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Abstract. This paper introduces an efficient method for solving nonconvex penalized

minimization problems. The topic is relevant in many imaging problems characterized

by sparse data. The proposed method originates from the Iterative Reweighting l1
scheme, modified by the automatic update of the regularization parameter on the

basis of the behavior of the objective function. Besides proving the convergence of the

method, a modified algorithm is obtained and the performance is tested on two different

sparse imaging problems. The proposed method can be viewed as a general framework

which can be adapted to different one-parameter non convex penalty functions and

applied to problems characterized by sparse data.

1. Introduction

Nonconvex penalized minimization occurs in a wide variety of imaging and computer

vision applications. The variational formulation of such problems involves a nonconvex

objective function which can be expressed as follows:

min
U
J(U) + λF (U) (1)

where U represents the unknown image, J(U) is a, usually convex, fit-to-data function,

F (U) is the so called penalization or regularization function and λ > 0 is the unknown

regularization parameter.

The choice of the regularization parameter is always critical and it usually involves

heuristic procedures where the value is determined after many trials. Moreover, since a

lower contribution of the regularization term is required in the iterative methods when

approaching the solution, a strategy decreasing λ during the iterations is preferred.

Nonconvex penalties received increasing attention for their good properties in

treating sparsity in the data. The excellent results obtained in the first works [1–3]

encouraged the use of nonconvex penalties in a great number of imaging applications

such as denoising, deblurring, super-resolution or sparse Compressive Sensing (CS)
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reconstructions in medical MRI [4, 5] or X-rays Computed Tomography (CT)[6].

Frequently in imaging F depends on the image gradient DU that well captures the

contrast changes in the image.

It is well known that the `0 quasi-norm, measuring the cardinality of its argument,

is the best possible sparsifying function, but its minimization is computationally very

expensive. A remarkable result of the CS theory [7, 8] states that the signal recovery

is still possible if one substitutes the `1 norm to the `0 quasi-norm under suitable

hypotheses; in order to better approximate the `0 quasi-norm, the `p, 0 < p < 1, non-

convex sparsifying norm can be used [4, 9]. Even if the global minimum of (1) cannot

be guaranteed in this case, the authors present a proof of asymptotic convergence of

`p towards `0 by suitably setting the restricted isometry constants. In [5, 10] different

non-convex families of sparsifying functions depending on a positive parameter and

homotopic with the `0 seminorm are considered with very promising results.

The drawback of nonconvex minimization is the difficulty in numerically solving

the optimization problem. Lately, many efforts have been done in proposing new

efficient strategies or in adapting to the solution of problem (1) when F is non-

convex the algorithms considered for convex optimization. The authors in [11] present

an overview of the progress in non-convex optimization by considering algorithms

belonging to the proximal descent and ADMM classes. Another approach, widely

applied in imaging applications, for the solution of (1) is Iterative Reweighting, where

the nonconvex penalty function is iteratively approximated by its convex linearization

(see, for example,[4, 12, 13]).

Paper contribution. Aim of this paper is to propose a fast method with

automatic choice of the regularization parameter λ for the solution of the penalized

nonconvex problem (1).

The proposed method originates from the Iterative Reweighting l1 (IRl1) scheme

[14] modified by a decreasing update of the regularization parameter λ at each iteration.

We prove the convergence of this variational method named Variable Parameter Iterative

Reweighting (VPIR). In particular, we use an adaptive rule, which decreases, at each

iteration of the algorithm, the value of λ on the basis of the behavior of the objective

function, as suggested in [15]. The inner convex problem obtained at each IRl1 iteration

is convex and non differentiable. Several methods can be used for its solution such as

Chambolle Pock [16], Split-Bregman [17], Alternating Minimization [18]. In this paper

we use the Forward-Backward algorithm [19] since it requires the tuning of very few

parameters, that is a great advantage in real applications. In particular in [20] we

defined an Accelerated Forward Backward algorithm (AFB) and proved its efficiency in

the solution of problems like (1).

Finally, we propose MVPIR, a Modified version of VPIR, which exhibits better

computational efficiency.

The proposed methods, here applied with a particular choice of the non-convex

regularization function F , can be viewed as general framework which can be adapted to

different non-convex regularization functions in problems characterized by sparse data.
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We report the results obtained in several numerical tests on two important imaging

problems characterized by sparse data: Magnetic Resonance (MR) Image reconstruction

from low-sampled data and image deblurring of QR-code images. The reconstruction of

MR images from a reduced set of acquisitions is crucial to speed up the measurements

in order to decrease the costs and improve the patient care [4, 5, 21, 22]. On the other

hand, image deblur is a task required by many imaging applications and widely studied

in the literature. The tests show a very good performance of VPIR method, improved

by MVPIR for what concerns the computational coat.

The paper is organized as follows. In section 2 we present the nonconvex variational

problem, in section 3 we analyze the VPIR and MVPIR methods and prove the

convergence. Finally in section 4 we show the results obtained in the numerical

experiments and at last in section 5 we report some conclusions.

2. The nonconvex regularization problem

In this section we discuss the properties of the nonconvex optimization problem (1) for

the two imaging applications used to test our methods. The fit-to-data function J is the

likelihood between the observed and the predicted data and depends on the probability

distribution of the noise. Under the hypothesis that the noise has Gaussian distribution

we model J by the least squares function:

J(u) =
1

2
‖Φu− z‖2

2 (2)

where u = vec(U) is the vector obtained by rearranging the elements of the image U , z

is the vector of the acquired data and Φ is the matrix representing the imaging system.

In the sparse MRI application, z is a vector in the Fourier space (K-space) and Φ

is the under-sampling Fourier matrix, obtained by the Hadamard product between the

full resolution Fourier matrix F and the mask M, i.e.

Φ =M◦ F. (3)

When the MR K-space is only partially measured the inversion problem has infinite

possible solutions. Following the CS theory, a way to choose one of these infinite

solutions is to impose a prior in a sparsity domain.

In image deblur, Φ is the discretization of the Point Spread function (PSF)

describing the blur produced by the image acquisition instrument, such as lens,

microscope, telescope or camera, while z is the blurred image.

Concerning the choice of the regularization or sparsifying function F (DU), we define

a class of non-convex functions Fµ(DU), depending on the parameter µ > 0, satisfying

the property:

lim
µ→0

∑
Ω

Fµ(DU) = ‖DU‖0. (4)
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where Ω is the image domain, DU = (Ux, Uy) is the discrete gradient of the image U

and

Fµ(DU) =
∑
i,j

(ψµ(|Ux|i,j) + ψµ(|Uy|i,j)) . (5)

In our experiments we choose the function ψµ(t) : R \ {0} → R having the following

expression:

ψµ(t) =
1

log(2)
log

(
2

1 + e−
|t|
µ

)
, µ > 0 (6)

that has been shown in [10] to be very well performing in a CS framework. In the same

paper the authors show that ψµ(t) has the property

lim
µ→0

ψµ(t) = ‖t‖0

and that it is an increasing, nonconvex, symmetric, twice differentiable function.

3. The method

In this section, we consider the non convex minimization problem:

min
u

{
λFµ(DU) +

1

2
‖Φu− z‖2

2

}
, µ > 0. (7)

and we propose the VPIR method based on the IRl1 scheme [14] with a variable

regularization parameter update for each iteration. We report the steps of the algorithm

VPIR) in Table 1.

Starting from an initial guess ū(0), the IRl1 method computes a sequence of

approximate solutions {ū(h)}, h = 1, 2, . . . , by substituting convex approximations to

the original objective function in (1).

In particular, at each iteration h of the IRL1 algorithm, the nonconvex function

Fµ(DU) is locally approximated by its linear convex majorizer Fh,µ(DU):

Fh,µ(DU) = Fµ(DŪ (h)) + fh,µ(DU)− fh,µ(DŪ (h)) (9)

where

fh,µ(DU) =
N∑

i,j=1

(
ψ′µ(|Ū (h)

x |i,j)|Ux|i,j + ψ′µ(|Ū (h)
y |i,j)|Uy|i,j

)
(10)

with ψ(t) defined by (6). Hence, at each iteration h we solve the convex minimization

problem:

ū(h) = arg min
u
P(λ,Fh−1,µ(DU), u) = arg min

u

{
λFh,µ(DU) +

1

2
||Φu− z||22

}
(11)

Since fh,µ(DU) is the only term of (9) depending on U , the minimization problem (11)

reduces to the following convex minimization problem:

ū(h) = arg min
u

{
λfh−1,µ(DU) +

1

2
||Φu− z||22

}
. (12)
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VPIR algorithm

(Input: z, r0,η,Φ)

ū(0) = φT z, λ0 = r0‖u(0)‖1, µ = ‖∆u(0)‖1

wxi,j = 1, wyi,j = 1, ∀i, j = 1, . . . N

k = 0;

repeat

h = 0

repeat (IRl1 algorithm)

I.1 Compute ū(h+1) in (8) starting from ū(0)

ū(h+1) = arg min
u

{
λhfµ(Du) +

1

2
||Φu− z||22

}
(8)

where : fµ(Du) =
∑
i,j

(
wxi,j|ūx|i,j + wyi,j|ūy|i,j

)
I.2 Compute the weights: wxi,j = ψ′µ(|ū(h+1)

x |i,j), wyi,j = ψ′µ(|ū(h+1)
y |i,j)

I.3 Update λh+1 if h==0 then λ1 = λ0/2

else update λh+1 as in (19)

I.4 h = h+ 1

until convergence

k = k + 1,

µ = µ · η Continuation strategy

u(k) = ū(h)

ū(0) = u(k) Warm starting

until stopping rule

Table 1. VPIR Algorithm

We propose here to modify the value of the regularization parameter λ at each iteration

by defining a decreasing sequence {λh}.
Hence the VPIR algorithm computes a sequence {ū(h)}, h = 1, 2, . . . where:

ū(h) = arg min
u

{
λh−1fh−1,µ(DU) +

1

2
||Φu− z||22

}
. (13)

We prove that the iterates ū(h), computed by (13), converge to a local minimum of

problem (7).

To this purpose we define:

P(λ, Fµ(DU), u) =

{
λFµ(DU) +

1

2
||Φu− z||22

}
. (14)
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By using (9) we have:

Fh−1,µ(DŪ (h−1)) = Fµ(DŪ (h−1)) and Fh−1,µ(DU) ≥ Fµ(DU) u 6= ū(h−1). (15)

The following result proves the descent property of the objective function at the solution

computed by (13).

Proposition 3.1. Let µ̄ be a fixed value of µ and λh−1, λh be two values of the

penalization parameter such that λh−1 > λh. Let ū(h) and ū(h+1) be the corresponding

minimizers given by (11) with λ = λh−1 and λ = λh, respectively. Then the nonconvex

functional P(λ, Fµ̄(DU), u) satisfies the following inequality:

P(λh−1, Fµ̄(DŪ (h)), ū(h)) > P(λh, Fµ̄(DŪ (h+1)), ū(h+1))

Proof: Using relation (3) and rewriting the first part of property (15) for h:

Fh,µ(DŪ (h)) = Fµ(DŪ (h)),

we have:

P(λh−1, Fµ̄(DŪ (h)), ū(h)) =
1

2
||Φū(h) − z||22 + λh−1Fµ̄(DŪ (h))

=
1

2
||Φū(h) − z||22 + λh−1Fh,µ̄(DŪ (h))

From the assumption λh−1 > λh it follows that:

1

2
||Φū(h) − z||22 + λh−1Fh,µ̄(DŪ (h)) >

1

2
||Φū(h) − z||22 + λhFh,µ̄(DŪ (h))

Using (11):

1

2
||Φū(h) − z||22 + λhFh,µ̄(DŪ (h)) ≥ 1

2
||Φū(h+1) − z||22 + λhFh,µ̄(DŪ (h+1))

Applying the second part of property (15) to the case DU ≡ DŪ (h+1):

1

2
||Φū(h+1) − z||22 + λhFh,µ̄(DŪ (h+1)) ≥ 1

2
||Φū(h+1) − z||22 + λhFµ̄(DŪ (h+1))

From definition (3):

1

2
||Φū(h+1) − z||22 + λhFµh(DŪ (h+1)) = P(λh, Fµ̄(DŪ (h+1)), ū(h+1))

hence:

P(λh−1, Fµ̄(DŪ (h)), ū(h)) > P(λh, Fµ̄(DŪ (h+1)), ū(h+1))

This proves the result.

In order to prove the convergence we need the following results.
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Definition 3.1. A convex (not necessarily differentiable) function f(u) is said ν-

strongly convex if and only if there exists a constant ν > 0, called the modulus of strong

convexity of f(u), such that the function f(u)− ν
2
‖u‖2

2 is convex.

Proposition 3.2. The functional P(λh,Fh,µ̄(DU), u) is ν-strongly convex with σ = 1
λh

.

The proof of Proposition 3.2 follows straightforward by observing that

P(λh,Fh,µ̄(DU), u) is the sum of a ν-strongly convex term (the `2-norm is ν-strongly

convex with ν = 1) and of a convex term, due to the `1-norm. It follows that is ν-strongly

convex, see [23].

Proposition 3.3. Let’s define the bounding set B s.t. ū(h) ∈ B, ∀h ≥ 0, let’s assume

that Fµ̄ and Fh,µ̄ have a locally Lipschitz continuous gradient on B with a common

Lipschitz constant L̃ ≥ 0. Then the following properties hold:

(i) Descent property:

P(λh−1, Fµ̄(DŪ (h)), ū(h)) > P(λh, Fµ̄DŪ
(h+1)), ū(h+1)) (16)

(ii) There exists C > 0 such that for all h ∈ N there exists

ξh+1 ∈ ∂P(λh, Fµ̄(DŪ (h+1)), ū(h+1))

fulfilling

‖ξh+1‖2 ≤ C‖ū(h+1) − ū(h)‖2 (17)

(iii) For any converging subsequence
{
ū(hj)

}
j∈N with

¯̄u ≡ lim
j→∞

ū(hj),

and
{
λhj
}

with ¯̄λ = limj→∞ λhj , we have

P(λhj , Fµ̄(DŪ (hj)), ū(hj))→ P(¯̄λ, Fµ̄(D ¯̄u), ¯̄u) j →∞. (18)

Proof: Using Proposition 3.1 we can prove the descent property (16). Relations (17)

and (18) can be easily proved as in [13], proposition 5.

Proposition 3.4. Let µ̄ > 0 be a given value then the sequence ū(h) defined in (13)

converges to a local minimum of problem (1).

Proof: We observe that the objective function{
λhFµ̄(DU) +

1

2
‖Φu− z‖2

2

}
, λh > 0.

satisfies the Kurdika-Lojasiewicz property [24]. In fact it is an analytic function, because

the function ψ in (10) is evaluated in nonnegative arguments, therefore we can restrict

the domain of ψ on R+ ∪ {0}.
Finally the convergence immediately follows from [13], where the authors prove that the
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Iterative Reweighted Algorithm converges, provided that the relations (16), (17), (18)

hold and the objective function satisfies the Kurdika-Lojasiewicz property.

A possible updating rule for λh is given in [15], where, starting from a sufficiently

large initial estimate λ0 and choosing λ1 < λ0, we compute:

λh+1 = λh
P(λh,Fh,µ(DŪ (h)), ū(h))

P(λh−1,Fh−1,µ(DŪ (h−1)), ū(h−1))
, h = 1, . . . . (19)

In [15] it is proven that the sequence {λ(h)}, h = 1, 2, . . . is strictly decreasing.

Following the idea proposed in [5] in order to enhance the sparsity in the gradient

domain, we solve problem (13) for decreasing values of µ and by using a continuation

strategy for the initial iterate, as reported in Table 1.

Finally we propose a modified version of VPIR algorithm, obtained by inexactly

solving the problem (13) where the h loop is stopped after only one iteration. We

have heuristically chosen only one iteration on the basis of some numerical trials, but

obviously the idea can be extended by stopping the IRl1 method after h∗ iterations

far before the convergence. We name this new algorithm as Modified VPIR (MVPIR).

This modification can also be viewed as the elimination of the outer loop of VPIR and

the computation of a sequence of approximate solutions by minimizing the following

modified objective function: {
λhfµh(DU) +

1

2
‖Φu− z‖2

2

}
where the the penalty function fµ in (8) is substituted by fµh where µh decreases at

each IRl1 step. The steps of MVPIR are reported in Table 2.

MVPIR algorithm

(Input: z, r0,η,φ)

u(0) = φT z, λ0 = r0‖u(0)‖1, µ = ‖∆u(0)‖1

wxi,j = 1, wyi,j = 1, ∀i, j = 1, . . . N

k = 0

repeat

Steps I.1- I.4 as in Algorithm VPIR (Table:1);

µ = µ · η Continuation strategy

u(0) = u(k) Warm starting

until stopping criterion

Table 2. MVPIR Algorithm

Although the convergence of MVPIR algorithm is not proven, we can appreciate

its efficiency on both noiseless and noisy data for different types of applications.
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4. Numerical Results

The aim of this section is to analyze the characteristics and performance of VPIR

and MVPIR. Two important imaging problems are considered: Magnetic Resonance

Image Reconstruction from sparse acquisitions (paragraph 4.1), and Image Deblurring

(paragraph 4.2).

In our tests we apply the algorithms to reconstruct images U from data possibly

affected by noise. We evaluate the quality of the computed images U by means of the

Signal to Noise Ratio (SNR) and/or the Peak Signal to Noise Ratio (PSNR) parameters:

SNR = 20 log10

∑
i

∑
j U

2
i,j∑

i

∑
j(Ui,j −Xi,j)2

, PSNR = 20 log10

max(X)√∑
i

∑
j(Ui,j−Xi,j)2

N2

.

where X represents the true reference image.

4.1. Sparse MRI experiments

In this paragraph we compare VPIR and MVPIR algorithms both on noiseless and noisy

low-sampled MR data. Although the results well compare to the latest achievements,

an accurate comparison with the recent literature (see, for example, [22, 25]) is outside

the scope of this paper.

All the algorithms are implemented in Matlab R17b on a PC equipped with Xeon(R)

processors 2.4 GHz and 256GB Ram.

The synthetic undersampled data z are obtained as z = Φu where u is the phantom

image and Φ is the undersampling Fourier matrix (3). In some experiments we test the

algorithms on noisy data obtained by adding complex Gaussian white noise of levels

δ = 10−3, 10−2 to the acquired sub-sampled data z as follows:

zδ = z + δ‖z‖v, ‖v‖ = 1 (20)

where v is a complex unit norm random vector.

In the experiments presented in this section the mask M in (3) is a radial

subsampling mask with a variable percentage of nonzero elements (Figure 1. The test

image is the famous Shepp-Logan phantom of size 256 × 256 (figure 2(a)) which is

widely used in algorithm testing. The high resolution images are obtained from the

low-sampled data by Fourier inversion of the zero filled (zf) data as well as by applying

a gridding method before the Fourier inversion (gr) using the fast Gaussian gridding

fNUFFT [26], available in the Matlab file exchange.

We report in figure 2(b) the high resolution image u(0) = ΦT z obtained , which is used

as the starting point of both algorithms (mettere sia zero filling che gridding? con

quale percentuale di dati?) In order to be consistent with the typical parameters used

to represent the quality of MR Images, we also compute the Contrast to Noise Ratio

(CNR) parameter by considering two Regions Of Interest (ROI) containing details (ROI



An nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging10

A and ROI B in Figure 2 (a)) and a ROI in the background (ROI C in Figure 2 (a))

and by using the mean and standard deviation values over the regions as:

CNR =
mean(ROIA)−mean(ROIB)

std(ROIC)
.

The stopping criteria used in both VPIR and MVPIR are based on the relative

distance τ between two successive iterations and on the decrease of the residual norm:

‖ū(h) − ū(h−1)‖ ≤ τ‖ū(h)‖ OR ‖Φū(h) − z‖ > ‖Φū(h−1) − z‖ (21)

The same criterion is used in VPIR to stop the outer iterations of the continuation

method; in this case (21) is applied to u(k). In all the experiments the parameter τ is

equal to the machine precision. We observe that the condition on the residual acts on

noisy data because in that case the residual norm looses its regular decreasing behavior.

In case of noiseless data residual norm decreases and the small tolerance τ allows us to

reach very accurate solutions.

We report in Table 3 the PSNR, SNR and CNR parameters together with the

computation time for both noiseless and the noisy data. We comopare the VPIR and

MVPIR results by using both the zero-filling (zf) interpolation gridding (gr) techniques

for obtaining the high resolution image from the low resolution data in each step of the

considered algorithms.

In case of noiseless data we observe that the two algorithms reach both very

accurate results although MVIPR has slightly higher PSNR values. Comparing the

computation times we have that MVIPR is about 60% faster. When noisy data are

used, we observe from the tests reported in Table 3 that the two algorithms reach a

comparable computation time while VPIR reaches slightly better results in terms of

PSNR. The use of gridding does not improve the results in terms of image quality but

increases the computational time, since the technique is applied several times (one each

iteration of the methods).

Figure 2 compares some high reconstructions: in (b) the image simply obtained by

zero-filling, in (c) the reconstruction performed by the NUFFT functions using gridding

interpolation, in (d) and (e) the VPIR and MVPIR reconstructions (all the cases are

from the 7.9% of data with noise δ = 10−2). The images clearly show that the VPIR

and MVPIR images have far better quality of the zero-filled and gridding interpolation

reconstructions. Observing the error histogram reported in figure 5 we see that MVPIR

has a slightly larger number of zeros and smaller values compared to VPIR.

The efficiency of the two algorithms can be appreciated in figures 3(a) and

3(b) where the PSNR versus time curves show a faster PSNR increase in MVPIR.

The efficiency of the stopping rule and automatic computation of the regularization

parameters λ is shown in the RMSE versus λ curves reported in figures 4. We observe

that MVPIR stops at the minimum RMSE both in noisy and noiseless data. Concerning

VPIR we observe a slight increase of the RMSE for noisy data which means that the

value of the regularization parameter is slightly underestimated.
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Nz Method δ
PSNR SNR CNR time(s)

zf gr zf gr zf gr zf gr

20%

VPIR

0 315.26 321.46 309.78 310.4 1013 1013 11.8 160.25

10−3 64.30 66.54 52.13 54.37 59.63 82.55 2.77 7.61

10−2 48.19 48.38 34.25 35.03 8.60 10.24 2.3 6.84

MVPIR

0 323.13 323.89 310.42 311.72 1013 1013 3.15 27.2

5. 10−3 67.9 68.11 55.78 55.94 110.02 117.08 2.37 5.79

10−2 49.97 50.49 37.78 38.24 11.32 13.11 1.98 4.98

12%

VPIR

0 320.5 318.9 308.7 306.7 1013 1013 23.94 156.84

10−3 70.1 57.9 59.8 47.6 101.2 36.5 4.77 6.3

10−2 46.5 39.27 34.3 27.01 8.6 4.35 3.18 3.33

MVPIR

0 323.3 324.1 311.2 312.0 1013 1013 4.84 41.78

10−3 66.9 65.2 54.7 53.0 70.6 59.7 2.10 6.84s

10−2 46.2 43.21 33.9 30.53 9.0 6.16 2.17 3.75

8%

VPIR

0 304.7 289.9 292.6 277.7 1013 1013 24.16 161.5

10−3 61.7 70.2 49.5 58.0 53.8 119.5 8.91 26.25

10−2 38.0 36.53 25.8 24.19 4.1 4.78 4.67 11

MVPIR

0 310.1 315.2 298.0 302.9 1013 1013 7.03 65.34

10−3 59.4 57.2 47.2 45.3 49.9 35.12 2.35 8.29

10−2 28.4 28.51 15.9 15.96 1.8 1.83 1 3

Table 3. Sparse MRI experiments on Shepp Logan Phantom (256 × 256). Radial

Undersampling Mask with non zero elements (Nz) 20%, 12% and 8%. zf refers to

Zero filling while gr refers to gridding.

Finally a more accurate analysis can be made by running the algorithms on

100 different random noise realizations. The boxplots of the computed PSNR and

computational time in seconds relative to these tests are reported in figures 6 and 7,

respectively. We observe form Figure 6 that MVPIR has the best median values of PSNR

especially for the highest noise (δ = 10−2). Figure 7 confirms the better computational

performance of MVPIR. Moreover the lower number of outliers (red crosses) and smaller

extension of the boxes (blue rectangles) proves the best stability of MVPIR.

4.2. Image deblur

In this paragraph we consider an image deblurring problem applied to a QR-code

image, which is very sparse in the gradient domain. We consider here only the MVPIR

implementation, since from the MRI experiments is evident that is it more advantageous

than VPIR. Numerical results are presented to demonstrate the effectiveness of the

proposed approach also compared with the L2-TV based image restoration where the

Total Variation (TV) penalization function has been used instead of the nonconvex

penalty in (1). In this case we solve problem (8) by using the TV function in place of

the weighted TV deriving from the linearization of the nonconvex penalty.
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(a) (b)

Figure 1. Radial sampling Masks M. (a) 20%, (b) 8% non zero elements.

(a) (b) (c)

(d) (e)

Figure 2. Shepp Logan Phantom (256 × 256). (a) Reference image. (b) zero-filled

reconstruction (PSNR=17.6) (c) gridding interpolation reconstruction obtained with

NUFFT functions (PSNR=17.2) (d) VPIR reconstruction (e) MVPIR reconstruction

(Nz = 8%, δ = 10−2)..

The results presented in this paragraph are obtained by running a MATLAB

implementation of MVPIR on a PC with Intel Core(TM) i7-3770 CPU (3.4 GHz) and

16 GB of RAM.

We measure the quality of the restored image by the PSNR value defined in (??)

and the amount of blur and noise in the observed image with the BSNR value defined

as follows:

BSNR = 20log10

(
‖z − z̄‖
σn
√
N

)
where z is the observed image, z̄ denotes the mean of z, and σn is the standard deviation

of the noise.
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(a) Noiseless data (b) Noisy data (δ = 10−2)

Figure 3. Sparse MRI experiment, PSNR vs. time plots (in seconds) for VPIR

method (red line) and MVPIR method (green line) in the case of Nz = 20%.

(a) Noiseless data (b) Noisy data (δ = 10−2)

Figure 4. Sparse MRI experiment, RMSE vs. λ plots for VPIR method (red line)

and MVPIR method (green line) in the case Nz = 20%.

(a) (b)

Figure 5. Errors histograms in log scale, with noise δ = 10−2 : MVPIR: blue bars.

VPIR: pink bars. (a) Nz = 20%, (b) Nz = 8%

The MVPIR loop has been stopped with a discrepancy criterium.

The original QR-code image of size 256×256 is shown in Fig. 8(a). We have created

the test problem by multiplying the exact image U by the matrix Φ representing the

discretization of a Gaussian PSF of size 13×13 with standard deviation σg (σg = 1.5 and

σg = 3 in our experiments) and by adding white Gaussian noise of different intensities
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(a) δ = 10−3. (b) δ = 10−2

Figure 6. Boxplot of PSNR obtained by 100 noise realisations for different noise

levels:δ = 10−3 and δ = 10−2 . Each image reports VPIR on the left and MVPIR on

the right. Red line is the median, the top and bottom lines of boxes represent 75 and

25 percentiles, red crosses are outliers.

(a) δ = 10−3. (b) δ = 10−2

Figure 7. Boxplot of computation time in seconds obtained by 100 noise realisations:

for different noise levels:δ = 10−3 and δ = 10−2 . Each image reports VPIR on the left

and MVPIR on the right. Red line is the median, lines of boxes represent 75 and 25

percentiles, red crosses are outliers.

measured by the BSNR parameter. Two examples of blurred and noisy images are

reported in Figures 8(b) and 8(c).

In Table 4 we show the PSNR values of the observed images (column PSNR0)

and of the restored images (column PSNR) obtained with the MVPIR and the L2-TV

algorithm together with the computation times in seconds, both for noiseless and noisy

data. The table confirms the effectiveness of MVPIR method especially when the blur

is strong and the noise is high. Figure 9 shows the reconstructions computed by MVPIR

and L2-TV algorithms and Figure 10 exhibits a zoom of the previous reconstructions

and compare it with the original image. The MVPIR image appears more defined than

the L2-TV in the borders of the small squares composing the QR-code, thus confirming

the better performance of the nonconvex penalty in this case.

Finally, we report some considerations about the automatic choice of the

regularization parameter λ in this deblurring experiment. In Figure 4.2 we plot the

PSNR values obtained by the MVPIR method (blu dashed line) and by the L2-TV
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MVPIR L2-TV

σg PSNR0 PSNR time PSNR time

1.5

No Noise 17.26 43.86 29.9 41.98 30.6

BSNR=30 17.14 31.72 2.22 29.11 1.2

BSNR=40 17.25 39.78 5.04 33.37 4.7

3

No Noise 13.59 39.48 28.34 33.80 30.7

BSNR=30 13.55 28.78 10.17 24.71 3.9

BSNR=40 13.59 34.93 8.26 27.74 3.9

Table 4. PSNR and computational times for the deblurring problem with noisy and

noiseless data.

(a) Original (b) Blurred σg = 1.5,BSNR=40.

(c) Blurred σg = 3,BSNR=30.

Figure 8. Original and blurred QR-code images

method (red continuous line) as a function of the inner iterations (relative to the Forward

Backward solver of (8)) in the case σg = 3 and BSNR=40 (Figure 11(a)) and BSNR=30

(Figure 11(b)). The non convex penalty exhibits better performance in both cases. In

the case of MVPIR the sharp increasing behaviour of the curve means that the rule

adopted for the updating of the regularization parameter λ works very well.
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(a) MVPIR image (b) L2-TV image

Figure 9. Deblurred images obtained with IVIPR and L2-TV (σg = 3, BSNR=30)

(a) Original (b) MVPIR (c) L2-TV

Figure 10. Details from the MVPIR and L2-TV reconstructions of Figure 9

(a) σg = 3, BSNR=40 (b) σg = 3, BSNR=30

Figure 11. PSNR values as a function of the iterations for the MVPIR (blue dashed

line) and L2-TV (red continuous line) methods.

5. Conclusions

In this paper we presented the VPIR algorithm for the solution of a nonconvex penalized

minimization problem with the automatic choice of the regularization parameter in

imaging applications. We modified the well known IRl1 method by updating the

value of the regularization parameter at each iteration and proved its convergence.

We presented an implementation where the IRl1 method is repeated for different
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nonconvex penalization functions approaching the `0 seminorm. Finally, we considered

a more efficient implementation of VPIR. The tests performed on two different imaging

applications where the image is sparse in the gradient domain show very good

results both in terms of precision and computational efficiency and the choice of the

regularization parameter proves to be accurate. In particular, the MVPIR gets the same

results of the VPIR but in shorter computational times. The variational formulation

considered here is very general and relevant for many imaging applications; moreover,

the algorithm is easily extensible to other families of nonconvex regularizers, such as,

for example, the `p norms with 0 < p < 1.
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