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Abstract: The Cell Method (CM) is an algebraic numerical
method based on the use of global variables: the config-
uration, source and energetic global variables. The con-
figuration variables with their topological equations, on
the one hand, and the source variables with their topo-
logical equations, on the other hand, define two vector
spaces that are a bialgebra and its dual algebra. The oper-
ators of these topological equations are generated by the
outer product of the geometric algebra, for the primal vec-
tor space, and by the dual product of the dual algebra, for
the dual vector space. The topological equations in the pri-
mal cell complex are coboundary processes on even exte-
rior discrete p—forms, whereas the topological equations
in the dual cell complex are coboundary processes on odd
exterior discrete p—forms. Being expressed by coboundary
processes in two different vector spaces, compatibility and
equilibrium can be enforced at the same time, with com-
patibility enforced on the primal cell complex and equi-
librium enforced on the dual cell complex. By way of ex-
ample, in the present paper compatibility and equilibrium
are enforced on a cantilever elastic beam with elastic in-
clusion. In effect, the CM shows its maximum potentiali-
ties right in domains made of several materials, as, being
an algebraic approach, can treat any kind of discontinu-
ities of the domain easily.
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1 Introduction

The physical variables can be classified as field and global
variables [1-6]. The use of global variables instead of field
variables allows us to obtain a purely algebraic approach
to physical laws, called the direct algebraic formulation of
the Cell Method (CM) [2-5, 7-38]. The term “direct” em-
phasizes that this formulation is not induced by the differ-
ential formulation, as is the case for the so-called discrete
formulations.

The range of applicability of differential formulation
is restricted to regions without material discontinuities or
concentrated sources, whereas that of the algebraic formu-
lation is not restricted to such regions [3]. Consequently,
the global variables involved in obtaining the direct alge-
braic formulation non necessarily must be differentiable
functions. This makes the CM particularly useful for mod-
eling domains made of several materials, such as masonry
walls [32, 33, 39] heated floors [21] and composite materials
[23, 40]. Another interesting field of application of the CM
is fracture mechanics in brittle materials [3, 21-23, 39-47].

By performing densities and rates of the global vari-
ables, it is then always possible to obtain the differential
formulation from the direct algebraic formulation.

A further criterion for classifying the physical vari-
ables is based on the role they play in a theory. Accord-
ing to this second criterion, all physical variables belong
to one of the following three classes [2, 4, 17, 22, 42]:

¢ Configuration variables, describing the field con-
figuration (displacements for solid mechanics, spa-
tial velocity for fluidodynamics, electric potential for
electrostatics, temperature for thermal conduction,
and so forth).

¢ Source variables, describing the field sources (forces
for solid mechanics and fluidodynamics, masses for
geodesy, electric charges for electrostatics, electric
currents for magnetostatics, heat sources for ther-
mal conduction, and so forth).
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Table 1: Examples of discrete p-forms

DE GRUYTER

Variable Potential of a vector

field

Line integral of a
vector

Flux Mass content

Evaluated on 0-cells (points)

1-cells (lines)

2-cells (surfaces) 3-cells (volumes)

Discrete p-form discrete 0-form @ [P]

discrete 1-form @[L]

discrete 2-form @ [S]  discrete 3-form @ [V]

¢ Energetic variables, resulting from the multiplica-
tion of a configuration variable by a source variable
(elastic energy density for solid mechanics, kinetic
energy for dynamics, electrostatic energy for elec-
trostatics, magnetostatic energy for magnetostatics,
heat for thermal conduction, and so forth).

The terms “configuration variables” and “source vari-
ables” were introduced by Tonti in 1972 and are of special
importance for the philosophy of the CM [4, 20]. The con-
figuration variables and source variables correspond to the
geometric variables and force variables, respectively, used
by Penfield and Haus [48].

The equations used to relate the configuration vari-
ables of the same physical theory to each other and the
source variables of the same physical theory to each other
are known as topological equations. They can also be de-
fined as those equations that express a relationship be-
tween a variable associated with a space element and a
variable associated with the boundary of the same space
element. Let M be a space element and let )M be its bound-
ary, broadly speaking a topological equation:

A[M] = +B[0M] @)

is therefore expressed by one of the two following maps
[17]:
t1: oM—-M (2)

t: M — oM 3)

The equations that relate configuration to source vari-
ables, of the same physical theory, are known as con-
stitutive equations, or material equations. They are phe-
nomenological equations and specify the behavior of a
material, a substance, or a media. The constitutive rela-
tions can be reversible or irreversible.

The equations providing the configuration of a system,
once the sources are assigned, are called the fundamen-
tal equations, and the related problem is called the funda-
mental problem. The set of fundamental equations defines
the fundamental system of equations.

The topological equations of a fundamental problem
are always maps of the type t; in Eq. (2). They can be
described in algebraic topology [49-52] by using discrete

p-forms [2], which are the algebraic versions of the exte-
rior differential forms [49, 53-55].

In algebraic topology, it is usual to introduce cell com-
plexes, mainly in the restricted form of simplicial com-
plexes, and to consider the vertices, edges, surfaces, and
volumes of a cell complex as p—cells, that is, cells of differ-
ent dimensions. A physical variable ¢ associated with one
set of p—cells of a cell-complex defines a discrete p—form
(or a discrete form of degree p). The potential of a vector
field, line integral of a vector, flux and mass content are
discrete forms of degree 0, 1, 2, and 3, respectively (Table
1).

The discrete p—forms generalize the notion of field
functions, because, in a discrete p—form @ [P], @ [L], @ [S],
or @ [V], we associate the value of a physical variable with
the space elements of degree p, where p = 0,1, 2,3,
whereas the field functions, f (P), always associate the
value of a physical variable with the points of the domain.
As a consequence, @ [P], @[L], @[S], and @ [V] are do-
main functions, or set functions, that is, functions whose
input is the set of all subsets of a set, whereas f (P) is a
point function.

Moreover, in algebraic topology the topological equa-
tions of a fundamental problem are described by using the
coboundary operators: a coboundary operator is any map
from a subset of n p—cells to a subset of m (p + 1)-cells [56—
60]:

n

m

dar . Ze}, — e;a " (4)
i=1 j=1

where e}, is the i-th p-cell and eim is the j-th (p + 1)-cell.
When m = 1 and n equals the number of cofaces

of the (p + 1) —cell, the coboundary operator is indicated

with the symbol 6:

n
& Zeé, — €pi1 )

i=1

and 6" defines the coboundary of €pii.

Let ' be the weight (an integer number) of the
i~th p-cell, e},. This weight induces a weight on the
(p + 1) —cells of the cochains of e},, by a process that is
called the coboundary process, where a cochain complex,
(A%, d"), is formally defined as a sequence of Abelian
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Figure 1: How to find the weight of a (p + 1) —cell starting from the weights of its faces.

+1

Figure 2: The coboundary process.

groups, or modules, ..., A"2 A"l A", AT A2
connected by homomorphisms (the coboundary opera-
tors):

dh: A" - A™ (6)

such that the composition of any two consecutive maps is
zero for all n:

d™lod"=0 vn; @)
n-2 n-1 n n+1 n+2
L gt g AT el AT a2 AT (g

Each (p + 1) —cell collects the weights that are spread
on the (p + 1) —cell itself by its faces, after having multi-
plied the weights by the mutual incidence numbers (Fig-
ure 1).

The incidence number is equal to (the pictorial view
of the coboundary process is provided in Figure 2forn = 1
andp = 1):

e 0, if the (p — 1)-cell is not on the boundary of the
p—cell;

¢ +1,if the (p — 1)-cell is on the boundary of the p—cell
and the orientations of the p—celland (p - 1)-cell are
compatible;

e —1,ifthe (p — 1)-cell is on the boundary of the p—cell
and the orientations of the p—celland (p — 1)-cell are
not compatible.

The coboundary process can be defined as the action
of the n p—cells, which spread their own weights on their
cofaces, in accordance with the mutual incidence num-
bers.

When the constitutive relations are reversible, it is also
possible to find the sources once the configuration of the
system is assigned. In this latter case, the solving system
is called the system of the dual fundamental problem, or
dual fundamental system, and its equations are called the
dual fundamental equations.

The topological equations of a dual fundamental
problem are still maps of the type t;. Therefore, even the
topological equations of the dual fundamental problem
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can be described in algebraic topology by using discrete
p-forms and coboundary operators. Consequently, the
coboundary process plays a key role in both the fundamen-
tal problems in physics. In particular, in [1, 2, 15, 17, 18, 20]
we discussed the role played by the coboundary process
performed on discrete p—forms of degree 2, 1, and 0, both
in space and space/time domains.

2 Why and how to use two cell
complexes in the CM

In the algebraic setting, the global physical variables have
a natural association with one of the four space elements,
P,L,S, and V (Figure 3), and one of the two time elements,
I and T (Figure 4) [1, 2, 22, 39, 41]. Moreover, the space
and time elements are provided with two kinds of orien-
tations, inner and outer, in relation of duality between
them. Thus, global physical variables are associated with
oriented space and time elements.

A more accurate analysis of this association shows
that some global variables are associated with space or
time elements provided with inner orientations, whereas
some other global variables are associated with space or
time elements provided with outer orientations. If we con-
sider all the combinations between oriented space and ori-
ented time elements related to physical variables, we see
that there are 32 possible couples of space/time elements
in physics. These 32 couples can, in turn, be divided into
two groups (Figure 5), each consisting of 16 elements. In
the first group, there are the couples of time and space el-
ements that are endowed with the same kind of orienta-
tion, either inner or outer, whereas, in the second group,
there are the couples of time and space elements that are
endowed with opposite kinds of orientation, one inner and
the other outer.

P L S \4

Figure 3: The four space elements and their notations.

@ L4 |
I I

| T |

Figure 4: The two time elements and their notations.
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In Figure 5, a point, a line, a surface, and a volume en-
dowed with inner orientations are denoted by putting bars
over their symbols (P, L, S, and V), whereas a point, a line,
a surface, and a volume endowed with outer orientations
are denoted by putting tildes over their symbols (P, L, S,
and V).

1T i F i 1T
v [LF] [LF] ®|[LF] [LF] F|[LF] [iF] ¥ [LF] [TF]
L|[if] [TL] E|[Lf] [£E] L|[LL] [EL] ©|[LL] [TL]
s|[Ls] [ts] §|[L§] [%.8] s|[is] [£5] §|[L5] [T5]
VI[Lv] [tV] VI[i¥] [i¥] V|[iv] [Ev] ¥|[L¥] [L9]

Figure 5: Classification of the space and time elements related to
the physical variables.

The physical variables of the first group are those of
the mechanical theories, whereas the physical variables of
the second group are those of the field theories.

As far as the field theories are concerned, it was found
that the configuration variables of the fundamental prob-
lem of any field theory are associated with space elements
endowed with an inner orientation, P, L, S, and V, whereas
the source variables are associated with space elements
endowed with an outer orientation, P, L, S, and V.

This becomes a key point in computational physics,
when we relate it with the discussion on the inner and
outer orientations of a vector space and its dual vector
space. In fact, by providing the elements of a vector space
with an inner orientation, the elements of the dual vec-
tor space turn out to be automatically provided with an
outer orientation, as a consequence of the Riesz represen-
tation theorem. Now, due to the geometrical interpretation
of the elements of the vector spaces, given by the geomet-
ric algebra [61-72], we can associate the elements of the
two vector spaces with the geometrical elements of two cell
complexes, where the elements of the second cell complex
(the dual cell complex, or dual complex) are the orthogo-
nal complements of the corresponding elements in the first
cell complex (the primal cell complex, or primal complex).
Due to this association, by providing the elements of the
first cell complex with an inner (or an outer) orientation,
we induce an outer (or an inner) orientation on the second
cell complex. This suggests us two considerations:

¢ Due to the inner rather than outer orientations of the
configuration and source variables, the space of the
configuration variables may be viewed as a real (or
complex) inner product Hilbert space [65], H, and
the space of the source variables may be viewed as
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its dual space, consisting of all continuous linear
functionals from H into the field R (or the field C).
For example, a force (which is a source variable) is a
covector on the space of the configuration variables
because the force acts on the displacement vector
(whichis a configuration variable) by originating the
real scalar that represents the work of the force.

¢ Since the source variables require an outer orienta-
tion, a proper description of a given physical phe-
nomenon requires to use two cell complexes in re-
lation of duality, not just one, as usually was done
in computational physics before the introduction of
the CM. In fact, it is true that the inner orientation
of the elements of a vector space also induces an
outer orientation on the elements of the same vector
space and this may allow us to think that a single cell
complex would be sufficient. Nevertheless, the as-
sociation between the two orientations of the same
cell complex is not automatic. There are always two
possible criteria for establishing the correspondence
between the two orientations, which depend on the
orientation of the embedding space. Conversely, the
relationship between inner (or outer) orientation of
a cell complex and outer (or inner) orientation of its
dual cell complex is derived from the Riesz represen-
tation theorem and does not depend on the orienta-
tion of the embedding space. Therefore, choosing to
use two cell complexes, the one the dual of the other,
instead of one single cell complex, is motivated by
the need to provide a description of vector spaces
that is independent of the orientation of the embed-
ding space.

The second consideration and all that follows from it
(see Section 3) were pointed out in [20] for the first time.
Previously, the use of two cell complexes was presented
as just a geometrical feature of the CM, whereas it is an
unavoidable choice, due to the structure of bialgebra of the
algebraic formulation.

Moreover, we can also observe that the cell complexes
are generalizations of the oriented graphs. Consequently,
all the properties of the dual graphs naturally extend to the
dual cell complexes. In particular, it is worth noting that
the dual graphs depend on a particular embedding. Since
even the orthogonal complements (that is, the isomorphic
dual vectors) and the outer orientation depend on the em-
bedding, we will associate the outer orientation with the
dual cell complex and will retain the inner orientation for
the primal cell complex (Figure 6). This is why we will not
take into consideration the possibility of providing the pri-

An Application to the Cantilever Elastic Beam with Elastic Inclusion = 81

mal cell complex with an outer orientation and the dual
cell complex with an inner orientation.

In doing so, the elements of the first cell complex in
space and first cell complex in time are associated with
those variables that require an inner orientation of the cell
complex, whereas the elements of the second cell com-
plex in space and second cell complex in time are asso-
ciated with those variables that require an outer orienta-
tion of the cell complex. This together with the relationship
between global variables and orientations provide the ex-
planation of why source variables are always associated
with the elements of the dual complex only [2, 39, 43-47]
and configuration variables are always associated with the
elements of the primal complex only. This last point was
raised by Tonti in several papers and books — see, for ex-
ample, [4] — but never solved before [20].

The most natural way for building the two cell com-
plexes is starting from a primal cell complex made of sim-
plices and providing this first cell complex with an ar-
bitrary inner orientation. The set of the dual elements
can then be chosen as any arbitrary set of staggered ele-
ments whose outer orientations provide the (known) in-
ner orientations of the primal p—cells [2, 39, 43, 47]. In this
sense, we can say that the outer orientations of the dual
p—cells are induced by the inner orientations of the primal
p—cells (Figure 6). We have spoken of “any” arbitrary set of
staggered elements because, since the dual elements are
equipped with the strong topology, there is not a unique
way for defining the dual elements. In particular, they may
also overlap. When they do not overlap, each p-space ele-
ment of the dual cell complex can be put in dual correspon-

N

Figure 6: Relation of duality in three-dimensional space, between
inner orientations of the primal cells and outer orientations of the
dual cells.
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dence with one (n - p) —space element of the primal cell
complex, staggered with respect to the former one, where
n is the dimension of the space. In particular, in three-
dimensional space:

¢ each node of the dual complex is contained in one
volume of the primal complex,

¢ each edge of the dual complex intersects a face of
the primal complex,

¢ each face of the dual complex is intersected by one
edge of the primal complex,

¢ each volume of the dual complex contains one node
of the primal complex.

3 The Classification diagram of the
Global Variables as a Plot of a
Bialgebra and Its Dual Algebra

By associating the configuration variables with the primal
p—cells, the set of topological equations between global
configuration variables defines a geometric algebra on
the space of global configuration variables, provided with
a geometric product. The operators of these topological
equations are generated by the outer product of the geo-
metric algebra, which is equal to the exterior product of the
enclosed exterior algebra. The dual algebra of the enclosed
exterior algebra is the space of global source variables,
associated with the dual p—cells, and is provided with a
dual product that is compatible with the exterior product
of the exterior algebra. The topological equations between
global source variables arise from the adjoint operators of
the primal operators. Finally, the pairing between the ex-
terior algebra and its dual gives rise to the energetic vari-
ables, by the interior product. Since the reversible consti-
tutive relations may be written in terms of energetic vari-
ables, because energy is the potential of the reversible con-
stitutive relations, the reversible constitutive relations re-
alize the pairing between the exterior algebra and its dual.

In algebraic topology, the topological equations on the
primal cell complex are coboundary processes on even ex-
terior discrete p—forms, whereas the topological equations
on the dual cell complex are coboundary processes on odd
exterior discrete p—forms.

When we deduce the field variables from the corre-
sponding global variables, the exterior discrete forms be-
come exterior differential forms. In particular, while the
configuration variables can be described by exterior differ-
ential forms of even kind, the source variables can be de-
scribed by differential forms of odd kind (that is, twisted
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differential forms). Moreover, the elements of the group G
are vectors instead of scalars, and the corresponding dif-
ferential form is a vector valued differential form.

The association between the physical variables, with
their topological equations, and two vector spaces, which
are a bialgebra and its dual algebra, suggests us to store the
global variables in a classification diagram made of two
columns, that is, the column of the primal vector space,
composed of the configuration variables with their topo-
logical equations, and the column of the dual vector space,
composed of the source variables with their topological
equations (Figure 7). This classification diagram is for-
mally identical to the classification diagram introduced by
[5], but holds an additional meaning beyond the mere clas-
sification of variables. As a matter of fact, the two columns
of the classification diagram given in [5] are composed by
the configuration variables, the one, and the source vari-
ables, the other, but are not put in relationship with the
primal vector space and the dual vector space, as was done
in Figure 7.

The configuration variables are arranged from top to
bottom in their column (Figure 7), in order of increasing
multiplicity of the associated space element, thus realiz-
ing a downward cochain. Conversely, the source variables
are arranged from bottom to top in their column, in order
of increasing multiplicity of the associated space element,
thus realizing an upward cochain. With this choice, each
primal p—cell is at the same level of its dual (n — p) —cell.

The solid lines indicate the constitutive relations be-
tween (primal) configuration variables and (dual) source

Source variables
Dual vector space

Configuration variables
Primal vector space

fundamental [ A [P]

equation

)

constitutive
equation

)

constitutive
equation

)

constitutive
equation

—coboundary processes on odd exterior discrete p-forms —
‘—coboundary processes on even exterior discrete p-forms—

Figure 7: Classification diagram of the physical variables in the
fundamental problem.
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variables. They also represent the pairing between config-
uration and source variables.

Note that the structure of the classification diagram is
the same both for the global and the field variables of ev-
ery physical theory of the macrocosm. The importance of
this diagram stands just in its ability of providing a concise
description of physical variables, without distinguishing
between the physical theories.

As observed in [4], even the variables and the equa-
tions of relativistic quantum mechanics for particles with
integer spins can be arranged in a diagram, which is for-
mally similar to the classification diagram. This leads us to
assume that even the operators used in quantum mechan-
ics for describing the microcosm can be associated with
space and time elements.

When the physical phenomenon evolves in time, we
have so many classification diagrams of the type shown in
Figure 7 as the time instants are. Since it is not possible
to draw a classification diagram for each time instant, we
simply double the diagram in Figure 7 and shift it to the
rear (Figure 8).

The choice of two mutually dual cell complexes also
allows us to improve the description of global variables in
computational physics. In fact, in the spirit of geometric
algebra, where the oriented space elements are p—vectors
generated by the exterior product, the attitude vectors of
the p—cells are given by the inner orientation of their dual
elements, the (n — p) —cells. This means that two mutually
dual cell complexes allows us to describe all the attributes
of the p—vectors, that is, attitude vector, orientation, and
magnitude. Conversely, by using just one cell complex, we

[P]
‘/k
A [E]
‘/‘
A [g]
I/‘
‘ (V]
e

Figure 8: Space-times classification diagram of the physical vari-
ables.
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cannot describe the attitude vector, but only the (unori-
ented) attitude.

In conclusion, by associating the global variables with
the elements of two mutually dual cell complexes, the con-
sequence is twofold:

¢ The set of the configuration variables, together with
their topological equations, is a particular case of
bialgebra. This leads us to enforce compatibility and
equilibrium at the same time, with compatibility en-
forced on the primal cell complex and equilibrium
enforced on the dual cell complex.

e The description of both the configuration and the
source variables is improved, by allowing us to au-
tomatically take into account the attitude vectors of
the p—vectors, which is impossible when the outer
orientation of cell complexes is ignored.

By overturning the point of view, that is, by assuming
these two conclusions as our starting point, and not as the
consequence, we can find in these properties, in particular
the first one, the reason why the configuration variables
are associated with space elements endowed with a kind
of orientation and the source variables are associated with
space elements endowed with the other kind of orienta-
tion. In effect, the fact that the equilibrium operators in
the fundamental problem of a given physical theory are
adjoint operators of the compatibility operators does not
depend on the used computational tool. It does not even
depend on computation. It is a general property of the fun-
damental problem and, consequently, we can take it as our
starting point.

In particular, by assuming for the orientation of vol-
umes their positive orientation, the inward orientation,
the relationships between equilibrium operators on source
variables, grad*, div", and curl”, and compatibility opera-
tors on configuration variables, grad, div, and curl, are

div" = grad; )
curl” = curlT; (10)
grad” = div’; (11)

whereas, by assuming for the orientation of volumes their
negative orientation, the outward orientation (as usual),
Eg. (9) is changed in

div" = —grad”; (12)

Due to the relationship between a basis of a given vector
space and its dual basis, the adjoints in Egs. (9 - 11) in-
dicate that it is always possible to choose the orientation



84 —— E.Ferretti

of volumes in the way that the set of configuration vari-
ables, with their topological equations, is a bialgebra. Be-
ing elements of a space vector, the configuration variables
are provided with inner orientations and their covectors—
which, in this case, are the source variables—are provided
with outer orientations.

Finally, the possibility of formulating a dual funda-
mental problem when the constitutive laws are reversible
suggests us that, in this second case, the role of bialgebra is
played by the source variables, together with the dual exte-
rior product (leading to the topological equations between
source variables). Thus, the source variables are now pro-
vided with inner orientations, whereas the configuration
variables of the dual exterior algebra are provided with
outer orientations. In this second case, we will denote the
source variables as the dual configuration variables and
the configuration variables as the dual source variables.
The classification diagram for the dual fundamental prob-
lem is shown in Figure 9.

Consequently, for the computational solution of the
dual fundamental problems, we have to associate the
source variables (dual configuration variables) with the el-
ements of the primal cell complex and the configuration
variables (dual source variables) with the elements of the
dual cell complex. This is always possible as, in a relation
of mutual duality, defining which one of the two vector
spaces is the exterior algebra and which one is the dual
exterior algebra is just a convention.

inverse constitutive

é equation v\)
£ £
= 2,
2 2
j=}
8 5
= - . R
5 inverse constitutive "E
. 1 o
E’ equation 8
g 5
o
L7
5 B
5 g
@ P
4] - - . [
@ inverse constitutive %
8 equation 4
2 =
g a,
5 m dual balance equation "'é
s Z
2 3
7 dual fundamental (T v1g
equation )

Dual source variables
Dual vector space

Dual configuration variables
Primal vector space

Figure 9: Classification diagram of the physical variables in the dual
fundamental problem.
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4 A numerical example

As we have already stated in Section 1, the algebraic for-
mulation of the CM is more convenient than the differential
formulation for treating domains made of several materi-
als. In fact, there is a remarkable difference between global
and field variables when the domain of the physical prob-
lem is composed of more than one medium: while global
variables are continuous through the interface of two dif-
ferent media, their variations can be discontinuous. Con-
sequently, even field variables, which are densities and
rates, are generally discontinuous. The same can be said
for any kind of discontinuities of the domain or the sources
of the physical problem (some examples of continuity of
the global variables are collected in Figure 10).

gravity acceleration electric

(constant density) potential
‘as/g; | ¢L

'R r R r

temperature ray vector

i =

Figure 10: Continuity of the global variables associated with points
in domains made of more than one medium.

N

Figure 11: Geometry and loading condition of the cantilever elastic
beam.

By way of example, we will employ the CM for investi-
gating the displacement and stress fields in the cantilever
elastic beam with elastic inclusion shown in Figure 11,
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a typical example of domain discontinuity since the me-
chanical properties of the inclusion differ from those of the
matrix (some applications of the CM to problems with con-
centrated sources are collected in [39, 44-46].

The sample geometry depicted in Figure 11 is the same
as that of the cantilever beam with a vertical force P =
1kN/m distributed along the free right edge that we stud-
ied and compared with FEM and GDQFEM analyses in [36].
This second time, we applied an uniformly distributed hor-
izontal load p = 10kN/m? along the free right edge (Figure
11).

The beam is L = 4m long and D = 1m high. The inclu-
sion radius is R = 0.4m and the location of the inclusion
centre, C, isdefined by L, = 2.11mand D, = 0.5m (Figure
11). The Young modulus and Poisson ratio of the matrix are
E=2.10"Paandv =0.3, respectively, while the mechan-
ical properties of the circular inclusion are E = 2 - 10'°Pa
andv =0.3.

The primal cell complex used for CM analysis is a trian-
gular mesh of Delaunay, refined along the boundary of the
circular inclusion as shown in Figure 12. Once a primal cell
complex has been provided, there are many ways for build-
ing a dual cell complex. For the two-dimensional domain
in Figure 12, we used a barycentric dual cell complex: the
dual polygons were obtained by connecting the barycenter
of every triangle with the mid-points of the edges of the tri-
angle. In so doing, the dual of each primal 1-cell (a primal
side) is not a straight line.

The main effects on the stress and strain fields pro-
duced by the difference of stiffness between the matrix and
the inclusion are depicted in Figures 13-20:

e The strain field is not uniform. Consequently, the
horizontal displacements, uy, are not described by
linear functions in the variable x (Figure 13). In par-
ticular, since the inclusion is stiffer than the matrix,
the partial derivatives dux (x, y)/0x provide us with
values that decrease when computed for points near
or within the inclusion (Figure 13). Moreover, the
vertical displacements uy are almost equal to zero
near and within the inclusion, whereas they are de-

Mesh of Delaunay
Barycentric dual mesh

0 0.5 1 1.5 2 25 3 35 4

Figure 12: Primal mesh of Delaunay and barycentric dual mesh.
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Figure 13: 3D plot of the horizontal displacements uy.
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Figure 14: 3D plot of the vertical displacements u,.
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Figure 15: Normal stresses oy plotted on the deformed configuration
(thin line: undeformed configuration; thick line: deformed configu-
ration, amplification factor of the displacements: k = 500).
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Figure 16: Shear stresses 7y, plotted on the deformed configuration
(thin line: undeformed configuration; thick line: deformed configu-
ration, amplification factor of the displacements: k = 500).
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Figure 17: Plot of the normal stresses o, along some significant
cross-sections (unit of measurement of gx: N/m?2, amplification
factor of oy: k = 1.5567 - 107%).
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Figure 18: Plot of the shear stresses 7, along some significant
cross-sections (unit of measurement of 7yy: N/m?, amplification
factor of Txy: k = 2.0562 - 107%.

scribed by skew-symmetric linear functions far from
the inclusion and the constraint (Figure 14). This
means that the Poisson effect on the cross-section
is greater far from the inclusion (and the constraint)
than near or within the inclusion (Figures 15-16).

e The isolines of the horizontal displacements uy,

shown by the contour plot in Figure 13, indicate that
the cross-sections remain almost plane far from the
inclusion, whereas they warp in the x-direction the
more they are near to the inclusion. Moreover, near
the inclusion the isolines follow the contour of the
inclusion. Thus, the warping of the cross-sections is
shaped by the inclusion.
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Figure 19: 3D plot of the normal stresses oy.
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Figure 20: 3D plot of the shear stresses 7y,

e The axial normal stresses ox are uniformly dis-

tributed along the free right edge (cross-section x =
4 in Figure 17), in order to comply with the bound-
ary conditions. Elsewhere, they cease to be uni-
formly distributed but remain described by sym-
metric functions along the cross-sections (Figure 17,
19). The main variations of gx occur along the bi-
material cross-sections: in particular, ox increases
where the local stiffness is higher and decreases
where the local stiffness is lower (Figures 15, 17, 19).
The concentration of the higher values of gy in the
area of the inclusion is particularly evident in the 3D
plot of Figure 19. Moreover, the areas subtended to
the graphs in Figure 17 are equal to each other: they
equal the external axial load for reasons of equilib-
rium along the x-axis.
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® The shear stresses 7yy are equal to zero only along
the free right edge (cross-section x = 4 in Figure 18),
in order to comply with the boundary conditions.
Elsewhere, the function describing the variation of
the shear stresses Tx, along the cross-section is a
skew-symmetric function (Figures 18, 20), for rea-
sons of equilibrium along the x-axis (the areas sub-
tended to the graphs in Figure 18 must be equal to
zero). Particularly, the peaks of 74y are higher near
the external constraint and along the boundary of
the circular inclusion, outside the inclusion (Figures
16, 18, 20). By excluding the ends from our analysis,
we can thus conclude that the stiffness discontinu-
ity along the boundary of the circular inclusion is
one of the principal factors that originates a shear
stress different from zero in a problem of axial load.
If the constitutive behavior of the beam was elastic-
plastic, the peaks of 7x, would plasticize the ma-
terial near the external constraint and the circular
boundary. Moreover, the alternation of positive and
negative peaks along the circular boundary (Figures
16, 20) makes the probability of having some sliding
along this boundary very high. In real applications,
we can discriminate whether we are faced with a
problem of creep or crack propagation near the cir-
cular boundary by performing a micro-seismic anal-
ysis with increasing external load [73].

5 Conclusions

The classification diagram of the CM, originally obtained
on the basis of physical considerations on the associations
between physical variables and geometry, has a structure
of bialgebra. In particular, the operators of the classifica-
tion diagram are generated by the outer product of the geo-
metric algebra and the exterior product of the dual algebra
of the enclosed exterior algebra. The classification itself of
the physical variables takes on a deeper meaning, by al-
lowing us to associate the configuration variables with the
geometric interpretation for the elements of a vector space
and the source variables with the geometric interpretation
for the elements of the dual vector space in the bialgebra.

The most relevant consequence of having compatibil-
ity and equilibrium operators belonging to a geometric
algebra and the dual algebra of the enclosed exterior al-
gebra, respectively, is that compatibility and equilibrium
are enforced at the same time, each one in its own vector
space. This makes exact both compatibility and equilib-
rium, the truly strength of the CM.

An Application to the Cantilever Elastic Beam with Elastic Inclusion = 87

We have provided the results given by the CM for
a cantilever elastic beam with a stiffer elastic inclusion,
loaded by an axial load. Being an algebraic formulation,
the CM does not require differentiable functions and is
able to treat the material discontinuity of the cantilever
very easily. The results clearly show the perturbation ef-
fect on the displacement and stress fields caused by the
inclusion, which modifies the well known solution of De
Saint Venant. In particular, the CM captures the warping
of the cross-sections and the effect of stress concentration
due to the stiffer inclusion, both for the normal and the
shear stresses, giving very accurate representations along
the boundary of the inclusion. The analysis of the shear
stresses is particularly interesting: due to the stiffness dif-
ference, the inclusion generates some shear stresses along
its boundary, while the stress field on the cross-section
of an elastic beam without inclusion, subjected to axial
loads, is composed by normal stresses only. The amplifica-
tion of the shear stresses along the boundary of the inclu-
sion may be the cause of locale damages along the bound-
ary itself.
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