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Abstract

Frataxin (FXN) is a highly conserved protein found in prokaryotes and eukaryotes

that is required for efficient regulation of cellular iron homeostasis. Experimental

evidence associates amino acid substitutions of the FXN to Friedreich Ataxia, a

neurodegenerative disorder. Recently, new thermodynamic experiments have been

performed to study the impact of somatic variations identified in cancer tissues on

protein stability. The Critical Assessment of Genome Interpretation (CAGI) data

provider at the University of Rome measured the unfolding free energy of a set of

variants (FXN challenge data set) with far‐UV circular dichroism and intrinsic
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fluorescence spectra. These values have been used to calculate the change in

unfolding free energy between the variant and wild‐type proteins at zero

concentration of denaturant ( )ΔΔGH O2 . The FXN challenge data set, composed of

eight amino acid substitutions, was used to evaluate the performance of the current

computational methods for predicting the ΔΔGH O2 value associated with the variants

and to classify them as destabilizing and not destabilizing. For the fifth edition of

CAGI, six independent research groups from Asia, Australia, Europe, and North

America submitted 12 sets of predictions from different approaches. In this paper, we

report the results of our assessment and discuss the limitations of the tested

algorithms.
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1 | INTRODUCTION

The human frataxin (FXN) is a protein localized in the mitochondria

and cytoplasm of the cells that promotes the heme biosynthesis, the

assembly, and repair of iron‐sulfur clusters by delivering Fe2+ to

proteins involved in these pathways. Frataxin may play a role in the

protection against iron‐catalyzed oxidative stress (Lupoli, Vannocci,

Longo, Niccolai, & Pastore, 2018).

FXN single‐nucleotide variants have been associated with Friedreich

Ataxia (MIM# 229300), a degenerative disorder primarily affecting the

nervous system (Pandolfo, 2008). Moreover, FXN might play a role in

cancer as previous studies have shown that it protects tumor cells against

oxidative stress and apoptosis but also acts as a tumor suppressor

(Guccini et al., 2011; Schulz et al., 2006). The Catalog of Somatic

Mutations in Cancer (COSMIC) database (Tate et al., 2019) collects a set

of FXN somatic variations identified in cancer tissues. To investigate the

possible thermodynamic effect of those variations on protein stability a

subset of eight variants were expressed as a soluble recombinant protein

in Escherichia coli (Petrosino et al., 2019). For this data set of amino acid

substitutions, the stability of the variant proteins is experimentally

measured with circular dichroism and fluorescence and compared with

wild type. These measures have been used for the FXN challenge of the

fifth edition of the Critical Assessment of Genome Interpretation

(CAGI5). For the FXN challenge participants were asked to predict the

variation of free energy change at zero concentration of denaturant

ΔΔGH O2 upon single‐point protein variation. During the last decades,

several methods have been developed to predict the impact of amino

acid variants on protein stability (Compiani & Capriotti, 2013). These

available algorithms are mainly based on energy functions designed to

assess the stability free energy of the protein and its variants and/or

machine‐learning‐based methods trained to predict the stability changes

upon variation. In this manuscript, we scored the performance of six

research groups in predicting the measured ΔΔGH O2 value (regression

task) and its class (classification task) for eight FXN single amino acid

variants. The performances of all the groups are compared with those

achieved by state‐of‐the‐art methods (Capriotti, Fariselli, & Casadio,

2005; Guerois, Nielsen, & Serrano, 2002) to estimate the possible

improvement with respect to previously developed algorithms. For the

calibration of the predictions, previous experimental thermodynamic data

on a different set of variants (Faraj, Gonzalez‐Lebrero, Roman, & Santos,

2016) were used as a reference.

2 | MATERIAL AND METHODS

2.1 | Data set and classification

The CAGI5 FXN challenge data set consists of eight coding variants

of the FXN gene. These variants encode for single amino acid

substitutions reported in the COSMIC database. A representation of

the variation sites in the three‐dimensional structure of FXN (PDB:

1EKG) is provided in Figure 1.

For each protein variant, the unfolding free energy change (Δ )Gu

at different denaturant concentrations was experimentally deter-

mined with circular dichroism and fluorescence. These measures

were used to calculate the unfolding free energy at zero concentra-

tion of denaturant ( )ΔGH O2 . Finally, the change of ΔGH O2 of the

variant protein ΔΔGH O2 was calculated using the following equation:

ΔΔ = Δ − ΔG G GH O
mut
H O

wt
H O2 2 2 (1)

The average experimental values of the ΔΔGH O2 obtained by

circular dichroism and fluorescence (Table S1) were used for the

challenge. An exception to this procedure is the case of the variant

p.W173C which does not fold. In this case, we assumed its unfolding

free energy equal to 0 kcal/mol and the ΔΔGH O2 equal to the negative

of the ΔGH O2 of the wild‐type protein.

We also assessed the quality of the predictions by calculating the

performance of the methods in classification mode. For this task we

selected a threshold of −1.0 kcal/mol to discriminate between

destabilizing (ΔΔGH O2 < −1.0 kcal/mol) and not destabilizing variants

(ΔΔGH O2 ≥ −1.0 kcal/mol). With this assumption, five variations in the

data set were classified as destabilizing and the remaining three as
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not destabilizing. A visual representation of the similarity between

the ΔΔGH O2 obtained by different experimental techniques (circular

dichroism and fluorescence) and the classification of the variations

are shown in Figure S1.

The final set of eight variations with the relative average ΔΔGH O2

and their experimental errors are reported in Table 1.

2.2 | Experimental measures

Human FXN variants were obtained with specific mutagenesis

primers with polymerase chain reaction, using wild type as a

template. Wild type and variants were then expressed in E. coli and

purified. The structural conformation of the variants was compared

to that of the wild type by monitoring the near and far‐UV circular

dichroism and intrinsic fluorescence spectra. The thermodynamic

stability was measured at different concentrations of denaturant

(Urea) by monitoring the spectral changes (far‐UV circular dichroism

and intrinsic fluorescence emission) induced by urea. The spectral

changes were extrapolated to zero denaturant concentration

(ΔΔGH O2 ). For equilibrium transition studies, FXN wild type and

variants were incubated at 20°C at increasing concentrations of urea

(0–9M). After 10min, equilibrium was reached and both intrinsic

fluorescence emission and far‐UV CD spectra were recorded in

parallel at 20°C. To test the reversibility of the unfolding, FXN wild

type and variants were unfolded at 20°C in 9.0M urea. After 10min,

refolding was started by 10‐fold dilution of the unfolding mixture at

20°C into solutions of the same buffer used for unfolding containing

decreasing urea concentrations. After 24 hr, intrinsic fluorescence

emission and far‐UV CD spectra were recorded at 20°C. All

denaturation experiments were performed in triplicate. For thermal

denaturation studies, FXN wild type and variants were heated

from 20 to 95°C and then cooled from 95 to 20°C. The dichroic

activity at 222 nm was continuously monitored every 0.5°C. Melting

temperature (Tm) values were calculated by taking the first derivative

of the ellipticity at 222 nm with respect to temperature. All

denaturation experiments were performed in triplicate. More details

about the procedure for the calculation of the ΔΔGH O2 and the

analysis of the thermodynamic data are described in supplementary

materials.

2.3 | Challenge participants and prediction
methods

Six groups participated in the CAGI5 FXN challenge by submitting a total

or 12 sets of predictions using different procedures. The Lichtarge Lab at

the Baylor College of Medicine, referred as Group 1, submitted one set of

predictions (G1‐1) using Evolutionary Action method (Katsonis &

Lichtarge, 2014). The output of the program was normalized to return

ΔΔGH O2 values between 0 and −3 kcal/mol. The Biocomputing Group

(Group 2) from the University of Bologna provided one batch of

predictions (G2‐1) using INPS‐3D (Savojardo, Fariselli, Martelli, &

Casadio, 2016). For this challenge, the 1EKG structure from the Protein

Data Bank was considered as wild type. The Zhou Lab at the Griffith

F IGURE 1 Mapping of the eight variation sites of the frataxin
challenge data set on the three‐dimensional structure of the protein

(PDB: 1EKG)

TABLE 1 Frataxin challenge data set of amino acid substitutions

DNA (hg38) mRNA (NM_000144.4) Protein (NP_000135.2) ΔΔ H OG 2 kcal/mol Destabilizing

chr9:g.69053187A>G c.311A>G p.D104G 0.4±0.4 No

chr9:g.69053196C>T c.320C>T p.A107V 0.0±0.6 No

chr9:g.69053201T>C c.325T>C p.F109L −2.8±0.4 Yes

chr9:g.69053244A>C c.368A>C p.Y123S −5.1±0.3 Yes

chr9:g.69065035G>T c.482G>T p.S161I −3.1±0.4 Yes

chr9:g.69072648G>T c.519G>T p.W173C −9.5±0.3a Yes

chr9:g.69072671C>T c.542C>T p.S181F −3.0±0.4 Yes

chr9:g.69072734C>T c.605C>T p.S202F −0.2±0.4 No

Note: The mean variation of unfolding free energy change at zero solvent concentration (ΔΔGH O2 ) is calculated as the mean ΔΔGH O2 values of fluorescence

and circular dichroism experiments (see Table S1). The standard deviation (σ) is obtained summing the errors associated with both types of measures.

Destabilizing are the variants with ΔΔGH O2 < −1.0 kcal/mol.
aThe variant p.W173C does not fold into a three‐dimensional. Thus, for calculating the ΔΔGH O2 of p.W173C we assumed that its ΔGH O2 = 0 kcal/mol. It

follows that ΔΔGH O2 is equal to − ΔGH O2 of the wild type, which is −9.50 kcal/mol.
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University, labeled as Group 3, submitted three sets of predictions (G3‐1,
G3‐2, and G3‐3) using Evolutionary, Amino acid, and Structural Encodings

with Multiple Models (EASE‐MM) algorithm (Folkman, Stantic, Sattar, &

Zhou, 2016). For the assessment we considered only one set of

predictions (G3‐1) because the three batches of predictions returned

the same ΔΔGH O2 values. The Shen Lab at the Texas A&M University

(Group 4) submitted two groups of predictions (G4‐1, G4‐2) using

Interconnected Cost Function Network (iCFN; Karimi & Shen, 2018). This

method was modified to fit the experimental ΔΔGH O2 values for FXN

variants from a previous work (Correia, Pastore, Adinolfi, Pastore, &

Gomes, 2008). The Pal Lab at the Indian Institute of Science in Bangalore,

labeled as Group 5, submitted two batches of unscaled predictions (G5‐1,
G5‐2) using GROMACS (Van Der Spoel et al., 2005). This approach uses

molecular dynamics simulations to estimate the stability of unfolded and

native conformations for the wild type and variants. The Kim Lab at the

University of Toronto (Group 6) submitted three batches of predictions

(G6‐1, G6‐2, and G6‐3) using the ELAPSIC algorithm (Berliner, Teyra,

Colak, Garcia Lopez, & Kim, 2014; Witvliet et al., 2016). ELAPSIC is a

meta‐predictor that combines predictions from other methods with

sequence and structure‐based features using a gradient boosting

algorithm. During the assessment, we observed that predictions

submitted by Group 6 showed a strong negative correlation with the

experimental data. This is due to the difference between the challenge’s

request of predicting the variation of unfolding free energy change

(ΔΔGu) and the predictions of folding free energy change (ΔΔGf)

submitted by Kim’s Lab. For this reason, we also scored the inverse of

the three sets of Group 6 predictions (G6‐R1, G6‐R2, and G6‐R3).
Finally, to estimate the improvement of the performance

between more recent algorithms and state‐of‐the‐art methods, we

included in our assessment the performance of FoldX (Guerois et al.,

2002) and I‐Mutant2.0 (Capriotti et al., 2005).

In the supplementary materials, we described more in detail

the methods and procedures used by each group to perform

their predictions. A summary of all the submissions is reported in

Table S2.

2.4 | Prediction assessment

For the evaluation of the predictions we considered eight measures of

performance for the regression and classification tasks defined in

supplementary materials (Section S3). Comparing the predicted and

experimental values of ΔΔGH O2 of each protein variant, we calculated

three types of correlations (Person, Spearman, and Kendall‐Tau) and two

types of errors (root mean square error [RMSE] and the mean absolute

error [MAE]). Furthermore, we considered a threshold of −1.0 kcal/mol

for classifying variants in destabilizing (ΔΔGH O2 < ‐1.0 kcal/mol) and not

destabilizing variants (ΔΔGH O2 ≥ ‐1.0 kcal/mol). Using this threshold for

the binary classification task, we scored the predictions calculating the

balanced accuracy (BQ2), theMatthews correlation coefficient (MCC) and

the area under the receiving operator characteristic curve (AUC). Finally,

we ranked all the submissions considering each one of the eight measures

of performance and by calculating the average value of the ranks, which

is used to select the best predictions. In the second part of the

assessment, we determined the significance of the differences between

the performance of two methods with the Kolmogorov–Smirnov (KS)

test. The KS test was used to compare the distribution of the ranks for

each measure of performance.

Another important issue in the evaluation of the most reliable

predictions is the presence of outliers in the experimental data set.

With outlier, we refer to an experimental measure that, for different

reasons, is considered to be less accurate or reliable than others. In

general, it is expected that most of the methods will fail in the

prediction of the outliers. According to this assumption, in our

assessment, we also scored the performance of the algorithms

removing the outliers from the initial FXN challenge data set. In

particular, for this calculation we removed from the data set the

variant p.W173C for which the ΔGH O2 was set to 0 kcal/mol because

it was not folding properly.

The definitions of the eight measures of performance

considered for this assessment are reported in Supporting

Information Materials.

3 | RESULTS

3.1 | Assessment and performance evaluation

In our assessment, we first evaluated the success of the participants

in predicting the value of ΔΔGH O2 . For this task, we calculated five

performance measures, three of which score the correlations

between experimental and predicted data (rP, rS, and rKT) and two

the prediction errors (RMSE and MAE). The performance in the

regression task for the best predictions of each group are reported in

Figure S2. According to the calculated scores, Group 3 resulted in the

best predictions reaching the highest Pearson correlation coefficient

(rP = 0.84) and lowest root‐mean‐square‐deviation (RMSE = 2.94 kcal/

mol). Our analysis also showed that Group 6 resulted in negative

values of the Pearson correlation coefficient close to −1 (rP = −0.89).

Assuming that Group 6 predicted the variation of the ΔΔGH O2 of

folding instead of the unfolding, we decided to include in our

assessment the opposite of the predictions submitted by Group 6.

The performances of participants were compared with those

achieved by state‐of‐the‐art methods by including in our assessment

the predictions returned by FoldX and I‐Mutant2.0. Furthermore, we

combined the regression measures with three classification scores

(BQ2, MCC, and AUC) obtained using a threshold of −1.0 kcal/mol for

discriminating between destabilizing and not destabilizing variants.

The assessment, including eight scores of performance sorted by the

average of the rank orders of each method, is summarized in Table 2.

The results showed that the opposite predictions of Submission 1

from Kim Lab (G6‐R1) achieved the top average rank calculated over the

eight measures of performance. It is worth noting that FoldX scored

second in the ranking achieving on average lower performance on the

binary classification task and better results in the prediction of the

ΔΔGH O2 value with respect to the Kim’s Lab R1 submission. Additional

details about the comparison between Kim’s Lab R1 submission and the

prediction of the state‐of‐the‐art methods are shown in Figure 2.
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3.2 | Data set outlier

The analysis of all the submitted predictions revealed that on average all

the groups failed in the prediction of the ΔΔGH O2 for the variant

p.W173C. Excluding Group 5, for this variant, the difference between the

average predicted and experimental ΔΔGH O2 is approximately 6 kcal/mol

(see Figure 3). A possible motivation of the strong discrepancy between

predicted and experimental ΔΔGH O2 values is the partial indetermination

of the ΔGH O2 of the unfolding of the p.W173C variant. Indeed, this

protein variant did not fold into a three‐dimensional structure. For this

reason, we arbitrarily assigned to the p.W173C variant a ΔGH O2 equal

to 0 kcal/mol, which implies an equal fraction of folded and unfolded

protein at equilibrium. According to this observation, the protein variant

p.W173C was considered an outlier and we performed a second

assessment of the predictions removing it from the FXN challenge data

set. Sorting all the predictions, according to the average ranking based on

the eight measures of performance, we observed that the G6‐R1 from

Kim’s Lab and FoldX predictions scored in the first and second position,

respectively. The difference with respect to the previous assessment

including all the FXN variants is the third position in the ranking achieved

by the Biocomputing Group. As expected for all the submissions the

RMSE and MAE values decreased. Thus, removing the variant p.W173C

from the data set, the average RMSE for the top four ranking submissions

was approximately 1.7 kcal/mol while it was approximately 2.6 kcal/mol

for all the variants.

TABLE 2 Assessment of the predictions of the six groups and the state‐of‐the‐art methods (FoldX and I‐Mutant2.0)

Group Submission rP rS rKT RMSE MAE BQ2 MCC AUC Rank

Kim Lab G6‐R1a 0.82 0.69 0.50 2.4 1.7 0.80 0.60 0.93 1.75

FoldX – 0.84 0.64 0.57 2.2 1.7 0.73 0.47 0.87 2.00

Zhou Lab G3‐1 0.85 0.64 0.64 3.0 2.3 0.70 0.45 0.80 2.88

Kim Lab G6‐R2a 0.71 0.57 0.43 2.7 2.0 0.63 0.26 0.80 4.13

Biocomp G2‐1 0.74 0.52 0.36 3.2 2.3 0.80 0.60 0.80 4.25

Lichtarge Lab G1‐1 0.46 0.60 0.50 3.1 2.2 0.63 0.26 0.87 4.38

I‐Mutant2.0 – 0.75 0.55 0.43 3.3 2.5 0.70 0.45 0.73 4.75

Kim Lab G6‐R3a 0.89 0.57 0.50 3.9 3.7 0.50 0.00 0.80 5.25

Shen Lab G4‐2 −0.02 0.12 0.07 4.1 2.6 0.70 0.45 0.60 7.00

Shen Lab G4‐1 −0.09 0.17 0.07 3.9 2.7 0.60 0.29 0.60 7.25

Pal Lab G5‐1 0.57 0.43 0.29 41 36 0.63 0.26 0.67 7.88

Kim Lab G6‐2 −0.71 −0.57 −0.43 6.2 4.4 0.50 0.00 0.20 9.13

Kim Lab G6‐1 −0.89 −0.57 −0.50 10.9 9.5 0.50 0.00 0.20 10.00

Kim Lab G6‐3 −0.82 −0.69 −0.50 6.4 4.5 0.50 0.00 0.07 10.00

Pal Lab G5‐2 −0.42 −0.64 −0.50 1,441 1,378 0.50 0.00 0.27 10.13

Note: The eight measures of performance are defined in supplementary materials. Zhou Lab submitted three sets of predictions with the same ΔΔGH O2

values. For this reason, we reported only the measure of performance for Submission 1.
aThe submissions of Kim’s Lab that were reversed. Confusion matrices for the binary classification are reported in Table S3.

F IGURE 2 Comparison between the performance achieved in the regression task by the top ranking submission from Kim Lab (G6‐R1),
FoldX, and I‐Mutant2.0. rP, rS, rKT, RMSE, and MAE are defined in Supporting Information Materials. MAE, mean absolute error; RMSE, root
mean square error
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3.3 | Methods and predictions similarity

In the last part of our assessment, we compared all the submissions

to calculate the level of similarity among the predictions. For the

comparison, we assigned to each submission a ranking vector based

on the eight measures of performance defined in Supporting

Information Materials. The statistical difference among such vectors

was calculated with the KS test. In Figure 4 we summarized our

analysis assigning a blue color to the submissions that had

significantly different ranking distributions (p < .05). Contrarily, red

spots are assigned to the pairs of submissions which were statistically

indistinguishable. The results showed that R1 (the reverse of

Submission 1 from Kim’s Lab) is not statistically different from

FoldX. This observation is consistent with the fact that ELAPSIC

algorithm, used by Kim’s group, includes the calculation of ΔΔG

values with FoldX. Our analysis also revealed that after Kim’s lab and

FoldX predictions, the submissions from the Zhou Lab, Biocomputing

Group, and Lichtarge Lab were statistically indistinguishable. The

performances of methods from the previous groups are comparable

with those achieved by I‐Mutant2.0. These observations, which are

valid for the whole FXN data set (Figure 4a), are partially confirmed

after removing the p.W173C variant. In this case, the ranking of the

predictions from Kim’s Lab is statistically different from FoldX

(Figure 4b) while the second group of submissions (Biocomputing

Group, Zhou Lab, and Lichtarge Lab) remains statistically indis-

tinguishable.

4 | DISCUSSION

The assessment of the FXN challenge of the CAGI5 experiment

provided an opportunity to evaluate the performance of the available

variant annotation methods for predicting the impact of single amino

acid variations on protein stability. In detail, we scored each

submission by considering the performance of the corresponding

method in predicting the ΔΔGH O2 values (regression task) and by

correctly classifying the variants in destabilizing and not destabilizing

(classification task). The results showed that, in the regression task,

the best methods achieved a Pearson correlation coefficient >0.8 and

a RMSE <2.4 kcal/mol (see Table 2). After removing from the data set

p.W173C, which represents an outlier with respect to all the other

F IGURE 3 Linear regression between the average predicted and
experimental ΔΔGH O2 . The average predictions are calculated

excluding the prediction from Group 5 and considering only one
submission from Group 3. rP, rS, rKT, RMSE, and MAE are defined in
Supporting Information Materials. MAE, mean absolute error; RMSE,

root mean square error

F IGURE 4 Similarity between the predictions based on the Kolmogorov–Smirnov test among the ranking vectors from the eight measures of

performance. The color of each cell is proportional to the −log10 of the Kolmogorov–Smirnov p value. Similarities calculated considering the
whole frataxin data set and excluding the variant p.W173C are plotted in panels (a) and (b), respectively
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variants, the RMSE values of the best submissions decrease below

1.5 kcal/mol (see Table 3). For the classification task, we select a

ΔΔGH O2 threshold of −1.0 kcal/mol for discriminating between

destabilizing (ΔΔGH O2 < −1.0 kcal/mol) and not destabilizing variants

(ΔΔGH O2 ≥ −1.0 kcal/mol). Using such threshold, the best predictions

(reversed Submission 1 from Kim’s Lab) achieved remarkable

BQ2, MCC, and AUC scoring 0.80, 0.60, and 0.93, respectively (see

Table 2). Slightly lower performance was obtained when the

p.W173C variant was removed from the FXN data set. The

evaluation of the similarities among the submissions showed that

although the reverse Submission 1 (R1) from ELAPSIC scores better

than FoldX for the classification task, the difference between the

ranking distributions of the two methods is not significant (KS

p = .19). A significant difference between the ranking distribution of

G6‐R1 Kim’s Lab and FoldX predictions is found when the p.W173C

variant is removed from the data set. In this case, Kim’s Lab R1

submission ranks in the first position for seven over eight measures

of performance considered in our assessment. Comparing the ranking

distribution of the second block of groups we found that the

predictions from Zhou Lab, Biocomputing Group, and Lichtarge Lab

are statistically indistinguishable. Finally, the analysis of the predic-

tions from Group 5, which adopted a molecular dynamics‐based
approach, shows the largest ΔΔGH O2 resulting in the highest RMSE

values. As suggested by the Group 5 submitters, their predictions

could have been improved by normalizing the energies obtained from

the simulations.

In conclusion, the assessment of the predictions submitted for the

FXN challenge confirmed that the methods for predicting the protein

stability change upon variation achieved a good level of performance,

especially in the classification task. For the prediction of the ΔΔGH O2

values, the best methods achieved good performance in terms of

correlation coefficient but the error is still high (RMSE ~2.0 kcal/mol).

Finally, we observed that all the algorithms fail to predict the ΔΔGH O2 of

p.W173C. variant which has a high impact on protein stability. Our

hypothesis is that the high error level is due to the low number of

experimental data for highly destabilizing variants in the training set. This

hypothesis is consistent with the observation that machine‐learning‐
based methods such as INPS‐3D and EASE‐MM resulted in higher RMSE

than FoldX which implements an energy‐functions‐based approach.

Although the selection of a single protein and the limited number

of variants in FXN challenge data set do not allow to generalize the

results of our assessment, nevertheless it is noteworthy that the

most accurate methods achieved good performance in terms of

correlation coefficient and RMSE.
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TABLE 3 Assessment of the predictions submitted by the 6 groups and returned by state‐of‐the‐art methods (FoldX and I‐Mutant2.0)
excluding the p.W173C variant

Group Submission rP rS rKT RMSE MAE BQ2 MCC AUC Rank

Kim Lab G6‐R1a 0.75 0.57 0.43 1.5 1.2 0.75 0.55 0.92 1.13

FoldX – 0.73 0.46 0.43 1.5 1.3 0.71 0.42 0.83 2.13

Biocomp G2‐1 0.72 0.32 0.24 1.9 1.6 0.75 0.55 0.75 3.50

Kim Lab G6‐R2a 0.65 0.39 0.33 1.8 1.4 0.58 0.17 0.75 3.75

Zhou Lab G3‐1 0.57 0.46 0.52 2.1 1.8 0.63 0.35 0.75 4.25

Lichtarge Lab G1‐1 0.20 0.46 0.43 2.1 1.6 0.58 0.17 0.83 4.38

Shen Lab G4‐1 0.50 0.50 0.33 2.2 1.8 0.63 0.35 0.67 4.88

I‐Mutant2.0 – 0.58 0.36 0.33 2.3 1.9 0.63 0.35 0.67 5.25

Shen Lab G4‐2 0.22 0.07 0.05 2.5 1.6 0.75 0.55 0.58 5.63

Kim Lab G6‐R3a 0.66 0.36 0.33 4.1 3.8 0.50 0.00 0.75 6.00

Pal Lab G5‐1 0.09 0.14 0.05 38 33 0.58 0.17 0.58 8.13

Kim Lab G6‐2 −0.65 −0.39 −0.33 4.5 3.1 0.50 0.00 0.25 8.50

Kim Lab G6‐3 −0.66 −0.36 −0.33 8.4 7.8 0.50 0.00 0.25 9.13

Kim Lab G6‐1 −0.75 −0.57 −0.43 4.5 3.2 0.50 0.00 0.08 9.50

Pal Lab G5‐2 −0.51 −0.54 −0.43 1,472 1,404 0.50 0.00 0.33 9.63

Note: The eight measures of performance are defined in Supporting Information Materials. Zhou Lab submitted three sets of predictions with the same

ΔΔGH O2 values. For this reason, we reported only the measure of performance for Submission 1.
aThe submissions of Kim’s Lab that were reversed. Confusion matrices for the binary classification are reported in Table S4.
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The data that support the findings of this study are available on

request from the corresponding authors.
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