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ABSTRACT 11 

BACKGROUND: A likely increasing demand for varieties mixtures, landraces and genetic 12 

diversity in cropping systems will underpin calls for models able to generalise phenological 13 

development at the species level, while providing the expected range of phenological variability. In 14 

the present article, we aimed to obtain a generalised phenological model of durum wheat (Triticum 15 

durum, Desf.). 16 

RESULTS: By using a large phenological dataset embracing field data collected under different 17 

sowing dates, varieties, and locations over the Italian peninsula, we searched for the phenophases 18 

enabling the best linear approximations between developmental rates and air temperature, in order 19 

to minimize the residual variability from drivers other than temperature, as genetic and 20 

environmental diversity. The developmental rates of the resulting phases were then examined with 21 

respect to the mean daylength, to determine possible additional relations with photoperiod. If a 22 

correlation with daylength was also present, the developmental rate is calibrated by multiple linear 23 

regression, otherwise by simple linear regression of temperature. The resulting calibration, tested on 24 

an independent data subset, proves that the model is able to generalise wheat development over the 25 

Italian peninsula with high accuracy (MAE =3-8 days; R2= 0.75-0.98), regardless of the wheat 26 

variety.  27 

CONCLUSION: The generalised phenological model is potentially suitable for many agro-28 

ecological and large-scale applications. It is hoped that the model will aid situations where 29 

phenological observations to parameterize a model are still lacking, as is probably the case for 30 

landraces and underutilized crop varieties. 31 

Keywords: durum wheat, phenological model, developmental rates, agro-ecology, landraces 32 

1. Introduction 33 

The way the plants progress through their life cycle (i.e. their phenology) represents one of the most 34 

important plant/environment adaptation strategy [1,2]. Phenological models are essential tools for 35 

organic farming, and other types of crop management, as they allow for scheduling crop practices 36 

and irrigation [3]. Moreover, such models can help practices aimed at reducing climate risks and 37 

https://www.scopus.com/affil/profile.uri?afid=60050715


 

 

optimizing external resources, and enhancing pest and weed [4,5,6]. However, contemporary 38 

modelling tools, of which the phenological module represents a key component, are typically 39 

designed for optimising the productivity of monoculture at the field scale [7]. Phenological models 40 

for crop mixtures, large-scale simulations and, overall, for situations where no data are available, as 41 

may happen for landraces (locally adapted varieties) and underutilized varieties remain absent in 42 

literature.  43 

 44 

Of the well-established predictor variables for wheat development, namely temperature, 45 

vernalization and photoperiod [2,8,9,10,11], temperature is considered the most important [2,8]. 46 

Vernalization is the physiological mechanism that plants use to compensate for winter season and to 47 

flower in spring [12,13]. Wheat cultivars requiring vernalization become sensible to photoperiod 48 

after prolonged exposure to cold temperature, although the amount of cold requirement in the field 49 

is still uncertain [14,15]. Plants sensitive to photoperiod grow faster under increasing daylength 50 

[16]. 51 

A versatile way to model plant development is to regress its rate (the reciprocal of the time to 52 

mature a given phase, d-1) against the mean value(s) of the predictor variable(s) experienced during 53 

that phase [17]. Here we refer to the resulting equation, whether linear or not, as the Developmental 54 

Rate (DR) function. 55 

In the present work, we aimed to obtain a generalised phenological model for durum wheat, valid 56 

over the Italian peninsula. By generalised, we mean a model that could be used to simulate any 57 

wheat variety, climate and agricultural regimes. Such a model would allow reliable applications 58 

over numerous case studies, such as those involving landraces and underutilized crop varieties, 59 

cultivar mixtures used in agro-ecology to increase the resilience of the field [18], and large-scale 60 

simulations of phenological development. 61 

The development of a generalised model implies the use of field observations representative of a 62 

wide range of environmental, climatic and genotypic variability. It also requires an approach that 63 

minimizes the variability in the developmental rates due to such heterogeneity. To treat with this, 64 

we used a large phenological database on durum wheat embracing data collected from diverse 65 

years, varieties, sowing dates, and experimental sites across the Italian peninsula to identify the 66 

wheat phases with developmental rates better approximated to a linear function of the primary 67 

driver (i.e. temperature). After suitable phases were identified, we also examined the developmental 68 

rates with respect to the mean daylength, searching for an additional explanatory power from the 69 

photoperiod. In the phases where a correlation with daylength also emerged, we estimated 70 

developmental rate functions by multiple linear regression with respect to both temperature and 71 

photoperiod, otherwise by simple linear regression of temperature. 72 

2 Methods 73 

We opted for linear functions as the related errors are constant, allowing for a robust estimate of 74 

critical values of temperature. However, the same approach could be followed also using non-linear 75 

functions. The underlying principle of our approach is that developmental rate functions may 76 

change (being linear or not) among phases [19]. Thus, by inspecting many phases it is possible to 77 

find out those where the best linear temperature responses hold, if any, and, in turns, where the 78 



 

 

residual variability in the developmental rates explainable by variables other than temperature, as 79 

environmental[2] and genotypic[20] diversity, is minimal. 80 

 2.1 Developmental Rate functions of Temperature (T) and Photoperiod (P) 81 

The developmental rate of a given phase could be described, in the first instance, as a linear 82 

function of temperature, as early suggested by [2,21,22]:  83 

𝐷𝐷𝐷𝐷[𝑇𝑇] = 𝑎𝑎 + 𝑏𝑏𝑇𝑇       (1) 84 

where 85 

- DR is the developmental rate, i.e. the reciprocal of the time to mature the phase [d-1]; 86 

- T is the mean air temperature experienced during the phase [°C]; 87 

- a is the intercept[d-1]and b is the slope [°C-1d-1] of the linear function, respectively. 88 

The intersection of the linear DR function with the abscissa returns the value for the base 89 

temperature T0[°C] [20,21]: 90 

𝑇𝑇0 = −𝑎𝑎/𝑏𝑏       (2) 91 

 92 

T0 represents the critical temperature below which plant development is assumed nil, since the DR 93 

would assume negative values. 94 

In the same way, following the approach adopted by [17], we suggest that whenever an additional 95 

linear relation between developmental rates and daylength holds, a multiple linear regression can be 96 

considered as: 97 

𝐷𝐷𝐷𝐷[𝑇𝑇,𝑃𝑃] = 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐𝑃𝑃     (3) 98 

where 99 

- P is the mean daylength during the phase in hours [hr]; 100 

- a, b and c the coefficients of the multiple regression. 101 

Formally, even in case of multiple linear regression, the development rate stops when temperature 102 

and photoperiod fall below critical values. We name these critical values as T0m and P0m in analogy 103 

with the symbol used for base temperature, where the subscript m stands for “multiple”. Similarly, 104 

the values of T0m and P0m are formally given by the intersection of the linear DR function (projected 105 

on a two-dimensional scatter plot) with the corresponding abscissa.  106 

Using phenological observations, i.e. a phase time length and the related mean air temperature and 107 

daylength experienced during that phase, it is possible to ascertain whether the development rate is 108 

a linear function of mean temperature, or temperature and daylength, and if so, perform a least 109 

squares regression to estimate the parameters of Eq. (1) or (3), respectively.  110 

2.2 Using DRs to simulate wheat development 111 



 

 

When only the temperature is the explanatory variable, the prediction of a given phenological event, 112 

i.e. the number of days to complete a phase, could be achieved with the only inputs of sowing date 113 

and daily mean air temperatures as follow:  114 

∑ 𝐷𝐷𝐷𝐷𝑗𝑗[𝑇𝑇𝑗𝑗] = 1𝑆𝑆
𝑗𝑗=1        (4) 115 

Where DRj is the daily developmental rate of the phase, S is the phase duration in days and Tj is the 116 

mean air temperature [°C] of the j-day. The linear behaviour of the phase is analytically expressed 117 

as; 118 

𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑎𝑎 + 𝑏𝑏𝑇𝑇𝑗𝑗  �𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗 > 𝑇𝑇0�     (5) 119 

𝐷𝐷𝐷𝐷𝑗𝑗 = 0       �𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗 ≤ 𝑇𝑇0�     (6) 120 

When the sum of the daily rates reaches 1, the end of the phase S is achieved [17]. The starting date 121 

(j=1) of the next phenological phase is on the day following the end of the current, except the last 122 

phase which defines the end of the annual crop life cycle.  123 

Similarly, when both temperature and daylength are explanatory variables, S can be obtained as:  124 

∑ 𝐷𝐷𝐷𝐷𝑗𝑗[𝑇𝑇𝑗𝑗 ,𝑃𝑃𝑗𝑗] = 1𝑆𝑆
𝑗𝑗=1       (7) 125 

Where  126 

𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑎𝑎 + 𝑏𝑏𝑇𝑇𝑗𝑗 + 𝑐𝑐𝑃𝑃𝑗𝑗   �𝑖𝑖𝑖𝑖 𝑇𝑇𝑗𝑗 > 𝑇𝑇0𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑗𝑗 > 𝑃𝑃0𝑚𝑚� (8) 127 

𝐷𝐷𝐷𝐷𝑗𝑗 = 0             �𝑖𝑖𝑖𝑖 𝑇𝑇𝑗𝑗 < 𝑇𝑇0𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑗𝑗 < 𝑃𝑃0𝑚𝑚� (9) 128 

and Pj is the daily mean daylength [hr] of the j-day. 129 

2.3 Data source  130 

In this work, phenological field observations were retrieved from the PHEANGRI database 131 

(http://phenagri.entecra.it/) and the Agrophenological Station of Cadriano (University of Bologna, 132 

DISTAL, Italy).  133 

PHENAGRI provides a free database of field observations on both weather and crop phenological 134 

development, collected from several experimental sites widely spread over Italy, during the period 135 

1996-1999. Weather data provided records from in situ meteorological stations (when present) or 136 

from the nearest reference station to the experimental field. Reference stations were those belonging 137 

to the national networks of the Italian Council for Agricultural Research and Analysis of 138 

Agricultural Economics (CREA) or to the Air Force Met service (AFM).  139 

Available observations on durum wheat included dates of several phenological events obtained 140 

from the scalar sowing dates (ranging from the beginning of November to the beginning of March), 141 

several varieties, and five experimental sites placed in: S. Angelo Lodigiano (LO) and Garica di 142 

Podenzano (PC), northern Italy; Vasto (CH) and Foggia (FG), south-central Italy; Cassibile (SR), 143 

southern Italy (Fig. 1). Further details on the experimental sites and reference meteorological 144 

stations are available at the PHEANGRI project website (http://phenagri.entecra.it/).  145 

http://phenagri.entecra.it/
http://phenagri.entecra.it/


 

 

Observed wheat phenological events, in BBCH centesimal scale [23] were: sowing (BBCH 00), 146 

emergence (BBCH 09), three leaves unfolded (BBCH 13-14), beginning of stem elongation (BBCH 147 

30), second node detectable (BBCH 32), beginning of booting (BBCH 41), beginning/end of 148 

heading (BBCH 51/59), beginning/end of anthesis (BBCH 61/69), milk maturity (BBCH 73-77), 149 

and physiological maturity (BBCH 89). The dates of each phenological event refer to the median 150 

date between the sampled plants (at least ten per variety). Further details on the operational protocol 151 

of the PHENAGRI project are reported in [24]. 152 

The Agrophenological Station of Cadriano (BO) is an experimental site led by the University of 153 

Bologna, collecting data from 2003 to the present, following the same operational protocol of 154 

PHENAGRI. Observations enclosed the same phenological events reported above, obtained from 155 

autumn sowing dates (October-November), for durum wheat cv. Duilio. Weather data were 156 

retrieved from in situ agrometeorological station. Details on both the agro-phenological and agro-157 

meteorological station of Cadriano are available in [25,26,27]. 158 

Further available data from the Experimental Farm of Cadriano, collected in the period 1972-1978, 159 

were also used (shared by personal communication). Observed events, which correspond to BBCH 160 

values, were: beginning of stem elongation (BBCH 30), beginning of heading (BBCH 51) and 161 

physiological maturity (BBCH 89). 162 

2.4 Data analysis  163 

We defined two subsets of data, namely: 164 

- Calibration dataset: Data on durum wheat varieties Creso and Simeto, obtained from the 165 

PHENAGRI experimental sites of Garica di Podenzano (PC), Vasto (CH) and Cassibile (SR). 166 

- Validation dataset: observations on durum wheat varieties Ares, Cirillo, Colosseo, and 167 

Zenit, obtained from the PHENAGRI experimental sites of S. Angelo Lodigiano (LO) and Foggia 168 

(FG); observations on varieties Duilio (collected during 2003-2016), and Sansone and Valgerardo 169 

(collected during 1972-1978), from the experimental farm of Cadriano (BO).  170 

Figure 1 shows the geographical distribution of the calibration and validation sites.  171 



 

 

 172 

Figure 1. Geographical distribution of the experimental sites. Red dots: experimental sites whose 173 

data were used to calibrate the phenological model (calibration sites). Black dots: experimental 174 

sites whose data were used to test the model performances (validation sites). 175 

From the calibration dataset, we estimated the developmental rate of many phenophases and related 176 

mean air temperature experienced during each phase. Among suitable combinations to define the 177 

whole wheat life cycle, we empirically identified the wheat phases where the relationships between 178 

developmental rates and mean air temperature were better approximated to a linear function (p-179 

values<0.01). This selection was achieved by looking at the Pearson linear correlation (r) 180 

coefficients. Then, we checked for further correlations with daylength. Mean daylength was 181 

computed according to the FAO guideline [28] on a daily basis and then averaged over the phase 182 

time length. If a further correlation with daylength held, and in the case of no collinearity between 183 

temperature and daylength, DR functions were regressed using ordinary least squares technique in 184 

the form of Eq. (3), otherwise in the form of Eq. (1). For each phase we provided i) the Pearson 185 

correlation coefficient (r) ;ii) the coefficients of the linear functions and the critical values for 186 

temperature and daylength (if any); iii) the residuals to check that the correlations are unbiased and 187 

homoskedastic; iv) the error variable(ε). 188 

The coefficients estimated for each DR function were used to simulate wheat development at the 189 

validation sites, according to eq. (7) or (4) depending on whether the developmental rates are also 190 

correlated to photoperiod or not, respectively.  191 

Results were compared with the observations (validation set) looking at the Mean Absolute Errors 192 

(MAE, [d]), normalised MAE (NMAE, [%]) and the model efficiency (EF, dimensionless). 193 

The statistical indices are defined as: 194 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (|𝑆𝑆𝑖𝑖−𝑂𝑂𝑖𝑖|)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
      (11) 195 



 

 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑂𝑂�

       (12) 196 

𝑀𝑀𝐸𝐸 =  1 − ∑ (𝑆𝑆𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

     (13) 197 

 198 

Where Si and Oi are the days after sowing of the ith prediction and observation, respectively, n the 199 

number of observations and 𝑂𝑂� is the mean observation from the whole dataset.  200 

MAE [29] indicates the mean absolute values of errors (predictions minus observations) in absolute 201 

terms. The lower the values of MAE, the higher the agreement of the model prediction with the 202 

observations. NMAE expresses the MAE with respect to the observed phase length, which permits 203 

the expression of errors in relative terms. Generally, simulations are considered excellent when 204 

relative errors are less than 10%, good when ranging from 10 and 20%, fair between 20-30% and 205 

poor when greater than 30% [30].  206 

The EF [31] compares the deviance of the errors (described by the numerator) with that of the 207 

observations (described by the denominator). Its maximum value is 1 and indicates complete 208 

agreement between predictions and observations. The EF decreases with decreasing predictive 209 

power of the model until reaching negative values, meaning that the model describes the data less 210 

well than the arithmetical mean of the observations. 211 

3. Results 212 

The phases whose relationship between DR and mean temperature (T) is better approximated by a 213 

linear function were: 214 

1) sowing to three leaves unfolded (S-3L, BBCH 0-13);  215 

2) three leaves unfolded to second node detectable (3L-2N, BBCH 13-32);  216 

3) second node detectable to the beginning of heading (2N-H, BBCH 32-51);  217 

4) beginning of heading to physiological maturity (H-M, BBCH51-89). 218 

Linear relationships between developmental rates and mean air temperature for single sub-phases 219 

are shown in Figure 2. Coefficients and related statistics for the simple linear DR functions are 220 

given in Table 1. 221 

 222 

Table 1. Statistics of the simple linear regression for the selected phases. Phases as in Fig.1. 223 

 224 
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 226 

 227 

 228 

 229 

 230 

 231 

Figure 2. Relationshis between wheat developmental rates and mean air temperature (from the calibration dataset) for 232 

the selected wheat phases. Black lines: DR function, dotted lines: 1 standard error (ε), used to track back to the 233 

uncertainty in the base temperature. S-3L: from sowing to three leaves unfolded; 3L-2N: from three leaves unfolded to 234 

second node detectable; 2N-H from second node detectable to the beginning of heading; H-M: from the beginning of 235 

heading to physiological maturity. 236 

In the first three phases the correlations between development rate and temperature were very high 237 

(r=0.80-0.89), whilst in H-M the correlation was lower (r = 0.68) and the range of mean 238 

temperatures experienced was narrower (about 4°C) when compared to the other phases (ca. 15°C 239 

in S-3L; 10°C in 3L-2N; 7°C in 2N-H). Temperature alone explained 64-79% of developmental 240 

rates (values from r2) in the first three phases, 46% in H-M.  241 

 242 

DR = a + bT (eq. 1) 
phase T0 [°C] a[d-1] b[°C-1d-1] ε[d-1] 
S-3L -3.3 ± 2.3 0.0055 0.0017 0.0040 

3L-2N 3.3 ± 1.5 -0.0119 0.0036 0.0054 
2N-H 9.2 ± 1.5 -0.1018 0.0110 0.0169 
H-M 11.2 ± 0.9 -0.0323 0.0029 0.0026 



 

 

Base temperatures increased throughout the wheat crop life cycle, ranging from -3.3°C in S-3L to 243 

11.2°C in H-M (Tab.1 and Fig S1). Uncertainties in the base temperature, quantified by ε (see 244 

dotted line in Fig. 1) were relatively large in S-3L and decreased in the subsequent phases (Tab.1). 245 

The slopes of DRs regularly increased throughout the vegetative phases and slow down after 246 

heading (Fig. S1). Residuals (Fig. S2) revealed homogeneous variance and no bias. 247 

The phase 3L-2N was the only showing a significant (p<0.01) correlation with daylength (Fig. 3, 248 

left panel). In this phase, no correlation resulted between temperature and daylength, suggesting no 249 

collinearity between explanatory variables (Fig 3, middle panel). The multiple linear regression 250 

(Fig. 3, right panel) between developmental rate, temperature and daylength increased the 251 

explanatory power of the regression from 0.75 (r2) to 0.82 (adjusted r2). Related coefficients and 252 

statistics for the improved DR are summarized in Table 2. Values for T0m and P0m (Fig S3) were 5.6 253 

°C and 9.5 Hr, respectively. 254 

 255 

Figure 3. Left: relationship between wheat developmental rates and mean daylength (P [Hr]); middle: mean 256 

temperature vs. mean daylength scatter plot (showing no collinearity); right: multiple linear regression defining 257 

developmental rates in 3L-2N as a function of temperature and daylength. 258 

Table 2. Statistics of the multiple linear regression for 3L-2N. 259 

DR = a + bT + cP (eq. 4) 
phase Tom P0m a b c adj. r2 
3L-2N 5.6 9.5 -0.0567 0.0027 0.0044 0.84 

 260 

The performance of the generalised phenological model, which uses simple linear functions of 261 

temperatures in the three phases (S-3L; 2N-H; H-M) and multiple linear function of temperature 262 

and photoperiod in 3L-2N, is shown in Figure 4, while the corresponding statistics for each phase 263 

are summarised in Table 3. Overall, simulations were able to catch the general pattern of wheat 264 

development (EF=0.80-0.99) and mean errors remained below eight days.. 265 

Table 3. Statistical evaluation of the phenological model over the validation dataset for single phases. n: sample size; 266 

𝑂𝑂�(std): mean observed phase length (1 standard deviation); MAE: Mean Absolute Error; NMAE: normalized MAE; r2 267 

determination coefficient; correlation between observations and predictions were always significant (p<0.01).  268 

Phenological phases N 𝑶𝑶�  (std) 
[d] 

MAE 
[d] 

NMAE 
[%] 

EF r2 
 

S-3L 22 55(23) 7.8 14 0.80 0.75 
3L-2N 23 135(35) 7.0 5 0.91 0.83 
2N-H 32 162(44) 4.5 2 0.98 0.96 



 

 

H-M 30 200 (40) 3 1 0.99 0.98 

269 
Figure 3. Simulated vs. observed durum wheat phenological events (3L, 2N, H and M) after sowing (S), from the 270 

independent validation dataset. Black line: 1:1 line, grey line: least square line. 271 

Largest deviations from the observations were found in 3L, where MAE and NMAE are high (MAE 272 

= 7.8 days; NMAE = 14%). The simulation of the subsequent events improved gradually. In 2N, the 273 

model efficiency was very good (EF = 0.91), albeit few predictions were far from observations, 274 

keeping MAE relatively high (MAE=7). In H and M predictions and observations are strongly 275 

correlated (r2≥0.98). Indeed, the efficiency of the model to predict H and M results high (EF ≥ 276 

0.98), NMAE excellent (NMAE≤2%) and MAE 4.5 and 3 days, respectively. Predictions of M are 277 

the most accurate.  278 

In Table S2 we also provide the results that would be obtained if predictions were made by the 279 

model not improved by daylength. Results obtained without considering the photoperiod have 280 

higher inaccuracy, especially in the predictions of H where the mean errors would be doubled 281 

(around 8 days). 282 

4. Discussion and Conclusion 283 

A generalised phenological model for durum wheat valid for the Italian peninsula was obtained by 284 

using a large phenological database and searching for the phases where the residual variability in 285 

the developmental rates were minimized among linear temperature responses. The resulting DR 286 



 

 

functions gave satisfactory results (EF = 0.89-0.99) over different Italian temperature regimes and 287 

wheat varieties.  288 

The generalised model has a practical advantage of being usable under a wide range of 289 

environmental conditions where the reference to single wheat variety, climate and the agronomic 290 

regime could be reductive. To date, most contemporary crop models are developed for monoculture 291 

systems, where the specific crop variety, environmental condition and management practices are 292 

well defined in the model. The present model has several examples of potential applications, such 293 

as regional simulations as, for instance, long-term impact analysis due to climate change (e.g. how 294 

plant phenology is shifting due to global climate change, [32]) and land suitability analysis [33], 295 

including the identification of the optimal sowing window to minimise the risk of spring frost and 296 

late-season drought. Interesting applications of the generalised model could also be proposed for 297 

agro-ecological purposes where, for instance, landraces, intra-specific crop mixtures and crop 298 

diversification are recommended to improve the resilience of the system, promote pest regulation 299 

and enhance nutrient recycling [18,34,35]. Although the model is yet to be tested on ancient 300 

varieties, we recommend it as a suitable tool for modeling the phenology of landraces and 301 

underutilized variety (i.e. situations where observational data are few) due to its high level of 302 

generalisation. Indeed, the consequence of transition from landraces to modern varieties in the 303 

phenology of Italian durum wheat is still poorly understood. In some cases, the transition appears to 304 

be a steady advance in anthesis date [36], yet in others no significant changes are observed [37]. 305 

Our results were achieved following a method distinct from that of scholars who typically develop 306 

phenological model, since the wheat phases were not established a priori and the model calibration 307 

was carried out only after the strongest linear responses, involving different wheat varieties, had 308 

been identified. 309 

Following our approach, temperature alone can explain approximately 64-79% of the variability in 310 

the developmental rates from sowing to the beginning of heading, observed from different cultivars.  311 

Indeed, the early phenological models, which were based on air temperature, could explain most of 312 

the observed developmental-time variability [21, 22, 38]. Later, photoperiod and vernalization were 313 

proven to further explain the observed variability in wheat development [9,10,11].  314 

Accordingly, our results show a significant correlation between developmental rates and daylength 315 

in 3L-2N, and the ability to explain the observed variability in that phase increases from 75% to 316 

85% when introducing the photoperiod. Photoperiod increases the accuracy of the model, mostly on 317 

the predictions of the beginning of heading. A similar improvement was also reported in McMaster 318 

and Smika [10]. 319 

Overall, we argue that there will always be a variability in wheat development rates not explained 320 

by temperature and photoperiod (e.g. due to the environmental heterogeneity, proximity of the 321 

meteorological stations, uncertainty in the measurements, genotypic differences, etc.), but, in our 322 

case, such variability was minimized by two concomitant strategies: i) using data from different 323 

experimental sites and sowing periods, which provided a wide range of explored temperatures; ii) 324 

identifying phenological phases with variability in the developmental rates better explained by a 325 

linear dependence on temperature. The obtained result is a set of simple linear relationships 326 

describing the widely-recognised general rule that plants grow faster when the temperature is 327 

warmer, enhanced by an increasing photoperiod, but with a unique parameterisation for durum 328 

wheat over the Italian peninsula. 329 



 

 

The largest errors were found in the predictions of 3L (7.8 days) and 2N (7.0 days), which was 330 

consistent with the larger uncertainties in the base temperatures in S-3L and 3L-2N (Tab. 1). Our 331 

results are in agreement with previous studies reporting that wheat phenological events facing the 332 

winter and falling into the period of tillering (up to the beginning of stem elongation) generally 333 

show large variability and are also the hardest to predict [39,40]. Moreover, the resulting errors are 334 

also comparable with those found elsewhere [39,40, 41,42,43,44] with values ranging from 3 to 11 335 

days, depending on the phenological phase.  336 

Errors on H(4.5) and M(3.0) are also in line with the observed variability from 193 durum wheat 337 

varieties, including landraces, representative of the Mediterranean basin, as reported by Soriano et 338 

al. [45].  339 

Our results also show that base temperature progressively increased throughout the crop life cycle 340 

(Tab. 1, Fig.2 and Fig. S1), with values are in line with the base temperatures reported in Porter and 341 

Gawith's review of the literature [15]. The progressive increase of base temperatures has already 342 

been documented elsewhere [21, 22] and used to explain non-linear temperature responses observed 343 

over long wheat phases [47]. In particular, Slafer and Rawson [46] report that long phases, as 344 

seedling to anthesis, can show curvilinear temperature response, but also a clearly linear 345 

relationship during shorter phases. 346 

Our work does feature some simplification and limitations that should be described.  347 

First, phenophases, generally, reflect some scientific or managerial interest, such as periods when 348 

the plant is particularly vulnerable or demanding for nutrient, where a farmer can, for example, 349 

intervene or purchase insurance. Similarly, some phases are adequate for the analysis of climate 350 

change impacts, pests, and diseases. From an agronomical point of view, our approach could lead to 351 

significant results for unattractive phases.  352 

Second, in our work vernalization is not explicitly modeled. This can lead to some errors in the 353 

parameterisation. For instance, if some plants requiring vernalization are not satisfied, the 354 

variability in the observed developmental rates will increase (as data could be more scattered). In 355 

our case, the strong correlation between developmental rates and daylength in 3L-2N suggests that 356 

most of the plants have likely satisfied their vernalization requirement, or, at least, might not have 357 

required any vernalization, being sensitive to photoperiod. The wide range of mean temperature 358 

needed for vernalization (roughly from -1° to 15 °C, optimally from 4° to 6° C, see Porter and 359 

Gawith. [15]), as well as the possibility of seeds not requiring field vernalization, helped our 360 

approach; however, an implicit limitation remains. 361 

Third, the model could not reflect the impact of prolonged extreme temperatures since linear rate 362 

functions may underestimate the development times under extremely high temperatures. However, 363 

in our data and due to the adopted approach, which search for the best linear temperature responses, 364 

there are no observations (i.e. points in the scatter plots of Fig. 2) that suggest a likely drop in the 365 

rates in the selected phases under the Italian growing season. Indeed, observations subjected to few 366 

days with extremely high temperatures would unlikely result in a drop in the developmental rates 367 

since data are average values over several days. Here, we argue that when extreme high 368 

temperatures arise for only a few days, the model's result would likely be within the expected error. 369 

Otherwise development times could be underestimated. 370 

 371 



 

 

In conclusion, a likely increasing demand for genetic diversity in monoculture will call for models 372 

that are able to generalise phenological development at the species level, and provide the expected 373 

range of variability. To date, such models are still poorly developed. Our work could be a step 374 

forward toward a new modelling approach that to support agro-ecology applications. 375 
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SUPPLEMENTARY INFORMATION 504 

Table S1. As Table 1 in the main text but showing results obtained by a simple TS model (not 505 

considering the effect of photoperiod). 506 

Phenological phases n 𝑶𝑶�  (std) 
[d] 

MAE 
[d] 

NMAE 
[%] 

EF R2 
 

p 

S-3L 22 55(23) 7.8 14 0.80 0.75 <0.01 
3L-2N 23 135(35) 7.0 5 0.91 0.83 <0.01 
2N-H 32 162(44) 4.5 2 0.98 0.96 <0.01 
H-M 30 200 (40) 3 1 0.99 0.98 <0.01 

 507 

 508 

Figure S1.Comparison between DRs. Black lines: DRs; data points: data from the calibration 509 

dataset (symbols in legend). S-3L: from sowing to three leaves unfolded; 3L-2N: from three leaves 510 

unfolded to second node detectable; 2N-H: from second node detectable to beginning of heading; 511 

H-M: from beginning of heading to physiological maturity.  512 



 

 

 513 

Figure S2. Residuals from simple linear regression considering only mean temperature. Dispersion 514 

of data reveals no biased relationships and almost homogenous variance. 515 

516 
 Figure S3. Multiple linear regression (as shown in the right panel of Fig. 3) projected on two-517 

dimensional scatter plot. The intersection of the linear function with the abscissa return the 518 

threshold values for T0m and P0m. 519 



 

 

 520 

Figure S4. Residuals from multiple linear regression in 3L-2N. Dispersion of data reveals no biased 521 

relationships and almost homogenous variance. 522 
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