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Topological Massive Dirac Edge Modes
and Long-Range Superconducting Hamiltonians

O. Viyuela1, D. Vodola2, G. Pupillo2 and M.A. Martin-Delgado1

1. Departamento de F́ısica Teórica I, Universidad Complutense, 28040 Madrid, Spain.
2. icFRC, IPCMS (UMR 7504) and ISIS (UMR 7006),

Université de Strasbourg and CNRS, 67000 Strasbourg, France.

We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range
Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-
protected topological order measured by the Berry/Zak phase of the lower band eigenvector and
the winding number of the Hamiltonians. For exponentially-decaying hopping amplitudes, the
topological sector can be significantly augmented as the penetration length increases, something
experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana
modes at the edges get paired together into a massive non-local Dirac fermion localised at both edges
of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This
topological phase has fractional topological numbers as a consequence of the long-range couplings.
Possible applications to current experimental setups and topological quantum computation are also
discussed.

PACS numbers: 74.20.Mn,03.65.Vf,71.10.Pm,67.85.-d

1. Introduction.— The quest for the experimental re-
alisation of topological superconductors has turned out
to be far more elusive than for their insulating coun-
terparts. Simple models for topological superconductors
have been proposed1,2, but yet their unambiguous im-
plementation is challenging in condensed matter or with
quantum simulations. Here we address the issue as to
whether those simple models3,4 are in fact very specific
in hosting their long sought-after topological properties.
Quite on the contrary, we find that these properties can
not only be generic with respect to natural extensions of
the model-Hamiltonian terms, but also that Hamiltonian
deformations can give rise to unconventional topological
edge-mode physics that is novel per se and for applica-
tions in topological quantum computation.

The appearance of topological superconductors is hav-
ing a strong impact5–10 in condensed matter physics and
quantum simulators. A tremendous effort is now directed
at the experimental demonstration of existing topologi-
cal models and at the development of new ones that may
be easier to realise. What makes a topological super-
conductor interesting is the presence of Majorana modes
as zero-energy localized modes at the edges or bound-
aries of the material. These modes lie within the su-
perconducting gap and are rather exotic since Majorana
fermions are their own anti-particles (holes). Standard
(non-topological) superconductors do not exhibit such
modes in their energy spectrum. Thus, topological super-
conductors represent new physics: Majorana modes are
topologically protected against local perturbations dis-
turbing the system and cannot be removed unless a topo-
logical phase transition occurs. This robustness makes
them useful for storing and manipulating quantum infor-
mation in a topological quantum computer.

In this paper we focus on the Kitaev chain model and
propose novel modifications of the basic Hamiltonian, in
order to enrich the appearance of Majorana physics (see

Topological
phase

FIG. 1: (a) Topological phase diagram for the Kitaev chain
with exponentially decaying hopping. As the penetration
length ξ increases, the topological phase (ΦB = πω = π) gets
enlarged. For ξ → 0 we recover the well-known Majorana
chain with nearest-neighbour hopping only. (b) Energy spec-
trum for ξ = 0.8. The region with MZMs µ ∈ (−1, 1) in the
original model has been augmented in one to one correspon-
dence with a non-trivial Berry phase and winding number.

Fig. 1) and even new topological excitations (see Fig. 2,
Fig. 3). These modifications come in two ways: a) ex-
ponentially decaying kinetic terms [see Eq. (6)] and b)
long-range (LR) interaction terms [see Eq. (8)]. They
produce novel beneficial topological effects and new un-
conventional topological physics, respectively. In case a),
we propose a hopping deformation that allows us to sig-
nificantly increase the region in the phase diagram where
Majorana zero modes (MZMs) are present. Interestingly
enough, this modification may result in a realistic de-
scription for cold atoms in optical lattices. In case b), we
study the topological properties of another complemen-
tary modification of the Kitaev model based on long-
range pairing terms decaying algebraically with a certain
exponent α [see Eq. (8)]. We discover novel topolog-
ical effects not found in any simple model before (see
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Fig. 2): for α < 1 the model suffers a major qualita-
tive change manifested in the absence of MZMs that are
transmuted onto Dirac modes, which are massive non-
local edge states. These new edge states are topologi-
cally protected against perturbations that do not break
fermion parity nor particle-hole symmetry. These modes
appear as mid-gap superconducting states that cannot
be absorbed into bulk states. These topological massive
Dirac edge states are new physical quasiparticles that are
absent in the standard Kitaev model. They represent a
new unconventional topological phase.

2. Long-range deformations of superconducting
Hamiltonians.— We consider a model of spinless
fermions on a L-site one-dimensional chain, with p-wave
superconducting pairing and a hopping term. The
Hamiltonian of the system is

H =

L∑
j=1

(
− J

L−1∑
l=1

1

rl,ξ
a†jaj+l +M

L−1∑
l=1

1

Rlα
ajaj+l −

− µ

2
(a†jaj −

1

2
) + h.c

)
, (1)

where µ is the chemical potential, J > 0 is the hopping
amplitude, the absolute value of M = |M |eiΘ stands for

the superconducting gap, aj (a†j) are annihilation (cre-

ation) fermionic operators. The Hamiltonian deforma-
tions are rl,ξ, Rl,α. They are generic functions of an
integer distance l, and parameters ξ and α, respectively
[see Eqs. (6) and (8)]. The total number of fermions mod-
ulo 2 is called the ’fermion parity’ and it is a conserved
quantity for all models in (1). Considering only nearest-
neighbours hopping and pairing, we recover the famous
model introduced by Kitaev4. This model is topological
displaying MZMs at the edges like in Fig. 2(a). In the
topological phase, the ground state of the Kitaev model is
two-fold degenerate: a bulk of with even fermion parity,
while populating the two Majorana modes at the edges
amounts to a single ordinary fermion and odd parity. The
conservation of fermion parity and the non-local charac-
ter of the unpaired Majoranas at the edges make the
system an ideal candidate for a topological qubit out of
the two-fold degenerate ground state11,12.

Without loss of generality, we may fix the pairing
amplitude to be real and M = J = 1

2 . Assuming
periodic boundary conditions, we can diagonalize the
Hamiltonian deformations (1) in Fourier space and in
the Nambu-spinor basis representing paired fermions13:

H = 1
2

∑
k Ψ†kHkΨk, where Ψk =

(
ak, a

†
−k
)t

and Hk is of
the form Hk = Eknk · σ. The energy dispersion relation
is given by Ek, σ is the Pauli matrix vector and nk is a
unit vector called winding vector. Explicitly,

nk = − 1

Ek

(
0, fα(k), µ+ gβ(k)

)
,

Ek =
√

(µ+ gξ(k))2 + f2
α(k), (2)

FIG. 2: Left side, we plot the spectrum for the Kitaev chain
with long-range decaying pairing (see (8)), for L = 60 sites.
On the right hand side we show the probability distribution
PE of the edge modes for different topological phases. (a)
Majorana sector with α = 3. We can see MZMs for µ ∈
[−1, 1] localised at the edges of the chain, as plotted on the
right hand side for µ = −0.5 (PM1 and PM2). Notice that
each Majorana mode is decoupled, represented with different
colors. (b) Massive Dirac sector with α = 0.5. Within the new
topological phase (µ < 1), there are topological massive Dirac
fermions localised at both edges at the same time, as shown
on the right hand side for µ = −1.5. (c) Crossover sector with
α = 1.3. There are both MZMs and massive Dirac fermions
depending on the value of µ. We plot the probability for a
massive Dirac fermion at µ = −1.2.

with

gξ(k) =

L−1∑
l=1

cos (k · l)
rl,ξ

and fα(k) =

L−1∑
l=1

sin (k · l)
Rl,α

. (3)

Particular instances of the functions rl,ξ and Rl,α have
been considered in14,15, where long-range deformations
of the Kitaev chain were first considered.

These models (2) belong to the BDI symmetry class
of topological insulators and superconductors16,17, with
particle-hole, time-reversal and chiral symmetry. The
inclusion of long-range effects do not break these sym-
metries, nor the conservation of fermion parity. This is
an important condition for the topological character of
the original short-range model to be preserved. These
symmetries impose a restriction on the movement of the
winding vector nk from the sphere S2 to the circle S1

on the yz−plane. Thus, we have a mapping from the re-
duced Hamiltonians Hk on the Brillouin zone k ∈ S1 onto
the winding vectors nk ∈ S1. This mapping S 1 −→ S 1

is characterized by a winding number ω, a topological in-
variant defined as the angle swept by nk when the crys-
talline momentum k is varied across the whole Brillouin
Zone (BZ) from −π to +π,

ω :=
1

2π

∮
dθ =

1

2π

∮ (
∂kn

z
k

nyk

)
dk, (4)

where we have used that θ := arctan
(
nzk/n

y
k

)
.
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As a complementary tool in 1D systems, we can use
the Berry/Zak phase18–20 to characterize topological or-
der. When the system is adiabatically transported from
a certain crystalline momentum k0 up to k0 +G, where G
is a reciprocal lattice vector, the eigenstate of the lower
band of the system

∣∣u−k 〉 picks up a topological Berry
phase given by

ΦB =

∮
AB(k)dk. (5)

The Berry connection AB(k) = i
〈
u−k
∣∣ ∂ku−k 〉 parallely

connects two infinitesimally close points on the many-
fold defined by

∣∣u−k 〉 in k space. For the standard Kitaev

chain4, the resulting gauge-invariant phase ΦB is quan-
tized (0 or π) due to the particle-hole symmetry that
characterises distinct topological phases in one to one
correspondence with the winding number21.
3. Augmented topological phases induced by exponentially
decaying hoppings.— This remarkable effect is obtained
choosing nearest-neighbour pairing, i.e., R1,α = 1 and
Rl>1,α =∞ and

rl,ξ =

{
e

(l−1)
ξ if l < L/2

e
L−1−l
ξ if l > L/2

, (6)

where ξ is the penetration length of the exponentially
decaying hopping terms. This Hamiltonian may be real-
isable in simulations of topological superconductors using
cold atoms in optical lattices22–24, where the exponential
decay of the hopping terms with distance can be tuned,
e.g., by varying the depth of the lattice potentials 25.

In Fig. 1 we plot the complete phase diagram by com-
puting the winding number and the topological Berry
phase from Eqs. (4) and (5). For ξ → 0 we recover
the usual Kitaev chain. The system is topological for
µ ∈ [−1, 1], displaying MZMs at the edges. Interest-
ingly enough, when we increase the penetration length
ξ, the region where we observe MZMs is augmented. In
fact, this widening effect is purely due to the hopping de-
formation since we find that including an exponentially-
decaying pairing deformation does not change the topo-
logical phases. The phase separation between the trivial
and non-trivial topological phases can be computed an-
alytically from Eq.(2), obtaining

µc1 =
e

1
ξ

1 + e
1
ξ

, µc2 =
e

1
ξ

1− e
1
ξ

. (7)

Thus, increasing the penetration length of the deformed
hopping, we can arbitrarily enlarge the topologically non-
trivial sector (see Fig. 1). Although symmetry-protected
topological order is usually associated with local inter-
actions, we have shown that non-local terms can favour
the formation of a topological phase. Related studies for
the Kitaev chain with long-distance hopping were car-
ried out26 and qualitatively similar effects have been re-
cently observed in Ref.27 for the spin-1 long-range Hal-
dane model28.

FIG. 3: Topological phase diagram for the Kitaev chain with
long-range pairing (8). The wavy lines at the border of cer-
tain phases indicate that they extend endlessly. Fractional
topological numbers highlight the appearance of an uncon-
ventional topological phase with massive non-local Dirac edge
states. The topological characterisation of the crossover sec-
tor is discussed in the main text and the SM29.

4. Unconventional topological superconductivity with
Dirac topological massive states— Long-range deforma-
tions may not only enlarge topological phases but also
produce new types of topological phases. To this end, let
us now consider pairing terms that decay algebraically
with a power-law exponent α, and no deformation of the
hopping terms. That is, r1,ξ = 1, rl>1,ξ =∞ and

Rα,l =

{
lα if l < L/2

(L− l)α if l > L/2
. (8)

In the thermodynamic limit L → ∞, the function fα(k)
in Eq. (3) is divergent at k = 0 for α < 1. This function
defines the long-range pairing and appears in the energy
dispersion relation and the winding vector of Eq. (2).
Thus, the dispersion relation and the group velocity also
become divergent at k = 0 if α < 1. Nevertheless, ω
[Eq. (4)] and ΦB [Eq. (5)] are still integrable. Moreover,
it is not possible to gauge away the divergence from k = 0
by means of a gauge transformation, as in the ordinary
Kitaev chain. Therefore, the divergence behaves as a
topological singularity. A detailed discussion of this effect
at k = 0 on the topological indicators is carried out in
Sec. I of the SM29. According to the behaviour of fα(k)
at k = 0, we find 3 different topological sectors depending
on the exponent α:

i/ Majorana Sector [α > 3/2]— this sector is topo-
logically equivalent to the one of the short-range Kitaev
chain4: For |µ| > 1, the phase is topologically trivial and
we do not find MZMs. In the region µ ∈ (−1, 1), we
find that MZMs are always present [see Fig. 2(a)]. The
function fα(k) is not divergent and we can compute the
winding number ω of Eq. (4) and the Berry phase ΦB of
Eq. (5) obtaining ΦB = πω = π. The lower band eigen-
vector

∣∣u−k 〉, thus, shows a U(1) phase discontinuity at
k = 0. The corresponding topological phase is depicted
in blue in the phase diagram of Fig. 3.

ii/ Massive Dirac Sector [α < 1]— an unconventional
topological phase appears for sufficiently slow decaying
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pairing. As an example, in Fig. 2(b) we see for α = 1/2
two clearly different phases as a function of µ. For µ > 1
the system is in a trivial phase, with no edge states. How-
ever, for µ < 1 the system has a topological massive Dirac
fermion at the edges, as shown in the wave function plot
in Fig. 2(b). The two Majorana modes at the two distant
edges have paired up onto a single massive Dirac fermion.
Notice that the fermion is highly non-local and its nature
is deeply rooted in the long-range/non-local character of
the pairing term (see Sec. III of the SM29 for details).
We notice that if we had considered imaginary pairing
amplitudes within D symmetry class (particle-hole sym-
metric), the non-local massive Dirac fermions would per-
sist. This topological quasi-particle is still protected by
fermion parity: the ground state has still even parity,
whereas the first excited state populates this non-local
massive fermion and has odd parity. One cannot induce
a transition between these two states without violating
the fermion parity conservation of the Hamiltonian, and
applying a non-local operation is needed. Moreover, the
subspace of these two edge states is still protected by
the bulk gap from bulk excitations. The conservation of
fermion parity and the non-local character of the mas-
sive Dirac fermion make these two states ideal to de-
fine a topological qubit using two copies of the Kitaev
chain31–33. Further details are detoured to Sec.V of the
SM. Additionally, in Sec. II of the SM29, by means of
finite-size scaling we show that the mass of the Dirac
fermion stays finite in the thermodynamic limit for µ < 1
and α < 1. This way we can prove that the effect is purely
topological and caused by the long-range deformation.

When we close the chain, the edge states disappear
as we may expect for a topological effect. Despite the
long-range pairing coupling, the system still belongs to
the BDI symmetry class16,17, since no discrete symmetry
has been broken. The winding number ω can still be
formally defined using Eq. (4). However, the topological
singularity at k = 0 deeply modifies the value of ω. For
the trivial phase µ > 1, the winding number is ω =
−1/2, whereas for the new unconventional topological
phase is ω = +1/2 if µ < 1. The semi-integer character
of ω is associated to the integrable divergence at k =
0, which modifies the continuous mapping S 1 −→ S 1.
Notwithstanding, in this region there is still a jump of
one unit between the two topologically different phases,
∆ω = ωtop − ωtrivial = 1 (see Fig. 3). Moreover, the
topological indicators take on the same value within the
whole phase until the bulk gap closes at µ = 1, giving rise
to a topological phase transition, and the new massive
topological edge states disappear. Therefore, we can still
establish a bulk-edge correspondence.

There is a novelty in this case regarding the parallel
transport for the Berry phase. Namely, at k = 0 the
adiabatic condition breaks down since both the energy
dispersion relation Ek and the quasi-particle group ve-
locity ∂kEk diverge. Moreover, the singularity at k = 0
of the lower band eigenvector

∣∣u−k 〉, cannot be removed
by a simple gauge transformation as it is not just a U(1)

phase difference, but a phase shift unitary jump,∣∣u−k→0+

〉
= eiπP±

∣∣u−k→0−

〉
, (9)

where P± = 1
2

(
1± σz

)
. More explicitly,

eiπP− =

(
1 0
0 eiπ

)
, eiπP+ =

(
eiπ 0
0 1

)
. (10)

The difference in sign ± of the projector P± depends
on the topological regime. For µ > 1, the system is in
a trivial phase with no edge states and the long-range
singularity of

∣∣u−k 〉 at k = 0 is given by eiπP− . On the
other hand for µ < 1, the system is in a topological phase
with massive and non-local edge states. The singularity
of
∣∣u−k 〉 at k = 0 in that case is given by eiπP+ .
iii/ Crossover Sector [α ∈ (1, 3/2)]— this is a crossover

region between sectors i/ and ii/. Within this sector,
there are massless Majorana edge states for −1 < µ < 1
like in sector i/, but for µ < −1 the edge states be-
come massive like in sector ii/. This is shown through
finite-size scaling in Sec. II and III of the SM29. The
intuition behind this result is that the gap closes in the
thermodynamic limit at µ = −1 also for α ∈ (1, 3

2 ). The
dispersion relation Ek is no longer divergent, however its
derivative ∂kEk (the group velocity) is still singular at
k = 0 and the structure of the topological singularity
changes accordingly. The winding number is not able to
capture the “mixed” character of this sector. However,
as detailed in Sec. I of the SM29, we can clearly see that
the behaviour of the winding vector and the lower-band
eigenstate is different from the other two sectors.

In Fig. 3, we present a complete phase diagram sum-
marising the different topological phases of the model as
a function of µ and α.
5. Outlook and Conclusions. We have found that finite-
range and long-range extensions of the one-dimensional
Kitaev chain can be used as a resource for enhancing ex-
isting topological properties and for unveiling new topo-
logical effects. In particular, for long-range pairing de-
formations, we observe non-local massive Dirac fermions
characterised by fractional topological numbers. Hamil-
tonians with long-range pairing and hopping may be re-
alised in Shiba chains as recently proposed in34,35, where
edge states can be detected, e.g., by scanning tunnel-
ing spectroscopy36. Alternatively, next-nearest neigh-
bour hopping may be harnessed in atomic and molec-
ular setups23, where massive edge modes should be ob-
servable via a combination of spectroscopic techniques
and single-site addressing37,38. The extension of existing
models for qubits, constructed by topologically protected
gapped modes, may boost the search for long-range de-
formations in more complicated topological models with
symmetry-protected or even intrinsic topological order.
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