not, we will have a backtrack – rule
[end-fail-open] – or a commit – rule [end-open] –, respectively.

The open transition system in Figure 4 defines a model that is a tuple
(S,S0, T), where S is a non-empty set of states, S0 ∈ S is the initial state, and
T ⊆ S × S ×Θ × Ψ is the set of labelled transitions. The set Θ is the collection
of labels {ε, fail,X, v = a′.m(v), id : z} (ε represents the empty label) while Ψ is

a set of formulae. As usual 〈S1,S2, µ, ψ〉 ∈ T is abbreviated into S1
µ−→
ψ

S2.

Actually, in Section 4 we use a slightly different model than the foregoing
one, that we call analysis model. In the forthcoming analysis we need to deal
with the constant fail. To this aim, in order to remain in Presburger arithmetics,
we decided to encode fail by extending the Nat type to Integers. Henceforth fail
is encoded by −1 and we use a function |ψ| replacing every occurrence of fail
with −1 and turning every actor name into a (global) integer variable. We also
extend labels Θ with a new label, written (x), which is meant to expose in the

10

Symbolic values:

v ::= . . . | x | v op v (symbolic values)

Open runtime statements transition
µ7−→
ψ

:

[if-open-true]

JeKα,` = v

α : if e then s else s′;s′′, ` 7−→
v 6=0

s;s′′, `

[if-open-false]

JeKα,` = v

α : if e then s else s′;s′′, ` 7−→
v=0

s′;s′′, `

Open state transition
µ−→
ψ

(µ may be empty, X, fail, a.m(v), or id : z; ψ is a formula):

[invk-open]

a : s, `
a′.m(v′)7−→

true
s′′;a.f = •;s′, `

• /∈ s′′ v either x fresh or fail

S | a(` · `′) | s v=a
′.m(v′)−→
a′ /∈S

S | a(` · `′) | (a.f = •;s′)[v]

[invk-open-id]

id : s, `
a.m(v′)7−→
true

s′′;id.f = •;s′, `
• /∈ s′′ v either x fresh or fail

S | id(`, s)
v=a.m(v′)−→
a/∈S

S | id(`, (id.f = •;s′)[v])

[input-open-sc]

id, z fresh

a ∈ C m(x) = sm ∈ C s′′ = sm{z,a/x,this}

S | a(` · `) | 0
id:z−→
id /∈S

S | a(` · `) | s′′;id

[end-open]

v 6= fail

S | id[v] X−→
id /∈S

commit(S) | 0

[end-fail-open]

S | id[fail] fail−→
id /∈S

backtk(S) | 0

Fig. 4. The open semantics of scl.

label the fixing of the variable x by rule [fix] of Figure 1. In particular, in the
analysis model

– if S
µ−→
ψ

S′ follows from the open semantics without using the rule [fix] then

the analysis model has S
µ−→
|ψ|

S′;

– if S −→
ψ

S′ follows from the open semantics using the rule [fix] and x is the

fresh variable that has been introduced then the analysis model has S
(x)−→
|ψ|

S′.

An (analysis) model is finite if the set of states S is finite; it is a Presburger
model if the set of conditions Ψ and the actual parameters used in Θ range re-
spectively over Presburger formulas and Presburger expressions. We recall that
Presburger arithmetics is the decidable subset of classical first order logic over
integer numbers where the only predicates allowed are equality and (strict) in-
equality and the only function symbols are addition between integer expressions
and multiplication of an integer expression by a constant.

Example 2. In Figure 5 we illustrate the analysis model of a citizen and a garbage
bin discussed in Example 1. In order to have a more compact picture, we have

11

x=1 x=22

3

7

4

v1=bin.throw()

8

v2=bin.throw()
9 10 11 12

y=1 y=2 z=1 z=2

13 14 15 16

v2=bin.throw()

17

_=bank.deposit
(v1+0)

1

65

_=bank.deposit
(0+v2)

=bank.deposit(0+0)=bank.deposit(v1+v2)

(x)

(y) (z)

1

2

4

3

8

6

5

7

id:()

id’:()

id[k]

id’[k’]

_=bank.withdraw(k+k’)

_=truck.empty()

Fig. 5. The models of the citizen and the bin

collapsed empty-labelled transitions. We have also used a simple hack to have
finite models: we have added an empty labelled transition from state 17 to state
1, even if they are not exactly equal as systems states. This is because the stack
of the citizen grows at every call since we do not optimize tail recursion in the
transition systems of Figure 2. However, our analyzer always performs these
optimizations. We also remark that the two models are also Presburger models.

Due to lack of space, Figure 5 does not report the interactions between the
citizen, the garbage bin and other actors. The complete model has a large number
of states because of all possible interactions. In particular, every time the citizen
wants to throw out her garbage, she can either succeed immediately — and in
that case an empty labelled move is performed by the system via the [invk-sc]

rule — or she can be pre-empted by an unknown id via the [input-open-sc] rule.

4 Observables and strategies

A user can behave in different ways and obtain different results because of the
choice operator + that may occur in its code. In this section we study users’
behaviours and how choices influence results in a sensible way.

Definition 1. Let (S,S0, T) be a scl analysis model. An objective function ω

maps labels µ of transitions S
µ−→
ψ

S′ in T to some integer expression. Given a

computation S1
µ1−→
ψ1

· · · µn−→
ψn

Sn+1, its ω-observation is
∑

1≤i≤n ω(µi).

In Example 1, a citizen is interested into maximizing the amount of cash-back
that is saved in the bank, i.e. its objective function called ωC , is defined as follows

ωC(µ) =

{
v1 + v2 if µ = = bank.deposit(v1 + v2)
0 otherwise

12

We notice that the result of an objective function may be a term containing sym-
bolic names. (As a consequence our analysis will enable programmers to design
smart contracts with instances of symbolic names that support “optimal strate-
gies” – see below.) Contrary to citizens, the city hall is interested on minimizing
the amount of garbage dumped or, equivalently, to maximize the amount of
garbage thrown in the bins. Thus its objective function ωH is defined as follows

ωH(µ) =

{
1 if µ = = bin.throw()
0 otherwise

A strategy is a function that determines the transition to perform in states
where the next statement to execute is a choice. Since these decisions are taken
by users, which only have a partial understanding of the state (every user has full
visibility of its own state and of smart contracts’ states, they cannot access the
internal state of other users), in general, a user can only devise “sub-optimal”
strategies. A strategy is optimal with respect to an objective function ω, if,
for any other strategy, all the possible future computations (which follow by
the behaviour of the other users involved) cannot yield a higher ω-observation.
Users that, at any choice point, try to maximize some objective function are
called rational. In the rest of the section we are interested into rational users.

In general we cannot expect the existence of optimal strategies, nor we can
expect that a strategy that is optimal for a given objective function is also
optimal for another objective function. For example, if we just analyze the model
of our citizen in isolation (see Figure 5), we can only deduce the following facts
about the pair of objective functions 〈ωC , ωH〉, i.e. the first element observes the
cash-back (according to the citizen objective function) and the second one the
number of calls to throw() (according to the city hall objective function):

1. the strategy that dumps the garbage twice at each execution 1–17 yields the
pair 〈0, 0〉;

2. the two strategies that dump the garbage once yield the pairs 〈v1, 1〉 and
〈v2, 1〉 respectively, for some v1, v2;

3. the strategy that never dumps the garbage yield the pair 〈v1 + v2, 2〉, for
some v1, v2.

Note that v1 and v2 are not fixed: a garbage bin may return different values
at every invocation of throw(), depending on its own internal logic and on
the interaction with other actors. From the point of view of the city hall, the
optimal strategy for the citizen is clearly the last one. From the point of view of
the citizen, instead, there is no optimal strategy: it depends on the behaviour of
the garbage bin that is unknown since we are analyzing the citizen in isolation.

Here is where smart contracts enter into the picture. A smart contract is used
to regulate interaction between (human) users. In many real world examples, the
smart contract is designed so that the system obtained composing humans with
contracts has two relevant properties: (i) every user has an optimal strategy and
(ii) the optimal users’ strategies also maximizes the objective function of the
smart contract programmer. In Example 1, this second function is exactly ωH ,

13

that is the programmer aims at minimizing the garbage dumped by citizens.
If we combine the citizen and the smart contract and we analyze again the
model obtained, we realize that the garbage bin sometimes pays back k coins
and sometimes k′ coins. In particular, the strategy of point 1 always yield 〈0, 0〉,
both strategies of point 2 sometimes yield 〈k, 1〉 and sometimes 〈k′, 1〉, while the
strategy of point 3 can yield any pair of observations among 〈k+k, 2〉, 〈k+k′, 2〉,
〈k′+k, 2〉, 〈k′+k′, 2〉. It follows that the strategy of point 1 is clearly not optimal
for the citizen, but the remaining three are incomparable because, for example,
getting a k′ from one strategy frequently can be better than getting a k+k from
another strategy.

Our analysis, however, suggests a simple solution to the programmer: if the
programmer chooses k = k′ > 0, then the four strategies now yield the pairs
〈0, 0〉, 〈k, 1〉, 〈k, 1〉, 〈2k, 2〉. In this case, the last strategy is optimal both for the
citizen and for the city hall. The same result can be obtained picking any value
for k and k′ such that 0 < k < 2k′ < 4k, so that getting two cashbacks is always
better than getting just one of them.

In the rest of the section, the analysis models will be acyclic and finite, namely
models such that the transition relation has always finite maximal computations.
These models can be obtained by unfolding cyclic models up to a certain depth.
This makes sense in the context of smart contracts where the executions are
always bound in the number of steps by some quantity called gas that is bought
by the caller (a user) with the virtual currency of the blockchain [6]. It also makes
sense in examples like Example 1 where the model is one big cycle; therefore it is
sufficient to maximize the objective function over just one iteration of the loop.

4.1 Automatic analysis

We use an automatic technique to verify whether an analysis model retains opti-
mal strategies for some objective function or whether maximizing some objective
function – e.g. the cash-back to the citizen – implies the maximization of other
objective functions – e.g. the amount of garbage thrown into smart bins. Given
an objective function, our technique derives a first order logic formula specifying
every possible observation with respect to unknown symbolic inputs and to the
internal choices of every agent.

Let Q be the following map from labels to a possibly empty sequence of
quantifiers:

Q((x)) = ∃x Q(x = a.m(v)) = ∀x
Q(id : z) = ∀id∀z Q(µ) = ε (otherwise)

Let also M = (S,S0, T) be finite and acyclic and ω be an objective function.
The characteristic formula L S0 MMω is the first-order logic formula defined as
follows

14

– when there is at least one transition S
µ−→
ψ
S ′ ∈ T :

L S MMω =
∨

S
µ−→
ψ
S′∈T

Q(µ)
(
ψ ∧ O(S, {ω(µ)}) ∧ L S′ MMω

)
;

– when there is no µ, ψ, S′ such that S
µ−→
ψ
S ′ ∈ T (S is final):

L S MMω = >

where > is the proposition “true”.

The binary predicate O(S,A) in the characteristic formula is to be read as
follows: there exists a computation originating from S that eventually leaves the
state S observing one element of the set A. For example, O(13, {v1 + v2}) means
that there will be a transition from state 13 where the user observes v1 + v2;
O(15, {2}) ∨ (O(12, {v1, v2}) means that either state 15 will be reached and left
observing 2, or the state 12 will be reached and left observing either v1 or v2.

In order to ease the reading, we simplify the characteristic formula as follows:

– G∧O(S, {0}) is simplified to G because observing 0 is useless for maximizing
an objective function;

– G ∧ > is simplified to G;
– ∀x.G is simplified to G when x does not occur in G (similarly for ∃).

After these simplifications, the characteristic formula for the objective function
ωC of the citizen (we remove the empty-labelled transition from state 17 to state
1 in Figure 5) is:

L 1 MMωC = ∃x
[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ∀v2O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1 + 0}))

)
∨ x = 2 ∧ ∃z

(
z = 1 ∧ ∀v2O(15, {0 + v2})

)
∨
(
z = 2 ∧ O(16, {0 + 0})

)]
(1)

The characteristic formula for the objective function ωH of the city hall instead is:

L 1 MMωH = ∃x
[
x = 1 ∧

(
O(3, {1}) ∧ ∃y((y = 1 ∧ O(9, {1})) ∨ y = 2)

)
∨ x = 2 ∧ ∃z

(
(z = 1 ∧ O(11, {1})) ∨ z = 2

)]
(2)

4.2 Quantifier elimination

When the analysis model is Presburger, the characteristic formula belongs to
the extension of Presburger arithmetics with the observation predicate O(S,A).
It turns out that this fragment of first order logic can be decided via quantifier
elimination [13]: at every step the formula is rewritten so that each innermost
quantifier is existential, and then that quantified formula is replaced with a
logically equivalent one where the existentially bound variable no longer occurs.

15

As a special bonus, the sets A of observation predicates can be rewritten in the
elimination step in such a way that at the end we can recover from the quantifier
free formula a set of polytopes that describe the value of all possible variables
in every observable state that can be reached, together with the observation
performed in that state. It is then easy to compare different strategies observing
the value taken by the objective function when its input ranges over the polytope.

The quantifier elimination algorithm starts rewriting an innermost quantified
subformula into the normal form

∃x.l ≤ kx ∧ kx ≤ u ∧
∧
i

\iO(Si,Ai)

where x /∈ l, u and \F stands for either F or ¬F . Then it replaces the formula
with its logically equivalent one

(
∧
li∈l

∧
uj∈u

li ≤ uj) ∧
∧
i

\iO(Si, {a ∈ Ai | l ≤ kx ∧ kx ≤ u})

Afterwards the algorithm loops on another innermost quantifier until no quan-
tifiers are left. Special care is required to avoid simplifying > ∨ F into > and
⊥ ∧ F into ⊥ to avoid loosing the polytopes recoverable from F .

Example 3. We illustrate the quantifier elimination technique on the character-
istic formula (1). In the following, the underlined formulas are the next ones to
be simplified. For the sake of readability, we shorten expressions as 0 + 0 into 0
and v + 0 into v.

L 1 MMωC = ∃x
[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ∀v2O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)
∨ x = 2 ∧ ∃z

(
z = 1 ∧ ∀v2O(15, {v2})

)
∨
(
z = 2 ∧ O(16, {0})

)]
⇐⇒ ∃x

[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ¬∃v2 ¬O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)
∨ x = 2 ∧ ∃z

(
z = 1 ∧ ¬∃v2 ¬O(15, {v2})

)
∨
(
z = 2 ∧ O(16, {0})

)]
⇐⇒ ∃x

[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ¬¬O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)
∨ x = 2 ∧ ∃z

(
z = 1 ∧ ¬¬O(15, {v2})

)
∨
(
z = 2 ∧ O(16, {0})

)]
⇐⇒ ∃x

[
x = 1 ∧ ∀v1

(
∃y(y = 1 ∧ O(13, {v1 + v2})) ∨ ∃y(y = 2 ∧ O(14, {v1}))

))
∨ x = 2 ∧

(
∃z
(
z = 1 ∧ O(15, {v2})

)
∨ ∃z

(
z = 2 ∧ O(16, {0})

))]
⇐⇒ ∃x

[
x = 1 ∧ ∀v1

(
O(13, {v1 + v2 | y = 1}) ∨ O(14, {v1 | y = 2})

))
∨ x = 2 ∧

(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]
⇐⇒ ∃x

[
x = 1 ∧ ¬∃v1

(
¬O(13, {v1 + v2 | y = 1}) ∧ ¬O(14, {v1 | y = 2})

))
∨ x = 2 ∧

(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]
⇐⇒ ∃x

[
x = 1 ∧

(
O(13, {v1 + v2 | y = 1}) ∨ O(14, {v1 | y = 2})

)
∨ x = 2 ∧

(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]
⇐⇒ ∃x

[
x = 1 ∧ O(13, {v1 + v2 | y = 1}) ∨ x = 1 ∧ O(14, {v1 | y = 2})

∨ x = 2 ∧ O(15, {v2 | z = 1}) ∨ x = 2 ∧ O(16, {0 | z = 2})
]

⇐⇒ ∃x
[
x = 1 ∧ O(13, {v1 + v2 | y = 1})

]
∨ ∃x

[
x = 1 ∧ O(14, {v1 | y = 2})

]
∨ ∃x

[
x = 2 ∧ O(15, {v2 | z = 1})

]
∨ ∃x

[
x = 2 ∧ O(16, {0 | z = 2})

]
⇐⇒ O(13, {v1 + v2 | x = 1 ∧ y = 1}) ∨ O(14, {v1 | x = 1 ∧ y = 2})

∨ O(15, {v2 | x = 2 ∧ z = 1}) ∨ O(16, {0 | x = 2 ∧ z = 2})

16

Applying the above technique to the equation (2), we derive(
O(3, {1 | x = 1}) ∧ O(9, {1 | x = 1 ∧ y = 1})

)
∨ O(11, {1 | x = 2 ∧ z = 1})

We notice that, in the case of this last formula, the best strategy to maximize
ωH is to choose x = 1 ∧ y = 1 that yields the observation 1 + 1 = 2. More
precisely, the strategy consists in picking the branch 1 of the rule [choice] in
the state . . . +x . . . and the branch 1 in the state . . . +y With an abuse of
notation, we will indicate strategies as conjunctions

∧
i∈1..n xi = ki.

Let us discuss strategies for ωC . According to the formula

O(13, {v1 + v2 | x = 1 ∧ y = 1}) ∨ O(14, {v1 + 0 | x = 1 ∧ y = 2})
∨ O(15, {0 + v2 | x = 2 ∧ z = 1}) ∨ O(16, {0 + 0 | x = 2 ∧ z = 2})

there is no best strategy to maximize ωC because, for example, by choosing
x = 1∧y = 1, one can observe any value in the set {v1 +v2}. In fact, putting the
citizen in parallel with the garbage bin, the formal parameters v1 and v2 can only
be instantiated with either k or k′, according to the interleaving of the moves of
the citizen with the other actors. In particular, running the analysis again on the
larger model – due to the interleaving –, we obtain the characteristic formula:

O({k + k | x = 1 ∧ y = 1}) ∨ O({k + k′ | x = 1 ∧ y = 1})
∨ O({k′ + k | x = 1 ∧ y = 1}) ∨ O({k′ + k′ | x = 1 ∧ y = 1})
∨ O({k | x = 1 ∧ y = 2}) ∨ O({k′ | x = 1 ∧ y = 2})
∨ O({k | x = 2 ∧ z = 1}) ∨ O({k′ | x = 2 ∧ z = 1})
∨ O({0 | x = 2 ∧ z = 2})

In this case, there is still no optimal choice because, for example, by taking
x = 1 ∧ y = 1 one may observe k + k, which may be smaller than k′ that
is observed for x = 1 ∧ y = 2. As already discussed, it is sufficient for the
implementor to pick 0 < k < 2k′ < 4k to force the existence of a best strategy
which is x = 1 ∧ y = 1 and that coincides with the best strategy from the city
hall point of view, as expected.

Remark 1. The standard formal specification languages to verify and specify
properties of transition systems are temporal logics [12]. Actually one may use
tools that are based on these logics, such as [1], to automatically analyze sys-
tems based on smart contracts. In fact, our characteristic formula is actually a
compilation of linear-time temporal logics with Presburger constraints, which is
decidable [5]. We have preferred the current presentation because it is the one
we use in our prototype implementation.

4.3 Implementation

We are terminating the implementation in OCaml of a tool that, given a set
of actors, an initial state and an objective function, automatically extracts the

17

analysis model, computes the characteristic formula and applies quantifier elim-
ination over it.

Initially we hoped to be able to reuse off-the-shelf implementations of Pres-
burger quantifier elimination by dropping the O predicate and recovering the
polytopes from the tools. But the tools we analyzed are unable to spit out
the polytopes. In fact, because of the double-exponential complexity of quanti-
fier elimination over the number of alternations of quantifiers, the tools avoid
quantifier elimination and rather use model checking or reduction to finite state
automata. However, these two techniques can only enumerate the points in the
polytope, without providing a closed description of it [9, 8]. Therefore we decided
to implement quantifier elimination straight away. We need to evaluate whether
our quantifier elimination is is doable in practice on characteristic formulae gen-
erated from realistic examples of smart contracts. This is left as future work,
once the whole implementation is completed. We will also study the application
of other techniques, like temporal logic, to analyse the formal calculus and the
models introduced in the paper. To ease these analyses, we will write transpilers
from our smart calculus language to existing languages, initially targeting both
Solidity and Liquidity.

5 Conclusions

In this paper we have introduced a unified calculus for modelling smart con-
tracts and users, which are the primary actors of decentralized applications.
These applications run on blockchain systems and handle and transfer assets
of considerable value. We have therefore studied how to regulate by means of
smart contracts the interaction between (rational) users that systematically try
to maximize their revenue or to minimize losses. This is achieved by expressing
the system behaviour as a formula in Presburger arithmetics and solving arith-
metic constraints. Our technique is amenable to automated verification and we
are currently completing an OCaml implementation.

The analysis of smart contracts for deriving strategies and distilling the most
meaningful ones opens unexpected connections between (micro) economy and
computer science that deserves further investigations. While this direction of
research has been already pointed out in other contributions (see e.g. [3]), we
believe that there is much work still to be done.

As regards our calculus, several extensions must be considered. First of all,
the types must be extended with simple dynamic data types, such as arrays and
maps. Then, if we want to model faithfully the (human) users, we need to take
into account probabilities because users are not always 100% rational; they may
be irrational with some percentage.

Dedication. Cosimo is proud to dedicate this paper to Stefania Gnesi and to
the unforgettable Friday afternoons spent together with Alessandro Fantechi.
Stefania and Alessandro have been Cosimo’s Master Thesis advisors and they
first led him to concurrent systems, formal methods and temporal logics. Thank
you Stefania!

18

References

1. Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi. A
model-checking tool for families of services. In Proc. of Joint 13th IFIP WG 6.1
Int. Conf. on Formal Techniques for Distributed Systems, volume 6722 of Lecture
Notes in Computer Science, pages 44–58. Springer, 2011.

2. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal verification of smart contracts:
Short paper. In Proc. of Programming Languages and Analysis for Security, pages
91–96. ACM, 2016.

3. Giancarlo Bigi, Andrea Bracciali, Giovanni Meacci, and Emilio Tuosto. Validation
of decentralised smart contracts through game theory and formal methods. In
Programming Languages with Applications to Biology and Security, volume 9465
of Lecture Notes in Computer Science, pages 142–161. Springer, 2015.

4. Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. Quantita-
tive analysis of smart contracts. In Proc. of ESOP 2018, volume 10801 of Lecture
Notes in Computer Science, pages 739–767. Springer, 2018.

5. Stéphane Demri. Linear-time temporal logics with presburger constraints: an
overview. Journal of Applied Non-Classical Logics, 16(3-4):311–348, 2006.

6. Ethereum Foundation. Ethereum’s white paper. https://github.com/ethereum/
wiki/wiki/White-Paper, 2014.

7. Ethereum Foundation. Solidity 0.4.24 documentation. https://solidity.

readthedocs.io/en/develop/, 2019.
8. Vijay Ganesh, Sergey Berezin, and David L. Dill. Deciding presburger arithmetic

by model checking and comparisons with other methods. In Formal Methods in
Computer-Aided Design, pages 171–186. Springer, 2002.

9. Christoph Haase. A survival guide to presburger arithmetic. ACM SIGLOG News,
5(3):67–82, July 2018.

10. Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing smart contracts smarter. In Proc. of the Conference on Computer and Com-
munications Security, pages 254–269. ACM, 2016.

11. Bernhard Mueller. Smashing Ethereum smart contracts for fun and real profit.
HITB SECCONF Amsterdam, 2018.

12. Amir Pnueli. The temporal logic of programs. In Proc. of Symposium on Founda-
tions of Computer Science, pages 46–57. IEEE Computer Society, 1977.

13. Jeremy Pope. Formalizing constructive quantifier elimination in Agda. In Proceed-
ings. of MSFP@FSCD 2018., volume 275 of EPTCS, pages 2–17, 2018.

14. OCamlPro SAS. Welcome to Liquidity’s documentation! http://www.

liquidity-lang.org/doc/, 2019.
15. David Siegel. Understanding the dao attack. Retrieved June, 13:2018, 2016.

19

