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Abstract
Background: Formal description of a cell's genetic information should provide the number of
DNA molecules in that cell and their complete nucleotide sequences. We pose the formal problem:
can the genome sequence forming the genotype of a given living cell be known with absolute
certainty so that the cell's behaviour (phenotype) can be correlated to that genetic information? To
answer this question, we propose a series of thought experiments.

Results: We show that the genome sequence of any actual living cell cannot physically be known
with absolute certainty, independently of the method used. There is an associated uncertainty, in
terms of base pairs, equal to or greater than µs (where µ is the mutation rate of the cell type and
s is the cell's genome size).

Conclusion: This finding establishes an "uncertainty principle" in genetics for the first time, and its
analogy with the Heisenberg uncertainty principle in physics is discussed. The genetic information
that makes living cells work is thus better represented by a probabilistic model rather than as a
completely defined object.

Background
The formal problem of knowing the genome sequence in a 
living cell
We pose the formal problem: can the genome sequence
forming the genotype of a given living cell be known with
absolute certainty so that the cell's behaviour (phenotype)
can be correlated to that genetic information? Firstly, the
genome being the cell's DNA content [1], we define the

description of the total genetic information "I" (the cell's
genome sequence, forming its genotype) as a matrix com-
prising the linear base sequences for the distinct genomic
DNA molecules in that cell (Fig. 1). For the purpose of this
discussion, a living cell (prokaryotic or eukaryotic, from a
monocellular or multicellular organism, germinal or
somatic) is able to perform all its normal natural func-
tions (operatively, capacity for division and/or
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development into an organism, and/or performance of
the functions typical of its terminally differentiated state).
A consensus sequence is a sequence created by choosing,
for each position, the most representative base in a set of
aligned DNA sequences. It should be noted that all
genomic sequences provided by modern genome projects
(e.g. human) [2,3] are actually consensus sequences for
different homologous chromosomes (in the case of dip-
loid cells), different cells [4], and, often, different individ-
uals. It is worth emphasizing that there is no formal proof
that such a "mean" sequence would work in a real cell.
Furthermore, each living cell experiences continuous pro-
gression from one state, i.e. a pattern configuration of the
system at a particular instant, to another [5], and even in
a non-dividing cell the genome structure is subjected to
dynamic changes over time due to DNA modifications,
lesions and repair [6]. However, for the purpose of dis-
cussing the problem posed above, we assume the exist-
ence of a completely defined cell genomic DNA sequence
that is determined at a certain "time zero" instant.

We propose three thought experiments to show how "I"
could be determined with absolute certainty in a living
cell, assuming that, after determination of the genome
sequence, the original cell is further available for tracing
its behaviour, simulating or verifying predictions about its
genotype/phenotype relationships, or obtaining deriva-
tive cells or organisms.

The most common method used is to isolate the cell's
DNA molecules and sequence them by enzymatic or
chemical manipulations. In the case of a single cell, sev-
eral technical problems must be faced: it is difficult to
extract the very small amount of DNA without damaging
it, and the requisite in vivo or in vitro amplification of the
molecules may add artifactual mutations. However, for
the purpose of this discussion, we hypothesize that a suit-
able method could be devised. Even in this case, however,
knowledge of "I" would coincide with the irreversible
unavailability of the original cell to exploit that biological
information.

An alternative to traditional DNA sequencing could be
direct imaging of the DNA molecules, at a level of resolu-
tion sufficient to read its sequence. In principle, this
method could be extended to reading the DNA sequence
inside a living cell ("Star Trek" method) [7]. By definition,
the wavelength used to image the DNA sequence would
have to be adequate for resolution in the order of the
atomic radius (~0.1 nm), so high frequency and energy
(>10 keV) are physically inevitable. If a single cell were
irradiated with >10 keV waves in order to image each seg-
ment of the millions or billions of base pairs constituting
its DNA (10-9–10-6 J absorbed, respectively, even hypoth-
esizing one particle for each base pair) it could not survive

this irradiation, which is several orders of magnitude
greater than the lethal dose (~1000 rad [8] = 10 Gy, i.e.
~10-11 J/ng). In addition, it has recently been demon-
strated that secondary free electrons, even at energies well
below ionization thresholds, induce single- and double-
strand breaks in DNA [9], thus in any case modifying the
original genetic information "I" in the cell.

Scanning probe microscopes are based on a new concept
of very high-resolution imaging, and they are being stud-

Formal representation of total cellular genetic informationFigure 1
Formal representation of total cellular genetic information. 
Each matrix column should contain the sequence of each dis-
tinct DNA molecule strand in the cell (e.g. human sequence 
data), because mutations first arise only in one strand, and 
telomeres normally have a protruding single-strand of varia-
ble length.
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ied as a method for DNA sequencing [10]. Although they
do not use high-energy radiation, these instruments
deploy a microscopic tip that scans the molecule surface
from very close range. Their suitability for DNA sequenc-
ing depends critically on the successful preparation of
DNA on a surface [10], which is again not consistent with
the maintenance of cell integrity.

A different method for deriving the sequence of a DNA
molecule based on assessment of its energetic state, with-
out needing to "visualize" its molecular shape, has been
discussed on purely theoretical grounds [11]. It has been
shown that an uncertainty relationship emerges between
temperature and the order (negative entropy) of the DNA
molecule [11]. This makes it impossible to reach absolute
certainty about the structure of the DNA, even if this
method should become technically feasible and shown to
be applicable to DNA in living cells.

The only remaining method appears to be genome
sequencing of a cell with supposedly identical genetic
information. This procedure will destroy the test cell, leav-
ing an equivalent living cell available for observation. The
most adequate test cell would be a direct relative of the
cell to be studied (Fig. 2). However, any cell is separated
from its nearest relative by at least one cell division. In this
process, a copy of the genome is made and each copy is
distributed to the two daughter cells. The DNA replication
process is central to cell life, and it is accomplished by
complexes of copying and proofreading enzymes. These
proteins are molecular machines subject to the laws of
thermodynamics [12], and their effectiveness cannot be
100 percent; thus, replication errors inevitably accumu-
late during successive cell divisions [13,14]. These errors
lead to changes in the original sequence (mutations,
including polymorphisms and pathogenic mutations),
and the "mutation rate" for a given organism can be
defined as the number of changed positions (in base pair,
bp) for each cell per generation [14]. The mutation rate is,
in nature, greater than 0, so in each cell a certain number
of base pairs is likely to differ from those in the initial
genome.

Results and Discussion
Uncertainty principle of genetic information in a living cell
In view of the above-described thought experiments, we
conclude that in a genome of total size "s" (measured in
bp), the average number of mutated base pairs, used as a
measure of uncertainty (U) about its actual sequence in a
living cell, can be quantified by:

U ≥ µs  (1)

where µ is the mutation rate of the cell type under consid-
eration. For example, in the human genome, uncorrected

replication errors occur with a frequency varying between
10-9 and 10-11 per incorporated nucleotide [14], depend-
ing in particular on the type of genome region [15,16].
Considering the total length of the human genome
sequence (~6 × 109 bp), the overall uncertainty in the
identity of the whole sequence is between 6 and 0.06
nucleotides per replication, meaning in the latter case that
one cell will have a probability of 6 percent of having one
mutation per replication. For simplicity, we do not con-
sider other possible but less frequent contributions to
overall mutation deriving from the distribution, rather
than replication, of nuclear or mitochondrial DNA mole-
cules [14].

It should also be noted that any conceivable method for
measuring the incorporation of nucleotides to determine
the actual sequence in a living cell will similarly entail an
error proportional to the mutation rate, because the accu-
racy of any such method is ultimately dependent on the
accuracy of the DNA replication machinery.

In the case of stem cell replication, it is possible that the
same original "immortal strand" is continuously retained
by an undifferentiating stem cell, while the newly synthe-
sized strand is asymmetrically distributed, at the next cell
replication, to the differentiating daughter cell [17]. In
this selected case the sequence of a stem lineage cell (e.g.
cells C, C1.1 and C2.1 in Fig. 2) could be derived from the
consensus sequence from randomly mutated differentiat-

Determination of total genetic information of a cell genome: nearest relative analysis; in this case, even sequence identity among multiple cells from a common ancestor "C" (e.g. C2.1 and C2.3) is not formal proof of sequence identity with the other extant cells (e.g. C2.2 and C2.4)Figure 2
Determination of total genetic information of a cell genome: 
nearest relative analysis; in this case, even sequence identity 
among multiple cells from a common ancestor "C" (e.g. C2.1 
and C2.3) is not formal proof of sequence identity with the 
other extant cells (e.g. C2.2 and C2.4). For simplicity, only 
the sequence of one strand is shown.
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ing daughter cells (e.g. C1.2, C2.2 and so on in Fig. 2).
However, at each moment, the stem cell also retains a
newly synthesized and potentially mutated strand, the
sequence of which can only be known with an associated
uncertainty that is, again, proportional to the mutation
rate. This does not allow the matrix in Fig. 1 to be com-
pleted with absolute certainty for that cell.

The actual genome sequence in any living cell can thus be
known only with a certain amount of indeterminacy,
which may be very small but is always greater than 0
because of fixed physical constraints dictated by the cell
structure itself and by formal limits on any process for
determining DNA sequences without disrupting the cell.
These limits are in turn intrinsically related to the submi-
croscopic scale of genetic information in nature, inde-
pendently of any methodological approach or any current
or future technological device. The importance of any sin-
gle base pair for the phenotype cannot be over-empha-
sized, as exemplified, for example, by the case of human
achondroplasia (short-limb dwarfism), in which a single
base substitution in a single chromosome invariably has
dramatic effects on skeleton growth [18] via a single
amino acid change.

In addition, there is growing evidence that genomic
regions other than classical gene protein-coding regions
have biological function. Changes in the 5' or 3' untrans-
lated regions of mRNAs have been recently related to dis-
ease phenotypes [e.g. [19,20]]. Many types of functional
"noncoding" RNAs [21] may be transcribed from non-
genic regions or from the opposite DNA strand in protein-
coding genes, even in classical constitutive heterochroma-
tin zones. For instance, yeast centromeric repeat
sequences have recently been shown to be transcribed and
then processed by components of the RNA interference (a
sequence-specific gene silencing) pathway [22]. Finally,
even mutations in coding regions previously deemed
"silent" (mutations that do not affect the amino acid
sequence) may have phenotypic effects via their influence
on splicing accuracy or efficiency [23]. In general, organ-
isms with larger genome sizes tend to have a greater
number of deleterious mutations, and it has been esti-
mated that, in humans, the deleterious genomic mutation
rate is high [24]; it should also be noted that many phe-
notypic changes induced by variations in a particular
genomic region could be present but could go undetected
if they do not grossly affect morphology and physiology
and if they are not directly, actively searched. Overally,
this information clearly indicates that the relevance of
small numbers of subtle mutations in a single cell may be
high, particularly if this cell is the founder of a new organ-
ism or a new colony of individuals. Thus, although the
connectivity of networks between genes and transcription
factors and the complexity achieved by genetically

encoded information-processing systems such as nervous
and immune systems add further dimensions to biologi-
cal complexity [25], it is important to establish whether
the genetic information of a living cell may be known def-
initely in its entirety.

The uncertainty principle discussed here should not be
confused with the critique of biological determinism,
which states that, given a certain piece of biological infor-
mation, we cannot confidently predict the behaviour of
the whole cell or organism because of the complex rela-
tionships between genotype and phenotype [26]. Uncer-
tainty has been also proposed in biology in respect of the
full understanding of gene function. Owing to effects of
gene function that are possibly important for long-term
fitness within a population but very small in individuals,
the formal elucidation of gene function could require
experiments on an evolutionary scale, involving the
whole population of the relevant species [27]. Finally, a
purely qualitative uncertainty relationship has been put
forward between the degree of molecular perturbation in
the cells investigated and the number of biological path-
ways simultaneously examined by the "array" approach
(able to monitor genome-wide DNA expression profiles)
[28]. In these and similar discussions it is assumed that
the cell genome is a known starting point and the prob-
lem lies in predicting how epigenetic changes (DNA mod-
ifications that can alter gene expression without changing
DNA sequences), RNA editing (post-transcriptional RNA
modification), post-translational protein modification or
any other intracellular or extracellular interacting factor
might affect the expression of genetic information.

Our concept applies upstream of these problems: defining
intrinsic uncertainty in the knowledge of a complete,
actual genotype, to be further related to a phenotypic/
functional outcome. This type of uncertainty also rein-
forces arguments against the reductionist approach to
biology, i.e. the attempt to explain complex phenomena
by listing all the individual components of multicompo-
nent systems and defining their functional properties
[29]. Systems biology has recently emerged as the succes-
sor to reductionism, seeking to predict the behaviour or
"emergent properties" of complex, multicomponent bio-
logical processes by trying to understand the general pic-
ture rather than the sum of the workings of the parts in
isolation [29]. Although systems biology could cope with
indeterminacy in the formal knowledge of the complete
cell "parts list", including its complete genome sequence,
its models always remain subject to an irreducible degree
of unpredictability due to the sum of intractable uncer-
tainties at each successive level of investigation from genes
to the whole organism.
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Possible practical implications of the uncertainty princi-
ple of genetic information in a living cell concern prob-
lems such as in silico cell modeling and the diagnostic
value of specific methods. These implications will need
further specific investigation and discussion.

Genomics and the physical limits of the knowledge
We have presented here the first uncertainty principle to
be announced in structural genomics. This is an addition
to the uncertainty principles in physics, where Heisenberg
established that it is impossible to know the position and
the momentum of an electron simultaneously with abso-
lute certainty (Heisenberg's uncertainty principle) [30],
and in mathematics, where Gödel showed that a great
variety of logical systems contain formally undecidable
propositions [31].

In the broadest sense, statements of this type all demon-
strate the formal impossibility of knowing a given system
at a desired arbitrary level [32], although in his 1927 arti-
cle Werner Heisenberg insisted that the uncertainty he
described is not due to technical or intrinsic features of the
measuring process, but it is a fundamental feature of real-
ity itself, i.e. an electron cannot in principle have a precise
position and momentum simultaneously. It is interesting
to note that in his 1933 lecture "Light and life" [33], Niels
Bohr applied an analogous uncertainty concept in biology
to argue that a living being would be killed by detailed
physical investigation, so there is "complementarity"
between the simultaneous existence of life and the possi-
bility of describing it scientifically. Bohr concluded that
life "must be considered an elementary fact that cannot be
explained" (although in his later 1962 revisitation of the
problem [34] he avoided any reference to incompatibility
between scientific description and existence of life, possi-
bly influenced by results in molecular biology obtained
by his student Max Delbrück [35]). In our case, instead,
uncertainty arises from the intrinsic impossibility of deter-
mining a physical quantity that nevertheless exists (the
real genome sequence present at a given instant within a
living cell).

However, if we consider the evolution of the state of a sys-
tem, the analogy may still hold: in physics, the Heisenberg
principle affects any attempt to determine the future
behaviour of an atomic particle in a certain position; in
genetics, the future biological behaviour of a living cell
cannot be linked with absolute certainty to the positions
of nucleotides in the current genome sequence. For a liv-
ing cell, we can only determine a "consensus" sequence
from its relatives, and this fluctuates with a certain proba-
bility around the actual sequence. Recently, the concept
that an ideal "average cell" exists has been challenged in
respect of gene expression, and it has been shown that,
although expression at the cellular level does not require

tight specifications and there is high tolerance of varia-
tion, each single nucleus is probabilistic in its expression
repertoire [36].

Finally, we note that replication errors leading to sponta-
neous point mutations arise from transient alternative
states of the DNA base functional groups (tautomeric
shifts [37], base ionization [38]). Precise knowledge of the
quantum jump events in the base molecule could allow
subsequent copy errors to be predicted [39,40], but the
Heisenberg principle does not allow this with complete
certainty. In this sense, the Heisenberg principle is not
only analogous to the genetic information uncertainty
principle, but is profoundly relevant to the roots of the
latter.

Competing interests
The author(s) declare that they have no competing
interests.

Authors' contributions
All authors contributed to define the concept that we
present; they all drafted the manuscript and approved the
final version.

References
1. Strachan T, Read AP: Organization of the human genome.  In

Human Molecular Genetics 2nd edition. Edited by: Strachan T, Read AP.
Oxford: Bios Press; 1999:139-142. 

2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al.: Initial
sequencing and analysis of the human genome.  Nature 2001,
409:860-921.

3. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al.: The
sequence of the human genome.  Science 2001, 291:1304-1351.

4. Youssoufian H, Pyeritz RE: Human genetics and disease: Mech-
anisms and consequences of somatic mosaicism in humans.
Nat Rev Genet 2002, 3:748-758.

5. Grizzi F, Chiriva-Internati M: The complexity of anatomical
systems.  Theor Biol Med Model 2005, 2:26.

6. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: DNA
repair.  In Molecular Biology of the Cell 4th edition. Edited by: Alberts
B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. New York: Gar-
land Publishing; 2002:267-275. 

7. Eng C, Vijg J: Genetic testing: The problems and the promise.
Nat Biotechnol 1997, 15:422-426.

8. Puck TT, Johnson R, Rasumussen S: A system for mutation meas-
urement in mammalian cells: Application to gamma-irradia-
tion.  Proc Natl Acad Sci USA 1997, 94:1218-1223.

9. Boudaiffa B, Cloutier P, Hunting D, Huels MA: Resonant formation
of DNA strand breaks by low-energy (3 to 20 eV) electrons.
Science 2000, 287:1603-1604.

10. Heckl WM: Scanning the Thread of Life – DNA under the
microscope.  In The Diagnostic Challenge – The Human Genome
Edited by: Fischer EP, Klose S. München: Piper Verlag; 1995:99-145. 

11. Balanovski E, Beaconsfield P: Order and disorder in biophysical
systems: a study of the correlation between structure and
function of DNA.  J Theor Biol 1985, 1:21-33.

12. Petruska J, Goodman MF, Boosalis MS, Sowers LC, Cheong C, Tinoco
I Jr: Comparison between DNA melting thermodynamics
and DNA polymerase fidelity.  Proc Natl Acad Sci USA 1988,
85:6252-6256.

13. Simpson AJ: The natural somatic mutation frequency and
human carcinogenesis.  Adv Cancer Res 1997, 71:209-240.

14. Strachan T, Read AP: Instability of the human genome: muta-
tion and DNA repair.  In Human Molecular Genetics 2nd edition.
Edited by: Strachan T, Read AP. Oxford: Bios Press; 1999:209-217. 
Page 5 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12360233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12360233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16029490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16029490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9131618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9037033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9037033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9037033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10733428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3413095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3413095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9111867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9111867


Theoretical Biology and Medical Modelling 2005, 2:40 http://www.tbiomed.com/content/2/1/40
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

15. Giannelli F, Anagnostopoulos T, Green PM: Mutation rates in
humans II. Sporadic mutation-specific rates and rate of det-
rimental human mutations inferred from hemophilia B.  Am
J Hum Genet 1999, 65:1580-1587.

16. Caporale LH: Mutation is modulated: implications for
evolution.  Bioessays 2000, 22:388-395.

17. Cairns J: Somatic stem cells and the kinetics of mutagenesis
and carcinogenesis.  Proc Natl Acad Sci USA 2002, 99:10567-10570.

18. Shiang R, Thompson LM, Zhu Y-Z, Church DM, Fielder TJ, Bocian M,
Winokur ST, Wasmuth JJ: Mutations in the transmembrane
domain of FGFR3 cause the most common genetic form of
dwarfism, achondroplasia.  Cell 1994, 78:335-342.

19. Wiestner A, Schlemper RJ, van der Maas AP, Skoda RC: An activat-
ing splice donor mutation in the thrombopoietin gene causes
hereditary thrombocythaemia.  Nat Genet 1998, 18:49-52.

20. Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL: G20210A is
a functional mutation in the prothrombin gene; effect on
protein levels and 3'-end.  J Thromb Haemost 2004, 2:119-127.

21. Storz G: An expanding universe of noncoding RNAs.  Science
2002, 296:1260-1263.

22. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal
SI: Establishment and maintenance of a heterochromatin
domain.  Science 2002, 297:2215-2218.

23. Cartegni L, Chew SL, Krainer AR: Listening to silence and under-
standing nonsense: exonic mutations that affect splicing.  Nat
Rev Genet 2002, 3:285-298.

24. Nachmana MW, Crowella SL: Estimate of the mutation rate per
nucleotide in humans.  Genetics 2000, 156:297-304.

25. Szathmary E, Jordan F, Pal C: Molecular biology and evolution.
Can genes explain biological complexity?  Science 2001,
292:1315-1316.

26. Lewontin RC: Biology as Ideology: the Doctrine of DNA Ontario: Anansi
Press limited; 1991. 

27. Tautz D: A genetic uncertainty problem.  Trends Genet 2000,
16:475-477.

28. Huber PE, Hauser K, Abdollahi A: Genome wide expression pro-
filing of angiogenic signaling and the Heisenberg uncertainty
principle.  Cell Cycle 2004, 3:1348-1351.

29. Strange K: The end of "naive reductionism": rise of systems
biology or renaissance of physiology?  Am J Physiol Cell Physiol
2005, 288:C968-974.

30. Heisenberg WZ: Quantum Theory and Measurement.  Physik
1927, 43:172-198. English translation in: Quantum Theory and Measure-
ment. Edited by Wheeler JA, Zurek WH. Princeton: Princeton Univer-
sity Press; 1983:62–84

31. Godel K: Uber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme.  Monatshefte fur Mathe-
matik und Physik 1931, 38:173-198.

32. Calude CS, Stay MA: From Heinsenberg to Goedel via Chaitin.
Int J Theor Phys 2005 in press. http://arxiv.org/abs/quant-ph/0402197

33. Bohr N: Light and Life.  Nature 1933, 131:421-423. 457-459
34. Bohr N: Essays 1958–1962 on Atomic Physics and Human Knowledge

New York: Interscience; 1963. 
35. Selleri F: La causalità impossibile Milano: Jaca Book; 1987. 
36. Levsky JM, Singer RH: Gene expression and the myth of the

average cell.  Trends Cell Biol 2003, 13:4-6.
37. Harris VH: The effect of tautomeric constant on the specifi-

city of nucleotide incorporation during DNA replication:
support for the rare tautomer hypothesis of substitution
mutagenesis.  J Mol Biol 2003, 326:1389-13401.

38. Von Borstel RC: Origins of spontaneous base substitutions.
Mutat Res 1994, 307:131-140.

39. Monod J: Le hasard et la nécessité Paris: Seuil; 1970. 
40. McFadden J, Al-Khalili J: A quantum mechanical model of adap-

tive mutation.  Biosystems 1999, 50:203-211.
Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10577911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10577911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10577911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10978293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10978293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11074284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840560
http://arxiv.org/abs/quant-ph/0402197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12480334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12480334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7513789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10400270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10400270
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The formal problem of knowing the genome sequence in a living cell

	Results and Discussion
	Uncertainty principle of genetic information in a living cell
	Genomics and the physical limits of the knowledge

	Competing interests
	Authors' contributions
	References

