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Zero-sum stochastic differential games of
generalized McKean-Vlasov typeI

Andrea Cossoa, Huyên Phamb,∗

aDepartment of Mathematics, University of Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
bLPSM, CNRS, UMR 7599, University Paris Diderot, and CREST-ENSAE, Paris, France

Abstract

We study zero-sum stochastic differential games where the state dynamics of the two players is governed
by a generalized McKean-Vlasov (or mean-field) stochastic differential equation in which the distribution of
both state and controls of each player appears in the drift and diffusion coefficients, as well as in the running
and terminal payoff functions. We prove the dynamic programming principle (DPP) in this general setting,
which also includes the control case with only one player, where it is the first time that DPP is proved
for open-loop controls. We also show that the upper and lower value functions are viscosity solutions to a
corresponding upper and lower Master Bellman-Isaacs equation. Our results extend the seminal work [15]
of Fleming and Souganidis (1989) to the McKean-Vlasov setting.

Résumé

Nous étudions des jeux différentiels stochastiques à somme nulle où la dynamique d’état des deux joueurs
est gouvernée par une équation différentielle stochastique généralisée de type McKean-Vlasov dans laquelle
la loi de l’état et du contrôle de chaque joueur apparait dans les coefficients de tendance et de diffusion, ainsi
que dans les fonctions de récompense. Nous montrons le principe de la programmation dynamique dans ce
cadre général incluant le cas de contrôle avec un seul joueur et pour la première fois le cas de contrôle en
boucle ouverte. Nous prouvons que les fonctions valeur inférieure et supérieure sont solutions de viscosité
du système associé de Bellman-Isaacs. Nos résultats étendent le travail fondateur de Fleming et Souganidis
(1989) au cadre de McKean-Vlasov.

Keywords: Zero-sum differential game, McKean-Vlasov stochastic differential equation, dynamic
programming, Master equation, viscosity solutions
2010 MSC: 49N70, 49L25, 60K35

1. Introduction

McKean-Vlasov (McKV) control problem (also called mean-field type control problem) has been knowing
a surge of interest with the emergence of mean-field game (MFG) theory, see [21], [5], [22], [10]. Such a
problem was originally motivated by large population stochastic control under mean-field interaction in
the limiting case where the number of agents tends to infinity; now various applications can be found in
economics, finance, and also in social sciences for modeling motion of socially interacting individuals and
herd behavior.

In this paper, we are concerned with generalized McKean-Vlasov stochastic differential equations con-
trolled by two players with opposite objectives: this problem is then called zero-sum stochastic differential
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game of generalized McKean-Vlasov type. A typical motivation and particle interpretation is the following:
one could think of a game involving two populations of indistinguishable agents obeying two distinct central
planners that are in competition with opposite objective (like e.g. in pursuit/evasion), and one looks for a
Nash equilibrium between the two populations.

The seminal paper [15] formulated in a rigorous manner zero-sum stochastic differential games, with state
dynamics governed by standard stochastic differential equations. The formulation in [15] can be described
as non-anticipative strategies against open-loop controls. This distinction of controls type between the two
players is crucial to show the dynamic programming principle (DPP) for the upper and lower value functions
(which coincide, i.e. the game has a value, under the so-called Isaacs condition), as it is known that the
formulation open-loop controls vs open-loop controls does not give rise in general to a dynamic game and a
fortiori to a DPP, see for instance Buckdahn’s counterexample in Appendix E of [23].

Zero-sum McKV stochastic differential games were recently considered in [20] and [11] in a weak for-
mulation where only the drift (but not the diffusion coefficient) depends on controls and state distribution.
Notice that as the authors work on a canonical probabilistic setting, their game can be seen as a game
in the form feedback controls vs feedback controls. We mention also the recent paper [3], which considers
deterministic mean-field type differential games with feedback controls.

In the present work, we study zero-sum stochastic differential games of generalized McKean-Vlasov type
where all the coefficients of both state dynamics and payoff functional depend upon the distributions of
state and controls (actually, they can also depend on the joint distribution of state and controls, however
under the standard continuity and Lipschitz assumptions, it turns out that the coefficients only depend on
the marginal distributions, see Remark 2.3). As in [15], we use a strong formulation with non-anticipative
strategies against open-loop controls. We define the lower and upper value functions of this game, and
our first contribution (Proposition 3.1) is to show that they are law-invariant, hence can be considered as
functions on the Wasserstein space of probability measures. Notice that this is a nontrivial issue as we do
not restrict to feedback controls.

Our second main result (Theorem 4.1) is the proof of the dynamic programming principle for the lower
and upper value functions. The key observation is to reformulate the problem as a deterministic differential
game in the infinite dimensional space Lq of q-th integrable random variables. Notice that the proof of
the DPP is relevant also for the control case (which corresponds to the special case where the space of
control actions of the second player is a singleton), as a matter of fact in the present paper we consider
open-loop controls, while in the literature the DPP has been proved only for feedback controls, see [22].
Let us mention however the paper [4] which states a randomized DPP for the control case with open-loop
controls (but without dependence on the control distribution). We also show how to recover the standard
DPP in the case without mean-field dependence.

The third contribution of this paper (Theorem 5.1) is the partial differential equation characterization
of the value functions. By relying on the notion of differentiability in the Wasserstein space due to P.L.
Lions, we prove the viscosity property of the lower and upper value functions to the corresponding dynamic
programming lower and upper Bellman-Isaacs equations. Uniqueness is stated when working on the lifted
Hilbert space L2 and consequently, existence of a game value is obtained under a generalized Isaacs condition.

The outline of the paper is as follows. Section 2 formulates the zero-sum stochastic differential game of
generalized McKean-Vlasov type. In Section 3 we show that the upper and lower value functions can be
defined as functions on the Wasserstein space of probability measures. Section 4 is devoted to the rigorous
statement and proof of the dynamic programming principle for both value functions. Finally, in Section 5
we prove the viscosity property of the value functions.

2. Formulation of the stochastic differential game

Let (Ω,F ,P) be a complete probability space on which a d-dimensional Brownian motion W = (Wt)t≥0

is defined. Let Fo = (Fot )t≥0 be the filtration generated by W , and let F = (Ft)t≥0 be the augmentation
of Fo with the family N of P-null sets of F , so that Ft = Fot ∨ N , for every t ≥ 0. Notice that F satisfies
the usual conditions of P-completeness and right-continuity. We also define, for every t ≥ 0, the filtration
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Ft = (F ts)s≥t which is the P-completion of the filtration generated by the Brownian increments (Ws−Wt)s≥t
(notice that, when t = 0, F0 coincides with F). Finally, we suppose that there exists a sub-σ-algebra G of F
which is independent of F∞, which will be assumed “rich enough”, as explained below.

We fix a positive integer n and a real number q ∈ [1,∞). We denote by Pq(Rn) the family of all

probability measures µ on (Rn,B(Rn)) with finite qth-order moment, i.e. ‖µ‖q :=
( ∫
|x|qµ(dx)

)1/q
< ∞.

More generally, for any r ∈ [1,∞) and m ∈ N\{0} we denote by Pr(Rm) the family of all probability
measures on (Rm,B(Rm)) with finite rth-order moment. We endow Pr(Rn) with the topology induced by
the Wasserstein metric of order r:

Wr(µ, µ
′) = inf

{(∫
Rn×Rn

|x− x′|r µ(dx, dx′)

)1/r

: µ ∈Pr(Rn × Rn) with marginals µ and µ′
}
,

for all µ, µ′ ∈ Pr(Rn). We assume that the sub-σ-algebra G is “rich enough” in the following sense: G
satisfies

P1(R) =
{
Pξ : ξ ∈ L1(Ω,G,P;R)

}
, Pq(Rn) =

{
Pξ : ξ ∈ Lq(Ω,G,P;Rn)

}
, (2.1)

where Pξ denotes the distribution of ξ. We will also suppose, possibly making G smaller (see Remark 2.1),
that there exists a random variable ΓG : (Ω,G) → (G,G ), taking values in some Polish space G with Borel
σ-algebra G , such that ΓG has an atomless distribution and G = σ(ΓG).

Remark 2.1 It is well-known (see e.g. Theorem 3.19 in [18]) that the probability space ([0, 1],B([0, 1]), λ)
satisfies (2.1), with Ω,G,P replaced respectively by [0, 1],B([0, 1]), λ (actually, every probability space
(E, E ,Q), with E uncountable, separable, complete metric space, E its Borel σ-algebra, Q an atomless
probability, satisfies (2.1), this follows e.g. from Corollary 7.16.1 in [6]).

Suppose now that the sub-σ-algebra G satisfies (2.1). Denote by λ the Lebesgue measure on ([0, 1],B([0, 1])).
Then, by the left-hand side equality in (2.1), there exists a random variable ΓG : (Ω,G) → ([0, 1],B(0, 1))
with distribution λ, that is with uniform distribution (so, in particular, ΓG has an atomless distribution). On
the other hand, given µ ∈P1(R) (resp. µ ∈Pq(Rn)) it is possible to find a random variable η : [0, 1]→ R
(resp. η : [0, 1]→ Rn) with distribution µ. This implies that the random variable ξ = η(ΓG) : Ω→ R (resp.
ξ = η(ΓG) : Ω→ Rn) has also distribution µ. As a matter of fact, we have:

P(ξ−1(A)) = P((η(ΓG))−1(A)) = P(ΓG ∈ η−1(A)) = λ(η−1(A)),

for every A ∈ B(R) (resp. A ∈ B(Rn)). Then, we see that the sub-σ-algebra Ḡ := σ(ΓG) ⊂ G satisfies (2.1).
In other words, it is enough to replace G by the possibly smaller σ-algebra Ḡ. ♦

Remark 2.2 Let (E, E) and (H,H) denote two Polish spaces endowed with their Borel σ-algebrae. Notice
that the following result, stronger than (2.1), holds true:

Given any probability π on (E, E), there exists ξ : (Ω,G)→ (E, E) such that Pξ = π. (2.2)

Moreover, we have the following result (which will be used in the proof of Theorem 5.1):

Given any probability π on the product space (E ×H, E ⊗H) and ζ : (Ω,G)→ (E, E),

with distribution Pζ equals to the marginal distribution of π on (E, E), (2.3)

there exists a random variable η : (Ω,G)→ (H,H) such that P(ζ, η) = π.

Proceeding along the same lines as in Remark 2.1, we see that statement (2.2) follows from Theorem 3.19
in [18] when (G,G ) is ([0, 1],B([0, 1])) and ΓG has uniform distribution; in general, the claim follows simply
recalling that all atomless Polish probability spaces are isomorphic (see for instance Corollary 7.16.1 in [6]).

Statement (2.3) follows from Theorem 6.10 in [18] when (G,G ) is ([0, 1]×[0, 1],B([0, 1]×[0, 1])) and ΓG has
uniform distribution (proceeding as before, we deduce the result for the general case). As a matter of fact,
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given π on (E×H, E⊗H), by Theorem 3.19 in [18] there exists a random vector (z, w) : ([0, 1]×[0, 1],B([0, 1]×
[0, 1])) → (E × H, E ⊗ H) such that P(z, w) = π. Now, since ζ is G-measurable, by Doob’s measurability
theorem there exists a measurable map z̃ : [0, 1]× [0, 1]→ E such that ζ = z̃(ΓG). Notice that z̃, as a random
variable from ([0, 1]× [0, 1],B([0, 1]× [0, 1]), λ⊗λ) into (E, E), has the same distribution as ζ, that is Pζ = Pz̃,
which in turn coincides with the marginal distribution of π on (E, E). So, in particular, Pz = Pz̃. We can now
apply Theorem 6.10 in [18], from which it follows the existence of w̃ : ([0, 1]× [0, 1],B([0, 1]× [0, 1]))→ (H,H)
such that P(z̃, w̃) = π. Define η := w̃(ΓG). Then, η is a measurable map from (Ω,G) into (H,H), moreover
P(ζ, η) = π, hence (2.3) holds. ♦

Let T > 0 be a finite time horizon and let A (resp. B) be the family of admissible control processes for
player I (resp. II), that is the set of all (Fs ∨G)-progressively measurable processes α : Ω× [0, T ]→ A (resp.
β : Ω × [0, T ] → B), where A (resp. B) is a Polish space. We denote by ρA (resp. ρB) a bounded metric
on A (resp. B) (notice that given a not necessarily bounded metric d on a metric space M , the equivalent
metric d/(1 + d) is bounded). Finally, we denote by P(A × B) the family of all probability measures on
A×B, endowed with the topology of weak convergence.

The state equation of the McKean-Vlasov stochastic differential game is given by:

Xt,ξ,α,β
s = ξ +

∫ s

t

γ
(
Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)
dr (2.4)

+

∫ s

t

σ
(
Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)
dWr,

for all s ∈ [t, T ], where t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. On the coefficients b and σ, and
also on the payoff functions f and g introduced below, we impose the following assumptions.

(A1)

(i) The maps γ : Rn×Pq(Rn)×A×B×P(A×B)→ Rn, σ : Rn×Pq(Rn)×A×B×P(A×B)→ Rn×d,
f : Rn ×Pq(Rn)×A×B ×P(A×B)→ R, g : Rn ×Pq(Rn)→ R are Borel measurable.

(ii) There exists a positive constant L such that

|γ(x, µ, a, b, ν)− γ(x′, µ′, a, b, ν)| ≤ L
(
|x− x′|+Wq(µ, µ

′)
)
,

|σ(x, µ, a, b, ν)− σ(x′, µ′, a, b, ν)| ≤ L
(
|x− x′|+Wq(µ, µ

′)
)
,

|γ(0, δ0, a, b, ν)|+ |σ(0, δ0, a, b, ν)| ≤ L,

|f(x, µ, a, b, ν)|+ |g(x, µ)| ≤ h(‖µ‖q)
(
1 + |x|q

)
,

for all (x, µ), (x′, µ′) ∈ Rn ×Pq(Rn), (a, b, ν) ∈ A×B ×P(A×B).

Remark 2.3 In equation (2.4) we could also consider the case where γ and σ depend on the joint law
P

(X
t,ξ,α,β
r , αr, βr)

rather than on the marginals P
X
t,ξ,α,β
r

and P(αr, βr). So, in particular, γ = γ(x, a, b, π) and
σ = σ(x, a, b, π) for every π ∈Pq, 0(Rn×A×B), the set of probability measures π on the Borel σ-algebra of
Rn ×A×B with marginal π|Rn having finite q-th order moment. Notice however that such a generalization
is only artificial, as a matter of fact under the Lipschitz assumption (A1)-(ii), which now reads

|γ(x, a, b, π)− γ(x′, a, b, π′)|+ |σ(x, a, b, π)− σ(x, a, b, π′)| ≤ L
(
|x− x′|+Wq

(
π|Rn , π

′
|Rn

))
,

for all (a, b) ∈ A×B and (x, π), (x′, π′) ∈ Rn ×Pq, 0(Rn ×A×B), with π|A×B = π′
A×B

,

it follows that γ(x, a, b, π) = γ(x, a, b, π′) and σ(x, a, b, π) = σ(x, a, b, π′) whenever π and π′ have the same
marginals on Rn and A × B. In other words, γ = γ(x, a, b, π) and σ = σ(x, a, b, π) depend only on the
marginals of π on Rn and A×B.

Concerning the function f , we get to the same conclusion under the continuity assumption (A2) stated
below. ♦
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Lemma 2.1 Under Assumption (A1), for any t ∈ [0, T ], ξ ∈ Lq(Ω,Ft∨G,P;Rn), α ∈ A, β ∈ B, there exists
a unique (up to indistinguishability) continuous (Fs ∨ G)-progressively measurable process (Xt,ξ,α,β

s )s∈[t,T ]

solution to (2.4), satisfying

E
[

sup
s∈[t,T ]

∣∣Xt,ξ,α,β
s

∣∣q] ≤ Cq
(
1 + E[|ξ|q]

)
, (2.5)

for some positive constant Cq, not depending on t, ξ, α, β. Moreover, the flow property holds: for every
s ∈ [t, T ],

Xt,ξ,α,β
r = X

s,Xt,ξ,α,βs ,α,β
r , for all r ∈ [s, T ], P-a.s. (2.6)

and consequently
P
X
t,ξ,α,β
r

= P
X
s,X

t,ξ,α,β
s ,α,β

r

, for all r ∈ [s, T ]. (2.7)

Proof. We report the proof only of (2.6)-(2.7), the rest of the statement being standard. Notice that, by

definition, the process (X
s,Xt,ξ,α,βs ,α,β
r )r∈[s,T ] solves the following stochastic differential equation on [s, T ]

with initial condition Xt,ξ,α,β
s :

Xr = Xt,ξ,α,β
s +

∫ r

s

γ
(
Xz,PXz , αz, βz,P(αz, βz)

)
dz +

∫ r

s

σ
(
Xz,PXz , αz, βz,P(αz, βz)

)
dWz,

for all r ∈ [s, T ]. On the other hand, recall from (2.4) that the process Xt,ξ,α,β solves the same equation on
[s, T ], with identical initial condition at time s, that is Xt,ξ,α,β

s . Hence, by pathwise uniqueness we conclude

that (X
s,Xt,ξ,α,βs ,α,β
r )r∈[s,T ] and (Xt,ξ,α,β

r )r∈[s,T ] are indistinguishable, so that (2.6) holds. We then deduce
the flow property (2.7) on the probability law. 2

Remark 2.4 Notice that the (open-loop) control processes α ∈ A, β ∈ B are measurable with respect to
G, hence may depend on ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), and thus one cannot claim as in the uncontrolled case or
when using feedback controls that the law P

X
t,ξ,α,β
s

of Xt,ξ,α,β
s , for t ≤ s ≤ T , depends on ξ only through

its distribution. As a matter of fact, in the uncontrolled case or when using feedback controls, the law
P
X
t,ξ,α,β
s

of Xt,ξ,α,β
s depends on the joint law of ξ and (Ws−Wt)s∈[t,T ]. Since they are independent, P

X
t,ξ,α,β
s

depends in fact only on the marginal laws of ξ and (Ws −Wt)s∈[t,T ] (so that it depends on ξ only through
its distribution). On the other hand, when using open-loop controls, we can only say that the law P

X
t,ξ,α,β
s

of Xt,ξ,α,β
s depends on the joint law of ξ, α, β, (Ws −Wt)s∈[t,T ]. ♦

The stochastic differential game has the following payoff functional:

J(t, ξ, α, β) = E
[ ∫ T

t

f
(
Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)
ds+ g

(
Xt,ξ,α,β
T ,P

X
t,ξ,α,β
T

)]
, (2.8)

for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. Notice that the payoff functional in (2.8) is well-
defined and finite by (2.5) and the growth conditions on f and g in (A1)(ii). In order to prove the continuity
of the value functions (Proposition 3.3), we will need to impose the following continuity assumption on the
payoff functions f and g (in the literature, the Lipschitz continuity of f and g is generally required, which
is however stronger than (A2)). The continuity of the value functions is only used in the last section of the
paper (Section 5), where we investigate the viscosity properties of the value functions. Notice in particular
that assumption (A2) is not used in the proof of the dynamic programming principle.

(A2) The maps g and (x, µ) ∈ Rn ×Pq(Rn) 7→ f(x, µ, a, b, ν) are continuous, uniformly with respect to
(a, b, ν) ∈ A × B ×P(A × B), i.e. for any sequence (xm, µm)m in Rn ×Pq(Rn) converging to (x, µ) ∈
Rn ×Pq(Rn), we have

sup
(a,b,ν)∈A×B×P(A×B)

∣∣f(xm, µm, a, b, ν)− f(x, µ, a, b, ν)
∣∣ + |g(xm, µm)− g(x, µ)| m→∞−→ 0.
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We define the upper and lower value functions of the stochastic differential game as in Definition 1.4 of
[15]. In order to do it, we need to introduce the concept of (non-anticipative) strategy (see Definition 1.3 in
[15]).

Definition 2.1

• A strategy α[·] for player I is a map α[·] : B → A satisfying the non-anticipativity property:

P
(
βr = β′r, for a.e. r ∈ [0, t]

)
= 1 =⇒ P

(
α[β]r = α[β′]r, for a.e. r ∈ [0, t]

)
= 1,

for every t ∈ [0, T ] and any β, β′ ∈ B. We denote by Astr the family of all strategies for player I.

• A strategy β[·] for player II is a map β[·] : A → B satisfying the non-anticipativity property:

P
(
αr = α′r, for a.e. r ∈ [0, t]

)
= 1 =⇒ P

(
β[α]r = β[α′]r, for a.e. r ∈ [0, t]

)
= 1,

for every t ∈ [0, T ] and any α, α′ ∈ A. We denote by Bstr the family of all strategies for player II.

The lower value function of the stochastic differential game (SDG) is given by

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

J(t, ξ, α, β[α]), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).

On the other hand, the upper value function of the stochastic differential game is given by

u(t, ξ) = sup
α[·]∈Astr

inf
β∈B

J(t, ξ, α[β], β), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).

By estimate (2.5) and the growth conditions in (A1)(ii) on f and g, we easily see that the value functions
v and u satisfy the growth condition

|v(t, ξ)|+ |u(t, ξ)| ≤ Cq h
(
Cq(1 + ‖µ‖

q
)
) (

1 + E|ξ|q
)
, t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn),

with Cq as in estimate (2.5), and µ = P
ξ
.

3. Properties of the value functions

The main goal of this section is to prove that the lower and upper value functions v and u are law-
invariant, i.e., depend on ξ only via its distribution. We mention that this is a non-trivial issue, as such
property does not hold in general for the payoff functional J , see Remark 2.4.

Proposition 3.1 Under Assumption (A1), for every t ∈ [0, T ] we have

v(t, ξ) = v(t, ξ̃), u(t, ξ) = u(t, ξ̃),

for any ξ, ξ̃ ∈ Lq(Ω,Ft ∨ G,P;Rn), with Pξ = Pξ̃.

Proof. We prove the result only for the lower value function, as the proof for the upper value function can
be done proceeding along the same lines.

Fix t ∈ [0, T ], ξ, ξ̃ ∈ Lq(Ω,Ft ∨ G,P;Rn), with µ := Pξ = Pξ̃. Our aim is to prove that:

Given any α ∈ A and β̃[·] ∈ Bstr, there exist α̃ ∈ A and β[·] ∈ Bstr, with α̃ (resp. β[·])
possibly depending on ξ, ξ̃, α (resp. ξ, ξ̃, β̃[·]), but not on β̃[·] (resp. α), such that: (3.1)

(ξ, α, β[α],W· −Wt) has the same law as (ξ̃, α̃, β̃[α̃],W· −Wt),

so that J(t, ξ, α, β[α]) = J(t, ξ̃, α̃, β̃[α̃]).
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Notice that statement (3.1) is equivalent to the existence of two maps ψ1 : A → A and ψ2 : Bstr → Bstr

such that for any α ∈ A and β̃[·] ∈ Bstr, the quadruple (ξ, α, ψ2(β̃[·])[α],W· −Wt) has the same law as
(ξ̃, ψ1(α), β̃[(α)],W· −Wt), so that J(t, ξ, α, (β̃[·])[α]) = J(t, ξ̃, ψ1(α), β̃[ψ1(α)]).

Observe that the claim follows if (3.1) holds true. Indeed, for any fixed β̃[·] ∈ Bstr we have

sup
α∈A

J(t, ξ, α, ψ2(β̃[·])[α]) = sup
α∈A

J(t, ξ̃, ψ1(α), β̃[ψ1(α)]) ≤ sup
α̃∈A

J(t, ξ̃, α̃, β̃[α̃]).

Taking the infimum over β̃[·] in Bstr, we obtain

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

J(t, ξ, α, β[α]) ≤ inf
β̃[·]∈Bstr

sup
α∈A

J(t, ξ, α, ψ2(β̃[·])[α])

≤ inf
β̃[·]∈Bstr

sup
α̃∈A

J(t, ξ̃, α̃, β̃[α̃]) = v(t, ξ̃).

Interchanging the roles of ξ and ξ̃, we get the other inequality v(t, ξ) ≥ v(t, ξ̃), from which the claim follows.
It remains to prove statement (3.1). We split its proof into four steps. Notice that Step II is similar to

the proof of Proposition 2.2 in [7], while Step IV can be alternatively addressed using techniques from the
proof of Proposition 3.4 in [7] (see Step IV below for more details).

Step I. Reduction to a canonical setting. Denote by EWt := C0([0, t];Rn) the set of Rn-valued continuous
paths on [0, t] starting at the origin at time 0. We endow EWt with the uniform topology, so that EWt
becomes a Polish space (we denote its Borel σ-algebra by EWt ). We also denote by PWt the Wiener measure on
(EWt , EWt ) (recall that the Wiener measure is atomless). Now, consider the filtration Fo = (Fos )s≥0 generated
by the Brownian motion W . Notice that there exists a random variable ΓWt : (Ω,Fot ) → (EWt , EWt ) with
distribution PWt and such that Fot = σ(ΓWt ). On the other hand, we recall that, by assumption, there exists
a random variable ΓG : (Ω,G)→ (G,G ), taking values in some Polish space G with Borel σ-algebra G , such
that ΓG has an atomless distribution and G = σ(ΓG). Hence, we deduce that there exists a random variable
Γt : (Ω,Fot ∨ G) → (E, E), taking values in some Polish space E with Borel σ-algebra E , such that Γt has
an atomless distribution and Fot ∨ G = σ(Γt). Finally, recalling that all atomless Polish probability spaces
are isomorphic, we can suppose that the probability space (E, E ,PΓt

), where PΓt
denotes the distribution

of Γt, is given by the space ([0, 1],B([0, 1]), λ), where λ is the Lebesgue measure on [0, 1]. So, in particular,
Γt : Ω→ [0, 1] and has uniform distribution.

Step II. Canonical representation of ξ and α. Fix α ∈ A and β̃[·] ∈ Bstr.

Representation of ξ. Since ξ is Ft ∨ G-measurable, by Doob’s measurability theorem it follows that

ξ = χ(Γt), P-a.s.

for some measurable function χ : ([0, 1],B([0, 1]))→ (Rn,B(Rn)). The equality ξ = χ(Γt) holds P-a.s. since
Ft = Fot ∨ N . Notice that we can suppose χ to be surjective. As a matter of fact, if this is not the case,
it is enough to modify χ on the set C \{0, 1} (where C is the Cantor set), replacing χ for instance by the
composition of the Cantor function from C \{0, 1} to (0, 1) with a continuous map from (0, 1) to Rn. The χ
so constructed remains a Borel measurable function. Moreover, we still have

ξ = χ(Γt), P-a.s.

Representation of α. Similarly, the map α : Ω× [0, T ]→ A is Prog(Ft)∨ ((Ft ∨G)⊗{∅, [0, T ]})-measurable,
where Prog(Ft) denotes the progressive σ-algebra on Ω× [0, T ] relative to the filtration Ft, while {∅, [0, T ]} is
the trivial σ-algebra on [0, T ]. Then, by a slight generalization of Doob’s measurability theorem (which can
be proved using the monotone class theorem), it follows that α has the form αs = as(·,Γt(·)), ∀ s ∈ [0, T ],
P-a.s., for some Prog(Ft)⊗B([0, 1])-measurable function a = as(ω, y) : Ω× [0, T ]× [0, 1]→ A. As before, the
fact that the equality αs = as(·,Γt(·)), ∀ s ∈ [0, T ], holds P-a.s. (so, in particular, (αs)s and (as(·,Γt(·)))s
are P-indistinguishable) follows from the fact that Ft = Fot ∨N .
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Step III. The random variable Γ̃t. Notice that (3.1) follows if we prove the following:

∃ a random variable Γ̃t : (Ω,Ft ∨ G)→ ([0, 1],B([0, 1])) such that: (3.2)

Γ̃t has the same distribution as Γt, σ(Γ̃t) ∨N = σ(Γt) ∨N = Ft ∨ G, and ξ̃ = χ(Γ̃t), P-a.s.

Observe that Γ̃t is allowed to be Ft ∨ G-measurable (not necessarily just Fot ∨ G-measurable). Suppose that
(3.2) holds. Since σ(Γ̃t) ∨ N = Ft ∨ G, we can find a canonical representation of β̃[·] in terms of Γ̃t. More
precisely, since for every α̃ ∈ A we have that β̃[α̃] is an element of B, proceeding as in Step II for the
proof of the canonical representation of α, we deduce that β̃[α̃] has the form β̃[α̃]s = b̃α̃s (·, Γ̃t(·)), ∀ s ∈ [0, T ],
P-a.s., for some Prog(Ft)⊗B([0, 1])-measurable function b̃α̃ = b̃α̃s (ω, y) : Ω× [0, T ]× [0, 1]→ B. Now, define(

ψ1(α) =
)
α̃ := a·(·, Γ̃t(·)),

(
ψ2(β̃[·])[α′] =

)
β[α′] := b̃

a′·(·,Γ̃t(·))
· (·,Γt(·)),

where a′ corresponds to the map a introduced in Step II when the control α is replaced by a generic control
α′ ∈ A. Notice that α̃ ∈ A and β[·] ∈ Bstr. We also notice that (ξ, α, β[α],W· −Wt) has the same law as
(ξ̃, α̃, β̃[α̃],W· −Wt). So, in particular, J(t, ξ, α, β[α]) = J(t, ξ̃, α̃, β̃[α̃]), that is (3.1) holds.

Step IV. Proof of (3.2). By the Jankov-von Neumann measurable selection theorem (see for instance
Theorem 18.22 and, in particular, Corollary 18.23 in [1]), it follows that χ admits an analytically measurable
right-inverse, denoted by ζ : Rn → [0, 1], which satisfies:

1) χ(ζ(y)) = y, for any y ∈ Rn;

2) χ−1(ζ−1(B)) = B, for any subset B of [0, 1];

3) ζ−1(B) is analytically measurable in Rn for each Borel subset B of [0, 1]. Recalling that every analytic
subset of Rn is universally measurable (see e.g. Theorem 12.41 in [1]), it follows that ζ−1(B) ∈
L (Rn), the Lebesgue σ-algebra on Rn. Hence ζ is a measurable function from (Rn,L (Rn)) into
([0, 1],B([0, 1])).

Now, define
Γ̃t := ζ(ξ̃),

and let us prove that Γ̃t satisfies (3.2) (notice that the construction of Γ̃t can be alternatively addressed
proceeding as in the proof of Proposition 3.4 in [7], by means of the regular conditional cumulated distribution
of Γt given both ξ and (Ws)0≤s≤t).

We begin noting that, since ζ is B([0, 1])/L (Rn)-measurable, and also the σ-algebra Ft∨G is P-complete,
it follows that Γ̃t is a measurable function from (Ω,Ft ∨ G) into ([0, 1],B([0, 1])). Let us now prove that Γ̃t
has the same distribution as Γt. Fix a Borel subset B of [0, 1]. Then

P(Γ̃t ∈ B) = P(ζ(ξ̃) ∈ B) = P(ξ̃ ∈ ζ−1(B)).

Recalling that ξ̃ has the same distribution as ξ, and also that ξ = χ(Γt), we obtain

P(ξ̃ ∈ ζ−1(B)) = P(χ(Γt) ∈ ζ−1(B)) = P(Γt ∈ χ−1(ζ−1(B))).

By item 2), we know that χ−1(ζ−1(B)) = B, hence

P(Γ̃t ∈ B) = P(Γt ∈ B).

This proves that Γ̃t has the same distribution as Γt. Moreover, by item 1) we have χ(Γ̃t) = χ(ζ(ξ̃)) = ξ̃. It
remains to prove the equality σ(Γ̃t) ∨N = σ(Γt) ∨N .

Similarly to ξ, since ξ̃ is Ft ∨ G-measurable, by Doob’s measurability theorem there exists a measurable
function χ̃ : ([0, 1],B([0, 1]))→ (Rn,B(Rn)) such that ξ̃ = χ̃(Γt), P-a.s.. Hence

Γ̃t = ζ(χ̃(Γt)), P-a.s.
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So, in particular, σ(Γ̃t) ⊂ σ(Γt) ∨ N . It remains to prove that σ(Γt) ⊂ σ(Γ̃t) ∨ N . Notice that ζ ◦ χ̃ is
a measurable function from ([0, 1],L ([0, 1])) into ([0, 1],B([0, 1])). Then, it is well-known that there exists
a Borel measurable function φ : [0, 1] → [0, 1] such that ζ ◦ χ̃ = φ, λ-a.e. (we need to consider a Borel
measurable version of ζ ◦ χ̃ in order to use Lemma A.1, which in turn relies on the Jankov-von Neumann
measurable selection theorem). Hence

Γ̃t = φ(Γt), P-a.s.

Then, by Lemma A.1 it follows that there exists a Borel measurable function ρ : [0, 1] → [0, 1] such that
ρ(φ)(y) = y, λ-a.e., so that

Γt = ρ(Γ̃t), P-a.s.,

from which we deduce the inclusion σ(Γt) ⊂ σ(Γ̃t) ∨N . This concludes the proof. 2

It is interesting to notice (even if we do not need such a result in the present paper) that a stronger
result than Proposition 3.1 holds, namely that the value functions v and u do not depend on the choice of
the σ-algebra G, as stated in the next proposition.

Proposition 3.2 Suppose that Assumption (A1) holds and let Ḡ be a sub-σ-algebra of F satisfying the
same properties as G, namely: Ḡ is independent of F∞, Ḡ satisfies (2.1), and there exists a random variable
Γ̄Ḡ : (Ω, Ḡ) → (Ḡ, Ḡ ), taking values in some Polish space Ḡ with Borel σ-algebra Ḡ , such that Γ̄Ḡ has an
atomless distribution and Ḡ = σ(Γ̄Ḡ). Then, for every t ∈ [0, T ] we have

v(t, ξ) = v(t, ξ̄), u(t, ξ) = u(t, ξ̄), (3.3)

for any ξ ∈ Lq(Ω,Ft ∨ G,P;Rn) and ξ̄ ∈ Lq(Ω,Ft ∨ Ḡ,P;Rn), with Pξ = Pξ̄.

Proof. We prove the result only for v, as the proof for u can be done proceeding along the same lines.
Most of the proof proceeds as in Proposition 3.1, for this reason we report only the main steps.
Fix t ∈ [0, T ] and ξ ∈ Lq(Ω,Ft ∨G,P;Rn). First notice that, by Proposition 3.1, (3.3) follows if we prove

that there exists some ξ̄ ∈ Lq(Ω,Ft ∨ Ḡ,P;Rn), with Pξ = Pξ̄, such that v(t, ξ) = v(t, ξ̄) holds. As a matter
of fact, it then follows from Proposition 3.1 that v(t, ξ) = v(t, ξ̄) holds for any ξ̄ ∈ Lq(Ω,Ft∨ Ḡ,P;Rn), with
Pξ = Pξ̄.

In order to specify the random variable ξ̄, we need firstly to introduce some notations. Let Γt and χ be
the maps introduced respectively in Steps I and II of the proof of Proposition 3.1. Let also Γ̄t be the map
introduced in Step I of the proof of Proposition 3.1 with G replaced by Ḡ. Then, we define ξ̄ as follows

ξ̄ := χ(Γ̄t).

Similarly to the proof of Proposition 3.1, our aim is to prove the following (when G is replaced by Ḡ, we
denote by Ā, B̄, Āstr, B̄str the sets A, B, Astr, Bstr):

Given any α ∈ A and β̄[·] ∈ B̄str, there exist ᾱ ∈ Ā and β[·] ∈ Bstr, with ᾱ (resp. β[·])
possibly depending on α (resp. β̄[·]), but not on β̄[·] (resp. α), such that: (3.4)

(ξ, α, β[α],W· −Wt) has the same law as (ξ̄, ᾱ, β̄[ᾱ],W· −Wt),

so that J(t, ξ, α, β[α]) = J(t, ξ̄, ᾱ, β̄[ᾱ]).

In order to prove (3.4), let a be the map introduced in Step II of the proof of Proposition 3.1. Similarly, let
b̄ᾱ be the map introduced in Step III of the proof of Proposition 3.1 with Γ̃t, A, Bstr replaced respectively
by Γ̄t, Ā, B̄str. Then, we set

ᾱ := a·(·, Γ̄t(·)), β[α′] := b̄
a′·(·,Γ̄t(·))
· (·,Γt(·)),
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where a′ corresponds to the map a introduced in Step II of the proof of Proposition 3.1 when the control
α is replaced by a generic control α′ ∈ A. It is then easy to see that for such a choice of ᾱ and β property
(3.4) holds, which concludes the proof. 2

Definition 3.1 By Proposition 3.1, we define the inverse-lifted functions of v and u, respectively:

V (t, µ) = v(t, ξ), U (t, µ) = u(t, ξ), for every (t, µ) ∈ [0, T ]×Pq(Rn),

for any ξ ∈ Lq(Ω,Ft ∨ G,P;Rn), with Pξ = µ.

We end this section proving the continuity of the value functions.

Proposition 3.3 Let Assumptions (A1)-(A2) hold. The function (t, ξ) 7→ J(t, ξ, α, β) is continuous on
D := {t ∈ [0, T ], ξ ∈ Lq(Ω,Ft ∨ G,P;Rn)}, uniformly with respect to (α, β) ∈ A × B, and consequently the
value functions v, u are continuous on D.

Proof. (1) Fix 0 ≤ t ≤ s ≤ T , ξ, ζ ∈ Lq(Ω,Ft ∨ G,P;Rn), α ∈ A, β ∈ B. By definition of Wasserstein
distance, we have

sup
s≤r≤T

Wq
q

(
P
X
t,ξ,α,β
r

,P
X
s,ζ,α,β
r

)
≤ E

[
sup

s≤r≤T

∣∣Xt,ξ,α,β
r −Xs,ζ,α,β

r

∣∣q]. (3.5)

From the state equation (2.4), and using standard arguments involving Burkholder-Davis-Gundy inequalities,
(3.5), and Gronwall lemma, under the Lipschitz condition in (A1)(ii), we obtain the following estimate
similar to the ones for controlled diffusion processes (see Theorem 5.9 and Corollary 5.10, Chapter 2, in
[19]):

E
[

sup
s≤r≤T

∣∣Xt,ξ,α,β
r −Xs,ζ,α,β

r

∣∣q] ≤ C
(
E|ξ − ζ|q + (1 + E|ξ|q + E|ζ|q)|s− t|

)
, (3.6)

for some constant C (not depending on t, s, ξ, ζ, α, β).
(2) Fix t ∈ [0, T ] and ξ ∈ Lq(Ω,Ft ∨ G,P;Rn). Consider a sequence (tm)m ⊂ [0, T ], (ξm)m ⊂ Lq(Ω,Ftm ∨
G,P;Rn) such that tm → t, and ξm → ξ in Lq as m goes to infinity. We then have for all α ∈ A, β ∈ B,∣∣J(tm, ξm, α, β)− J(t, ξ, α, β)

∣∣
≤ E

[ ∫ tm

t

∣∣f(Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)∣∣dr
+

∫ T

t

∣∣f(Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)
− f

(
Xtm,ξm,α,β
r ,P

X
tm,ξm,α,β
r

, αr, βr,P(αr, βr)

)∣∣dr
+
∣∣g(Xt,ξ,α,β

T ,P
X
t,ξ,α,β
T

)
− g
(
Xtm,ξm,α,β
T ,P

X
tm,ξm,α,β
T

)∣∣]
≤ Cq h

(
Cq(1 + E|ξ|q)

) (
1 + E|ξ|q

)
|tm − t|

+ E
[∫ T

t

sup
(r,a,b,ν)∈[0,T ]×A×B×P(A×B)

∣∣f(Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, a, b, ν
)
−f
(
Xtm,ξm,α,β
r ,P

X
tm,ξm,α,β
r

, a, b, ν
)∣∣dr]

+ E
[∣∣g(Xt,ξ,α,β

T ,P
X
t,ξ,α,β
T

)
− g
(
Xtm,ξm,α,β
T ,P

X
tm,ξm,α,β
T

)∣∣].
From (3.5)-(3.6), and the continuity assumption (A2) on f and g, we deduce that

sup
α∈A,β∈B

|J(tm, ξm, α, β)− J(t, ξ, α, β)| −→
m→∞

0,

which implies
v(tm, ξm) −→

m→∞
v(t, ξ), u(tm, ξm) −→

m→∞
u(t, ξ),
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from which the claim follows. 2

Corollary 3.1 Let Assumptions (A1)-(A2) hold. The inverse-lifted functions V and U are continuous
on [0, T ]×Pq(Rn).

Proof. The claim follows directly from the continuity of the value functions v and u in Proposition 3.3, and
also by Skorohod’s representation theorem on the Wasserstein space (see Lemma A.1 in [4]). 2

4. Dynamic Programming Principle

The main result of this section is the statement and proof of the dynamic programming principle (DPP)
for the lower and upper value functions of the two-player zero-sum McKean-Vlasov stochastic differential
game.

Theorem 4.1 Under Assumption (A1), we have

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

{
E
[ ∫ s

t

f
(
Xt,ξ,α,β[α]
r ,P

X
t,ξ,α,β[α]
r

, αr, β[α]r,P(αr, β[α]r)

)
dr
]

(4.1)

+ v
(
s,Xt,ξ,α,β[α]

s

)}
and

u(t, ξ) = sup
α[·]∈Astr

inf
β∈B

{
E
[ ∫ s

t

f
(
Xt,ξ,α[β],β
r ,P

X
t,ξ,α[β],β
r

, α[β]r, βr,P(α[β]r, βr)

)
dr
]

(4.2)

+u
(
s,Xt,ξ,α[β],β

s

)}
,

for all t, s ∈ [0, T ], with t ≤ s, and for every ξ ∈ Lq(Ω,Ft ∨ G,P;Rn).

Proof. We prove the dynamic programming principle (4.1) for the lower value function v, the proof of (4.2)
being similar.

For any t ∈ [0, T ], ξ ∈ Lq(Ω,Ft∨G,P;Rn), η ∈ L1(Ω,Ft∨G,P;R), α ∈ A, β ∈ B, consider the stochastic
process (X̃t,ξ,η,α,β

s )s∈[t,T ] defined as

X̃t,ξ,η,α,β
s := η +

∫ s

t

f
(
Xt,ξ,α,β
r ,P

X
t,ξ,α,β
r

, αr, βr,P(αr, βr)

)
dr, t ≤ s ≤ T.

Notice that, from identities (2.6)-(2.7), we deduce the following flow property: for every s ∈ [t, T ],

X̃t,ξ,η,α,β
r = X̃

s,Xt,ξ,α,βs ,X̃t,ξ,η,α,βs ,α,β
r , for all r ∈ [s, T ], P-a.s. (4.3)

Now, we observe that

J(t, ξ, α, β) = E
[
X̃t,ξ,0,α,β
T + g

(
Xt,ξ,α,β
T ,P

X
t,ξ,α,β
T

)]
= G

(
Xt,ξ,α,β
T , X̃t,ξ,0,α,β

T

)
,

where G : Lq(Ω,FT ∨ G,P;Rn)× L1(Ω,FT ∨ G,P;R)→ R is defined as

G(ξ, η) := E
[
η + g

(
ξ,Pξ

)]
, ∀ (ξ, η) ∈ Lq(Ω,FT ∨ G,P;Rn)× L1(Ω,FT ∨ G,P;R).

Then, the lower value function of the stochastic differential game is given by

v(t, ξ) = inf
β[·]∈Bstr

sup
α∈A

G
(
X
t,ξ,α,β[α]
T , X̃

t,ξ,0,α,β[α]
T

)
.
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Let
V (t, ξ, η) = inf

β[·]∈Bstr

sup
α∈A

G
(
X
t,ξ,α,β[α]
T , X̃

t,ξ,η,α,β[α]
T

)
.

Notice that the following relation holds between v and V :

V (t, ξ, η) = v(t, ξ) + E[η]. (4.4)

By (4.4), we see that the dynamic programming principle (4.1) for v holds if and only if the following
dynamic programming principle for V holds:

V (t, ξ, η) = inf
β[·]∈Bstr

sup
α∈A

V
(
s,Xt,ξ,α,β[α]

s , X̃t,ξ,η,α,β[α]
s

)
, (4.5)

for all t, s ∈ [0, T ], with t ≤ s, and for every (ξ, η) ∈ Lq(Ω,Ft ∨ G,P;Rn) × L1(Ω,Ft ∨ G,P;R). Hence, it
remains to prove (4.5). The following proof of (4.5) is inspired by the proof of the dynamic programming
principle for deterministic differential games, see Theorem 3.1 in [13].

Fix t, s ∈ [0, T ], with t ≤ s, and (ξ, η) ∈ Lq(Ω,Ft ∨ G,P;Rn)× L1(Ω,Ft ∨ G,P;R). Set

Λ(t, ξ, η) := inf
β[·]∈Bstr

sup
α∈A

V
(
s,Xt,ξ,α,β[α]

s , X̃t,ξ,η,α,β[α]
s

)
.

We split the proof of (4.5) into two steps.

Proof of V (t, ξ, η) ≤ Λ(t, ξ, η). Fix ε > 0. Then, there exists β̄ε[·] ∈ Bstr such that

Λ(t, ξ, η) ≥ sup
α∈A

V
(
s,Xt,ξ,α,β̄ε[α]

s , X̃t,ξ,η,α,β̄ε[α]
s

)
− ε

≥ V
(
s,Xt,ξ,α,β̄ε[α]

s , X̃t,ξ,η,α,β̄ε[α]
s

)
− ε, for every α ∈ A. (4.6)

Now, notice that for every fixed α ∈ A there exists β̄′
,ε,α

[·] ∈ Bstr such that

V
(
s,Xt,ξ,α,β̄ε[α]

s , X̃t,ξ,η,α,β̄ε[α]
s

)
= inf

β′[·]∈Bstr

sup
α′∈A

G
(
X
s,Xt,ξ,α,β̄

ε[α]
s ,α′,β′[α′]

T , X̃
s,Xt,ξ,α,β̄

ε[α]
s ,X̃t,ξ,η,α,β̄

ε[α]
s ,α′,β′[α′]

T

)
≥ sup

α′∈A
G
(
X
s,Xt,ξ,α,β̄

ε[α]
s ,α′,β̄′,ε,α[α′]

T , X̃
s,Xt,ξ,α,β̄

ε[α]
s ,X̃t,ξ,η,α,β̄

ε[α]
s ,α′,β̄′,ε,α[α′]

T

)
− ε

≥ G
(
X
s,Xt,ξ,α,β̄

ε[α]
s ,α,β̄′,ε,α[α]

T , X̃
s,Xt,ξ,α,β̄

ε[α]
s ,X̃t,ξ,η,α,β̄

ε[α]
s ,α,β̄′,ε,α[α]

T

)
− ε. (4.7)

Define βε[·] ∈ Bstr as follows: for every fixed α ∈ A, we set

βε[α]r := β̄ε[α]r 1[0,s](r) + β̄′
,ε,α

[α]r 1(s,T ](r), for all r ∈ [0, T ].

Then, we can rewrite (4.7) in terms of βε as

V
(
s,Xt,ξ,α,β̄ε[α]

s , X̃t,ξ,η,α,β̄ε[α]
s

)
= V

(
s,Xt,ξ,α,βε[α]

s , X̃t,ξ,η,α,βε[α]
s

)
≥ G

(
X
s,Xt,ξ,α,β

ε[α]
s ,α,βε[α]

T , X̃
s,Xt,ξ,α,β

ε[α]
s ,X̃t,ξ,η,α,β

ε[α]
s ,α,βε[α]

T

)
− ε.

By the flow properties (2.6)-(4.3), we obtain

V
(
s,Xt,ξ,α,βε[α]

s , X̃t,ξ,η,α,βε[α]
s

)
≥ G

(
X
t,ξ,α,βε[α]
T , X̃t,ξ,η,α,βε[α]

s

)
− ε.
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Plugging the above inequality into (4.6), we find

Λ(t, ξ, η) ≥ G
(
X
t,ξ,α,βε[α]
T , X̃t,ξ,η,α,βε[α]

s

)
− 2 ε, for every α ∈ A.

The claim follows taking the supremum over A and then the infimum over Bstr.

Proof of V (t, ξ, η) ≥ Λ(t, ξ, η). Fix ε > 0. Then, there exists β̄ε[·] ∈ Bstr such that

sup
α∈A

G
(
X
t,ξ,α,β̄ε[α]
T , X̃

t,ξ,η,α,β̄ε[α]
T

)
≤ V (t, ξ, η) + ε. (4.8)

We also have
Λ(t, ξ, η) ≤ sup

α∈A
V
(
s,Xt,ξ,α,β̄ε[α]

s , X̃t,ξ,η,α,β̄ε[α]
s

)
.

So, in particular, there exists αε ∈ A such that

Λ(t, ξ, η) ≤ V
(
s,Xt,ξ,αε,β̄ε[αε]

s , X̃t,ξ,η,αε,β̄ε[αε]
s

)
+ ε. (4.9)

Now, for every α ∈ A define α̃ε ∈ A by

α̃εr := αεr 1[0,s](r) + αr 1(s,T ](r), for all r ∈ [0, T ]. (4.10)

Then, define βε ∈ Bstr by βε[α] := β̄ε[α̃ε], for every α ∈ A. Hence

V
(
s,Xt,ξ,αε,β̄ε[αε]

s , X̃t,ξ,η,αε,β̄ε[αε]
s

)
= inf

β[·]∈Bstr

sup
α∈A

G
(
X
s,Xt,ξ,α

ε,β̄ε[αε]
s ,α,β[α]

T , X̃
s,Xt,ξ,α

ε,β̄ε[αε]
s ,X̃t,ξ,η,α

ε,β̄ε[αε]
s ,α,β[α]

T

)
≤ sup

α∈A
G
(
X
s,Xt,ξ,α

ε,β̄ε[αε]
s ,α,βε[α]

T , X̃
s,Xt,ξ,α

ε,β̄ε[αε]
s ,X̃t,ξ,η,α

ε,β̄ε[αε]
s ,α,βε[α]

T

)
= sup

α∈A
G
(
X
s,Xt,ξ,α̃

ε,β̄ε[α̃ε]
s ,α̃ε,β̄ε[α̃ε]

T , X̃
s,Xt,ξ,α̃

ε,β̄ε[α̃ε]
s ,X̃t,ξ,η,α̃

ε,β̄ε[α̃ε]
s ,α̃ε,β̄ε[α̃ε]

T

)
,

where the last equality follows from the definitions of α̃ε and βε. By the flow properties (2.6)-(4.3), we
obtain

V
(
s,Xt,ξ,αε,β̄ε[αε]

s , X̃t,ξ,η,αε,β̄ε[αε]
s

)
≤ sup

α∈A
G
(
X
t,ξ,α̃ε,β̄ε[α̃ε]
T , X̃

t,ξ,η,α̃ε,β̄ε[α̃ε]
T

)
.

Consequently, there exists α2,ε ∈ A, and the corresponding α̃2,ε defined as in (4.10), such that

V
(
s,Xt,ξ,αε,β̄ε[αε]

s , X̃t,ξ,η,αε,β̄ε[αε]
s

)
≤ G

(
X
t,ξ,α̃2,ε,β̄ε[α̃2,ε]
T , X̃

t,ξ,η,α̃2,ε,β̄ε[α̃2,ε]
T

)
+ ε.

Finally, using inequalities (4.8) and (4.9), we obtain

Λ(t, ξ, η) ≤ V
(
s,Xt,ξ,αε,β̄ε[αε]

s , X̃t,ξ,η,αε,β̄ε[αε]
s

)
+ ε

≤ G
(
X
t,ξ,α̃2,ε,β̄ε[α̃2,ε]
T , X̃

t,ξ,η,α̃2,ε,β̄ε[α̃2,ε]
T

)
+ 2 ε

≤ sup
α∈A

G
(
X
t,ξ,α,β̄ε[α]
T , X̃

t,ξ,η,α,β̄ε[α]
T

)
+ 2 ε ≤ V (t, ξ, η) + 3 ε,

which concludes the proof. 2

We immediately deduce the DPP for the inverse-lifted lower and upper value functions.
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Corollary 4.1 Under Assumption (A1), we have

V (t, µ) = inf
β[·]∈Bstr

sup
α∈A

{
E
[ ∫ s

t

f
(
Xt,ξ,α,β[α]
r ,P

X
t,ξ,α,β[α]
r

, αr, β[α]r,P(αr, β[α]r)

)
dr
]

(4.11)

+ V
(
s,P

X
t,ξ,α,β[α]
s

)}
and

U (t, µ) = sup
α[·]∈Astr

inf
β∈B

{
E
[ ∫ s

t

f
(
Xt,ξ,α[β],β
r ,P

X
t,ξ,α[β],β
r

, α[β]r, βr,P(α[β]r, βr)

)
dr
]

+ U
(
s,P

X
t,ξ,α,β[α]
s

)}
,

for all t, s ∈ [0, T ], with t ≤ s, µ ∈ Pq(Rn), and any ξ ∈ Lq(Ω,G,P;Rn) such that Pξ = µ.

The case without mean-field interaction

Let us consider the particular case of standard stochastic optimal control problem (for the case of a standard
two-player zero-sum stochastic differential game see Remark 4.1 below), where G is the trivial σ-algebra and
all coefficients depend only on the state and control (of the first player), but not on their probability laws
(as well as on the control of the second player):

(A3) G = {∅,Ω} and γ = γ(x, a), σ = σ(x, a), f = f(x, a), g = g(x), for every (x, a) ∈ Rn ×A.

The assumption that G is trivial implies that the lower and upper value functions v = v(t, ξ) and
u = u(t, ξ) are defined only for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft,P;Rn) (rather than ξ ∈ Lq(Ω,Ft ∨ G,P;Rn)).
This also reflects on V and U , which now are defined on a possibly smaller set, given by all pairs (t, µ) ∈
[0, T ] ×Pq(Rn) for which there exists ξ ∈ Lq(Ω,Ft,P;Rn) such that Pξ = µ. Another consequence of the
assumption that G is trivial is that A (resp. B) coincides with the family of all F-progressively (rather than
(Fs ∨ G)-progressively) measurable processes taking values in A (resp. B).

Under Assumption (A3), denote by Xt,ξ,α the solution to (2.4) when there is only the control process
α. By an abuse of notation, we still denote by J = J(t, ξ, α) the payoff functional, which now depends only
on t, ξ, α:

J(t, ξ, α) = E
[ ∫ T

t

f
(
Xt,ξ,α
s , αs

)
ds+ g

(
Xt,ξ,α
T

)]
.

Notice that under (A3), the lower and upper value functions coincide with each other, and are simply given
by:

v(t, ξ) = u(t, ξ) = sup
α∈A

J(t, ξ, α), for all t ∈ [0, T ], ξ ∈ Lq(Ω,Ft,P;Rn).

For any t ∈ [0, T ], x ∈ Rn, α ∈ A, denote by Xt,x,α the solution to (2.4) when the initial condition at time
t is given by a constant ξ = x in Rn. Similarly, let JB(t, x, α) be the payoff functional when ξ = x, namely
(the capital letter B at the top of J refers to “Bellman”)

JB(t, x, α) = E
[ ∫ T

t

f
(
Xt,x,α
s , αs

)
ds+ g

(
Xt,x,α
T

)]
.

So, in particular, JB(t, x, α) coincides with J(t, ξ, α) whenever ξ = x in Rn. Finally, the value function of
the standard stochastic optimal control problem is given by:

vB(t, x) = sup
α∈A

JB(t, x, α),
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for all t ∈ [0, T ], x ∈ Rn.
The following result makes the connection between the standard value function vB and our value functions

v = u, or the value functions V = U on the Wasserstein space, and show that one can retrieve the standard
DPP in the non-McKean-Vlasov case from Theorem 4.1.

Proposition 4.1 Under Assumptions (A1) and (A3), we have, for all t ∈ [0, T ], µ ∈ Pq(Rn),

V (t, µ) = v(t, ξ) = u(t, ξ) = U (t, µ) =

∫
Rn
vB(t, x)µ(dx) = E[vB(t, ξ)], (4.12)

for any ξ ∈ Lq(Ω,Ft,P;Rn), with Pξ = µ. Therefore, we have the DPP for vB:

vB(t, x) = sup
α∈A

E
[ ∫ s

t

f
(
Xt,x,α
r , αr

)
dr + vB

(
s,Xt,x,α

s

)]
,

for all t, s ∈ [0, T ], with t ≤ s, and for every x ∈ Rn.

Proof. If the sequence of equalities (4.12) holds true, the DPP for vB is a direct consequence of Theorem
4.1. Then, it remains to prove (4.12).

Fix t ∈ [0, T ], µ ∈ Pq(Rn), and ξ ∈ Lq(Ω,Ft,P;Rn) with Pξ = µ. Equalities V = v = u = U follow
directly from Assumption (A3). Therefore, it only remains to prove the following equality:

v(t, ξ) = E[vB(t, ξ)].

Proof of the inequality v(t, ξ) ≤ E[vB(t, ξ)]. We adopt the same notations as in Steps I and II of the
proof of Proposition 3.1. So, in particular, we consider a uniformly distributed random variable Γt : Ω→ [0, 1]
such that σ(Γt) = Fot . Moreover

ξ = χ(Γt), P-a.s.,

αs = as(·,Γt(·)), ∀ s ∈ [0, T ], P-a.s., (4.13)

for some measurable functions χ : ([0, 1],B([0, 1])) → (Rn,B(Rn)) and a : (Ω × [0, T ] × [0, 1], P rog(Ft) ⊗
B([0, 1])) → (A,B(A)). For every fixed y ∈ [0, 1], denote αy := a·(·, y). Notice that αy ∈ A and, in
particular, it is Ft-progressively measurable.

Similarly, the controlled state process (Xt,ξ,α
s )s∈[t,T ] is F-progressively measurable, so, in particular, it

is Prog(Ft) ∨ (Ft ⊗ {∅, [0, T ]})-measurable (where {∅, [0, T ]} denotes the trivial σ-algebra on [0, T ]). Then,
Xt,ξ,α has the form

Xt,ξ,α
s = xt,ξ,αs (·,Γt(·)), ∀ s ∈ [0, T ], P-a.s.,

for some Prog(Ft)⊗B([0, 1])-measurable function xt,ξ,α = xt,ξ,αs (ω, y) : Ω× [0, T ]× [0, 1]→ Rn. By pathwise
uniqueness to equation (2.4), we deduce that there exists a Lebesgue-null set N ∈ B([0, 1]) such that

xt,ξ,αs (·, y) = Xt,χ(y),αy

s , ∀ s ∈ [t, T ], P-a.s.,

for every y ∈ [0, 1]\N . Hence, using the fact that σ(Γt) = Fot is independent of F tT , by Fubini’s theorem we
deduce that the payoff functional can be written as follows:

J(t, ξ, α) =

∫ 1

0

E
[ ∫ T

t

f
(
Xt,χ(y),αy

s , αys
)
ds+ g

(
X
t,χ(y),αy

T

)]
dy (4.14)

=

∫ 1

0

JB
(
t, χ(y), αy

)
dy ≤

∫ 1

0

vB(t, χ(y)) dy.
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Taking the supremum over α in A, we conclude that

v(t, ξ) ≤
∫ 1

0

vB(t, χ(y)) dy = E[vB(t, ξ)].

Proof of the inequality v(t, ξ) ≥ E[vB(t, ξ)]. Recall that

E[vB(t, ξ)] =

∫
Rn
vB(t, x)µ(dx)

and, for every x ∈ Rn,

vB(t, x) = sup
α∈A

JB(t, x, α) = sup
α∈A

E
[ ∫ T

t

f
(
Xt,x,α
s , αs

)
ds+ g

(
Xt,x,α
T

)]
.

Notice also that the following equality holds:

sup
α∈A

JB(t, x, α) = sup
α∈At

JB(t, x, α), (4.15)

with At ⊂ A denoting the set of all Ft-progressively measurable processes taking values in A. In order to
see that (4.15) holds, we begin noting that supα∈A J

B(t, x, α) ≥ supα∈At J
B(t, x, α) since At ⊂ A, so it

remains to prove the other inequality. Given α ∈ A, recalling that α can be written as in (4.13), we find
(proceeding as in (4.14))

JB(t, x, α) =

∫ 1

0

E
[ ∫ T

t

f
(
Xt,x,αy

s , αys
)
ds+ g

(
Xt,x,αy

T

)]
dy

=

∫ 1

0

JB(t, x, αy) dy ≤
∫ 1

0

sup
α̃∈At

JB(t, x, α̃) dy = sup
α̃∈At

JB(t, x, α̃),

where the inequality follows from the fact that αy ∈ At, for every y ∈ [0, 1]. From the arbitrariness of α ∈ A,
we deduce the other inequality, from which (4.15) follows.

Given ε > 0, for every x ∈ Rn let αx,ε ∈ At be an ε-optimal control, namely

vB(t, x) ≤ JB(t, x, αx,ε) + ε. (4.16)

Suppose for a moment that the composition αε := αξ,ε belongs to A. Then, from (4.16) we get

vB(t, ξ) ≤ JB(t, ξ, αε) + ε. (4.17)

Notice that JB(t, ξ, αε) is a random variable, indeed it is a function of ξ. We also observe, similarly as in
(4.14), that the expectation of JB(t, ξ, αε) coincides with J(t, ξ, αε). Then, taking the expectation in (4.17),
we obtain

E[vB(t, ξ)] ≤ E[JB(t, ξ, αε)] + ε = J(t, ξ, αε) + ε ≤ v(t, ξ) + ε.

From the arbitrariness of ε, the claim follows. It remains to prove that αξ,ε belongs to A. More precisely,
it is enough to prove that for every x ∈ Rn we are able to find an ε-optimal control αx,ε ∈ At such that the
composition αξ,ε belongs to A. This last statement follows easily when the random variable ξ is discrete.
In the general case, we need to apply a measurable selection theorem. To this end, we define the following
metric on At (see Definition 3.2.3 in [19]):

ρKr(α, α
′) := E

[ ∫ T

0

ρA(αs, α
′
s) ds

]
,
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for any α, α′ ∈ At, where we recall that ρA is a bounded metric on the Polish space A. We observe that the
metric space (At, ρKr) is complete. Let us now prove that (At, ρKr) is also separable, so (At, ρKr) is a Polish
space. Firstly, notice that if A is equal to some Euclidean space Rm, then At coincides with the closed subset
of the space L1(Ω× [0, T ],FT ⊗ B([0, T ]), dP⊗ ds; (A, ρA)) of all Ft-progressively measurable processes; so,
in particular, (see page 92 in [12] and the beginning of Section 2.5 in [25]) the space (At, ρKr) is separable
since the σ-algebra F tT ⊗B([0, T ]) is countably generated up to null sets. When A is a generic Polish space,
the same result holds true. As a matter fact, proceeding as in [12], page 92, we see that the separability of
(At, ρKr) follows from the following facts: since, up to null sets, the σ-algebra F tT ⊗ B([0, T ]) is countably
generated, the subfamily of At of all processes which are equal to an indicator function of a measurable set
in F tT ⊗B([0, T ]) is separable; it follows that the subfamily of all step processes taking values in some fixed
countable subset of A is separable; given that A is separable, the subfamily of all step processes is separable;
since this latter subfamily is dense in At, it follows that At is also separable.

We can now apply the Jankov-von Neumann measurable selection theorem, and in particular Proposition
7.50 in [6]. More precisely, in order to apply Proposition 7.50 in [6], we begin noting that X, Y , D, f , f∗

in [6] are given respectively by Rn, At, Rn × At, −JB(t, ·, ·) (the minus sign is due to the presence of the
inf in [6]), vB(t, ·). We firstly notice that −JB(t, ·, ·) : Rn ×At → R is a Borel measurable function, so, in
particular, it is lower semi-analytic. Then, by Proposition 7.50 in [6] it follows that: for any ε > 0, there
exists an analytically measurable function αε : Rn → At such that

vB(t, x) ≤ JB(t, x,αε(x)) + ε, for every x ∈ Rn.

Since every analytic set in Rn belongs to the Lebesgue σ-algebra L (Rn), we see that αε is a measurable
function from (Rn,L (Rn)) into (At,B(At)). Now, it is easy to see that there exists a measurable function
α̃ε : (Rn,B(Rn))→ (At,B(At)) which is equal to αε a.e. (with respect to the Lebesgue measure on Rn). As
a matter of fact, if αε is a sum of indicator functions on a Lebesgue measurable partition of Rn, the result
follows from the fact that if B ∈ L (Rn) then there exists B̃ ∈ B(Rn) such that the Lebesgue measure
of B∆B̃ is zero; for a general Lebesgue measurable function αε, the result follows by an approximation
argument. We thus have

vB(t, x) ≤ JB(t, x, α̃ε(x)) + ε, for a.e. x ∈ Rn.

In order to conclude the proof, we notice that it remains to prove that the composition αε := α̃ε(ξ) belongs
to A. To this end, suppose firstly that α̃ε is a sum of indicator functions on a Borel measurable partition
of Rn, namely

α̃ε(x) =
∑
i

αεi 1{x∈Bi}, (4.18)

where {αεi}i ⊂ At and {Bi}i ⊂ B(Rn) is a partition of Rn. If α̃ε has the form in (4.18), then it is clear that
the composition α̃ε(ξ) belongs to A, that is α̃ε(ξ) is an F-progressively measurable process (as a matter of
fact, for every i, both αεi and the indicator function 1{ξ∈Bi} are F-progressively measurable processes). For
a general Borel measurable function, the result follows by an approximation argument. 2

Remark 4.1 The extension of Proposition 4.1 to the case of two-player zero-sum stochastic differential
games presents some difficulties, as we now explain. Consider a standard two-player zero-sum stochastic
differential game, firstly studied in the seminal paper [15], where all coefficients depend only on the state
and controls, but not on their probability laws:

(A3)game G = {∅,Ω} and γ = γ(x, a, b), σ = σ(x, a, b), f = f(x, a, b), g = g(x), for every (x, a, b) ∈
Rd ×A×B

The lower and upper value functions of this standard stochastic differential game, as considered in [15],
are defined as follows:

vFS(t, x) = inf
β[·]∈Bstr

sup
α∈A

JFS(t, x, α, β[α]),
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uFS(t, x) = sup
α[·]∈Astr

inf
β∈B

JFS(t, x, α[β], β),

for all t ∈ [0, T ], x ∈ Rn, where

JFS(t, x, α, β) := E
[ ∫ T

t

f
(
s,Xt,x,α,β

s , αs, βs
)
ds+ g

(
Xt,x,α,β
T

)]
.

In order to adapt the proof of Proposition 4.1 to this context, we need the following generalizations of
equality (4.15):

inf
β[·]∈Bstr

sup
α∈A

JFS(t, x, α, β[α]) = inf
β[·]∈Btstr

sup
α∈At

JFS(t, x, α, β[α]), (4.19)

sup
α[·]∈Astr

inf
β∈B

JFS(t, x, α[β], β) = sup
α[·]∈Atstr

inf
β∈Bt

JFS(t, x, α[β], β), (4.20)

where At (resp. Bt) denotes the set of Ft-progressively measurable processes taking values in A (resp. B),
while Atstr (resp. Btstr) is defined as Astr (resp. Bstr) replacing A and B respectively by At and Bt. The
validity of (4.19) and (4.20) is however, at least to our knowledge, still not known in the literature, although
we conjecture that relations: v(t, ξ) = E[vFS(t, ξ)], u(t, ξ) = E[uFS(t, ξ)] hold true, see also Remark 5.3. ♦

5. Bellman-Isaacs dynamic programming equations

This section is devoted to the derivation of the Bellman-Isaacs equation from the DPP for the lower
and upper value functions, and the viscosity PDE (partial differential equation) characterization. We shall
provide a PDE formulation for the value functions on the Hilbert space L2(Ω,G,P;Rn) (hence for q = 2) or
alternatively via the inverse-lifted (recall Definition 3.1) identification on the Wasserstein space of probability
measures P2(Rn).

We shall rely on the notion of lifted derivative with respect to a probability measure and Itô’s formula
along flow of probability measures that we briefly recall (see [10] for more details). Firstly, we fix some
notations. Given µ ∈ P2(Rn), for any r ∈ [1,∞) and m ∈ N\{0}, we use the shorthand notation Lrµ(Rm)
to denote the space Lr(Rn,B(Rn), µ;Rm) of Rm-valued r-integrable functions with respect to µ. Similarly,
L∞µ (Rm) denotes the space L∞(Rn,B(Rn), µ;Rm) of Rm-valued µ-essentially bounded functions.

Let ϑ be a real-valued function defined on P2(Rn). Denote by υ the lifted version of ϑ, that is the
function defined on L2(Ω,G,P;Rn) by υ(ξ) = ϑ(Pξ). We say that ϑ is differentiable (resp. C1) on P2(Rn) if
the lift υ is Fréchet differentiable (resp. continuously Fréchet differentiable) on L2(Ω,G,P;Rn). In this case,
the Fréchet derivative [Dυ](ξ) of υ at ξ ∈ L2(Ω,G,P;Rn), viewed as an element Dυ(ξ) of L2(Ω,G,P;Rn)
by the Riesz representation theorem: [Dυ](ξ)(Y ) = E[Dυ(ξ).Y ] (we denote by . the scalar product on Rn),
can be represented as

Dυ(ξ) = ∂µϑ(P
ξ
)(ξ), (5.1)

for some function ∂µϑ(µ) : Rn → Rn, with ∂µϑ(µ) ∈ L2
µ(Rn), depending only on the law µ = P

ξ
of ξ, and

called derivative of ϑ at µ. We say that ϑ is partially C2 if it is C1, and one can find, for any µ ∈ P2(Rn), a
continuous version of the mapping x ∈ Rn 7→ ∂µϑ(µ)(x), such that the mapping (µ, x) ∈ P2(Rn) × Rn 7→
∂µϑ(µ)(x) is continuous at any point (µ, x) such that x ∈ Supp(µ), and if for each fixed µ ∈ P2(Rn), the
mapping x ∈ Rn 7→ ∂µϑ(µ)(x) is differentiable in the standard sense, with a gradient denoted by ∂x∂µϑ(µ)(x)
∈ Rn×n, this derivative being jointly continuous at any (µ, x) ∈ P2(Rn)× Rn such that x ∈ Supp(µ). We
say that ϑ ∈ C2

b (P2(Rn)) if it is partially C2, ∂x∂µϑ(µ) ∈ L∞µ (Rn×n), and for any compact set K of P2(Rn)
we have

sup
µ∈K

[ ∫
Rn

∣∣∂µϑ(µ)(x)
∣∣2µ(dx) +

∥∥∂x∂µϑ(µ)
∥∥
∞

]
< ∞.

Moreover, when the lifted function υ is twice continuously Fréchet differentiable, its second Fréchet deriva-
tive D2υ(ξ), identified by the Riesz representation theorem as a self-adjoint (hence bounded) operator on
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L2(Ω,G,P;Rn), that is D2υ(ξ) ∈ S(L2(Ω,G,P;Rn)), is given by

E
[
D2υ(ξ)(ZN).ZN

]
= E

[
tr
(
∂x∂µϑ(Pξ)(ξ)ZZᵀ

)]
(5.2)

for every Z ∈ L2(Ω,G,P;Rn×d) and any random vector N ∈ L2(Ω,G,P;Rd), with zero mean and unit
variance, independent of (ξ, Z).

Finally, we say that a function ϕ ∈ C1,2
b ([0, T ]×P2(Rn)) if ϕ is continuous on [0, T ]×P2(Rn), for every

t ∈ [0, T ] the map ϕ(t, ·) belongs to C2
b (P2(Rn)), and for every µ ∈P2(Rn) the map ϕ(·, µ) is continuously

differentiable on [0, T ]. Moreover, we say that a function φ ∈ C1,2([0, T ]×L2(Ω,G,P;Rn)) if φ is continuous
on [0, T ]×L2(Ω,G,P;Rn), for every ξ ∈ L2(Ω,G,P;Rn) the map φ(·, ξ) is continuously Fréchet differentiable,
for every t ∈ [0, T ] the map φ(t, ·) is twice continuously Fréchet differentiable.

Remark 5.1 The above definition of differentiability in the Wasserstein space, which is extrinsic via the
lifted identification with the Hilbert space of square-integrable random variables, is due to P.L. Lions [21]
(see also [9]), and turns out to be equivalent to a more intrinsic notion (of derivative in the Wasserstein
space) used by various authors in connection with optimal transport and gradient flows (see e.g. [2], [16]),
as recently shown in [17]. ♦

We also recall Itô’s formula along flow of probability measures for an Itô process

dXt = bt dt+ σt dWt,

where b and σ are (Ft ∨ G)t-progressively measurable processes. Then, for ϑ ∈ C2
b (P2(Rn)), we have

d

dt
ϑ(P

Xt
) = E

[
bt.∂µϑ(P

Xt
)(Xt) +

1

2
tr
(
σtσ

ᵀ

t ∂x∂µϑ(P
Xt

)(Xt)
)]
.

Let us now introduce the function defined on Rn ×P2(Rn)×A×B ×P(A×B)× Rn × Rn×n by

H(x, µ, a, b, ν, p,M) = γ(x, µ, a, b, ν).p+
1

2
tr
(
σσᵀ(x, µ, a, b, ν)M

)
+ f(x, µ, a, b, ν).

Finally, we denote by L0(Ω,G,P;A) (resp. L0(Ω,G,P;B)) the set of G-measurable random variables
taking values in A (resp. B).

Lemma 5.1 Suppose that Assumption (A1) holds and fix µ ∈ P2(Rn). Consider two maps p : Rn → Rn
and M : Rn → Rn×n such that p ∈ L2

µ(Rn) and M ∈ L∞µ (Rn×n), then

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ,P

ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]
= sup

a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ̃,P

ξ̃
,a,b,P

(a,b)
,p(ξ̃),M(ξ̃)

)]
(5.3)

and

inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E
[
H
(
ξ,P

ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]
= inf

b∈L0(Ω,G,P;B)
sup

a∈L0(Ω,G,P;A)

E
[
H
(
ξ̃,P

ξ̃
,a,b,P

(a,b)
,p(ξ̃),M(ξ̃)

)]
, (5.4)

for any ξ, ξ̃ ∈ L2(Ω,G,P;Rn), with Pξ = Pξ̃.

Proof. We only prove (5.3), the proof of (5.4) being analogous. In order to show (5.3), we can proceed
along the same lines as in the proof of Proposition 3.1, even though in this case the proof turns out to be
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much simpler (here a and b are random variables rather than controls or strategies as in Proposition 3.1).
For this reason, we skip the details and only report the main steps of the proof.

Similarly to the proof of Proposition 3.1, our aim is to prove the following:

Given any a ∈ L0(Ω,G,P;A) and b̃ ∈ L0(Ω,G,P;B), there exist ã ∈ L0(Ω,G,P;A)

and b ∈ L0(Ω,G,P;B), with ã (resp. b) not depending on b̃ (resp. a), such that:

(ξ,a,b) has the same law as (ξ̃, ã, b̃), so that (5.5)

E
[
H
(
ξ,P

ξ
,a,b,P

(a,b)
,p(ξ),M(ξ)

)]
= E

[
H
(
ξ̃,P

ξ̃
, ã, b̃,P

(ã,b̃)
,p(ξ̃),M(ξ̃)

)]
.

In order to prove (5.5), we recall that, by assumption, there exists a random variable ΓG : (Ω,G)→ (G,G ),
taking values in some Polish space G with Borel σ-algebra G , such that ΓG has an atomless distribution
and G = σ(ΓG). Since all atomless Polish probability spaces are isomorphic, we can suppose that (G,G ) is
([0, 1],B([0, 1])) and that ΓG has uniform distribution.

Recalling that ξ and a are G-measurable, we have that

ξ = χ(ΓG), a = a(ΓG), P-a.s.

for some measurable maps χ : [0, 1] → Rn and a : [0, 1] → A. We can suppose, without loss of generality,
that χ is surjective. Then, we notice that (5.5) follows if we prove the following:

∃ a G-measurable random variable Γ̃G with values in [0, 1] such that: (5.6)

Γ̃G has the same distribution as ΓG, σ(Γ̃G) ∨N = G ∨ N , and ξ̃ = χ(Γ̃G), P-a.s.

As a matter of fact, suppose that (5.6) holds. Since σ(Γ̃G) ∨N = G ∨ N and b̃ is G-measurable, we have

b̃ = b̃(Γ̃G), P-a.s.

for some measurable function b̃ : [0, 1]→ B. Now, define

ã := a(Γ̃G), b := b̃(ΓG).

Observe that ã ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,G,P;B). We also notice that (ξ,a,b) has the same law as
(ξ̃, ã, b̃), so that (5.5) holds.

It remains to prove (5.6). Proceeding as in Step IV of the proof of Proposition 3.1, by the Jankov-von
Neumann measurable selection theorem we deduce the existence of the analytically measurable right-inverse
ζ of χ. Then, we define

Γ̃G := ζ(ξ̃).

Proceeding as in Step IV of the proof of Proposition 3.1 we see that Γ̃G satisfies (5.6), from which the claim
follows. 2

In view of the above Lemma, we can define the lower and upper Hamiltonian functions H−, H+ :
P2(Rn)× L2

µ(Rn)× L∞µ (Rn×n) → R by

H−(µ,p,M) = sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ, µ,a,b,P

(a,b)
,p(ξ),M(ξ)

)]
H+(µ,p,M) = inf

b∈L0(Ω,G,P;B)
sup

b∈L0(Ω,G,P;A)

E
[
H
(
ξ, µ,a,b,P

(a,b)
,p(ξ),M(ξ)

)]
for every (µ,p,M) ∈ P2(Rn) × L2

µ(Rn) × L∞µ (Rn×n), with ξ ∈ L2(Ω,G,P;Rn) such that P
ξ

= µ. Then,
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consider the lower Bellman-Isaacs equation on [0, T ]×P2(Rn):
−∂ϑ
∂t

(t, µ)−H−(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ)) = 0, (t, µ) ∈ [0, T )×P2(Rn),

ϑ(T, µ) =

∫
Rn
g(x, µ)µ(dx), µ ∈P2(Rn)

(5.7)

and the upper Bellman-Isaacs equation on [0, T ]×P2(Rn):
−∂ϑ
∂t

(t, µ)−H+(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ)) = 0, (t, µ) ∈ [0, T )×P2(Rn),

ϑ(T, µ) =

∫
Rn
g(x, µ)µ(dx), µ ∈P2(Rn).

(5.8)

The corresponding lifted equation on [0, T ] × L2(Ω,G,P;Rn) is formulated as follows in view of the
relations (5.1)-(5.2) between derivatives in the Wasserstein space and Fréchet derivatives. We define the
functions H−, H+ : L2(Ω,G,P;Rn)× L2(Ω,G,P;Rn)× S(L2(Ω,G,P;Rn)) → R by

H−(ξ, P,Q) = sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
γ(ξ,Pξ,a,b,P(a,b)

).P

+
1

2
Q(σ(ξ,Pξ,a,b,P(a,b)

)N).σ(ξ,Pξ,a,b,P(a,b)
)N + f(ξ,Pξ,a,b,P(a,b)

)
]
,

H+(ξ, P,Q) = inf
b∈L0(Ω,G,P;B)

sup
a∈L0(Ω,G,P;A)

E
[
γ(ξ,Pξ,a,b,P(a,b)

).P

+
1

2
Q(σ(ξ,Pξ,a,b,P(a,b)

)N).σ(ξ,Pξ,a,b,P(a,b)
)N + f(ξ,Pξ,a,b,P(a,b)

)
]

where N ∈ L2(Ω,G,P;Rd), with zero mean and unit variance, is independent of ξ. Then, consider the lower
Bellman-Isaacs equation on [0, T ]× L2(Ω,G,P;Rn):−

∂υ

∂t
(t, ξ)−H−(ξ,Dυ(t, ξ), D2υ(t, ξ)) = 0, (t, ξ) ∈ [0, T )× L2(Ω,G,P;Rn),

υ(T, ξ) = E
[
g(ξ,Pξ)

]
, ξ ∈ L2(Ω,G,P;Rn)

(5.9)

and the upper Bellman-Isaacs equation on [0, T ]× L2(Ω,G,P;Rn):−
∂υ

∂t
(t, ξ)−H+(ξ,Dυ(t, ξ), D2υ(t, ξ)) = 0, (t, ξ) ∈ [0, T )× L2(Ω,G,P;Rn),

υ(T, ξ) = E
[
g(ξ,Pξ)

]
, ξ ∈ L2(Ω,G,P;Rn).

(5.10)

Remark 5.2 In the case where the coefficients do not depend on the law of the controls, i.e. γ = γ(x, µ, a, b),
σ = σ(x, µ, a, b), f = f(x, µ, a, b), so that H = H(x, µ, a, b, p,M), the optimization over a ∈ L0(Ω,G,P;A)
and b ∈ L0(Ω,G,P;B) in the Hamiltonian functions H− and H+ reduces to a pointwise optimization over
A and B inside the expectation operator, namely

H−(µ,p,M) = E
[

sup
a∈A

inf
b∈B

H(ξ, µ, a, b,p(ξ),M(ξ))
]

(5.11)

H+(µ,p,M) = E
[

inf
b∈B

sup
a∈A

H(x, µ, a, b,p(ξ),M(ξ))
]
.

Indeed, it is clear that for any a ∈ L0(Ω,G,P;A),

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ, µ,a,b,p(ξ),M(ξ)

)]
≥ E

[
inf
b∈B

H
(
ξ, µ,a, b,p(ξ),M(ξ)

)]
.
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Conversely, by the Jankov-von Neumann measurable selection theorem, for any ε > 0, there exists a
measurable function x ∈ Rn 7→ bε(x) ∈ B (depending on a) such that inf

b∈B
H(t, x, µ,a, b,p(x),M(x)) ≥

H(t, x, µ,a, bε(x),p(x),M(x)) − ε, µ(dx)-a.e.. By considering bε = bε(ξ) ∈ L0(Ω,G,P;B), we then have

E
[

inf
b∈B

H
(
ξ, µ,a, b,p(ξ),M(ξ)

)]
≥ E

[
H
(
ξ, µ,a,bε,p(ξ),M(ξ)

)]
− ε

≥ inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ, µ,a,b,p(ξ),M(ξ)

)]
− ε,

and thus, by sending ε to zero, the equality:

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ, µ,a,b,p(ξ),M(ξ)

)]
= E

[
inf
b∈B

H
(
ξ, µ,a, b,p(ξ),M(ξ)

)]
.

Next, following the same argument as above, we show that

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
H
(
ξ, µ,a,b,p(ξ),M(ξ)

)]
= E

[
sup
a∈A

inf
b∈B

H
(
ξ, µ, a, b, ,p(ξ),M(ξ)

)]
.

Similarly, the optimization over a ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,G,P;B) in the Hamiltonian functions H−
and H+ reduces to a pointwise optimization over A and B inside the expectation operator. ♦

Remark 5.3 (Case without mean-field interaction)
Consider the standard zero-sum stochastic differential game as in [15] where all the coefficients depend only
on state and controls. Given a function vFS ∈ C1,2([0, T ] × Rn) with quadratic growth condition on its
derivatives, let us define the function ϑ on [0, T ]×P2(Rn) by

ϑ(t, µ) = E[vFS(t, ξ)], µ ∈P2(Rn), ξ ∈ L2(Ω,G,P;Rn), P
ξ

= µ.

Then ϑ(t, ·) is partially C2, while ϑ(·, µ) is C1, with

∂µϑ(t, µ) = Dxv
FS(t, ·), ∂x∂µϑ(t, µ) = D2

xv
FS(t, ·), ∂ϑ

∂t
(t, µ) = E

[
∂vFS

∂t
(t, ξ)

]
.

Moreover, we have (recalling also (5.11))

∂ϑ

∂t
(t, µ) + H−(µ, ∂µϑ(t, µ), ∂x∂µϑ(t, µ))

= E
[
∂vFS

∂t
(t, ξ) +HFS

−
(
ξ,Dxv

FS(t, ξ), D2
xv
FS(t, ξ)

)]
, (5.12)

where HFS
− (x, p,M) = supa∈A infb∈B

[
γ(x, a, b).p+ 1

2 tr(σσᵀ(x, a)M
)

+f(x, a, b)
]

is the lower Bellman-Isaacs
Hamiltonian associated to the zero-sum stochastic differential game as in [15]. The connection (5.12) between
the lower Bellman-Isaacs equation on [0, T ]×Rn and the lower Bellman-Isaacs equation on [0, T ]×P2(Rn)
shows that vFS is a (smooth) solution to−

∂vFS

∂t
(t, x)−HFS

−
(
x,Dxv

FS(t, x), D2
xv
FS(t, x)

)
= 0, (t, x) ∈ [0, T )× Rn,

vFS(T, x) = g(x), x ∈ Rn,

if and only if ϑ is a (smooth) solution to (5.7). A similar connection holds for the upper Bellman-Isaacs
equation. Notice that these connections might help proving by PDE methods the two equalities conjectured
in Remark 4.1: v(t, ξ) = E[vFS(t, ξ)], u(t, ξ) = E[uFS(t, ξ)]. For instance, one may attempt to prove that if
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ϑ : [0, T ] ×P2(Rn) → R is a viscosity solution (in the sense of Definition 5.1 below) of the lower Bellman-
Isaacs equation on [0, T ]×P2(Rn) then the function vFS : [0, T ]×Rn → R, defined by vFS(t, x) = ϑ(t, δx), is
a viscosity solution of the lower Bellman-Isaacs equation on [0, T ]×Rn. Thus, whenever this Bellman-Isaacs
equation has unique viscosity solution in the finite-dimensional (resp. infinite-dimensional) space, hence
equal to the value function on [0, T ] × Rn (resp. on [0, T ] ×P2(Rn)), this would show the identification
between the value functions: ϑ(t, µ) = E[vFS(t, ξ)] for µ = P

ξ
. ♦

We now consider two definitions of viscosity solution for the Bellman-Isaacs equations, on one hand on
the Wasserstein space P2(Rn) and on the other hand on the lifted Hilbert space L2(Ω,G,P;Rn). In the
sequel, the Hamiltonian function H denotes either H− or H+, and H stands for H− or H+.

Definition 5.1 (Viscosity solution in P2) A continuous function ϑ on [0, T ] ×P2(Rn) is a viscosity
solution to (5.7) (or (5.8)) if:

(i) (viscosity supersolution property): ϑ(T, µ) ≥
∫
Rn g(x, µ)µ(dx), µ ∈ P2(Rn), and for any test function

ϕ ∈ C1,2
b ([0, T ]×P2(Rn)) such that ϑ− ϕ has a minimum at (t

0
, µ

0
) ∈ [0, T )×P2(Rn), we have

−∂ϕ
∂t

(t
0
, µ

0
)−H (µ

0
, ∂µϕ(t

0
, µ

0
), ∂x∂µϕ(t

0
, µ

0
)) ≥ 0.

(ii) (viscosity subsolution property): ϑ(T, µ) ≤
∫
Rn g(x, µ)µ(dx), µ ∈ P2(Rn), and for any test function

ϕ ∈ C1,2
b ([0, T ]×P2(Rn)) such that ϑ− ϕ has a maximum at (t

0
, µ

0
) ∈ [0, T )×P2(Rn), we have

−∂ϕ
∂t

(t0 , µ0)−H (µ0 , ∂µϕ(t0 , µ0), ∂x∂µϕ(t0 , µ0)) ≤ 0.

Definition 5.2 (Viscosity solution in L2) A continuous function υ on [0, T ] × L2(Ω,G,P;Rn) is a vis-
cosity solution to (5.9) (or (5.10)) if:

(i) (viscosity supersolution property): υ(T, ξ) ≥ E[g(ξ,Pξ)], ξ ∈ L2(Ω,G,P;Rn), and for any test function
φ ∈ C1,2([0, T ]×L2(Ω,G,P;Rn)) such that υ−φ has a minimum at (t0 , ξ0) ∈ [0, T )×L2(Ω,G,P;Rn),
we have

−∂φ
∂t

(t
0
, ξ

0
)−H(ξ

0
, Dφ(t

0
, ξ

0
), D2φ(t

0
, ξ

0
)) ≥ 0.

(ii) (viscosity subsolution property): υ(T, ξ) ≤ E[g(ξ,Pξ)], ξ ∈ L2(Ω,G,P;Rn), and for any test function
φ ∈ C1,2([0, T ]×L2(Ω,G,P;Rn)) such that υ−φ has a maximum at (t0 , ξ0) ∈ [0, T )×L2(Ω,G,P;Rn),
we have

−∂φ
∂t

(t
0
, ξ

0
)−H(ξ

0
, Dφ(t

0
, ξ

0
), D2φ(t

0
, ξ

0
)) ≤ 0.

Remark 5.4 Given these two definitions of viscosity solutions in P2(Rn) and in L2(Ω,G,P;Rn), a natural
question is the connection between the viscosity property of ϑ to the Bellman-Isaacs equation (5.7) (or (5.8))
and the viscosity property of its lifted function υ to (5.9) (or (5.10)). Actually, as pointed out in [8] (see
their Example 2.1), for a function ϕ ∈ C1,2

b ([0, T ] ×P2(Rn)) its lifted function φ may not be in general
in C1,2([0, T ] × L2(Ω,G,P;Rn)), which means that we cannot deduce from the viscosity property of υ to
(5.9) (or (5.10)) the viscosity property of ϑ to (5.7) (or (5.8)). On the other hand, since a test function
φ ∈ C1,2

(
[0, T ] × L2(Ω,G,P;Rn)

)
is in general not necessarily the lifted function of a test function ϕ in

[0, T ] ×P2(Rn), we cannot claim that the viscosity property of ϑ to (5.7) (or (5.8)) implies the viscosity
property of its lifted function υ to (5.9) (or (5.10)). This would hold true whenever we restrict in Definition
5.2 to test functions φ ∈ C1,2([0, T ] × L2(Ω,G,P;Rn)) such that φ(t, ξ) depends on ξ only via its law P

ξ
,
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hence are lifted from functions in C1,2
b ([0, T ]×P2(Rn)). However, in this case, we could not rely on general

comparison principles for viscosity solutions in Hilbert spaces (see [14]), which is in fact our main motivation
for the introduction of Definition 5.2, see Remark 5.5. ♦

From the DPP, we can now prove the viscosity solution property of the lower and upper value functions
to the lower and upper Bellman-Isaacs equations.

Theorem 5.1 Let Assumptions (A1) and (A2) hold.
1) The inverse-lifted lower (resp. upper) value function V (resp. U ) is a viscosity solution, in the sense of
Definition 5.1, to the lower (resp. upper) Bellman-Isaacs equation (5.7) (resp. (5.8)) on [0, T ]×P2(Rn).
2) The lower (resp. upper) value function v (resp. u) is a viscosity solution, in the sense of Definition 5.2,
to the lower (resp. upper) Bellman-Isaacs equation (5.9) (resp. (5.10)) on [0, T ]× L2(Ω,G,P;Rn).

Proof. We only prove result 1), that is the viscosity property in P2(Rn) (as the viscosity property in
L2(Ω,G,P;Rn) has a similar proof), and for the inverse-lifted lower value function V , as the proof for the
inverse-lifted upper value function is analogous. Obviously, V (T, µ) = E[g(ξ,P

ξ
)] =

∫
Rn g(x, µ)µ(dx), for µ

∈ P2(Rn) and ξ ∈ L2(Ω,G,P;Rn) such that P
ξ

= µ.

(i) Viscosity supersolution property. Fix (t0 , µ0) ∈ [0, T ) ×P2(Rn), ξ0 ∈ L2(Ω,G,P;Rn) with P
ξ
0

= µ0 ,

and consider any test function ϕ ∈ C1,2
b ([0, T ]×P2(Rn)) such that V − ϕ has a minimum at (t

0
, µ

0
), and

without loss of generality V (t
0
, µ

0
) = ϕ(t

0
, µ

0
). We argue by contradiction, and assume on the contrary

that
sup

a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))

]
≥ 3 ε,

for some ε > 0, where we set

Fϕ(t, x, µ, a, b, ν) =
∂ϕ

∂t
(t, µ) +H

(
x, µ, a, b, ν, ∂µϕ(t, µ)(x), ∂x∂µϕ(t, µ)(x)

)
. (5.13)

This implies that there exists aε ∈ L0(Ω,G,P;A) such that for all b ∈ L0(Ω,G,P;B)

E
[
Fϕ(t

0
, ξ

0
, µ

0
,aε,b,P(aε,b))

]
≥ 2 ε. (5.14)

By Remark 2.2, it follows that (5.14) holds for any b ∈ L0(Ω,F ,P;B). As a matter of fact, take b ∈
L0(Ω,F ,P;B) and denote by π the distribution on (Rn×A×B,B(Rn)⊗B(A)⊗B(B)) of the random vector
(ξ

0
,aε,b). From Remark 2.2 (with E, H, ζ corresponding respectively to Rn × A, B, (ξ

0
,aε)) we deduce

the existence of a measurable map b̄ : (Ω,G)→ (B,B(B)) (the map b̄ corresponds to the map η in Remark
2.2) such that P(ξ

0
, aε, b̄) = π. So, in particular,

E
[
Fϕ(t0 , ξ0 , µ0 ,a

ε,b,P(aε,b))
]

= E
[
Fϕ(t0 , ξ0 , µ0 ,a

ε, b̄,P(aε,b̄))
]
≥ 2 ε.

Hence, (5.14) holds for any b ∈ L0(Ω,F ,P;B). Now, under the continuity assumptions (A1) and (A2), we
easily see that H(x, µ, a, b, ν, p,M) is continuous in (x, µ, p,M) uniformly with respect to (a, b, ν), from which
we deduce, recalling the continuity of ∂µϕ(t, µ)(x) and ∂x∂µϕ(t, µ)(x), and by Lebesgue’s dominated conver-
gence theorem, the continuity of (t, ξ, µ) ∈ [0, T ]×L2(Ω,FT ∨G,P;Rn)×P2(Rn) 7→ E

[
Fϕ(t, ξ, µ,a,b,P(a,b))

]
uniformly with respect to a ∈ ∈ L0(Ω,G,P;A) and b ∈ L0(Ω,F ,P;B). From (5.14), there is some δ > 0
such that for all b ∈ L0(Ω,F ,P;B)

E
[
Fϕ(s, ξ, µ,aε,b,P(aε,b))

]
≥ ε, ∀s ∈ [t0 , t0 + δ], (ξ, µ) ∈ Bδ(ξ0 , µ0). (5.15)

Here Bδ(ξ0 , µ0) is the ball of center (ξ0 , µ0) and radius δ in the metric space L2(Ω,FT ∨G,P;Rn)×P2(Rn).
From (3.5)-(3.6), we have for all s ∈ [t0 , T ], α ∈ A, β ∈ B,

E
∣∣Xt

0
,ξ

0
,α,β

s − ξ0

∣∣2 +W2
2

(
P
X
t
0
,ξ

0
,α,β

s
, µ0

)
≤ C

(
1 + E|ξ0 |2

)
|s− t0 |.
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We can then pick some h > 0 small enough so that for all α ∈ A, β ∈ B(
s,X

t0 ,ξ0 ,α,β
s ,P

X
t0 ,ξ0 ,α,β
s

)
∈ [t

0
, t

0
+ δ]×Bδ(ξ0

, µ
0
), for all s ∈ [t

0
, t

0
+ h]. (5.16)

Consider the constant control αε in A equal to aε, and take an arbitrary β[·] ∈ Bstr. By applying Itô’s
formula to ϕ(r,P

X
t
0
,ξ

0
,αε,β[αε]

r

) between t0 and t0 + h, we then get by (5.15)-(5.16)

ϕ
(
t0 + h,P

X
t
0
,ξ

0
,αε,β[αε]

t0+h

)
− ϕ(t0 , µ0)

= E
[ ∫ t

0
+h

t
0

(
Fϕ
(
s,X

t
0
,ξ

0
,αε,β[αε]

s ,P
X
t
0
,ξ

0
,αε,β[αε]

s

,aε, β[αε]s,P(aε, β[αε]s)

)
− f

(
X
t
0
,ξ

0
,αε,β[αε]

s ,P
X
t0 ,ξ0 ,α

ε,β[αε]
s

,aε, β[αε]s,P(aε, β[αε]s)

))
ds

]
≥ εh− E

[ ∫ t
0
+h

t0

f
(
X
t
0
,ξ

0
,αε,β[αε]

s ,P
X
t
0
,ξ

0
,αε,β[αε]

s

,aε, β[αε]s,P(aε, β[αε]s)

)
ds

]
.

Recalling that V (t
0
, µ

0
) = ϕ(t

0
, µ

0
), V ≥ ϕ, and that β is arbitrary in Bstr, we obtain

V (t
0
, µ

0
) + εh ≤ inf

β[·]∈Bstr

sup
α∈A

E
[ ∫ t0+h

t
0

f
(
X
t
0
,ξ

0
,α,β[α]

s ,P
X
t0 ,ξ0 ,α,β[α]
s

, αs, β[α]s,P(α, β[α]s)

)
ds

+V
(
t
0

+ h,P
X
t
0
,ξ

0
,α,β[α]

t
0

+h

)]
,

which contradicts the DPP relation (4.11).

(ii) Viscosity subsolution property. Fix (t
0
, µ

0
) ∈ [0, T )×P2(Rn), ξ

0
∈ L2(Ω,G,P;Rn) with P

ξ
0

= µ
0
, and

consider any test function ϕ ∈ C1,2
b ([0, T ]×P2(Rn)) such that V −ϕ has a maximum at (t0 , µ0), and without

loss of generality V (t0 , µ0) = ϕ(t0 , µ0). We still argue by contradiction, and assume on the contrary that

sup
a∈L0(Ω,G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))

]
≤ −3 ε, (5.17)

for some ε > 0, where Fϕ is defined as in (5.13). As for (5.14), by Remark 2.2 it follows that (5.17) still holds
if we take the supremum over all a ∈ L0(Ω,FT ∨ G,P;A) (actually, over all a ∈ L0(Ω,F ,P;A), but here we
take FT ∨ G since it is a countably generated σ-algebra). As a matter of fact, given a ∈ L0(Ω,FT ∨ G,P;A)
and b ∈ L0(Ω,G,P;B), denoting π = P(ξ

0
, a,b), by Remark 2.2 there exists ā ∈ L0(Ω,G,P;A) such that

P(ξ
0
, ā,b) = π; so, in particular,

E
[
Fϕ(t

0
, ξ

0
, µ

0
,a,b,P(a,b))

]
= E

[
Fϕ(t

0
, ξ

0
, µ

0
, ā,b,P(ā,b))

]
.

Taking the infimum over b ∈ L0(Ω,G,P;B), and then the supremum over a ∈ L0(Ω,FT ∨G,P;A), by (5.17)
we end up with

sup
a∈L0(Ω,FT∨G,P;A)

inf
b∈L0(Ω,G,P;B)

E
[
Fϕ(t

0
, ξ

0
, µ

0
,a,b,P(a,b))

]
≤ −3 ε. (5.18)

We can now apply the Jankov-von Neumann measurable selection theorem, and in particular Proposition 7.50
in [6], to deduce the existence of an analytically measurable function ψ : L0(Ω,FT ∨G,P;A)→ L0(Ω,G,P;B)
such that

E
[
Fϕ(t0 , ξ0 , µ0 ,a, ψ(a),P(a,ψ(a)))

]
≤ −2 ε, for every a ∈ L0(Ω,F ,P;A). (5.19)

More precisely, in order to apply Proposition 7.50 in [6], we begin noting that X, Y , D, f , f∗ in [6] are given
respectively by L0(Ω,FT∨G,P;A), L0(Ω,G,P;B), L0(Ω,FT∨G,P;A)×L0(Ω,G,P;B), E[Fϕ(t0 , ξ0 , µ0 , ·, ·,P(·,·))],
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and
f∗(a) = inf

b∈L0(Ω,G,P;B)
E
[
Fϕ(t

0
, ξ

0
, µ

0
,a,b,P(a,b))

]
.

We also introduce the following metric on L0(Ω,FT ∨ G,P;A):

ρL0,A(α, α′) := E
[
ρA(a,a′)

]
,

for any a,a′ ∈ L0(Ω,FT ∨ G,P;A), where we recall that ρA is a bounded metric on the Polish space A.
Notice that the metric space (L0(Ω,FT ∨G,P;A), ρL0,A) is complete. Moreover, proceeding as for the metric
space (At, ρKr) in the proof of Proposition 4.1, using that by assumption the σ-algebra FT ∨G is countably
generated, we can prove that (L0(Ω,FT ∨ G,P;A), ρL0,A) is also separable, so (L0(Ω,FT ∨ G,P;A), ρL0,A)
is a Polish space. Analogously, we introduce a metric ρL0,B on L0(Ω,G,P;B) defined similarly to ρL0,A;
so, in particular, (L0(Ω,G,P;B), ρL0,B) is also a Polish space. Then, we notice that the function (a,b) 7→
E[Fϕ(t0 , ξ0 , µ0 ,a,b,P(a,b))] is Borel measurable, so, in particular, it is a lower semianalytic function. Then,
by Proposition 7.50 in [6] it follows that: there exists an analytically measurable function ψ : L0(Ω,FT ∨
G,P;A)→ L0(Ω,G,P;B) such that

E
[
Fϕ(t0 , ξ0 , µ0 ,a, ψ(a),P(a,ψ(a)))

]
≤ f∗(a) + ε ≤ −2 ε, for every a ∈ L0(Ω,FT ∨ G,P;A),

where the second inequality follows from (5.18). This concludes the proof of (5.19).
Now, by the continuity of the map (t, ξ, µ) ∈ [0, T ]×L2(Ω,FT∨G,P;Rn)×P2(Rn) 7→ E

[
Fϕ(t, ξ, µ,a,b,P(a,b))

]
uniform with respect to a ∈ L0(Ω,FT ∨G,P;A) and b ∈ L0(Ω,G,P;B), there exists δ > 0 such that, for all
a ∈ L0(Ω,FT ∨ G,P;A),

E
[
Fϕ(s, ξ, µ,a, ψ(a),P(a,ψ(a)))

]
≤ −ε, ∀s ∈ [t

0
, t

0
+ δ], (ξ, µ) ∈ Bδ(ξ0

, µ
0
). (5.20)

As in (5.16), we can take some h > 0 small enough so that, for all α ∈ A, β ∈ B,(
s,X

t
0
,ξ

0
,α,β

s ,P
X
t
0
,ξ

0
,α,β

s

)
∈ [t0 , t0 + δ]×Bδ(ξ0 , µ0), for all s ∈ [t0 , t0 + h].

Now, define
β̂[α]s := ψ(αs), for every α ∈ A.

Notice that β̂[·] ∈ Bstr. As a matter of fact, this follows from the following items:

1) For every α ∈ A, the map α : s 7→ αs(·), from [0, T ] to L0(Ω,FT ∨ G,P;A), is Borel measurable.

2) For any analytically measurable map β : [0, T ]→ L0(Ω,G,P;B), the process β : Ω× [0, T ]→ B defined
as

βs(·) = β(s)(·), for every s ∈ [0, T ],

is G ⊗ B([0, T ])-measurable; so, in particular, β is (Fs ∨ G)-progressively measurable, that is β ∈ B.

Suppose that 1) and 2) hold. Then, by 1) and the measurability property of ψ, for every α ∈ A the map

s 7→ ψ(αs) is analytically measurable from [0, T ] to L0(Ω,G,P;B). Therefore, the fact that β̂[·] ∈ Bstr

follows from item 2). Concerning the proof of item 1), notice that when α is a step process the result
clearly holds; for a generic α the claim follows by an approximation argument. Similarly, regarding item 2),
we begin noting that any analytically measurable map β : [0, T ] → L0(Ω,G,P;B) is in particular Lebesgue
measurable, that is β is a measurable map from ([0, T ],L ([0, T ])) into (L0(Ω,G,P;B),B(L0(Ω,G,P;B))).
If, for a moment, we replace (L0(Ω,G,P;B),B(L0(Ω,G,P;B))) by (R,B(R)), then it is well-known that any
β can be approximated by a sequence of step functions {βn}n; since L0(Ω,G,P;B) is separable, the same
result holds true for a Lebesgue measurable map β taking values in L0(Ω,G,P;B). As a consequence, it
is enough to prove item 2) for β step function, since afterwards the claim follows by an approximation
argument. When β is a step function, it is easy to see that the map β(·)(·) is G ⊗ B([0, T ])-measurable,
which concludes the proof of item 2).
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Now, by applying Itô’s formula to ϕ(r,P
X
t
0
,ξ

0
,α,β̂[α]

r

) between t0 and t0 + h, we get by (5.20)

ϕ
(
t
0

+ h,P
X
t
0
,ξ

0
,α,β̂[α]

t
0

+h

)
− ϕ(t

0
, µ

0
)

= E
[ ∫ t0+h

t
0

(
Fϕ
(
s,X

t0 ,ξ0 ,α,β̂[α]
s ,P

X
t
0
,ξ

0
,α,β̂[α]

s

, αs, β̂[α]s,P(αs, β̂[α]s)

)
− f

(
X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t
0
,ξ

0
,α,β̂[α]

s

, αs, β̂[α]s,P(αs, β̂[α]s)

))
ds

]
≤ −ε h− E

[ ∫ t
0
+h

t
0

f
(
X
t0 ,ξ0 ,α,β̂[α]
s ,P

X
t
0
,ξ

0
,α,β̂[α]

s

, αs, β̂[α]s,P(αs, β̂[α]s)

)
ds

]
.

Recalling that V (t0 , µ0) = ϕ(t0 , µ0), V ≤ ϕ, and that α is arbitrary in A, we obtain

V (t
0
, µ

0
)− ε h ≥ sup

α∈A
E
[ ∫ t

0
+h

t0

f
(
X
t
0
,ξ

0
,α,β̂[α]

s ,P
X
t0 ,ξ0 ,α,β̂[α]
s

, αs, β̂[α]s,P(α, β̂[α]s)

)
ds

+ V
(
t
0

+ h,P
X
t
0
,ξ

0
,α,β̂[α]

t
0

+h

)]
,

which contradicts the DPP relation (4.11). 2

Remark 5.5 (Uniqueness of viscosity solutions)
Once we have the viscosity property of the value function to the dynamic programming Bellman-Isaacs
equation, the next step is to state a comparison principle for this PDE in order to get the characterization of
the value function as the unique viscosity solution to the Bellman-Isaacs equation. Comparison principle for
PDE in Wasserstein space of probability measures, and more generally on metric spaces, can be found e.g.
in [16], [17], but concern first-order equations, and to the best of our knowledge, the proof of a comparison
principle for second-order equations as in (5.7) (or (5.8)) remains a challenging issue. On the other hand,
there is a well developed theory of viscosity solutions for second-order equations of Bellman type related
notably to stochastic control in Hilbert spaces, see the recent book [14]. In particular, we can use comparison
principle in Theorem 3.50 of this book, and check that the assumptions of this theorem are satisfied in our
context for the lifted HamiltonianH− (andH+) under (A1)-(A2). Assuming that the function h in (A1)(ii)
satisfies a polynomial growth condition, we then deduce from Theorem 3.50 in [14] and our Theorem 5.1
that the lower (resp. upper) value function v (resp. u) is the unique viscosity solution to the lower (resp.
upper) Bellman-Isaacs equation (5.9) (resp. (5.10)) on [0, T ]×L2(Ω,G,P;Rn) satisfying a polynomial growth
condition. ♦

Remark 5.6 If the Isaacs condition holds, that is H− = H+ (or equivalently H− = H+), then the Bellman-
Isaacs equations (5.9) and (5.10) coincide, and by uniqueness of viscosity solutions to these equations (see
Remark 5.5), the lower value function v is equal to the upper value function u (and then the inverse-
lifted lower value function V is equal to the inverse-lifted upper value function U ), which means that the
McKean-Vlasov stochastic differential game has a value. ♦

Appendix. A technical lemma

Lemma A.1 Consider a complete probability space (Ω,H,P), two random variables Γ, Γ̃ : Ω → [0, 1] with
uniform distribution, and a Borel measurable function φ : [0, 1]→ [0, 1]. Suppose that

Γ̃ = φ(Γ), P-a.s.
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So, in particular, φ is a uniform distribution preserving map. Then, there exists a Borel measurable function
ρ : [0, 1]→ [0, 1] such that ρ(φ)(y) = y, λ-a.e., hence

Γ = ρ(Γ̃), P-a.s.

Proof. We split the proof into three steps, which can be summarized as follows:

• in Step I we consider the analytically (hence Lebesgue) measurable right-inverse ψ of φ given by the
Jankov-von Neumann measurable selection theorem; afterwards, we take a Borel-measurable version
ψ̃ of ψ, which coincides with ψ outside a Borel null-set N (we need ψ̃, rather than ψ, in order to apply
once again the Jankov-von Neumann theorem in Step II); we end Step I proving that, as expected,
ψ̃ is a right-inverse of φ outside of the set N , that is φ(ψ̃)(y) = y, λ(dy)-a.e.; our aim is then to prove
that the claim follows with ρ := ψ̃ (statement (A.2)), namely that ψ̃ is also a left-inverse of φ;

• in Step II we apply the Jankov-von Neumann theorem in order to construct an analytically measurable
right-inverse φ′ of ψ̃, that is ψ̃(φ′)(y) = y, ∀ y ∈ [0, 1]; then, we notice that the claim follows if we prove
that φ = φ′; finally, we show that this latter equality follows if φ′ is a uniform distribution preserving
map, namely (A.4) holds;

• in Step III we prove that φ′ is a uniform distribution preserving map using that both Γ and Γ̃ has
uniform distribution.

Step I. Borel measurable right-inverse of φ. Without loss of generality, we can suppose that φ is surjective
(otherwise, we proceed along the same lines as for the function χ in Step II of the proof of Proposition 3.1).
Now, using the Jankov-von Neumann selection Theorem (in particular, Corollary 18.23 in [1]), we deduce
the existence of a measurable function ψ : ([0, 1],L ([0, 1]))→ ([0, 1],B([0, 1])) satisfying:

φ(ψ(y)) = y, for any y ∈ [0, 1]; φ−1(ψ−1(B)) = B, for any subset B of [0, 1].

It is well-known (see e.g. Exercise 14, Chapter 2, in [24]) that there exists a Borel measurable function
ψ̃ : ([0, 1],B([0, 1]))→ ([0, 1],B([0, 1])) such that

ψ(y) = ψ̃(y), λ(dy)-a.e. (A.1)

So, in particular, there exists a λ-null set N ∈ B([0, 1]) such that ψ(y) = ψ̃(y), for any y ∈ [0, 1]\N .
We conclude this step recalling the following properties of ψ̃, which can be deduced from the properties

of ψ:

1) φ(ψ̃(y)) = y, for any y ∈ [0, 1]\N (that is, φ(ψ̃(y)) = y, λ(dy)-a.e.);

2) for any subset B of [0, 1] we have φ−1(ψ̃−1(B)) = B̃, for some subset B̃ of [0, 1] such that: B̃∆B ∈
L ([0, 1]) and B̃∆B is a λ-null set.

Proof of item 2). Fix a subset B of [0, 1]. By (A.1) we deduce that there exists a subset NB ⊂ N
(so, in particular, NB belongs to L ([0, 1]) and is a λ-null set) such that ψ−1(B)∆ψ̃−1(B) = NB. In
other words, there exist two λ-null sets N ′B, N

′′
B ∈ L ([0, 1]) such that ψ̃−1(B) = (ψ−1(B)\N ′B)∪N ′′B.

Hence

φ−1(ψ̃−1(B)) = φ−1((ψ−1(B)\N ′B) ∪N ′′B) = (φ−1(ψ−1(B))\φ−1(N ′B)) ∪ φ−1(N ′′B)

= (B\φ−1(N ′B)) ∪ φ−1(N ′′B) =: B̃.

It remains to prove that φ−1(N ′B) (and similarly φ−1(N ′′B)) belongs to L ([0, 1]) and is a λ-null set.
We begin noting that since N ′B ∈ L ([0, 1]), by definition of L ([0, 1]) (see e.g. Theorem 1.36 in [24]),

there exists a λ-null set N̂ ′B ∈ B([0, 1]) such that N ′B ⊂ N̂ ′B. Since φ−1(N ′B) ⊂ φ−1(N̂ ′B), it is

enough to prove that φ−1(N̂ ′B) belongs to L ([0, 1]) and is a λ-null set. Actually, φ−1(N̂ ′B) belongs
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to B([0, 1]) (so, in particular, to L ([0, 1])) since N̂ ′B ∈ B([0, 1]) and φ is a measurable function from
([0, 1],B([0, 1])) into ([0, 1],B([0, 1])). Now, recalling that λ is the distribution of Γ and Γ̃, we obtain

λ(φ−1(N̂ ′B)) = P(Γ ∈ φ−1(N̂ ′B)) = P(φ(Γ) ∈ N̂ ′B) = P(Γ̃ ∈ N̂ ′B) = λ(N̂ ′B) = 0.

This concludes the proof of item 2).

Finally, as for φ, we can suppose ψ̃ to be surjective (this property will be used in the next step in order to
apply the Jankov-von Neumann theorem).

Our aim is to prove the following:

ψ̃(φ(y)) = y, λ(dy)-a.e. (A.2)

that is ρ := ψ̃ is also a λ-a.e. left-inverse of φ.

Step II. The function φ′. We apply the Jankov-von Neumann measurable selection theorem to the function
ψ̃, so we deduce the existence of a measurable function φ′ : ([0, 1],L ([0, 1]))→ ([0, 1],B([0, 1])) satisfying:

ψ̃(φ′(y)) = y, for any y ∈ [0, 1]; ψ̃−1((φ′)−1(B)) = B, for any subset B of [0, 1].

The claim follows (see, in particular, (A.2)) if we prove that

φ = φ′, λ-a.e. (A.3)

In order to prove (A.3), notice that

φ(ψ̃(φ′(y))) = φ(y), for all y ∈ [0, 1]

and, by property 1) above,

φ(ψ̃(φ′(y))) = φ′(y), for all φ′(y) ∈ [0, 1]\N.

Hence
φ = φ′, on

{
y : φ′(y) /∈ N

}
.

It remains to prove that the set {y : φ′(y) /∈ N} is a λ-null set. This holds true if we show that φ′ is a
uniform distribution preserving map, namely

λ((φ′)−1(B)) = λ(B), for every Borel subset B ⊂ [0, 1]. (A.4)

Step III. φ′ is a uniform distribution preserving map. Suppose for a moment that both random variables

ψ̃(φ(Γ)) and φ′(ψ̃(φ(Γ)))

have uniform distribution. Then, for any Borel subset B of [0, 1],

λ(B) = P(φ′(ψ̃(φ(Γ))) ∈ B) = P(ψ̃(φ(Γ)) ∈ (φ′)−1(B)) = λ((φ′)−1(B)),

which implies that (A.4) holds true. Finally, we report below the proof that ψ̃(φ(Γ)) and φ′(ψ̃(φ(Γ))) are
uniformly distributed.

The random variable ψ̃(φ(Γ)). Since, by assumption, Γ has uniform distribution, ψ̃(φ(Γ)) also has uniform
distribution, as a matter of fact

P(ψ̃(φ(Γ)) ∈ B) = P(Γ ∈ φ−1(ψ̃−1(B))) = P(Γ ∈ B̃) = λ(B̃) = λ(B),

where we have used the properties of B̃ := φ−1(ψ̃−1(B)) stated in item 2) above.
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The random variable φ′(ψ̃(φ(Γ))). Since, by assumption, Γ̃ = φ(Γ) has uniform distribution, φ′(ψ̃(φ(Γ)))
also has uniform distribution, as a matter of fact

P(φ′(ψ̃(φ(Γ))) ∈ B) = P(Γ̃ ∈ ψ̃−1((φ′)−1(B))) = P(Γ̃ ∈ B) = λ(B).
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