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Analytical solution of cross- and angle-ply nano plates

with strain gradient theory for linear vibrations and

buckling

F. Cornacchia1, F. Fabbrocino2, N. Fantuzzi1, R. Luciano3,∗, R. Penna4

Abstract

Vibrations and buckling of Kirchhoff nano plates are investigated using second-

order strain gradient theory. The Navier displacement field has been consid-

ered for two different sets of boundary conditions and stacking sequences.

Different geometries and material properties for isotropic, orthotropic cross-

and angle-ply laminates are considered, and numerical simulations are dis-

cussed in terms of plate aspect ratio and non local ratio. A comparison with

the classical analytical solution is provided whenever possible for buckling

loads and fundamental frequencies.

Keywords: Stability analysis, Dynamic analysis, Orthotropic laminate,

Nano-structures, Nonlocal elastic theory, Analytical modelling

1. Introduction1

In the current literature MEMS (Micro-Electro-Mechanical-System) and2

NEMS (Nano-Electro-Mechanical-System) are topics of relevant interest be-3
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cause of their various uses [1, 2, 3]. Indeed, these types of materials can be4

employed in many areas of application, i.e. engineering, medicine and elec-5

tronics [4, 2, 5, 6, 7], in the form of generators, transistors, sensors, actuators,6

resonators, detectors etc.7

This work wants to focus the attention on NEMS, which are usually mod-8

eled by simulating small scale effects on nano rods, nano beams, nano tubes9

and nano plates. In fact, the mechanical behavior of nano structural com-10

ponents is size-dependent [8, 9, 10, 11, 12], highly influenced by the material11

structure and by the interactions at the atomic scale among particles at dis-12

tant location, as commented in [13, 14, 15, 16, 17, 18, 19, 20, 21], effects that13

have much lower impact in macro structures. Thus, in order to take into14

account the size effects, the classical continuum mechanics theories are not15

suitable, which implies the application of modified versions [22, 23, 24, 25],16

that are based on the individuation of an internal length scale. A wide range17

of non classical theories have been developed in order to capture the non18

locality effects, among which Eringen [26, 26] was one of the pioneer and his19

nonlocal elasticity theory has been extensively applied in the study of nano20

structures by scientists [27, 28, 29]. Hence, an important milestone in the21

practice of higher order theories of linear elasticity is to determine the cor-22

rect non local relation [30, 31]. A broad list of higher order theories of linear23

elasticity can be found in literature, among which,strain gradient, modified24

strain gradient, stress gradient, modified couple stress and micropolar the-25

ories can be identified [32? , 33, 25, 34, 35, 36, 37, 38, 39], and the choice26

depends on the research to carry out and on the ability of the scientists.27

Here, the effort will be focused on the development of studies of buckling28
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and vibrations of nano plates, which is a relevant subject for the scientific29

community, as it can be found in [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. An30

easy theory, which is applied in the present study, is the second order-strain31

gradient theory that establish a connection between stress and strain of the32

structure in the constitutive equations through a single non local parameter,33

as previously done by Papargyri-Beskos [50]. The method followed in the34

present paper follows the one presented in [51] for static analysis of lami-35

nates, where the gap between the theories in terms of deflection and stresses36

is shown. In fact, the Kirchhoff governing equations in weak form are car-37

ried out by considering the size effects, while the Navier displacement field is38

applied in order to develop the analytical solution in terms of stability and39

dynamic analysis. Comparison with Reddy [52], Papargyri-Beskos [50] and40

Babu Patel [21] are provided if possible for the classical continuum mechanics41

theory, before extending the application to orthotropic laminated materials42

(cross- and angle-ply laminates) employing the second order-strain gradient43

theory.44

2. Theoretical model45

2.1. Kirchhoff theory46

Different combinations of geometrical and material configurations of or-47

thotropic thin rectangular nanoplates are implemented by making use of the48

classical laminated plate theory (CLPT). In order to conduct stability and49

dynamic analysis for such structures, at nano scale level, a modification of the50

theory, based on the bending plate hypothesis of Kirchhoff is needed. The51

laminates have dimension a and b along x- and y-axis, respectively, while52

3



the thickness of the generic oriented k-th lamina hk = zk+1 − zk, as it is53

displayed in Fig. 1 For the case of geometric non linearity, the displacements54

in the three directions can be written from the Kirchhoff assumptions and55

restrictions as it follows:56

u(x, y, z, t) = u0(x, y, t)− zw0,x

v(x, y, z, t) = v0(x, y, t)− zw0,y

w(x, y, z, t) = w0(x, y, t)

(1)

where, u0, v0, w0 are the displacements along x-, y- and z-axis of the points57

on the mid-surface, and w0,x and w0,y are the homologous rotations.58

The plate strain is expressed in the von Karman form:59

ε =
{
ε(m)

}
+ z

{
ε(f)
}

=


ε

(m)
xx

ε
(m)
yy

γ
(m)
xy

+ z


ε

(f)
xx

ε
(f)
yy

γ
(f)
xy

 (2)

where, (m) indicates the membrane strain, while (f) the flexural strain. εxx60

and εyy are the normal strains along x and y directions respectively, instead61

γxy represents the in-plane shear strain. Consequently, the membrane and62

flexural strains can be written as function of the displacements:63 
ε

(m)
xx

ε
(m)
yy

γ
(m)
xy

 =


u0,x +1

2
w0,

2
x

v0,y +1
2
w0,

2
y

u0,y +v0,x +w0,xw0,y

 ,

ε

(f)
xx

ε
(f)
yy

γ
(f)
xy

 =


−w0,xx

−w0,yy

−2w0,xy

 (3)

In order to take into account the effects of non locality due to the di-64

mensions of the nano plates, the second-order strain gradient theory must65
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Figure 1: Laminate general layout

be involved in the computation. For the k-th orthotropic lamina in terms of66

laminate coordinates, the constitutive equations can be written as:67 
σxx

σyy

τxy


(k)

= (1− `2∇2)


Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

εxx

εyy

γxy


(k)

(4)

where, ∇2 = ∂2/∂y2 + ∂2/∂x2, and Q̄ij are function of sheets orienta-68

tions and are derived from the engineering constants in accordance with the69
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formulations below:70

Q11 =
E1

1− ν12ν21

, Q22 =
E2

1− ν12ν21

Q12 =
E1ν21

1− ν12ν21

=
E2ν12

1− ν12ν21

, Q66 = G12

(5)

where, E1, E2 are the Young’s moduli, ν12 and ν21 are the Poisson’s ratii71

and G12 is the shear modulus.72

The dynamic version of the principle of the virtual works (Hamilton’s73

Principle) is employed in order to carry out the equations of motion. It74

is important to point out that the transverse shear stress, needed for the75

equilibrium of the plate, has been involved in the boundary conditions and76

equilibrium of forces.77 ∫ T

0

(δU + δV − δK) = 0 (6)

with, δU is the virtual strain energy, δV is the virtual work done by the78

applied forces, and δK is the virtual kinetic energy79

Developing the terms in Eq. (6), the Hamilton’s Principle can be conve-80
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niently written in extended matrix form as:81

∫ T

0

∫
Ω0

[



δu0,x

δu0,y

δv0,x

δv0,y

δw0,xx

δw0,yy

δw0,xy



T 

T11 T12 T13

T21 T22 T23

T31 T32 T33

T41 T42 T43

T51 T52 T53

T61 T62 T63

T71 T72 T73




u0

v0

w0



−
{
δw0,x δw0,y

}N̂xx N̂xy

N̂xy N̂yy

w0,x

w0,y



+



δü0

δv̈0

δẅ0

δẅ0,x

δẅ0,y



T 

I0 0 0 −I1 0

0 I0 0 0 −I1

0 0 I0 0 0

−I1 0 0 I2 0

0 −I1 0 0 I2





u0

v0

w0

w0,x

w0,y



]
dxdy

]
dt

+ boundary integral terms = 0

(7)

where the variational form of the displacement field is dentified by δ, while82

its corresponding derivatives in time by the dots, the terms T are shown in83

the appendix, N̂xx, N̂yy, N̂xy identify the axial and shear buckling terms and84

I0, I1, I2 are the mass inertias which can be defined as it follows:85

Ii = ρ

N∑
k=1

∫ zk+1

zk

zi dz (8)

where, i = 0, 1, 2. The following resultants of forces and moments are86
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obtained by integrating the stresses for each layer through the z-axis:87 
Nxx

Nyy

Nxy

 = (1−`2∇2)

(
A11 A12 A16

A12 A22 A26

A16 A26 A66



ε

(m)
xx

ε
(m)
yy

γ
(m)
xy

+


B11 B12 B16

B12 B22 B26

B16 B26 B66



ε

(f)
xx

ε
(f)
yy

γ
(f)
xy


)

(9)88 
Mxx

Myy

Mxy

 = (1−`2∇2)

(
B11 B12 B16

B12 B22 B26

B16 B26 B66



ε

(m)
xx

ε
(m)
yy

γ
(m)
xy

+


D11 D12 D16

D12 D22 D26

D16 D26 D66



ε

(f)
xx

ε
(f)
yy

γ
(f)
xy


)

(10)

where, the stiffnesses are computed as it follows:89

Aij =
N∑
k=1

Q̄
(k)
ij (zk+1 − zk)

Bij =
1

2

N∑
k=1

Q̄
(k)
ij (z2

k+1 − z2
k)

Dij =
1

3

N∑
k=1

Q̄
(k)
ij (z3

k+1 − z3
k)

(11)

The linear equations of motion of the classical laminated plate theory90

in terms of displacement, accounting for non local effects are obtained by91

setting the non linear terms equal to zero and by carrying out integration by92

parts in (7):93
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A11u0,xx +2A16u0,xy +A66u0,yy +A16v0,xx +(A12 + A66)v0,xy +A26

v0,yy−
[
B11w0,xxx +3B16w0,xxy +(B12 + 2B66)w0,xyy +B26w0,yyy

]
− `2

[
A11(

u0,xxxx +u0,xxyy
)

+ 2A16

(
u0,xxxy +u0,xyyy

)
+ A66

(
u0,xxyy +u0,yyyy

)
+ A16(

v0,xxxx +v0,xxyy
)

+ (A12 + A66)
(
v0,xxxy +v0,xyyy

)
+ A26

(
v0,xxyy +v0,yyyy

)
−

−
[
B11

(
w0,xxxxx +w0,xxxyy

)
+ 3B16

(
w0,xxxxy +w0,xxyyy

)
+ (B12 + 2B66)(

w0,xxxyy +w0,xyyyy
)

+B26

(
w0,xxyyy +w0,yyyyy

)]]
= I0ü0 − I1ẅ0,x

(12)

94

A16u0,xx +(A12 + A66)u0,xy +A26u0,yy +A66v0,xx +2A26v0,xy +A22

v0,yy−
[
B16w0,xxx +(B12 + 2B66)w0,xxy +3B26w0,xyy +B22w0,yyy

]
− `2

[
A16(

u0,xxxx +u0,xxyy
)

+ (A12 + A66)
(
u0,xxxy +u0,xyyy

)
+ A26

(
u0,xxyy +u0,yyyy

)
+

+ A66

(
v0,xxxx +v0,xxyy

)
+ 2A26

(
v0,xxxy +v0,xyyy

)
+ A22

(
v0,xxyy +v0,yyyy

)
−

−
[
B16

(
w0,xxxxx +w0,xxxyy

)
+ (B12 + 2B66)

(
w0,xxxxy +w0,xxyyy

)
+ 3B26(

w0,xxxyy +w0,xyyyy
)

+B22

(
w0,xxyyy +w0,yyyyy

)]]
= I0v̈0 − I1ẅ0,y

(13)
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95

B11u0,xxx +3B16u0,xxy +(B12 + 2B66)u0,xyy +B26u0,yyy +B16v0,xxx +(B12+

+ 2B66)v0,xxy +3B26v0,xyy−B22v0,yyy−
[
D11w0,xxxx +4D16w0,xxxy +2(D12+

+ 2D66)w0,xxyy +4D26w0,xyyy +D22w0,yyyy
]
− `2

[
B11

(
u0,xxxxx +u0,xxxyy

)
+

+ 3B16

(
u0,xxxxy +u0,xxyyy

)
+ (B12 + 2B66)

(
u0,xxxyy +u0,yyyy

)
+B26(

u0,xxyyy +u0,yyyyy
)

+B16

(
v0,xxxxx +v0,xxxyy

)
+ (B12 + 2B66)

(
v0,xxxxy +

+ v0,xxyyy
)

+ 3B26

(
v0,xxxyy +v0,xyyyy

)
+B22

(
v0,xxyyy +v0,yyyyy

)
−
[
D11(

w0,xxxxxx +w0,xxxxyy
)

+ 4D16

(
w0,xxxxxy +w0,xxxyyy

)
+ 2(D12 + 2D66)(

w0,xxxxyy +w0,xxyyyy
)

+ 4D26

(
w0,xxxyyy +w0,xyyyyy

)
+D22

(
w0,xxyyyy +

+ w0,yyyyyy
)]]

= I1

(
ü0,x +v̈0,y

)
+ I0ẅ0 − I2

(
ẅ0,xx +ẅ0,yy

)
−
(
N̂xxw0,xx +

+ 2N̂xyw0,xy +N̂yyw0,yy
)

(14)

2.2. Navier solution96

In this section, the Navier procedure for simply supported laminates is97

applied to orthotropic cross ply and angle ply laminates. By replacing the98

Navier displacement field, which will be made explicit in the corresponding99

subsections, in the system below (omitting the von Karman non linear terms)100

the analytical solutions are obtained:101 
ĉ11 ĉ12 ĉ13

ĉ12 ĉ22 ĉ23

ĉ13 ĉ23 ĉ33 + ŝ33



Umn

Vmn

Wmn

+


m̂11 0 m̂13

0 m̂22 m̂23

m̂13 m̂23 m̂33



Ümn

V̈mn

Ẅmn

 =


0

0

0

 (15)

where, the terms in the matrices will be made explicit for cross- and102

angle-ply laminates.103
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The analytical solutions for the stability and dynamic analysis respec-104

tively, are carried out and shown below:105

N̄ =
1

α2 + kβ2

(
ĉ33 + ĉ13

a1

a0

+ ĉ23
a2

a0

)
(16)

ω̄2 =
1

m̂33

(
ĉ33 + ĉ13

a1

a0

+ ĉ23
a2

a0

)
(17)

where106

amn = ĉ33 + ĉ13
a1

a0

+ ĉ23
a2

a0

a0 = ĉ11ĉ22 − ĉ12ĉ12

a1 = ĉ12ĉ23 − ĉ13ĉ22

a2 = ĉ13ĉ12 − ĉ11ĉ23

(18)

2.2.1. Antisymmetric Cross-Ply Laminates107

The Navier displacement field is assumed to be:108

u0(x, y) =
∞∑
n=1

∞∑
m=1

Umn cosαx sin βy

v0(x, y) =
∞∑
n=1

∞∑
m=1

Vmn sinαx cos βy

w0(x, y) =
∞∑
n=1

∞∑
m=1

Wmn sinαx sin βy

(19)

where, α = mπ/a and β = nπ/b109

in order to satisfy the displacement boundary conditions (SS-1), as it110

follows:111
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u0(x, 0, t) = 0, u0(x, b, t) = 0, v0(0, y, t) = 0, v0(a, y, t) = 0

w0(x, 0, t) = 0, w0(x, b, t) = 0, w0(0, y, t) = 0, w0(a, y, t) = 0

∂w0

∂x

∣∣∣∣
(x,0,t)

= 0,
∂w0

∂x

∣∣∣∣
(x,b,t)

= 0,
∂w0

∂y

∣∣∣∣
(0,y,t)

= 0,
∂w0

∂y

∣∣∣∣
(a,y,t)

= 0,

(20)

The coefficients to be used in Eq. (15), for the cross-ply laminate case112

are shown below:113

ĉ11 =− (α2A11 + β2A66)− `2[α4A11 + α2β2(A11 + A66) + β4A66]

ĉ12 =− αβ(A12 + A66)− `2[α3β(A12 + A66) + αβ3(A12 + A66)]

ĉ13 =[α3B11 + αβ2(B12 + 2B66)] + `2[α5B11 + α3β2(B11 +B12 + 2B66)+

+ αβ4(B12 + 2B66)]

ĉ22 =− (α2A66 + β2A22)− `2[α4A66 + α2β2(A22 + A66) + β4A22]

ĉ23 =[β3B22 + α2β(B12 + 2B66)] + `2[β5B22 + α2β3(B22 +B12 + 2B66)+

+ α4β(B12 + 2B66)]

ĉ33 =− (α4D11 + β4D22 + 2α2β2(D12 + 2D66))− `2[α6D11 + β6D22 + α4β2

(D11 + 2D12 + 4D66) + α2β4(D22 + 2D12 + 4D66)]

(21)

m̂11 = m̂22 = I0

m̂13 = −I1α

m̂23 = −I1β

m̂33 = I0 + I2(α2 + β2)

ŝ33 = (α2N̂xx + β2N̂yy)

(22)
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It is important to point out that, the solution for cross ply laminated114

with SS-1 boundary conditions is valid only if:115

A16 = A26 = B16 = B26 = D16 = D26 = 0 (23)

2.2.2. Antisymmetric Angle-Ply Laminates116

The Navier displacement field for this case, is assumed to be:117

u0(x, y) =
∞∑
n=1

∞∑
m=1

Umn sinαx cos βy

v0(x, y) =
∞∑
n=1

∞∑
m=1

Vmn cosαx sin βy

w0(x, y) =
∞∑
n=1

∞∑
m=1

Wmn sinαx sin βy

(24)

which satisfies the SS-2 boundary conditions:118

u0(0, y, t) = 0, u0(a, y, t) = 0, v0(x, 0, t) = 0, v0(x, b, t) = 0

w0(x, 0, t) = 0, w0(x, b, t) = 0, w0(0, y, t) = 0, w0(a, y, t) = 0

∂w0

∂x

∣∣∣∣
(x,0,t)

= 0,
∂w0

∂x

∣∣∣∣
(x,b,t)

= 0,
∂w0

∂y

∣∣∣∣
(0,y,t)

= 0,
∂w0

∂y

∣∣∣∣
(a,y,t)

= 0,

(25)

where α and β are already defined in the previous subsection.119
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In this case, the coefficient to be employed in Eq. (15), are the following:120

ĉ11 = A11α
2 + A66β

2 + `2[A11(α4 + α2β2) + A66(β4 + α2β2)]

ĉ12 = (A12 + A66)αβ + `2(A12 + A66)(αβ3 + α3β)

ĉ13 = −(3B16α
2β +B26β

3)− `2[3B16(α4β + α2β3) +B26(α2β3 + β5)]

ĉ22 = A66α
2 + A22β

2 + `2[A66(α4 + α2β2) + A22(β4 + α2β2)]

ĉ23 = −(B16α
3 + 3B26αβ

2)− `2[B16(α5 + α3β2) + 3B26(αβ4 + α3β2)]

ĉ33 = D11α
4 + 2(D12 + 2D66)α2β2 +D22β

4 + `2[D11(α6 + α4β2) + 2(D12+

+ 2D66)(α4β2 + α2β4) +D22(α2β4 + β6)]

(26)

m̂11 = m̂22 = I0

m̂33 = I0 + I2(α2 + β2)

m̂23 = m̂13 = 0

ŝ33 = (α2N̂xx + β2N̂yy)

(27)

Finally, the SS-2 boundary conditions exsist only if the stiffness:121

A16 = A26 = B11 = B12 = B22 = B66 = D16 = D26 = 0 (28)

3. Results - Stability analysis122

3.1. Isotropic123

Firstly, the outcomes for an isotropic single lamina were carried out in124

order to make the comparison with Papargyri et al. [50] for the case of buck-125

ling, assuming gradient elastic material behavior. The lamina is assumed to126

be simply supported, with the same dimensions along the x and y directions127
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(a = b), while the properties of the isotropic material are: E1 = E2 = E = 1128

(E2 is always considered equal to one in the computations and E1 will vary129

for cross- and angle-plies), ν = 0.25 and G = 0.5E/(1 + ν). The solution130

in terms of buckling load, for uniaxial compression in x direction, which ac-131

counts for non locality effects, is dimensionless with respect to the classical132

solution (` = 0). Thus, in the graph below the dimensionless buckling load133

N̄ is plotted as a function of the normalized gradient coefficient (`/a)2, where134

the dots represent the solution of the Eq. (16), while the solid line is the135

computation of the reference equation from Ref. [50], obtained for n = m = 1136

which correspond to the minimum value for square plates:137

N̄ =
[
1 + 2π2

( `
a

)2]
(29)

Figure 2: Buckling - comparison with Ref. [50].

The Figure 2 shows how in good agreement are the formulations. The138

rising trend displays that the critical buckling load grows with non local139
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ratio (`/a)2. Note that the minimum buckling load does not always occur for140

m = n = 1 for rectangular and laminated plate configurations as it will be141

discussed in the following. For this reason the minimum buckling load has142

been observed to occur within m,n = 1, 2, 3 in the present computations.143

Once Eq. (16) has been verified, it is employed in order to understand144

the behavior to changing aspect ratios a/b. The material properties are the145

same as the previous case, beside the classical theory (`/a)2 = 0.00, two146

more values of non local ratios are analized (`/a)2 = 0.05 and (`/a)2 = 0.10,147

while the compression is considered for uniaxial and biaxial cases, k = 0148

and k = 1, respectively. It is important to point out that, using the Navier149

displacement field only the uniaxial and biaxial cases can be studied, while150

not the tangential buckling because the equations cannot work in this case.151

a) b)

Figure 3: Nondimensionalized buckling load versus plate aspect ratio for isotropic lamina

- a)Uniaxial compression, b)Biaxial compression

From the graph of uniaxial compression, it is possible to see how for152

the classical theory, after an initial decrising of dimensionless buckling load153
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with a/b, the solution has stabilized behavior and quite smooth trend. On154

the other hand, if non local effects are involved in the computation, rising155

paths are shown since values lower than a/b = 1 after the initial decreasing.156

Moreover, discontinuities in both trends are displayed for a/b slight lower157

than two. From the second graph of Fig. 3, smooth paths are shown for the158

three cases and all of them have declining trend in the first phase. Then,159

the classical theory presents almost constant N̄ since a/b around unity, while160

when the lamina is treated with second order theory, it answers with rising161

N̄ to changing a/b.162

In both cases, for the whole range of lamina dimensions taken into ac-163

count, higher are the values of (`/a)2 higher are the critical load magnitudes,164

moreover increasing gap between classical and non local theory to rising a/b165

are displayed.166

3.2. Antisymmetric cross-ply167

Secondly, othotropic cross-ply plates are studied. For the classical theory168

the comparison with Reddy [52] is provided whenever possible, then the169

application is extended to the second order theory, presenting outcomes for170

(`/a)2 equal to 0.05 and 0.10. The ratio E1/E2 assumes different magnitudes,171

which will be given step by step, while ν12 = 0.25, G12 = G13 = 0.5E2 and172

G23 = 0.2E2 are the same during the computation. In the first two sections173

of the tables 1 and 2, Reddy and present outcomes are reported for the174

classical theory, then the application is applied to (`/a)2 equal to 0.05 and175

0.10. The aspect ratios a/b treated are: 0.5, 1.0 and 1.5, while E1/E2 ratio176

assumes magnitudes equal to 5, 10, 20, 25 and 40, for 0/90/0/90 = (0/90)2177

laminate layout. Buckling loads have been reported in dimensionless form as178
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E1/E2

a/b 5 10 20 25 40

Reddy [52] 0.5 4.705 4.157 3.828 3.757 3.647

1 2.643 2.189 1.923 1.866 1.778

1.5 2.955 2.487 2.211 2.152 2.061

(`/a)2 = 0.00 0.5 4.705 4.157 3.828 3.757 3.647

1 2.643 2.189 1.923 1.866 1.778

1.5 2.955 2.487 2.211 2.152 2.061

(`/a)2 = 0.05 0.5 7.667 6.778 6.234 6.115 5.927

1 5.422 4.546 3.994 3.868 3.661

1.5 8.952 7.769 6.968 6.772 6.441

(`/a)2 = 0.10 0.5 10.600 9.374 8.623 4.232 8.199

1 8.131 6.830 6.0138 2.281 5.516

1.5 14.500 12.617 11.340 3.340 10.486

Table 1: Uniaxial buckling loads (k = 0) for (0/90)2 laminate configuration

it follows: N̄ = Ncr[b
2/(π2D22)], considering as maximum order of expansion179

m,n = 1, 2, 3 because the critical buckling load was sought. Table 1 is180

referred to uniform uniaxial compression (k = 0), instead table 2 to biaxial181

one (k = 1).182

In both Tab. 1 and 2 it is possible to see how results match accurately183

in the classic application, whereas as it was expected an increasing of the184

magnitude of the buckling loads is shown for the second order gradient theory.185

Moreover, it is complicated to make a comparison in terms of variable E1/E2186

and a/b parameter, due to the fluctuating trends within the same theory,187
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E1/E2

a/b 5 10 20 25 40

Reddy [52] 0.5 3.764 3.325 3.062 3.005 2.917

1 1.322 1.095 0.962 0.933 0.889

1.5 1.009 0.860 0.773 0.754 0.725

(`/a)2 = 0.00 0.5 3.764 3.325 3.062 3.005 2.917

1 1.322 1.095 0.962 0.933 0.889

1.5 1.009 0.860 0.773 0.754 0.725

(`/a)2 = 0.05 0.5 6.134 5.423 4.987 4.892 4.742

1 2.711 2.273 1.997 1.934 1.830

1.5 2.754 2.390 2.144 2.084 1.982

(`/a)2 = 0.10 0.5 8.480 7.499 6.899 6.767 6.559

1 4.065 3.415 3.007 2.913 2.758

1.5 4.462 3.882 3.489 3.393 3.226

Table 2: Biaxial buckling loads (k = 1) for (0/90)2 laminate configuration
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especially for k = 0. Thus, in order to draw conclusions it is needed to188

represent outcomes in graphical form, wherein material properties chosen for189

the analysis are: E1/E2 = 25 and E1/E2 = 40. The laminate configurations190

studied are: (0/90), (0/90)2 and (0/90)4 for the uniform uniaxial compression191

(k = 0), while for the biaxial case (0/90), (0/90)2 and (0/90)3 are taken into192

account. The dimensionless expression used, is again: N̄ = Ncr[b
2/(π2D22)],193

with a maximum expansion order of m,n = 1, 2, 3.194

In Fig. 4 and 5, it is possible to see how the classical theory displays the195

lower critical loads for every laminate configuration, material and uniform196

compression type. It shows also discontinuities for the uniaxial compression,197

instead smooth trends for biaxial one, because the buckling load is not given198

by m = n = 1 for rectangular plates as discussed in classical references [52].199

Moreover, for both classical and second gradient order theories, an initial200

reduction of the buckling load is shown, in the first case it is followed by a201

quite constant path, while for the second case it is visible the growing mag-202

nitude with increasing value of aspect ratio, where slope expands with non203

local ratios. Laminae made by the same sequence of layers, but accounting204

for different materials are studied and it comes out that if E1/E2 = 25 is205

considered as property of the material, an higher magnitude of buckling load206

is displaced compared to E1/E2 = 40 case. From the comparison among dif-207

ferent layouts for both uniaxial and biaxial compression, it comes out that,208

to parity of materials and plate thickness, the lower critical load belongs to209

(0/90) configuration, while its value grows as more layers are added to the210

plate.211
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E1/E2 10 25 40

(45/− 45) Reddy [52] 9.066 15.476 21.709

(`/a)2 = 0.00 9.066 15.476 21.709

(`/a)2 = 0.05 18.015 30.750 43.135

(`/a)2 = 0.10 26.963 46.024 64.561

(45/− 45)4 Reddy [52] 17.637 41.163 64.683

(`/a)2 = 0.00 17.637 41.163 64.683

(`/a)2 = 0.05 35.043 81.789 128.522

(`/a)2 = 0.10 52.450 122.415 192.362

Table 3: Uniaxial buckling loads for (45/− 45) and (45/− 45)4 laminate configurations

3.3. Antisymmetric angle-ply212

Finally, in this section orthotropic angle-ply laminates are studied. As in213

the previous case in tables 3 and 4, the first two sections are referred to the214

comparison with Reddy of the classical theory [52], then it is extended to215

the second-order strain gradient theory. All the parameters employed can be216

picked from the previous paragraph, except the laminates taken into account217

which are: (45/−45) and (45/−45)4, while the E1/E2 ratios are specified in218

the tables. Both uniform uniaxial (k = 0) and biaxial (k = 1) compression219

of the square plate, along x, and x and y are carried out, using the following220

dimensionless expression: N̄ = Ncr[b
2/(h3E2)].221

From both Tab 3 and 4, the comparison for the classical theory leads to222

good confidence in the method also for orthotropic antisymmetric angle-ply223

laminates. Moreover, as in the earlier case it is possible to see an increasing in224

magnitude of the dimensionless buckling load to rising (`/a)2. Consequently,225
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E1/E2 10 25 40

(45/− 45) Reddy [52] 4.533 7.738 10.854

(`/a)2 = 0.00 4.533 7.738 10.854

(`/a)2 = 0.05 9.007 15.375 21.567

(`/a)2 = 0.10 13.481 23.012 32.280

(45/− 45)4 Reddy [52] 8.818 20.581 32.341

(`/a)2 = 0.00 8.818 20.581 32.341

(`/a)2 = 0.05 17.522 40.895 64.261

(`/a)2 = 0.10 26.225 61.208 96.181

Table 4: Biaxial buckling loads for (45/− 45) and (45/− 45)4 laminate configurations

as it follows, a deeper study in order to catch the trend of (−45/45)i, (with226

i = 1, 2, 3, 4) laminate configurations is carried out, enlarging the range of227

a/b up to five and considering E1/E2 equal to 25 and 40, in both k = 0 and228

k = 1 conditions.229

As for the cross-ply laminates, the figures 6 and 7 show higher values of230

dimensionless buckling load for values of non local ratio equal to 0.10. Also,231

when k = 0 the classical theory displays flat trends, differently from the232

second-order strain gradient theory which presents rough tendency, instead if233

k = 1 they are always smooth. The behavior in case of (`/a)2 = 0 presents an234

original decreasing followed by a stable trend, viceversa if (`/a)2 is non zero235

the consecutive part grows up to very high values. In addition, comparing236

the different behavior of the plates it is possible to assert that to parity of237

material, the six-layered plate shows much higher critical load for every a/b,238

and comparing the two-, four- and six-layered laminate in k = 0 and k = 1239
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it is possible to see that for uniaxial case the structures buckles for much240

higher values.241

4. Results - Dynamic analysis242

4.1. Isotropic243

Accordingly to what previously done for the stability analysis, also for244

the free vibration analysis the first step is to compare the present solution245

to the Papargyri et al. [50], which is expressed by Eq.(30) for isotropic246

materials. The material properties, of the square plate (a = b), are the247

following: E1/E2 = 1, ν = 0.25 and G = 0.5E/(1 + ν). The dimensionless248

frequency ω̄249

ω̄ =

√
1 + 2π2

( `
a

)2

(30)

has been plotted for changing dimensionless (`/a)2, for n = m = 1. In250

Fig. 8 it is possible to see how outcomes match accurately, where the dots251

represent the solution of the Eq. (17), and the solid line is referred to the252

computation of Eq. (30), showing a rising parabolic behavior for the range253

of (`/a)2 within 0 and 0.1. Thus, the study has been extended in order to254

understand the behavior for different plate geometries. In fact, outcomes are255

plotted in Fig. 9 considering an isotropic lamina, for non local ratios equal256

to 0, 0.05 and 0.10.257

It is possible to see an increasing of the dimensionless frequency magni-258

tude with (`/a)2, for the whole path, showing higher gaps among theories259

as a/b rises. Moreover, the initial decreasing is followed by a stable trend260
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for the classical theory ((`/a)2 = 0) and by a rising one for the second-order261

strain gradient theory.262

4.2. Antisymmetric cross-ply263

Then, analysis continues facing to antisymmetric cross-ply laminates.264

Whenever it has been possible, comparisons with Reddy [52] are carried265

out for (`/a)2 = 0, then results are extended to second-order strain gradient266

theory. In table 5, dimensionless frequencies of square antisymmetric cross-267

ply laminates (layouts: (0/90), (0/90)2 and (0/90)4) are carried out imposing268

m,n = 1, 2, 3. The comparison with Reddy [52] is provided in its first two269

sections for the classical theory, then the theory has been developed also for270

(`/a)2 equal to 0.05 and 0.10. The material properties are given: E1/E2 equal271

to 10 and 20, ν12 = 0.25, G12 = G13 = 0.5E2 and G23 = 0.2E2. The frequency272

is dimensionless with respect to the following formula: ω̄ = ωb2/π2
√
ρh/D22.273

In Tab. 5 is it possible to see how results are in good agreement for what274

concerns the classical theory. Moreover, ω̄ increases with the number of layers275

in the laminate accounting for the same total thickness, for every mode and276

value of non local ratio. Thus, graphic results are drawn, for (0/90), (0/90)2277

and (0/90)4 configurations, employing m,n = 1, 2, 3. Fundamental frequency278

is carried out with respect to the aspect ratio a/b, for magnitude of non local279

ratio (`/a)2 equal to 0.00, 0.05 and 0.10. Materials selected are given by280

E1/E2 equal to 25 and 40, ν12 = 0.25, G12 = G13 = 0.5E2.281

In Fig. 10, for the classical theory case, it is possible to see a reducing282

magnitude of dimensionless fundamental frequency which stabilizes for val-283

ues of a/b between 1 and 2, for every geometrical configuration and material284

property. This is similar in the initial stage for second-order strain gradient285
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E1/E2 10 20

m n (0/90) (0/90)2 (0/90)4 (0/90) (0/90)2 (0/90)4

Reddy [52] 1 1 1.183 1.479 1.545 0.990 1.386 1.469

1 2 3.174 4.077 4.274 2.719 3.913 4.158

1 3 6.666 8.698 9.136 5.789 8.456 8.998

2 1 3.174 4.077 4.274 2.719 3.913 4.158

2 2 4.733 5.918 6.179 3.959 5.547 5.877

2 3 7.927 10.034 10.494 6.702 9.507 10.088

3 1 6.666 8.698 9.136 5.789 8.456 8.998

3 2 7.927 10.034 10.494 6.193 9.507 10.088

3 3 10.650 13.317 13.904 8.908 12.481 13.224

(`/a)2 = 0.00 1 1 1.183 1.480 1.545 0.990 1.387 1.469

1 2 3.174 4.078 4.274 2.719 3.913 4.158

1 3 6.666 8.698 9.136 5.789 8.455 8.998

2 1 3.174 4.078 4.274 2.719 3.913 4.158

2 2 4.733 5.918 6.179 3.959 5.547 5.877

2 3 7.927 10.033 10.494 6.702 9.507 10.088

3 1 6.666 8.698 9.136 5.789 8.455 8.998

3 2 7.927 10.033 10.494 6.702 9.507 10.088

3 3 10.650 13.317 13.903 8.908 12.481 13.224

(`/a)2 = 0.05 1 1 1.888 2.132 2.189 1.625 1.999 2.082

1 2 7.135 7.851 8.020 6.267 7.517 7.798

1 3 19.151 21.790 22.401 16.758 21.088 22.038

2 1 6.159 7.642 7.969 5.338 7.335 7.754

2 2 12.522 13.594 13.849 11.354 12.848 13.195

2 3 27.962 28.731 28.920 26.420 27.595 27.882

3 1 16.487 21.238 22.268 14.343 20.638 21.931

3 2 23.449 27.703 28.668 20.521 26.311 27.569

3 3 39.910 43.249 44.044 36.312 40.902 41.971

(`/a)2 = 0.10 1 1 2.333 2.614 2.679 2.023 2.452 2.548

1 2 9.435 10.295 10.498 8.335 9.862 10.208

1 3 26.104 29.530 30.326 22.893 28.582 29.835

2 1 8.058 9.998 10.426 6.985 9.597 10.145

2 2 16.795 18.229 18.570 15.235 17.230 17.694

2 3 38.201 39.241 39.497 36.113 37.695 38.080

3 1 22.313 28.742 30.136 19.411 27.930 29.680

3 2 32.025 37.834 39.152 28.026 35.933 37.652

3 3 54.997 59.596 60.691 50.041 56.362 57.835

Table 5: Dimensionless frequncies ω̄ of antisymmetric cross-ply laminates
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E1/E2 25 40

(−45/45) (−45/45)4 (45/− 45) (45/− 45)3

Reddy [52] 12,357 20,154 14,636 24,825

(`/a)2 = 0.00 12,358 20,154 14,636 24,825

(`/a)2 = 0.05 17,419 28,409 20,631 34,994

(`/a)2 = 0.10 21,311 34,756 25,241 42,812

Table 6: Dimensionless frequncies ω̄ of antisymmetric angle-ply laminates

theory, even if for the whole study they show greater magnitude, while they286

display an increasing trend for values around 1.2 onwards. It is also possi-287

ble to say that, ω̄ has greater magnitude as the number of the layer of the288

plate increases accounting for the same thickness and for lower E1/E2 ratios.289

Finally, as previously demonstratde dimensionless fundamental frequency in-290

creases as (`/a)2 rises.291

4.3. Antisymmetric angle-ply292

The last step of the present paper is focused on the analysis of the anti-293

symmetric angle-ply laminates in terms of dimensionless frequency. Firstly,294

three different layouts of squared plate are considered: (−45/45), (−45/45)4,295

(45/−45) and (45/−45)4. The material properties for the first two columns296

are: E1/E2 = 25, ν12 = 0.25, G12 = G13 = 0.5E2 and for the last two297

E1/E2 = 40, ν12 = 0.25, G12 = G13 = 0.6E2. The frequency is dimensionless298

as following: ω̄ = ωa2/h
√
ρ/E2 and n = m = 1 is considered.299

In the first two rows of Tab. 6, the comparison with Reddy [52] for the300

classical theory was made showing perfect agreement. The third and fourth301

rows display the extension to the second-order strain gradient theory, for302
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which outcomes have a rising trend with (`/a)2 for each case.303

Finally, trends by changing a/b (increased from three to five) are drawn in304

Fig. 11, for m,n = 1, 2, 3, in terms of dimensionless fundamental frequency:305

ω̄ = ωb2/π2
√
ρh/D22. Material properties chosen as E1/E2 equal to 25 and306

40, ν12 = 0.25, G12 = G13 = 0.5E2. The plates configurations that are307

studied are: (−45/45), (−45/45)2 and (−45/45)3.308

In the graph 11 trends similar to the cross-ply case are shown, on the other309

hand much higher magnitudes of dimensionless fundamental frequencies are310

reached in the present case. Decreasing in the early phase and then constant311

behavior is shown for the classical theory ((`/a)2 = 0.00), on the contrary a312

growing behavior by changing a/b if non local effects are taken into account313

is observed for (`/a)2 = 0.05 and (`/a)2 = 0.10. It is also displayed as the314

magnitude of ω̄ grows for a major number of layers in the plate configuration315

to parity of thickness. The last observation regards the materials, in fact it316

is clear as ω̄ illustrates a slight more significant impact if the ratio E1/E2 is317

equal to 25.318

5. Conclusion319

In the present paper, the stability and dynamic analysis of simply sup-320

ported nano plates are examined, applying the Kirchhoff theory and Navier321

solution method. An assortment of plate layouts, materials and geometries322

are involved, comparisons for the classical case wherever it was possible are323

provided, then outcomes are extended to the second-order strain gradient324

theory, thus taking into account nonlocal effects.325

Firstly, making an analogy between laminates, for both cross- and angle-326
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ply, in uniaxial and biaxial cases, it is clear that it is possible to exploit the327

higher resistance of orthotropic angle-ply plates against buckling issues com-328

pared to the cross-ply plates. Moreover, for what concerns the dimensions of329

the laminate in order to avoid early collapse it is needed to avoid a/b close to330

one, when higher order theory is employed to catch the nano plates behavior.331

Also, in the same material and geometrical conditions, it is preferable to use332

plates made by more layers to parity of plate thickness.333

Finally, the procedure applied for the dynamic analysis shows non lin-334

ear trends for cross- and angle-ply laminates by changing plate aspect ratios.335

Moreover, in this case it is also shown the much higher magnitude in terms of336

dimensionless fundamental frequency if angle-ply plates are employed. Also,337

for a defined plate thickness, the application of a greater number of lay-338

ers, as well as the use of material with lower ratio E1/E2 induces to more339

considerable values of dimensioless frequencey of the structure.340

In conclusion, from this study comes out that the performance of the341

second-order strain gradient theory is differerent from the classical one on by342

far, and the gap increases with plate aspect ratio and with non local ratio,343

thus nano plates need to be analyzed by considering non local effects.344

Appendix A. Appendix345

Differential operators of the Hamilton’s Principle are explicitly given be-346

low, where f indicates the generic derivative operator to be applied for the347

partial derivation (for instance f,x = ∂
∂x

):348

T11 = A11f,x +A16f,y−`2

[
A11

(
f,xxx +f,xyy

)
+ A16

(
f,xyy +f,yyy

)]
(A.1)
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T12 = A12f,y +A16f,x−`2

[
A12

(
f,yyy +f,xxy

)
+ A16

(
f,xyy +f,xxx

)]
(A.2)

T13 = −
(
B11f,xx +B12f,yy +2B16f,xy

)
+ `2

[
B11

(
f,xxxx +f,xxyy

)
+

+B12

(
f,xxyy +f,yyyy

)
+ 2B16

(
f,xxxy +f,xyyy

)] (A.3)

T21 = A16f,x +A66f,y−`2

[
A16

(
f,xxx +f,xyy

)
+ A66

(
f,xxy +f,yyy

)]
= T31

(A.4)

T22 = A26f,y +A66f,x−`2

[
A26

(
f,yyy +f,xxy

)
+ A66

(
f,xyy +f,xxx

)]
= T32

(A.5)

T23 = −
(
B16f,xx +B26f,yy +2B66f,xy

)
+ `2

[
B16

(
f,xxxx +f,xxyy

)
+

+B26

(
f,xxyy +f,yyyy

)
+ 2B66

(
f,xxxy +f,xyyy

)]
= T33

(A.6)

T31 = A16f,x +A66f,y−`2

[
A16

(
f,xxx +f,xyy

)
+ A66

(
f,xxy +f,yyy

)]
(A.7)

T32 = A26f,y +A66f,x−`2

[
A26

(
f,yyy +f,xxy

)
+ A66

(
f,xyy +f,xxx

)]
(A.8)
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T33 = −
(
B16f,xx +B26f,yy +2B66f,xy

)
+ `2

[
B16

(
f,xxxx +f,xxyy

)
+

+B26

(
f,xxyy +f,yyyy

)
+ 2B66

(
f,xxxy +f,xyyy

)] (A.9)

T41 = A12f,x +A26f,y−`2

[
A12

(
f,xxx +f,xyy

)
+ A26

(
f,xxy +f,yyy

)]
(A.10)

T42 = A22f,y +A26f,x−`2

[
A22

(
f,yyy +f,xxy

)
+ A26

(
f,xxy +f,yyy

)]
(A.11)

T43 = −
(
B12f,xx +B22f,yy +2B26f,xy

)
+ `2

[
B12

(
f,xxxx +f,xxyy

)
+

+B22

(
f,xxyy +f,yyyy

)
+ 2B26

(
f,xyyy +f,xxxy

)]
(A.12)

T51 = −
(
B11f,x +B16f,y

)
+ `2

[
B11

(
f,xxx +f,xyy

)
+B16

(
f,xxy +f,yyy

)]
(A.13)

T52 = −
(
B12f,y +B16f,x

)
+ `2

[
B12

(
f,yyy +f,xxy

)
+B16

(
f,xyy +f,xxx

)]
(A.14)

T53 = D11f,xx +D12f,yy +2D16f,xy−`2

[
D11

(
f,xxxx +f,xxyy

)
+

+D12

(
f,xxyy +f,yyyy

)
+ 2D16

(
f,xyyy +f,xxxy

)] (A.15)
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T61 = −
(
B12f,x +B26f,y

)
+ `2

[
B12

(
f,xxx +f,xyy

)
+B26

(
f,xxy +f,yyy

)]
(A.16)

T62 = −
(
B22f,y +B26f,x

)
+ `2

[
B22

(
f,yyy +f,xxy

)
+B26

(
f,xyy +f,xxx

)]
(A.17)

T63 = D12f,xx +D22f,yy +2D26f,xy−`2

[
D12

(
f,xxxx +f,xxyy

)
+D22

(
f,xxyy +f,yyyy

)
+ 2D26

(
f,xyyy +f,xxxy

)] (A.18)

T71 = 2

[
−
(
B16f,x +B66f,y

)
+ `2

(
B16

(
f,xxx +f,xyy

)
+B66

(
f,xxy +f,yyy

))] (A.19)

T72 = 2

[
−
(
B26f,y +B66f,x

)
+ `2

(
B26

(
f,yyy +f,xxy

)
+B66

(
f,xyy +f,xxx

))] (A.20)

T73 = 2

[
D16f,xx +D26f,yy +2D66f,xy−`2

(
D16

(
f,xxxx +f,xxyy

)
+D26

(
f,xxyy +f,yyyy

)
+ 2D66

(
f,xyyy +f,xxxy

)] (A.21)
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a) (0/90), E1/E2 = 25 b) (0/90), E1/E2 = 40

c) (0/90)2, E1/E2 = 25 d) (0/90)2, E1/E2 = 40

e) (0/90)4, E1/E2 = 25 f) (0/90)4, E1/E2 = 40

Figure 4: Uniaxial buckling load versus aspect ratio
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a) (0/90), E1/E2 = 25 b) (0/90), E1/E2 = 40

c) (0/90)2, E1/E2 = 25 d) (0/90)2, E1/E2 = 40

e) (0/90)3, E1/E2 = 25 f) (0/90)3, E1/E2 = 40

Figure 5: Biaxial buckling load versus aspect ratio
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a) (−45/45), E1/E2 = 25 b) (−45/45), E1/E2 = 40

c) (−45/45)2, E1/E2 = 25 d) (−45/45)2, E1/E2 = 40

e) (−45/45)3, E1/E2 = 25 f) (−45/45)3, E1/E2 = 40

Figure 6: Uniaxial buckling load versus aspect ratio
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a) (−45/45), E1/E2 = 25 b) (−45/45), E1/E2 = 40

c) (−45/45)2, E1/E2 = 25 d) (−45/45)2, E1/E2 = 40

e) (−45/45)3, E1/E2 = 25 f) (−45/45)3, E1/E2 = 40

Figure 7: Biaxial buckling load versus aspect ratio
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Figure 8: Vibrations - comparison with ref. [50].

Figure 9: Nondimensionalized fundamental frequency load versus plate aspect ratio for

isotropic lamina
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a) (0/90), E1/E2 = 25 b) (0/90), E1/E2 = 40

a) (0/90)2, E1/E2 = 25 b) (0/90)2, E1/E2 = 40

a) (0/90)3, E1/E2 = 25 b) (0/90)3, E1/E2 = 40

Figure 10: Dimensionless fundamental frequency versus plate aspect ratio for antisymmet-

ric cross-ply laminates to changing non local ratios
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a) (−45/45), E1/E2 = 25 b) (−45/45), E1/E2 = 40

a) (−45/45)2, E1/E2 = 25 b) (−45/45)2, E1/E2 = 40

a) (−45/45)3, E1/E2 = 25 b) (−45/45)3, E1/E2 = 40

Figure 11: Dimensionless fundamental frequency versus plate aspect ratio for antisymmet-

ric angle-ply laminates to changing non local ratios
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