
17 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Linguistic Abstractions for Interoperability of IoT Platforms / Gabbrielli, Maurizio; Giallorenzo, Saverio;
Lanese, Ivan; Zingaro, Stefano Pio. - STAMPA. - 347:(2019), pp. 83-114. [10.1007/978-3-030-28430-5_5]

Published Version:

Linguistic Abstractions for Interoperability of IoT Platforms

This version is available at: https://hdl.handle.net/11585/695947 since: 2024-01-22

Published:
DOI: http://doi.org/10.1007/978-3-030-28430-5_5

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/695947
http://doi.org/10.1007/978-3-030-28430-5_5

Linguistic Abstractions for
Interoperability of IoT Platforms

Maurizio Gabbrielli1, Saverio Giallorenzo2, Ivan Lanese1, and Stefano Pio
Zingaro1

1 Università di Bologna / INRIA
2 University of Southern Denmark

Abstract. The Internet of Things (IoT) advocates for multi-layered
platforms—from edge devices to Cloud nodes—where each layer adopts
its own communication standards (media and data formats). While this
freedom is optimal for in-layer communication, it puzzles cross-layer in-
tegration due to incompatibilities among standards. Also enforcing a
unique communication stack within the same IoT platform is not a so-
lution, as it leads to the current phenomenon of “IoT islands”, where
disparate platforms hardly interact with each other. In this paper we
tackle the problem of IoT cross-layer and cross-platform integration fol-
lowing a language-based approach. We build on the Jolie programming
language, which provides uniform linguistic abstractions to exploit het-
erogeneous communication stacks, allowing the programmer to specify
in a declarative way the desired stack, and to easily change it, even
at runtime. Jolie currently supports the main technologies from Service-
Oriented Computing, such as TCP/IP, Bluetooth, and RMI at transport
level, and HTTP and SOAP at application level. We integrate in Jolie
the two most adopted protocols for IoT communication, i.e., CoAP and
MQTT. We report our experience on a case study on Cloud-based home
automation, and we present high-level concepts valuable both for the gen-
eral implementation of interoperable systems and for the development of
other language-based solutions.

1 Introduction

The Internet of Things (IoT) advocates for multi-layered software platforms,
each adopting its own media protocols and data formats [1, 2, 3]. The problem
of integrating layers of the same IoT platform, as well as different IoT vertical
solutions, involves many levels of the communication stack, spanning from link-
layer communication technologies, such as ZigBee and WiFi, to application-layer
protocols like HTTP, CoAP [4, 5], and MQTT [6, 7], reaching the top-most layers
of data-format integration [8].

Technology-wise, architects of IoT platforms can choose between two ap-
proaches at odds. The first approach favors optimal in-layer communications,
i.e., choosing media protocols and data formats best suited for the interactions
happening among homogeneous elements, e.g., edge devices (connectionless pro-
tocols and binary data formats [3]), mid-tier controllers (gateways and aggre-

2 Gabbrielli M. et al.

gators on the RESTful stack [9]), or Cloud nodes (scalable publish-subscribe
message queues [10]). Following this first approach is optimal for in-layer com-
munication. However, at the cross-layer level, the heterogeneity and possible
incompatibility of the chosen standards make enforcing integrity within the IoT
system complex and the resulting integration fragile. The second architectural
approach favors cross-layer consistency, enforcing a unique communication stack
over a single IoT platform. Here cross-layer integration is simpler thanks to the
adoption of a single medium and data format. However such enforced uniformity
is the main cause of the phenomenon known as “IoT island” [11, 12], where IoT
platforms take the shape of vertical solutions that provide little support for col-
laboration and integration with each other. How to overcome this limitation is
currently a hot topic, tackled also by ongoing EU projects, e.g., symbIoTe [12]
and bIoTope [13].

In this paper we tackle the problem of IoT integration (both cross-layer and
cross-platform) following a language-based approach focused on integration at
both the transport (TCP or UDP) and application layer. To reach our goal
we do not start from scratch, but we leverage the work done in the area of
Service-Oriented Architectures (SOAs) [14] and we build on the Jolie program-
ming language [15, 16, 17, 18]. In particular, we rely on those abstractions pro-
vided by Jolie that i) let different communication protocols seamlessly coexist
and interoperate within the same program and ii) let programmers dynamically
choose which communication stack should be used for any given communica-
tion. Concretely, we fork the Jolie interpreter—written in Java—into a proto-
type called JIoT [19], standing for “Jolie for IoT”. JIoT supports all the protocols
already supported by the Jolie interpreter (TCP at the transport level, and pro-
tocols such as SOAP, RMI and HTTP at the application level), while adding the
application-level protocols for IoT, namely CoAP (and, as a consequence, UDP
at the transport level) and MQTT. Notably, when the application protocol sup-
ports different representation formats (such as JSON, XML, etc.) of the message
payload, as in the case of HTTP and CoAP, JIoT, like Jolie, can automatically
marshal and un-marshal data as required.

We structure our presentation as follows. We overview in Section 2 our ap-
proach and summarize our contribution in Section 3. Then, we discuss the main
challenges we faced in our development in Section 4, we present how a program-
mer can use CoAP/UDP (Section 5) and MQTT (Section 6) in JIoT, and we
detail our implementation in Section 7. We describe, in Section 8, a scenario on
Cloud-based home automation where a JIoT architecture coordinates heteroge-
neous edge devices. Finally, we position our contribution with respect to related
work in Section 9 and we draw final remarks in Section 10.

JIoT is available at [19], released under the LGPL v2.1 license. The code
snippets reported in this paper are based on version 1.2 of JIoT. The integration
of JIoT into the official code-base of the Jolie language is ongoing work.

Language Abstractions for Interoperability of IoT Platforms 3

2 Approach Overview

Without proper language abstractions, guaranteeing interoperability among pro-
tocols belonging to different technology stacks is highly complex. The problem is
further exacerbated when one has to modify the technology stack used for some
specific interaction. The replacement may be either static, e.g., because of the
deployment of new, heterogeneous devices in a pre-existing system, or dynamic,
e.g., to support a changing topology of disparate mobile devices. Contrarily, with
JIoT most of the complexity of guaranteeing interoperability is managed by the
language interpreter and hidden from the programmer.

As an illustrative example of the proposed approach, let us consider a scenario
where we want to integrate two islands of IoT devices, both collecting temper-
ature data, but relying on different communication stacks, namely HTTP over
TCP and CoAP over UDP. The end goal is to program a collector which receives
and aggregates temperature measurements from both islands.

Following the structure of Jolie programs, the collector programmed in JIoT
is composed of two parts: a behavior, specifying the logic of the elaboration, and
a deployment, describing in a declarative way how communication is performed.
This separation of concerns is fundamental to let programmers easily change
which communication stack to use, preserving the same logic for the elaboration.

As an example of program behavior, let us consider the code below, where
main is the entry point of execution of Jolie programs.

1 main {
2 ...
3 receiveTemperature(data);
4 ...
5 }

Above, line 3 contains a reception statement. Receptions in Jolie indicate a
point where the program waits to receive a message. In this case, the collector
waits to receive a temperature measurement on operation receiveTemperature

(an operation in Jolie is an abstraction for technology-specific concepts such as
channels, resources, URLs, . . .). Upon reception, it stores the retrieved value in
variable data. Besides the logic of computation of the collector, we also need to
specify the deployment, i.e., on which technologies the communication happens;
in the example above, how the collector receives messages from other devices.
In Jolie this information is defined within ports. For example, the port to re-
ceive (denoted with keyword inputPort) HTTP measurements can be defined
as in Listing 1. Port CollectorPort1 specifies that the collector expects inbound
communications via Protocol http using a TCP/IP socket receiving at URL
"localhost" on TCP port 8000. A port exposes a set of operations, collected
within a set of Interfaces. In the example, the input port CollectorPort1 de-
clares to expose interface TemperatureInterface, which is defined at lines 1–3 of
Listing 1. The interface declares the operation receiveTemperature, including the
type of expected data (string), as a OneWay operation, namely an asynchronous
communication that does not require any reply from the collector (except the
acknowledgment automatically provided by the TCP implementation).

4 Gabbrielli M. et al.

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort1 {
6 Location: "socket://localhost:8000"
7 Protocol: http
8 Interfaces: TemperatureInterface
9 }

Listing 1. Example of interface and input port in Jolie.

Thanks to port CollectorPort1, the collector can receive data from the HTTP
island. To integrate the second island, we just need to define an additional port,
similar to CollectorPort1, except for using UDP/IP datagrams at the transport
layer and CoAP [5, 4] at the application layer. Hence, the whole code of the
collector becomes:

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort1 {
6 Location: "socket://localhost:8000"
7 Protocol: http
8 Interfaces: TemperatureInterface
9 }

10
11 inputPort CollectorPort2 {
12 Location: "datagram://localhost:5683"
13 Protocol: coap
14 Interfaces: TemperatureInterface
15 }
16
17 main {
18 ...
19 receiveTemperature(data);
20 ...
21 }

Listing 2. Code of the Collector Example.

The example above highlights how, using the proposed language abstractions,
the programmer can write a unique behavior and exploit it to receive data sent
over heterogeneous technology stacks. Indeed, the receiveTemperature operation
takes measurements from both the inputPorts. For instance, if communication
over CollectorPort2 fails, port CollectorPort1 can still receive data. Programmers
can also specify elaborations that depend on the used technologies, by using dif-

Language Abstractions for Interoperability of IoT Platforms 5

ferent operations in different ports. Jolie supports both inbound and outbound
communications, the latter declared with outputPorts, whose structure follows
that of inputPorts. Furthermore, the Location and Protocol of outputPorts can be
changed at runtime, enabling the dynamic selection of the appropriate technolo-
gies for each context.

As mentioned, Jolie enforces a strict separation of concerns between behav-
ior, describing the logic of the application, and deployment, describing the com-
munication capabilities. The behavior is defined using the typical constructs of
structured sequential programming, communication primitives, and operators to
deal with concurrency (parallel composition and input choices [17]).

Jolie communication primitives comprise two modalities of interaction.
Outbound OneWay communications send a message asynchronously, while

RequestResponse communications send a message and wait for a reply (they
capture the well-known pattern of request-response interactions [20]). Dually,
inbound OneWay communications wait to receive a message, without sending a
reply, while inbound RequestResponses wait for a message and send back a reply.

Jolie supports many communication media (via keyword Location) and data
protocols (via keyword Protocol) in a simple, uniform way. This is one of the
main features of the Jolie language, and the reason why we base our approach
on it. Each communication port declares the medium and data protocol used to
communicate, hence, to switch to a different technology stack, one just needs to
change the declaration of Location and Protocol of a given port. As expected, the
behavior (i.e., the actual logic of computation) of any Jolie program is unaffected
by any change to its ports. Hence, a Jolie program can provide the same service
(i.e., the same behavior) through different media and protocols just by specifying
different deployments. Being born in the field of SOAs, Jolie supports the main
technologies from that area: e.g., communication media like TCP/IP sockets,
Bluetooth L2CAP, Java RMI, and Unix local sockets; and data protocols like
HTTP, JSON-RPC, XML-RPC, SOAP and their respective SSL versions.

3 Contribution

To substantiate the effectiveness of our language-based approach to IoT inte-
gration, we add to Jolie support for the main communication stacks used in the
IoT setting. Concretely, the added contribution of JIoT with respect to Jolie is
the integration of two application protocols relevant in the IoT scenario, namely
CoAP [5, 4] and MQTT [7, 6]. Notably, in JIoT the usage of such protocols is
supported by the same linguistic abstractions that Jolie uses for SOA protocols
such as HTTP and SOAP.

Even if Jolie provides support for the integration of new protocols, when
set in the context of IoT technology, the task is non trivial. Indeed, all the
protocols previously supported by Jolie exploit the same internal interface, based
on two assumptions: i) the usage of underlying technologies that ensure reliable
communications and ii) a point-to-point communication pattern.

6 Gabbrielli M. et al.

However, those assumptions do not hold when considering the two IoT tech-
nologies we integrate:

– CoAP communications can be unreliable since they are based on UDP con-
nectionless datagrams. CoAP provides options for reliable communications,
however these are usually disabled in an IoT setting, since it is important to
preserve battery and bandwidth;

– MQTT communications are based on the publish-subscribe paradigm, which
contrasts with the point-to-point paradigm underlying the Jolie communi-
cation primitives. Hence, we need to define a mapping to express publish-
subscribe operations in terms of Jolie communication abstractions. In doing so,
we need to balance two factors: i) preserving the simplicity of use of the point-
to-point communication style and ii) capturing the typical publish-subscribe
flow of communications. Such a mapping is particularly challenging in the
case of request-response communications. Remarkably, the mapping that we
present in this work is general and could be used also in other contexts.

This paper integrates, revises, and extends material from [21], where we pre-
sented, discussed, and provided basic technical details on the proposed language-
based approach to IoT integration. Main extensions comprise:

– advanced technical details on our implementation (Section 7) including:
– a general account on how media and protocols are separated from the Jolie

interpreter and how they can be developed as independent modules;
– extensive details on the implementation of UDP, CoAP, and MQTT proto-

cols;
– a comprehensive case study on a home automation scenario (Section 8) where

we consider:
– local, cross-layer communication among things and mid-tier controllers

(edge devices and fog nodes);
– remote, cross-layer interactions among Cloud nodes and mid-tier controllers.

We conclude this section briefly discussing the current limitations of JIoT re-
lated to its usage in the programming of low-level edge devices—like Arduinos
and other microcontrollers. JIoT supports dynamic scenarios where the nodes
in the network can switch among many technology stacks according to internal
or environmental conditions, such as available energy or quality of communi-
cation. From preliminary discussions with collaborators and IoT practitioners,
we collected positive opinions on the idea of using JIoT for programming low-
level edge devices. Given these positive remarks, we investigated the feasibility
of running JIoT programs over edge devices, possibly including additional lan-
guage abstractions to provide low-level access to in-board sensors and actuators.
However, our survey revealed a market of devices fragmented over incompat-
ible hardware architectures and characterized by strong constraints over both
computational power and energy consumption. Considering these limitations,
we concluded that supporting the execution of JIoT-like programs over edge de-
vices would require a strong engineering effort. While this research direction is

Language Abstractions for Interoperability of IoT Platforms 7

promising, we deem it non-urgent, since currently developers tend to program
very simple behaviors for edge devices [3], which usually capture some data (e.g.,
through one of their sensors) and then send them to mid-to-top-tier devices. The
latter usually process and coordinate the flow of data: they have powerful hard-
ware, they communicate over reliable channels, and they have fewer (if any)
constraints with respect to battery/energy consumption.

Considered the discussion above, in this work we omit the low-level program-
ming of edge devices and we focus on mid-to-top-tier ones, which can host the
JIoT runtime and which, given their topological context, directly benefit from
the flexibility of the approach.

4 JIoT: Jolie for IoT

Jolie currently supports some of the main technologies used in SOAs (e.g., HTTP,
SOAP). However, only a limited amount of IoT devices uses the media and
protocols already supported by Jolie. Indeed, protocols such as CoAP [5, 4] and
MQTT [7, 6], which are widely used in IoT scenarios, are not implemented in
Jolie. Integrating these protocols, as we have done, is essential to allow Jolie
programs to directly interact with the majority of IoT devices. We note that
emerging frameworks for interoperability, such as the Web of Things [22], rely on
the same protocols we mentioned for IoT, thus JIoT is also compliant with them.
However there are some challenges linked to the integration of these technologies
within Jolie:

– lossless vs. lossy protocols — In SOAs, machine-to-machine communication
relies on lossless protocols: there are no strict constraints on energy consump-
tion or bandwidth and it is not critical how many transport-layer messages
are needed to ensure reliable delivery. That is not true in IoT networks, where
communication is constrained by energy consumption, which defines what
technology stack can be used. Indeed, many IoT communication technologies,
among which the mostly renowned CoAP application protocol, rely on the
UDP transport protocol — a connectionless protocol that gives no guarantee
on the delivery of messages, but allows one to limit message exchanges and,
by extension, energy and bandwidth consumption. Since Jolie assumes loss-
less communications, the inclusion of connectionless protocols in the language
requires careful handling to prevent misbehaviors;

– point-to-point vs. publish-subscribe — The premise of the Jolie language is to
provide communication constructs that do not depend on a specific technology.
To do so, the language assumes a point-to-point communication abstraction,
which is common to many protocols like HTTP and CoAP. However, to inte-
grate the MQTT protocol in Jolie, we need to model Jolie point-to-point se-
mantics as MQTT publish-subscribe operations. Indeed, Jolie already provides
language constructs usable with many communication protocols, hence the less
disruptive approach is to use the same constructs, which are designed for a

8 Gabbrielli M. et al.

point-to-point setting, also for MQTT. This requires to find for each point-
to-point construct a corresponding effect in the publish-subscribe paradigm.
The final result is that the execution of a given Jolie behavior is similar under
both point-to-point and publish-subscribe technologies.

5 Supporting Constrained Application Protocol in Jolie

The Constrained Application Protocol (CoAP) [4, 5] is a specialized web transfer
protocol for constrained scenarios where nodes have low power and networks are
lossy. The goal of CoAP is to import the widely adopted model of REST archi-
tectures [23] into an IoT setting, that is, optimizing it for machine-to-machine
applications. In particular, like HTTP, CoAP makes use of GET, PUT, POST,
and DELETE methods. Following the RFC [5], CoAP is implemented on top of
the UDP transport protocol [24], with optional reliability. Indeed, CoAP provides
two communication modalities: a reliable one, obtained by marking the message
type as confirmable (CON), and an unreliable one, obtained by marking the
message type as non confirmable (NON).

As an example, we consider a scenario with a controller, programmed in JIoT,
that communicates with one of many thermostats in a home automation sce-
nario. Thermostats are accessible at the generic address "coap://localhost/##"

where "##" is a two-digit number representing the identifier of a specific de-
vice. Each thermostat accepts two kinds of interactions: a GET request on
URI "coap://localhost/##/getTemperature", that returns the current tempera-
ture, and a POST request on URI "coap://localhost/##/setTemperature", that
sets the temperature of the HVAC (heating, ventilation, and air conditioning)
system.

We comment below Listing 3, where we report the code of a possible JIoT
controller that interacts with a specific thermostat.

Our scenario includes two CoAP resources, referred to as "/getTemperature"

and "/setTemperature". We model them in JIoT at lines 4–7 of Listing 3, by
defining the interface ThermostatInterface, which includes a RequestResponse op-
eration getTmp, representing resource "/getTemperature", and a OneWay operation
setTmp, representing resource "/setTemperature". By default, we map operation
names to resource names, hence in our example we would need resources named
"/getTmp" and "/setTmp", respectively. However one can override this default by
defining the coupling of resource names and operations as desired. This allows
programmers to use interfaces as high level abstractions for interactions, while
the grounding to the specific case is done in the deployment. Here we purpose-
fully choose to use operation names that differ from resource names to underline
that the two concepts are related but loosely coupled. On the one hand the
coupling between the name of the resource and the operation can be seen as
a way of quickly binding actions exposed by the CoAP server with operations.
On the other hand decoupling resource names and operations permits to handle
more complex deployments where, for instance, a single operation responds for
different resources. At lines 9–25 we define an outputPort to interact with the

Language Abstractions for Interoperability of IoT Platforms 9

1 type getTmpType: void { .id: string }
2 type setTmpType: int { .id: string }
3
4 interface ThermostatInterface {
5 RequestResponse: getTmp(getTmpType)(int)
6 OneWay: setTmp(setTmpType)
7 }
8
9 outputPort Thermostat {

10 Location: "datagram://localhost:5683"
11 Protocol: coap {
12 .osc.getTmp << {
13 .messageCode = "GET",
14 .contentFormat = "text/plain",
15 .messageType = "CON",
16 .alias = "/%!{id}/getTemperature"
17 };
18 .osc.setTmp << {
19 .messageCode = "POST",
20 .messageType = "CON",
21 .alias = "/%!{id}/setTemperature"
22 }
23 }
24 Interfaces: ThermostatInterface
25 }
26
27 main {
28 getTmp@Thermostat({ .id = "42" })(temp);
29 if (temp > 27) {
30 setTmp@Thermostat(24 { .id = "42" })
31 } else if (temp < 15) {
32 setTmp@Thermostat(22 { .id = "42" })
33 }
34 }

Listing 3. JIoT controller communicating over CoAP/UDP.

Thermostat. At line 10 we specify the Location of the thermostat. Recalling that
the scheme of the resources of the thermostats is "coap://localhost/##/...", we
define the Location of the port using the UDP "datagram://" protocol, followed
by the first part of the resource schema "localhost" and the UDP port on which
it accepts requests. Here we assume thermostats to use CoAP standard UDP
port, which is "5683". Note that, in the Location, we do not define the address of
a specific thermostat, e.g., "datagram://localhost:5683/42". On the contrary, we
just specify the generic address to access thermostats in the system, while the
specific binding will be done at runtime, thanks to the .alias parameter of the
coap protocol, described later on.

10 Gabbrielli M. et al.

At line 11 we define coap to be the protocol used by the outputPort. At
lines 12–22 we specify some parameters of the coap protocol — this matches the
standard way in which Jolie defines parameters for Protocols in ports. Here, we
follow the methodology presented in [25] for the implementation of the HTTP
protocol in Jolie — indeed CoAP adopts HTTP naming schema and resource
interaction methods. In particular, we draw from [25] the parameter prefix .osc,
whose name is the acronym of “operation-specific configuration” and which is
used for configuration parameters related to a specific operation.

In the example, we define .osc parameters for both operations getTmp and
setTmp. At line 13 we specify that the CoAP verb used for operation getTmp is
"GET". At line 14 we define, using the .contentFormat parameter, that the encoding
of the payload of the message is in text format. Other accepted values for the
.contentFormat parameter are "json" and "xml". Marshalling and un-marshalling
is automatic and transparent to the programmer. This feature is enabled by the
structure of Jolie variables, which are always tree-shaped, hence they can be
easily translated into representations based on that shape. At line 15 we set the
.messageType parameter to "CON", that stands for confirmable. Accepted values
for the .messageType parameter are confirmable and not confirmable ("NON"),
the latter being the deafault value. In the first case the sender will receive an
acknowledgment message from the receiver, in the second case it will not. At
line 16, following the practice introduced in [25], we specify that getTmp aliases
a resource whose path concatenates a static part, given by the Location, and
the instantiation of the template "/%!{id}/getTemperature" provided by protocol
parameter .alias. The template is instantiated using values from the parameter
of the operation invocation in the behavior, e.g., value 42 at line 281. Hence,
the interpretation of the declaration at line 16 is that, when invoking operation
getTmp at runtime, the element id of the invocation will be removed from the
payload and used to form the address of the requested resource. The aliasing
for operation setTmp (line 21) is similar to that of getTmp, while the operation
uses verb POST. Since here the .contentFormat parameter is omitted, the default
"text/plain" is used.

To conclude, we briefly comment the runtime execution of the example, de-
scribed in the behavior at lines 28–33. At line 28 the controller invokes operation
getTmp. Being an outgoing RequestResponse, the invocation defines on which port
to perform the request (Thermostat) and presents two pairs of round brackets:
the first contains the data for the request, the second points to the variable that
will store the received response. Recalling the aliasing defined at line 16, at line
28 we define the value of element id = 42, thus the URI of the resource invoked
at runtime is "coap://localhost/42/getTemperature". Notably, in the example we
hard-coded the id of the device, however in a more realistic setting the value
of id would be retrieved dynamically, e.g., as an execution parameter, from a
configuration file or from a database. Once received, the response from thermo-
stat 42 is assigned to variable temp. The example concludes with a conditional
1 In Jolie the dot . defines path traversals inside trees. Hence, the notation {.id = 42}
indicates a tree with an empty root and a subnode called id, whose value is 42.

Language Abstractions for Interoperability of IoT Platforms 11

in which, if the temperature is above 27 degrees (line 29), the thermostat is set
to lower room temperature to 24 degrees, while, if the temperature lies below 15

degrees, the thermostat is set to raise the temperature to 22 degrees.
Dually to outputPorts, inputPorts allow the programmer to specify inbound

communications. The parameters described above are valid also for inputPorts,
with the only difference that messageType works only for RequestResponses, and
specifies whether the communication of the reply is reliable or not. Note that,
concerning the .alias parameter, the template is instantiated using the address
of the incoming communication and the values are inserted among the elements
of the payload.

6 Supporting Message Queue Telemetry Transport in Jolie

Message Queue Telemetry Transport (MQTT) [6, 7] is a publish/subscribe mes-
saging application protocol built on top of the TCP transport protocol.

A typical publish/subscribe interaction pattern can be diagrammatically rep-
resented as in Fig. 1 where:

1. a Subscriber subscribes to topic (a) at some Broker;
2. a Publisher publishes a message to topic (a) at the same Broker;
3. the Broker forwards the message to topic (a) to the Subscriber.

Subscriber Broker Publisher

1) Subscribe to (a)

2) Publish at (a)

3) Forward message in (a)

Fig. 1. Typical publish/subscribe interaction pattern.

More generally, messages published on a topic are forwarded to all current
subscribers for the topic.

On top of the basic mechanism of publish/subscribe, MQTT defines three
levels of quality of service (QoS) for the delivery of each message published by a
publisher. QoS levels determine whether messages can be lost and/or duplicated.
Concretely, QoS levels are as follows:

– At most once — the message can be lost, no duplication can occur.
– At least once — delivery of the message is guaranteed, but duplication may

occur.

12 Gabbrielli M. et al.

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort3 {
6 Location: "socket://localhost:8050"
7 Protocol: mqtt {
8 .broker = "socket://localhost:1883"
9 }

10 Interfaces: TemperatureInterface
11 }
12
13 main {
14 ...
15 receiveTemperature(data);
16 ...
17 }

Listing 4. Code of the Collector Example, revised for MQTT.

– Exactly once — delivery of the message is guaranteed and duplication cannot
occur.

To present how we model the MQTT protocol in JIoT, we first detail the
simpler case of OneWay communications in Section 6.1. Then, we address the
more complex case of RequestResponse communications in Section 6.2. Notably,
our modeling of end-to-end communications over a publish/subscribe channel
is independent from JIoT, i.e., it is a general reference on how to implement
one-way and request-response communications on top of any publish/subscribe
channel.

6.1 One-Way Communications in MQTT

We first consider the case of inbound communications and then the case of
outbound communications.

We exemplify OneWay inbound communications using the example in List-
ing 4, which is a revision of the example in Listing 2 by omitting the ports
CollectorPort1 and CollectorPort2 and by adding an MQTT inputPort named
CollectorPort3.

As expected, the program behavior and the structure of the inputPort are
unchanged. Main novelties are:

– the used Location (line 6) has the prefix "socket://" (as seen in the HTTP
port) since MQTT relies on TCP transport protocol;

– the used Protocol (line 7) is mqtt;
– the .broker protocol parameter (line 8), which is compulsory when the mqtt

protocol is used in inputPorts, specifies the address of the Broker.

Language Abstractions for Interoperability of IoT Platforms 13

Collector Broker Device

1) Subscribe to
(receiveTemperature)

2) Publish on
(receiveTemperature)

3) Forward message on
(receiveTemperature)

Fig. 2. Representation of the example in Listing 4.

From the perspective of the programmer, the syntax and the effect of the com-
munication primitive are the same as in Listing 2. However, we actually exchange
several messages to capture that effect in MQTT, as shown in Fig. 2.

Beyond defining such message exchanges, we also need to decide how to
identify the topic on which the message exchange is performed.

Regarding the message exchanges, from the point of view of the programmer,
an inbound OneWay communication receives a datum from the communication
partner. To obtain the same effect using the publish/subscribe paradigm, one
has first to subscribe at the Broker to the chosen topic and then wait to re-
ceive a message on that topic, forwarded by the Broker. How topics are selected
will be detailed later on. The execution of a reception on a OneWay operation
comprises two actual communications: a subscription from the program to the
Broker and a message delivery in the opposite direction. However, subscription
to topics and the execution of a message reception are logically separated and
can be done at different moments. Indeed, the subscription is performed when
the JIoT program is launched for all operations present in MQTT inputPorts.
This choice is more in line with the expected behavior of Jolie programs — and
of Service-Oriented programs in general — where messages to operations whose
reception statements are not yet enabled are stored until the actual execution
of the reception. Here, if the subscription is performed along with the execution
of the OneWay operation, previous messages could be no more available. In JIoT,
the compulsory parameter .broker is needed precisely to know the address at
which the subscription needs to be performed. The address for the delivery of
the actual message is the usual Location of the inputPort.

Regarding the selection of topics, similarly to what done for CoAP resources,
in MQTT by default we map JIoT operations to topics, otherwise we use the
.osc parameter .alias to loose the coupling between operations and topics.
We remark that .alias parameters in inputPorts have a different behavior in
MQTT with respect to HTTP and CoAP. In CoAP the name of the resource
extracted from the received message is used to derive the instantiation of the
.alias template. The values resulting from the match are then inserted among
the elements of the payload before storing it in the target variable data. In-

14 Gabbrielli M. et al.

1 interface ThermostatInterface {
2 OneWay: setTmp(TmpType)
3 }
4
5 outputPort Broker {
6 Location: "socket://localhost:1883"
7 Protocol: mqtt {
8 .osc.setTmp << {
9 .format = "raw",

10 .QoS = 2, // exactly once QoS
11 .alias = "%!{id}/setTemperature"
12 }
13 }
14 Interfaces: ThermostatInterface
15 }
16
17 main {
18 ...
19 setTmp@Broker(24 { .id = "42" });
20 ...
21 }

Listing 5. Example of outgoing MQTT OneWay communication.

stead, in MQTT, the .alias parameter is used to identify the topic for sub-
scription. For example, in Listing 4, one could add the Protocol parameter
.osc.receiveTemperature.alias = "temperature" to specify that the selected topic
for operation receiveTemperature is "temperature". Note that, since there is no
outgoing data, templates in MQTT inputPorts, such as "temperature" in the
example, are constants (we require all such constants defined within the same
inputPort to be distinct). Having only constant aliases is not a relevant limitation
in the context of IoT, where topics are mostly statically fixed. Addressing this
limitation without disrupting the uniformity of the Jolie programming model is
not trivial and it is left as future work.

To conclude the mapping of OneWay operations in MQTT, we consider here
the case of outbound operations, exemplified in Listing 5. Outgoing OneWay oper-
ations simply cause the publication of the value passed as the parameter of the
invocation (line 19) at the Broker. The address of the Broker is defined by the
Location (line 6) of the outputPort Broker. The topic is derived from the name
of the operation and the parameter of the invocation, using protocol parameter
.alias as usual. Being an MQTT publication, we specify the .QoS protocol pa-
rameter (line 10), which selects the QoS level “Exactly once” for the operation
setTmp. Similarly to what we have done in CoAP with the contentFormat protocol
parameter, we define in .format the encoding of the message payload, in this case
a “raw” stream of bytes.

Language Abstractions for Interoperability of IoT Platforms 15

1 interface ThermostatInterface {
2 RequestResponse: getTmp(TmpType)(int)
3 }
4
5 outputPort Broker {
6 Location: "socket://localhost:1883"
7 Protocol: mqtt {
8 .osc.getTmp << {
9 .format = "raw",

10 .QoS = 2, // exactly once QoS
11 .alias = "%!{id}/getTemperature",
12 .aliasResponse = "%!{id}/getTempReply"
13 }
14 }
15 Interfaces: ThermostatInterface
16 }
17
18 main {
19 ...
20 getTmp@Broker({ .id = "42" })(temp);
21 ...
22 }

Listing 6. JIoT controller communicating over MQTT.

6.2 Request-Response Communications in MQTT

To discuss RequestResponse communications, let us consider the example in List-
ing 3, revised in Listing 6 by replacing the CoAP protocol with MQTT. We
omit OneWay communications and concentrate on the outbound RequestResponse.
Afterwards, we will also discuss the dual inbound RequestResponse.

Syntactically, the main novelty with respect to the outputPort in Listing 5 is
the addition of Protocol parameter .aliasResponse. This parameter specifies the
name of the topic where the receiver will publish its response.

From the point of view of the programmer, an outbound RequestResponse is
composed of an outgoing communication followed by an inbound reply. The out-
going communication is implemented using the approach already seen for OneWay
communications, i.e., using the .alias Protocol parameter to identify the topic.
Then, one has the issue of relating the outgoing request with its reply. Many
standard point-to-point communication technologies, such as HTTP/TCP and
the already discussed CoAP/UDP, support request-response communications
by defining means to link a given outgoing request to its reply. MQTT does
not provide dedicated means to do such a linking. Thus we specify topics for
both the request and the response, but it is responsibility of the programmer
to ensure that corresponding topics are used in the client and in the server. A
possibility for the programmer is to send the topic for the response inside the

16 Gabbrielli M. et al.

Controller Broker Thermostat

1) Subscribe to
"42/getTemperature"

2) Subscribe to
"42/getTempReply"

3) Publish to
"42/getTemperature"

4) Forward message in
"42/getTemperature"

5) Publish to
"42/getTempReply"

6) Forward message in
"42/getTempReply"

Fig. 3. Interaction in the temperature automation example in MQTT.

payload of the request message. We identify the topic for the reply with the
.aliasResponse Protocol parameter. Like for .alias parameters, the template of
the .aliasResponse parameter is instantiated using the content of the message
sent in the behavior. For example, in Listing 6, we use .id in line 20 to obtain
"42/getTemperature" and "42/getTempReply", respectively the publication and re-
ply topics.

We can now describe the pattern of interactions that we use to implement the
outgoing RequestResponse communication at line 20 in Listing 6. As a reference,
the pattern of interactions is depicted in the left part of Fig. 3. We will de-
scribe the right part later on, after having introduced inbound request-response
communications.

First, the controller subscribes to the reply topic "42/getTempReply" at the
Broker. Then, the controller sends to the Broker the request message on topic
"42/getTemperature". The execution of the RequestResponse terminates when the
Broker forwards the reply received on topic "42/getTempReply" to the controller.

Differently from inbound OneWay communications, here we do not subscribe
to the reply topic when the program is launched. Indeed, it would be useless
since no relevant message can arrive on this topic before the controller sends its
message to the Broker, and anticipating the subscription would complicate the
usage of runtime information in templates.

Language Abstractions for Interoperability of IoT Platforms 17

1 interface ThermostatInterface {
2 RequestResponse: getTmp(TmpType)(TmpType)
3 }
4
5 inputPort Thermostat {
6 Location: "socket://localhost:9000"
7 Protocol: mqtt {
8 .broker = "socket://localhost:1883";
9 .osc.getTmp << {

10 .format = "raw",
11 .alias = "42/getTemperature",
12 .aliasResponse = "42/getTempReply"
13 }
14 }
15 Interfaces: ThermostatInterface
16 }
17
18 main {
19 // ↓ receive the temperature and store it under the root of temp
20 getTmp(temp)(temp){
21 // ↑ update the content of temp and send it back as response
22 }
23 }

Listing 7. JIoT thermostat communicating over MQTT.

To exemplify inbound RequestResponse communications, we assume that the
thermostat in our example is programmed in JIoT. We report its code in List-
ing 7.

At line 11 in Listing 7, the .alias parameter "42/getTemperature" must be
defined statically, as required for inputPorts. When the thermostat program is
launched, it subscribes to topic "42/getTemperature". When a message on this
topic arrives, the payload (empty in this case) is passed to the behavior. The
body of the RequestResponse (line 20) is executed to compute the return value.
Finally, the return value is published on the reply topic "42/getTempReply", as
specified by osc parameter .aliasResponse. While in this example the parameter
.aliasResponse is statically defined, our implementation supports the definition
of dynamic .aliasResponses as in outputPorts (e.g., as seen in Listing 6).

We now summarize the exchange between the controller and the thermostat
(left part of Fig. 3):

1. when the thermostat is started, it subscribes to topic "42/getTemperature" at
the Broker;

2. when the outgoing RequestResponse is executed, the controller subscribes to
topic "42/getTempReply" at the Broker;

3. the controller publishes the request message to topic "42/getTemperature";

18 Gabbrielli M. et al.

4. the Broker forwards the message in topic "42/getTemperature" to the ther-
mostat;

5. the thermostat publishes the computed response at topic "42/getTempReply";
6. the Broker forwards the message on topic "42/getTempReply" to the controller.

We remark that RequestResponse operations in Jolie are meant to be end-to-
end communications. To ensure this in a publish/subscribe setting while using
the approach above, one has to ensure that no other participant subscribes to
the selected topics, which essentially act as namespaces.

7 Implementation

To illustrate the structure of our implementation, in Section 7.1 we discuss how
media and protocols are separated from the Jolie interpreter and available as
independent libraries. Then we describe the highlights of the implementation of
UDP and CoAP in Section 7.2 and of MQTT in Section 7.3.

7.1 Programming a Jolie Extension

In Jolie the implementations of the supported application and transport pro-
tocols are independent. This enables the composition of any transport protocol
with any application protocol. Concretely, the Jolie language is written in Java
and provides proper abstract classes that represent application and transport
protocols. Each protocol is obtained as an implementation of the corresponding
abstract classes. Each implementation is a separated library which is loaded only
if the protocol is used. This expedites the integration of new protocols in the
language.

To better illustrate this structure, we report in Fig. 4 a conceptual represen-
tation of the call flow that originates from the execution logic of the language
and interacts with the external libraries present in a given installation. The flow
starts from the Execution Engine, which interprets Jolie commands, and which is
the originator of the communication flows. This is represented by arrow 0 from
the Execution Engine. From there, the call reaches the Communication Core, which
implements the generic logic of channel creation, in turn relying on the pairing
of a medium and a protocol. In the interpreter, this division is generalized with
abstract factories for media and protocols. At runtime, the Communication Core
proceeds (arrows 1) to load the medium factory requested in the call from the
Execution Engine — in the figure we assume this is Socket — and, from that, it
obtains an implementation of the actual logic of TCP/IP channels, split between
a channel class, to handle outbound communications, and a listener class, for in-
bound communications. Finally, the Communication Core associates (arrows 2)
a protocol to the obtained medium. The flow is similar to that of media: the
Communication Core loads the protocol factory requested in the call from the
Execution Engine — in the figure we assume this is HTTP — and, from that, it
obtains an object that implements the logic of the HTTP protocol.

Language Abstractions for Interoperability of IoT Platforms 19

Legend

Interpreter

Channel Creation
 - Medium Creation
 - Protocol Creation

Communication Core
Execution Logic
Communication Logic

Execution Engine

Abstract Protocol

Abstract Medium

Abstract Protocol Factory

Abstract Medium Factory

Socket Library
Socket Medium

Socket Medium Factory

RMI Library

RMI Medium

RMI Medium Factory

HTTP Library

HTTP Protocol

HTTP Protocol Factory

SOAP Library
SOAP Protocol

SOAP Protocol Factory

……

… Artefact (jar)

1
0

1

2

2

Call Flow Instantiation

Fig. 4. Conceptual representation of the call flow among the Jolie interpreter and its
communication libraries.

7.2 Implementation of CoAP/UDP in Jolie

Since by specification the CoAP protocol relies on the UDP medium protocol, in
order to integrate CoAP in Jolie we also had to integrate the UDP medium. As
described in Section 7.1, this entailed the creation of two new libraries for the
Jolie interpreter: a medium library for UDP and a protocol library for CoAP.

We remark that, since UDP and CoAP are independent libraries, our imple-
mentation of UDP can also be used to support other protocols relying on UDP,
such as MQTT-SN [26]. The implementation of UDP consists in a listener and
a channel class, both based on the Netty framework [27]. Since the structure
expected by Jolie and the one provided by Netty are similar, the integration
of UDP is smooth. An interesting point is that exceptions raised by Netty are
captured and transformed into Jolie exceptions. These exceptions are notified
to the application protocol, which can either manage them or raise them at the
level of the behavior of the Jolie program.

20 Gabbrielli M. et al.

The implementation of the CoAP library consists in a class taking care of
encoding and decoding the message abstraction of Jolie, namely the Communica-
tion Message, into a CoAP formatted one. A second class, handling the encoding
and decoding of a CoAP message into a buffer of bytes, is based on the work
done in nCoAP [28], an open source project providing a CoAP implementation
for Java, based itself on Netty.

CoAP supports request-response communications and, in particular, CoAP
messages include fields i) to specify at which address the reply is expected and
ii) to match a reply with a previous request. Hence, the implementation of
RequestResponse communications in CoAP is sound also with a transport protocol
which is not connection-oriented, such as UDP. This would be a problem for
protocols that do not provide such a facility, such as HTTP, which is indeed not
commonly used over UDP.

Notably, Jolie comes with a formal semantics (in terms of a process calcu-
lus) [29], which enables to rigorously reason on the behavior of Jolie programs.
This has been instrumental in the evolution of the language, e.g., to specify and
prove properties on the fault handling mechanisms of the language [30] or to
correctly implement sessions [31] based on correlation mechanisms [32]. The se-
mantics in [29] only considers reliable communications and needs to be extended
to also cover the unreliable case. We do not report here on this topic, since it is
not central for the purpose of this paper.

7.3 Implementation of MQTT in Jolie.

By specification, MQTT relies on the TCP/IP protocol, already implemented
in Jolie. This means that, theoretically, the implementation of MQTT would
have only entailed the creation of a dedicated MQTT protocol library. However,
as detailed in Section 7.1, Jolie assumes an end-to-end communication pattern
where the caller initiates the creation of a communication channel with a server,
which in turn expects such inbound requests. For this reason, given a certain
medium, inputPorts and outputPorts use a medium-specific implementation of,
respectively, a listener class and a channel class. This pattern, separating listen-
ers from channels, does not apply to publish/subscribe protocols, where both the
subscriber and the publisher need to establish a connection with the broker. In
our implementation, we mediated between the two approaches with a Publish-
Subscribe medium, which is essentially a wrapper implementing the logic of
Publish-Subscribe message handling on any other point-to-point medium avail-
able (TCP socket in the case of MQTT) to the interpreter. Although we strove
to separate the concerns between the Jolie interpreter and this new Public-
Subscribe channel, we had to introduce a minimal update into the Jolie Com-
munication Core so that it could choose between the standard end-to-end media
and the new wrapper.

The MQTT protocol class both encodes and decodes messages and imple-
ments the QoS policies of the MQTT standard. Concretely, as for CoAP, we
based the implementation of MQTT on Netty [27]. The main difficulty in the
implementation of the protocol is the definition of the message patterns needed

Language Abstractions for Interoperability of IoT Platforms 21

Adafruit DHT22
Temperature

Sensor

Adafruit
GA1A12S202
Light Sensor

ESP8266
Thermostat

Microcontroller
Philips Hue

Hub

JIoT
Orchestration

Samsung
SmartThings

Hub

Hue White
Lamp

Motion
Sensor

Arduino

Hue White
Lamp

CoAP/UDP HTTP/TCP

HTTP/TCPMQTT/TCP

Fig. 5. Conceptual overview of the home automation case study.

to implement OneWay and RequestResponse communications, which have been de-
scribed in Section 6. Beyond being invoked when operations are executed, the
MQTT class is also invoked when the program is started, to perform port initial-
ization. In particular, this is when subscriptions to topics identified in inputPorts
are performed (along with the related connections to the brokers).

8 Case Study

In this section, we detail the programming of a home automation case study with
JIoT. We remark that the techniques presented in this case study are not specific
to home automation and can be used in any setting where heterogeneous IoT
technology stacks need interact. The use case is peculiar as new edge devices can
be included in the system at runtime. The source code of the system is released
under the GPL v.3 license and available at [19]. We report in Fig. 5 a schematic
overview of the case study, where Cloud nodes and mid-tier controllers (repre-
sented by the element labeled “JIoT Orchestration” in Fig. 5) are programmed
in JIoT and orchestrate the behavior of a number of heterogeneous edge devices
(whose low-level programming is omitted here):

– Philips Hue Hub: a hub to control the Philips Hue smart home devices;
– Philips Hue White Lamps: connected to the hub above;
– Samsung SmartThings Hub: a hub to control devices following the Smart-

Things specification [33];
– Samsung SmartThings Motion Sensor : connected to the hub above and used

as a presence sensor;

22 Gabbrielli M. et al.

– Arduino Uno: a general-purpose microcontroller;
– Adafruit GA1A12S202 Analog Light Sensor : connected to the Arduino above;
– Adafruit DHT22 Temperature Sensor : also connected to the Arduino above;
– ESP8266 : a microcontroller to manage a pre-existing thermostat.

The case study combines commercial solutions — e.g., the Philips Hue Hub
and the Hue White Lamps system where the Lamps are controlled by the Hub —
with custom ones — these span from sensors directly connected to a board, as it
happens for the Adafruit DHT22 temperature sensor, to solutions that integrate
a pre-existing hardware, like the ESP8266 that manages a pre-existing thermo-
stat. As illustrated in Fig. 5, this heterogeneity of devices provides for a com-
prehensive scenario where we need JIoT programs that use different application
and transport protocols. In particular, Philips and Samsung Hubs communicate
with the orchestrator over HTTP/TCP, the Arduino over MQTT/TCP, and the
ESP8266 over CoAP/UDP.

In the use case we build a simple logic providing two functionalities: lighting
and temperature system control. The lighting system turns on the lights when
the motion sensor detects someone at home and the outdoor luminosity is below
some threshold. The temperature control checks the temperature and turns on
the heating system when the temperature is below some threshold. The threshold
has different values depending on whether someone is at home or not.

Logic
Engine
Service

Thing
Description

File

Cloud

Driver
Service

Edge Device

Loads

Describes

Driver
Service…

Thing
Description

File
…

…

Edge Device

Describes

Interacts

Loads

Interacts

JIoT O
rchestration

Fig. 6. Scheme of orchestration in the case study.

Language Abstractions for Interoperability of IoT Platforms 23

8.1 Structure of the Orchestration

We now describe the structure of the orchestration in the case study, which is
illustrated in Fig. 6. The orchestration is composed of multiple JIoT programs.
From top to bottom of Fig. 6, the LogicEngine contains the general logic of
system control (i.e., the one that collects the data from sensors and coordinates
the execution of the actuators in the system). Since the LogicEngine interacts
with a multitude of mid-tier devices, its natural deployment is in the Cloud,
where it is possible to scale it according to the number of managed devices and
the load of computation. At the mid-tier level we have JIoT Drivers. Each Driver
interacts with a specific edge device and it is deployed in a mid-tier machine in
the proximity of the controlled edge device.

8.2 Thing Descriptors

In the case study, the Drivers are statically configured to manage a single fixed
device using a JSON-LD 1.1 (that stands for JSON Linkage Data) configuration
file [34]. The choice of JSON-LD is not mandatory, but it has the benefit of
following the standard W3C Web of Things [22] definition of Thing Description
(TD). This makes our Drivers already compliant with other WoT frameworks,
simplifying future integrations with other WoT systems.

While discussing the full structure of TD is out of the scope of this paper,
we present in Figs. 7 and 8 examples of TDs used in our case study. In Fig. 7 we
report the TD for the DHT22 temperature sensor. For each device the JSON-
LD file specifies whether it is a sensor or an actuator (key "type") and provides
a textual description (key "description") and its name (key "name"). Each TD
provides a list of properties (key "properties") that can be read. Each property is
described by the property identifier, "temperature" in our example. The property
identifier has various sub-elements describing it. In our example we use just key
"label" to describe the unit of measure.

1 {
2 "type": "sensor",
3 "description": "Thing uses JSON-LD 1.1 serialization",
4 "name": "Adafruit DHT22 Temperature Sensor",
5 "properties": [
6 {
7 "temperature": {
8 "label": "Celsius"
9 }

10 }
11]
12 }

Fig. 7. Adafruit DHT22 Thing Descriptor.

24 Gabbrielli M. et al.

1 {
2 "type": "actuator",
3 "description": "Thing uses JSON-LD 1.1 serialization",
4 "name": "Philips Hue White Lamp",
5 "actions": {
6 "toggleLight": {
7 "description": "Turn on or off the lamp."
8 }
9 }

10 }

Fig. 8. Philips Hue White Lamp Thing Descriptor.

JSON-LD configuration files for MQTT and HTTP devices are similar. Also
configuration files for sensors and actuators are similar. As an example, we report
in Fig. 8 the configuration file for Philips Hue White Lamps. There the main
differences with respect to the previous TD (Fig. 7) are:

– the "type" is now "actuator";
– the key "actions" replaces the key "properties";
– the key "description" is used also to describe the single action.

In principle a TD can describe multiple properties belonging to a group of one
or more edge devices controlled by the same Driver. For simplicity, here we have
one TD for each edge device and, correspondingly, one Driver that controls one
edge device. We also assume that each sensor provides one property.

8.3 System Deployment

Deployment-wise, JIoT provides a vast choice regarding what technology stack
to use between the LogicEngine and the Drivers. Moreover, since both pro-
grams are developed in JIoT, it is easy to change their deployment, switching
to the technology stack that best suites a given scenario (e.g., HTTP, to ex-
ploit caching, or binary formats like SODEP [17], to limit bandwidth usage).
Here, we choose to use the HTTP/TCP stack to make our system compatible
with the majority of existing third-party solutions [9]. However, different tech-
nology stacks fit different purposes. The benefit of JIoT is that programmers can
re-use the same software components adapting their deployment to the desired
communication stacks. For example, if our goal was to be natively compatible
with other JavaScript IoT frameworks, we could have used the JSON-RPC bi-
nary protocol; if we wanted to deploy our system as part of a Service-Oriented
Architecture [14], we could have used the SOAP protocol.

While JIoT-to-JIoT deployment is flexible, the deployment towards edge de-
vices is defined by the technology supported by the edge device. Concretely, in
our case study each Driver communicates with its edge device using (one of)
the protocol(s) supported by the latter.

Language Abstractions for Interoperability of IoT Platforms 25

8.4 Components Behavior

When started, a Driver loads the TD configuration file of its edge device. Then
it registers itself to the LogicEngine. In the registration, it sends the information
retrieved from the TD, enriched with two additional pieces of information: the
address where the edge device can be contacted — i.e., the Driver location —
and the identifier of the user to which the edge device belongs. Once registered,
the Driver acts as a forwarder between the LogicEngine and the edge device.

The LogicEngine runs on the Cloud and manages a number of sensors and
actuators. More precisely the LogicEngine has one running session for each user
(distinguished according to the user identifier), managing all her sensors and
actuators. Each session is associated with an array of devices that can be scanned
to find the location of devices with specific properties and interact with them;
e.g., at lines 10–26 of Listing 8 the procedure getTemperature of the LogicEngine,
computing the average temperature recorded by the sensors of one user.

1 interface driverInterface {
2 RequestResponse: engineRequest(request)(response)
3 }
4
5 outputPort Driver {
6 Protocol: http
7 Interfaces: driverInterface
8 }
9

10 define getTemperature {
11 sum = 0 ;
12 n = 0 ;
13 for (device in devices) {
14 if(device.type == "sensor" &&
15 is_defined(device.properties.temperature)) {
16 Driver.location = device.driverLocation ;
17 request.operationName = "getTemperature" ;
18 engineRequest@Driver(request)(response) ;
19 sum = sum + response.deviceResponse ;
20 n++
21 }
22 } ;
23 if(n!=0) {
24 temperature = sum / n
25 }
26 }

Listing 8. LogicEngine Driver outputPort and getTemperature procedure.

26 Gabbrielli M. et al.

Briefly, procedure getTemperature:

– scans the devices structure (line 13) containing all registered Drivers;
– selects those whose type is "sensor" and have a property (under the sub-

structure properties) named temperature. Note how Jolie tree-shaped variables
ease the exploration of structured data; in this case the one sent by the Drivers
at registration time (and read from their associated JSON-LD file);

– it dynamically sets (line 16) the location of outputPort Driver (lines 5-8) to
contact the selected Driver;

– it sets the request operation to getTemperature (line 17);
– it retrieves the temperature sensed by the edge device controlled by the se-

lected Driver, invoking it through operation engineRequest;
– it aggregates the sensed temperature in variable sum and keeps track of the

number of requests in variable n (lines 19–20);
– it computes the mean temperature (lines 23–25).

The procedures that calculate the mean of the sensed external luminosity
and the one to check the presence of people at home are similar to the one in
Listing 8, except that the searched properties are light in the first case, and
motion in the second.

We report in Listing 9 one of the procedures managing the actuators, specif-
ically the one used to set the temperature. The main difference with respect to
the logic in Listing 8 is that procedure setTemperature:

– selects the devices whose type is "actuator" (line 3);
– sets the request operation to "setTemperature" and passes the value in variable

comfortTemperature as parameter of the request (lines 6-7).

Note that the operation called on the Driver is engineRequest both in List-
ing 8 and Listing 9. This support the extension of the LogicEngine with new
procedure definitions that implement a given goal without requiring to change
the interface between the LogicEngine and the Drivers. In turn, a request with

1 define setTemperature {
2 for (device in devices) {
3 if(device.type == "actuator" &&
4 is_defined(device.properties.temperature)) {
5 Driver.location = device.location ;
6 request.operationName = "setTemperature" ;
7 request.deviceRequest = comfortTemperature ;
8 engineRequest@Driver(request)(response)
9 }

10 }
11 }

Listing 9. LogicEngine setTemperature procedure.

Language Abstractions for Interoperability of IoT Platforms 27

the same operationName (e.g., "setTemperature") triggers different behaviors in
different Drivers, as each implements the specific logic of interaction with its
associated edge device.

8.5 Cloud Deployment

We conclude this section by describing the Cloud deployment of the LogicEngine,
which is containerized using Docker [35]. The container is deployed automatically
into an Amazon Web Service cluster via the Docker Swarm manager [36]. The
LogicEngine is deployed in the worker cluster, allowing the manager to balance
the load of requests. We report in Listing 10 the content of the Dockerfile used
to deploy the LogicEngine.

At line 1 we declare the starting image for the container, which is the
lightweight Linux Alpine distribution with OpenJDK 8 pre-installed. At lines
3–4 we install the JIoT fork interpreter and we set the environmental variable
JOLIE_HOME to point to the location of the installed interpreter. At lines 6–7 we
add the source code of the LogicEngine in the home directory of the image. Fi-
nally, at line 8 we start the execution of the LogicEngine.

9 Related Work

In the literature there are many proposals for platforms, middlewares, smart
gateways, and general systems, all aimed at solving the interoperability problem
arising from the current “babel” of IoT technologies (protocols, formats, and
languages). Without any claim of being complete, here we mention a few notable
examples which are somehow related to the topic of the current paper.

Recently the W3C started the Web of Things (WoT) Working Group [22].
The aim of WoT is to define a standard stack of layered technologies, as well
as software architectural styles and programming patterns, to uniform and sim-
plify the creation of IoT applications. In this context, the W3C is working on
a WoT Architecture [37]. The main concept of the architecture is the notion of
“servient”, a virtual entity that represents a physical IoT device. Servients provide
technology-independent, standard APIs that developers can use to transparently

1 FROM openjdk:alpine
2
3 RUN java -jar jiot.jar -jh /usr/lib/jolie/ -jl /usr/bin/
4 ENV JOLIE_HOME /usr/local/lib/jolie
5
6 ADD logic_engine.ol /home/.
7 WORKDIR /home
8 RUN jolie logic_engine.ol

Listing 10. The Dockerfile used to deploy the LogicEngine.

28 Gabbrielli M. et al.

operate in heterogeneous environments. Remarkably, both the WoT proposal and
ours concern high-level abstractions for low-level access to devices provided via,
e.g., HTTP, CoAP, and MQTT. However, while we propose a dedicated lan-
guage, they provide API specifications. More in general, there are many propos-
als for the integration of WoT and IoT. For example [38] and [39] define general
platforms covering different layers of IoT, including an accessibility layer which
integrates concepts like smart gateways and proxies to facilitate the connection
of (smart) Things into the Internet infrastructure, using architectural principles
based on REST. Smart gateways and proxies are used in several industrial pro-
posals to facilitate the development of applications. Common denominator of
some of these proposals, e.g., [33, 40, 41], is the abstraction of low-level func-
tionalities provided by embedded devices (e.g., connectivity and communication
over low-level protocols like ZigBee, Z-Wave, Wi/IP/UPnP, etc.). Smart gate-
ways are used also to translate (or integrate) CoAP into HTTP [42, 43, 44] and to
integrate both CoAP and MQTT by means of specific middlewares [45]. Eclipse
IoT [46] is an IoT integration framework proposed by the Eclipse IoT Working
Group. Aim of Eclipse IoT is to build an open IoT stack for Java, including the
support for device-to-device and device-to-server protocols, as well as the provi-
sion of protocols, frameworks, and services for device management. There exist
several European projects, notably INTER-IoT [47] and symbIoTe [12], that ad-
dress the issue of interoperability in IoT and have produced several concrete
proposals. Finally, a work close to ours is [48], where a middleware converts IoT
heterogeneous networks into a single homogeneous network.

Although related to our aim in this paper, the cited proposals tackle the
problem of IoT integration from a framework perspective: they provide chains
of tools, each addressing a specific level of the integration stack. Differently, we
extend a language specifically tailored for system integration and advanced flow
manipulation, Jolie, to support integration of IoT devices. This offers a single
linguistic domain to seamlessly integrate disparate low-level IoT devices and
intermediate nodes (collectors, aggregators, gateways). Moreover, Jolie is already
successfully used for building Cloud-based, microservice solutions [49, 50]. This
makes the language useful also for assembling advanced architectures for IoT,
e.g., to handle real-time streaming and processing of data from many devices.
The benefit, here, is that, while solutions based on frameworks require dedicated
proficiencies on each of the included tools, Jolie programmers can directly work
at any level of the IoT stack, without the need to acquire specific knowledge on
the tools in a given framework.

To conclude our revision of related work, we narrow our focus on language-
based integration solutions for IoT. The work mostly related to ours is Sen-
sorML [51]. SensorML, abbreviation of Sensor Model Language, is a modeling
language for the description of sensors and, more in general, of measurement
processes. Some features modeled by the language are: discovery and geolocal-
ization of sensors, processing of sensor observations, and functionalities to pro-
gram sensors and to subscribe to sensor events. While some traits of SensorML
are common to our proposal, the scopes of the two languages sensibly differ.

Language Abstractions for Interoperability of IoT Platforms 29

Indeed, while Jolie is a high-level language for programming generic architec-
tures (spanning from Cloud-based microservices to low-level IoT integrators),
SensorML just models IoT devices, their discovery, and the processing of sensor
observations.

10 Discussion and Conclusion

In this paper, we proposed a language-based approach for the integration of
disparate IoT platforms. We built our treatment on the Jolie programming lan-
guage. This first result is an initial step towards a more comprehensive solution
for IoT ecosystem integration and management. Concretely, we included in Jolie
the support for two of the most widely used IoT protocols. The inclusion en-
ables Jolie programmers to interact with the majority of present IoT devices.
Summarizing our results: i) we included in Jolie the CoAP application protocol,
also extending the Jolie language to support the UDP transport protocol, ii)
we added the support for the MQTT protocol and, in doing so, iii) we tackled
the challenging problem of mapping the renowned pattern of request-responses
(typical of HTTP and other widely used protocols) into the publish/subscribe
message pattern of MQTT. The mapping abstracts from peculiarities of MQTT
and is applicable to any publish/subscribe protocol.

Regarding future work, we are currently investigating the integration in Jolie
of more IoT protocols [3], in order to extend the usability of the language in the
IoT setting.

It would also be interesting to extend not only the Jolie interpreter, as we
have done, but also the formal model behind it [29, 31, 52]. To this end, we can
take ideas from the formal model of IoT systems presented in [53].

Another interesting direction for future developments is studying how Jolie
can support the testing of IoT technologies, e.g., to test how different protocol
stacks perform over a given IoT topology. Thanks to the simplicity of changing
the combination of the used protocols (application and transport), experimenters
can quickly test many configurations, also enjoying a more reliable platform to
compare them. Indeed, usually even changing one of the protocols in the config-
ured stack would require an almost complete rewrite of the logic of network
components. Contrarily, in Jolie, this change just requires an update of the
deployment part of programs, leaving the logic unaffected. Moreover, such an
update could even be done programmatically, making the practice of repeated
experimenting on IoT networks easier and more standardized.

Finally, as future work, we also consider the possibility of developing a light-
weight version of the language, to be used on low-power IoT devices. Indeed,
in this paper, we assumed that these devices are programmed with low-level
languages, since they can support only a very constrained execution environment.
Clearly, letting programmers develop all the components of an IoT network in
the same language would not only ease its implementation but also testability,
deployment, and maintenance. However, achieving such a result would require a
very challenging engineering endeavor.

30 Gabbrielli M. et al.

Acknowledgments We thank Marco Di Felice, Luca Bedogni, and Federico
Montori for useful suggestions and comments.

References

1. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):
A vision, architectural elements, and future directions,” Future Generation Comp.
Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

2. L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer
Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

3. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of Things: A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

4. C. Bormann, “CoAP website.” http://coap.technology/, 2016.
5. Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol

(CoAP),” RFC 7252, IETF, 2014.
6. MQTT community, “MQTT website.” http://mqtt.org, 2014.
7. A. Banks and R. Gupta, “MQTT Version 3.1.1,” Oasis standard, Oasis, 2014.

Available at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/.
8. M. Milenkovic, “A case for interoperable IoT sensor data and meta-data formats:

The Internet of Things (Ubiquity symposium),” Ubiquity, pp. 2:1–2:7, 2015.
9. L. Richardson and S. Ruby, RESTful web services. O’Reilly Media, Inc., 2008.

10. N. Garg, Apache Kafka. Packt Publishing Ltd, 2013.
11. S. Soursos, I. P. Žarko, P. Zwickl, I. Gojmerac, G. Bianchi, and G. Carrozzo,

“Towards the cross-domain interoperability of IoT platforms,” in EuCNC, pp. 398–
402, IEEE, 2016.

12. I. Gojmerac, P. Reichl, I. Podnar Žarko, and S. Soursos, “Bridging IoT islands:
the symbIoTe project,” Elektrotechnik und Informationstechnik, vol. 133, no. 7,
pp. 315–318, 2016.

13. “The bIoTope project.” http://www.biotope-project.eu/, 2017.
14. T. Erl, Soa: principles of service design. Prentice Hall Press, 2007.
15. F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro, “JOLIE: a Java Orchestration

Language Interpreter Engine,” ENTCS, vol. 181, pp. 19 – 33, 2007.
16. F. Montesi, C. Guidi, and G. Zavattaro, “Composing services with JOLIE,” in

ECOWS, pp. 13–22, IEEE, 2007.
17. F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented programming with Jolie,”

in Web Services Foundations, pp. 81–107, Springer, 2014.
18. “Jolie website.” http://jolie-lang.org, 2017.
19. M. Gabbrielli, S. Giallorenzo, I. Lanese, and S. P. Zingaro, “Jolie for IoT website.”

http://www.cs.unibo.it/projects/jolie/jiot.html, 2017.
20. W3C, “Transport message exchange pattern: Single-request-response.” https://

www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP, 2001.
21. M. Gabbrielli, S. Giallorenzo, I. Lanese, and S. P. Zingaro, “A language-based

approach for interoperability of IoT platforms,” in HICSS, AIS Electronic Library
(AISeL), 2018.

22. “Web of Things.” https://www.w3.org/WoT/, 2017.
23. R. T. Fielding, Architectural styles and the design of network-based software archi-

tectures. PhD thesis, University of California, Irvine, 2000.

http://coap.technology/
http://mqtt.org
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://www.biotope-project.eu/
http://jolie-lang.org
http://www.cs.unibo.it/projects/jolie/jiot.html
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP
https://www.w3.org/WoT/

Language Abstractions for Interoperability of IoT Platforms 31

24. J. Postel, “User datagram protocol,” RFC 768, IETF, 1980.
25. F. Montesi, “Process-aware web programming with Jolie,” SCP, vol. 130, pp. 69–96,

2016.
26. U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—a publish/subscribe

protocol for wireless sensor networks,” in COMSWARE, pp. 791–798, IEEE, 2008.
27. N. Maurer and M. Wolfthal, Netty in Action. Manning Publications, 2016.
28. O. Kleine, “nCoAP.” https://github.com/okleine/nCoAP.
29. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro, “SOCK: a calculus

for service oriented computing,” in ICSOC, pp. 327–338, Springer, 2006.
30. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro, “Dynamic error handling in

service oriented applications,” Fundam. Inform., vol. 95, no. 1, pp. 73–102, 2009.
31. F. Montesi and M. Carbone, “Programming services with correlation sets,” in IC-

SOC, pp. 125–141, Springer, 2011.
32. OASIS, “Web Services Business Process Execution Language.” http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
33. “SmartThings.” http://www.smartthings.com/, 2016.
34. M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “JSON-LD

1.1.” https://json-ld.org/spec/latest/json-ld/.
35. D. Merkel, “Docker: Lightweight linux containers for consistent development and

deployment,” Linux J., vol. 2014, Mar. 2014.
36. F. Soppelsa and C. Kaewkasi, Native Docker Clustering with Swarm. Packt Pub-

lishing, 2017.
37. “Web of Things architecture.” https://w3c.github.io/wot/architecture/

wot-architecture.html, 2017.
38. G. Dominique, “A web of things application architecture-integrating the real-world

into the web,” Zurich, Diss. ETH, no. 19891, pp. 10–12, 2011.
39. I. Corredor, E. Metola, A. M. Bernardos, P. Tarrío, and J. R. Casar, “A lightweight

web of things open platform to facilitate context data management and personal-
ized healthcare services creation,” IJERPH, vol. 11, no. 5, pp. 4676–4713, 2014.

40. “Meshlium.” http://www.libelium.com/products/meshlium/, 2016.
41. “Thinking things.” http://www.thinkingthings.telefonica.com/, 2016.
42. A. B. Sulaeman, F. A. Ekadiyanto, and R. F. Sari, “Performance evaluation of

HTTP-CoAP proxy for wireless sensor and actuator networks,” in APWiMob,
pp. 68–73, IEEE, 2016.

43. A. Ludovici and A. Calveras, “A proxy design to leverage the interconnection of
CoAP wireless sensor networks with web applications,” Sensors, vol. 15, no. 1,
pp. 1217–1244, 2015.

44. E. Mingozzi, G. Tanganelli, and C. Vallati, “CoAP proxy virtualization for the
Web of Things,” in CloudCom, pp. 577–582, IEEE Computer Society, 2014.

45. D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan, “Performance
evaluation of MQTT and CoAP via a common middleware,” in ISSNIP, pp. 1–6,
IEEE, 2014.

46. “The Eclipse for IoT Project.” https://iot.eclipse.org/, 2017.
47. M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and K. Wasielewska, “Se-

mantic technologies for the IoT - an inter-IoT perspective,” in IoTDI, pp. 271–276,
IEEE, 2016.

48. W. Zhiliang, Y. Yi, W. Lu, and W. Wei, “A SOA based IoT communication mid-
dleware,” in MEC, pp. 2555–2558, IEEE, 2011.

49. M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi, “Self-
reconfiguring microservices,” in TPFM, vol. 9660 of LNCS, pp. 194–210, Springer,
2016.

https://github.com/okleine/nCoAP
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.smartthings.com/
https://json-ld.org/spec/latest/json-ld/
https://w3c.github.io/wot/architecture/wot-architecture.html
https://w3c.github.io/wot/architecture/wot-architecture.html
http://www.libelium.com/products/meshlium/
http://www.thinkingthings.telefonica.com/
https://iot.eclipse.org/

32 Gabbrielli M. et al.

50. F. Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Insider threats in emerging
mobility-as-a-service scenarios,” in HICSS, AIS Electronic Library (AISeL), 2017.

51. “The sensorML project.” http://www.opengeospatial.org, 2017.
52. S. Giallorenzo, F. Montesi, and M. Gabbrielli, “Applied choreographies,” in

FORTE, pp. 21–40, Springer, 2018.
53. I. Lanese, L. Bedogni, and M. Di Felice, “Internet of Things: a process calculus

approach,” in SAC, pp. 1339–1346, ACM, 2013.

http://www.opengeospatial.org

