
15 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Panos Vassiliadis, P.M. (2019). Beyond Roll-Up's and Drill-Down's: An Intentional Analytics Model to
Reinvent OLAP. INFORMATION SYSTEMS, 85, 68-91 [10.1016/j.is.2019.03.011].

Published Version:

Beyond Roll-Up's and Drill-Down's: An Intentional Analytics Model to Reinvent OLAP

Published:
DOI: http://doi.org/10.1016/j.is.2019.03.011

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/691642 since: 2019-07-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.is.2019.03.011
https://hdl.handle.net/11585/691642

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Panos Vassiliadis, Patrick Marcel, Stefano Rizzi, Beyond roll-up’s and drill-down’s:
An intentional analytics model to reinvent OLAP, Information Systems, Volume 85,
2019, Pages 68-91, ISSN 0306-4379.

The final published version is available online at:
https://doi.org/10.1016/j.is.2019.03.011

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1016/j.is.2019.03.011

Beyond Roll-Up’s and Drill-Down’s: An Intentional
Analytics Model to Reinvent OLAP (long-version)

Panos Vassiliadisa, Patrick Marcelb, Stefano Rizzic

aUniversity of Ioannina, Ioannina, Hellas
bUniversity of Tours, Tours, France

cUniversity of Bologna, Bologna, Italy

Abstract

This paper structures a novel vision for OLAP by fundamentally redefining
several of the pillars on which OLAP has been based for the last 20 years.
We redefine OLAP queries, in order to move to higher degrees of abstraction
from roll-up’s and drill-down’s, and we propose a set of novel intentional OLAP
operators, namely, describe, assess, explain, predict, and suggest, which express
the user’s need for results. We fundamentally redefine what a query answer is,
and escape from the constraint that the answer is a set of tuples; on the contrary,
we complement the set of tuples with models (typically, but not exclusively,
results of data mining algorithms over the involved data) that concisely represent
the internal structure or correlations of the data. Due to the diverse nature of
the involved models, we come up (for the first time ever, to the best of our
knowledge) with a unifying framework for them, that places its pillars on the
extension of each data cell of a cube with information about the models that
pertain to it – practically converting the small parts that build up the models
to data that annotate each cell. We exploit this data-to-model mapping to
provide highlights of the data, by isolating data and models that maximize
the delivery of new information to the user. We introduce a novel method for
assessing the surprise that a new query result brings to the user, with respect
to the information contained in previous results the user has seen via a new
interestingness measure. The individual parts of our proposal are integrated in
a new data model for OLAP, which we call the Intentional Analytics Model.
We complement our contribution with a list of significant open problems for the
community to address.

1. Introduction and overview

How will business intelligence (BI) look like 10 years from now? What
foundations should academia build in order to rigorously support the building

Email addresses: pvassil@cs.uoi.gr (Panos Vassiliadis),
patrick.marcel@univ-tours.fr (Patrick Marcel), stefano.rizzi@unibo.it (Stefano Rizzi)

December 10, 2020

of tools, the optimization of OLAP sessions, and the training of data scientists
around a logical paradigm? In this paper, we revisit the foundations of OLAP
in an attempt to address the aforementioned questions.

To start with, it is worth to shortly revisit the evolution of analytical query-
ing so far.

• At the beginning of time, people would be working with relational queries
and recordsets returned by these queries. This treatment of BI was very
DBMS-oriented, as the focus of attention was on what the DBMS can do
for the users [1].

• Then, both the scientific community and the industry understood that it
is possible to simplify the life of the business users, by providing a simpler
view of the data to them, and hiding the complexities of the underlying
database. So, users would deal (on-line) with cubes, rather than with
traditional database data, which gives a very elegant simplification of the
data to the user, as all the joins and aggregations are taken care by the
system. The operators would be cube-oriented, one level of abstraction
above the database operators and would involve so-called OLAP operators
such as roll-ups, drill-downs, etc. (see for example [2]).1

• Rapidly, apart from simply querying data, efforts focused on facilitating
easier ways to navigate the multidimensional data space. Research pro-
posed advanced operators permitting discovery-driven analysis via com-
binations of OLAP primitives [3, 4, 5]. More recently, different strategies
in database exploration have been proposed as well, like keyword search
over databases, presenting example tuples to infer the query, etc.

BI is now becoming more and more pervasive, which entails an increasing partic-
ipation in the decision-making process of users with competence in the business
domain but low ICT skills. This requires further investigation to provide users
with even more effective and user-centered paradigms for analytical querying.
As a further step in this direction, in this work we envision a new data model
for OLAP, called Intentional Analytics Model2. Here, data are accompanied

1The term abstraction here does not imply that we move from the logical level of handling
data to e.g., the conceptual or the goal level. The multidimensional modeling of data via
cubes and lattice hierarchies is still a logical model of data. The term ’abstraction’ is justified,
though, as it practically provides a ”neat”, simplified representation of the data, independently
of the complexities of their underlying structure and storage, which are hidden from the user.

2To resolve any ambiguity with respect to the usage of the term ’model’, we provide the
following terminological clarifications. The Intentional Analytics Model is a data model in
the sense of Tedd Codd’s Turing Award speech [6](a specification of structures, operations and
constraints), and the long tradition of the database community, that produced the relational,
object-relational, multidimensional, semi-structured data models. The Intentional Analytics
Model is yet another data model in this series; thus, and we will employ the term ’data model’
for it. Apart from the aforementioned terms, in all our deliberations, the term model when
appearing without any other characterization, refers to concise representations of knowledge
for the data, summarizing patterns and insights, that are typically results of KDD algorithms.

2

by knowledge insights and both of them are considered as first class citizens
of the data model. Indeed, the user explores the information space by submit-
ting intentions of information goals, i.e., why she wants to discover relevant
information rather than prescriptions of what data she needs, and receives both
data and annotations of highly interesting subsets of them as results. Under the
hood, the intentions are mapped to traditional OLAP operations and knowledge
discovery algorithms. In a sense, our data model can be seen as a particular case
of database exploration that takes advantage of OLAP primitives and cubes to
support higher-level data analysis.

1.1. The revolution of Intentional Analytics

In our Intentional Analytics Model we redefine what a query is, with respect
to both what users ask the system, what the answer entails, and how this answer
is computed:

• What a query is. We start by redefining what a query is, by replacing
the traditional query definition of which data are needed with a specifica-
tion of why we need to explore the data space, so that query formulation
is performed in a way that is closer to the users’ analytical goals. Specifi-
cally, we propose to replace traditional OLAP operators with intentional
operators; this means that, instead of operating with cubes in terms of
roll-ups and drill-downs, users will state their analytical goals over the
cubes as intentions. For example, instead of saying “drill down to store
city” or “roll-up to product category”, the user might ask “explain the
drop in the sales of this product family” or ”assess whether the sales in a
particular region are abnormal or not”.

• What the answer to a query is. We argue we can no longer remain
with plain cubes as the answers to queries. If we want to replace simple
query answering with insight gaining, the answer to a query cannot be
just data – even if they are nicely packaged via fancy visualizations of
textual storytelling. We believe that the answer to an intentional query
is a dashboard, including (a) one or more cubes with the appropriate vi-
sualization and data narrations, (b) concise representations of knowledge
hidden in the data, possibly obtained through automated mining of models
and patterns (e.g., via decision trees or regressions) and (c) highlights, i.e.,
significant “jewels” hidden in the result that highlight parts of the data
and model spaces that give significant insights to the user’s intention.

• Highlight mining. Assuming that each intentional operation is accom-
panied by a set of knowledge extraction algorithms like outlier detection,
regressions, correlations of measures and attributes, decision trees and
other similar operations, one particular aspect of profound importance is
how do we decide which of the models produced and which subset of the
data and model space in particular is really standing out as a highlight.
To assess the importance of findings, we assess them in terms of their

3

significance, using a subjective interestingness measure which follows the
framework of [7] for pattern exploration.

1.2. The vision in a nutshell

We assume a typical OLAP setting [8] defined on a multidimensional space
with cubes holding the information for analysts and dimensions providing a
context for facts. This is especially important if combined with the fact that
dimension values come in hierarchies of levels; therefore, every single fact can
be simultaneously placed in multiple hierarchically structured contexts, provid-
ing thus the ability to analyze sets of facts from multiple perspectives. The
underlying data sets include measures that are characterized with respect to
these dimensions. Cube queries involve measure aggregations at specific levels
of granularity per dimension, along with filtering of data for specific values of
interest. For a formal treatment of the data model of our approach, one can
refer to Appendix of this paper (practically extending the data model of [9]).

In our vision, an OLAP session is a sequence of dashboards that the analyst
sees, each with its own information, including data, charts and informative
summaries of KPI performance. The sequence is produced by the actions of
the analyst that changes the contents of the dashboard by requesting more
information on the basis of a set of operations made available to him by the
tool.

The main idea behind the transitions between the states of session, which is
obtained via the user operations, is that we move from a concrete data model
of logical operators like roll-up’s and drill down’s, to an intentional data model
where the user expresses, in terms of operators, high-level requirements like
”explain a certain phenomenon”, ”predict the future values” and these high-
level requirements have to be automatically translated to specific OLAP and
Data Mining algorithms that will carry the answer. This can also facilitate
greatly the extraction of highlights, as the user’s goal is explicitly stated to the
system.

Intentional operators. In contrast to other data models where a user
operation would practically be a query (relational or multidimensional), in our
data model, a user operation characterizes the intention of the user with respect
to her information need.

Example 1. Observe the cube depicted in Table 1. This is a cube computed over
a detailed data set on working hours and depicts the weekly working hours of
people that (a) work with pay and (b) have completed a post-secondary education,
grouped by their education level and work class. The columns of the result pertain
to the values of the dimension education that demonstrated at the top row, and
the rows pertain to the values of the dimension work class that are demonstrated
at the leftmost columns.

The user studies this cube in a dashboard and has several opportunities to
ask a subsequent query. We list the options that our data model equips the user
with:

4

Weekly Hrs Assoc Post-grad Some-college University

Gov 40.73 43.58 38.38 42.14
Private 41.06 45.19 38.73 43.06
Self-emp 46.68 47.24 45.7 46.61

Table 1: Example of a cube CO that serves as the starting point of a user operation

• A first remark the user makes can be that the observed table presents in-
formation in adequate detail with respect to the education categories but
fails to Describe in adequate detail the information with respect to the work
class. Changing the level of detail or the focus of the presented informa-
tion answers the question ”Give me a different description of what the
data tell us!”.

• A second possible exploration concerns the answer to the question posed
to the system ”Now that I know the situation, can you Assess how good
the situation is compared to a reference benchmark?”. For example,
the analyst might want to know how is the current status assessed when
compared to the previous 10 years, or compared to ”similar” countries,
or equally interesting, how is the situation assessed when compared to the
goals that the state has put with respect to the working hours of people.

• ”Why is the situation as it is now?” Can you Explain why things are
in the current status? Is the number of working hours correlated to the
educational level (observe the monotonicity with respect to the work class
– each row is increasing compared to its rows above it)? Or maybe it is
correlated to a hidden variable?

• ”Henceforth how will the situation be?” Can you Predict how things will
be in the near future? Are there regression or timeseries analysis models
that can be employed to tell us what the future status will be, based on the
current data?

Dashboards as answers to queries. The states of a session are dash-
boards. In the current state of practice, a dashboard is a pre-designed collection
of charts and performance summaries, based on the results of several OLAP
queries that are executed over the underlying data. The novelty of our proposal
is founded on the idea that a dashboard, being the result of a user operation,
includes (a) the data that answer the queries of a dashboard, (b) models that
are concise representations of knowledge about these data, either extracted via
machine learning algorithms or infused by the analyst in the form of KPI’s,
measure correlations or rules, and (c) highlights, which are important subsets
of the knowledge and data artifacts that particularly address the user’s inten-
tion. The entire result is appropriately visualized and accompanied by textual
descriptions (see [9] for a larger discussion on data narration). Therefore the

5

dashboard, which is the ultimate answer to a user operation, replaces query an-
swering by insight gaining, via the appropriate enrichment of query results with
knowledge, annotations of importance and appropriate packaging . In order to
construct a dashboard, we envision several computations taking place. Here is
the sequence of the performed actions:

1. First, the queries of the state’s dashboard are issued and their results,
the generating data of the dashboard, are computed. Any straightforward
computations for extra, derived columns of the dashboard (e.g., gain =
price − cost) are performed too.

2. Then, the available data are fed to model-extraction algorithms for the
computation of models that abstract, summarize and provide patterns
and insights for the data.

3. The potentially large amount of data and models computed has to be
ranked and assessed on their interestingness for the analyst; the most
important findings are classified as the dashboards highlights to be used for
providing the main insights and the main directions for future transitions
by the analyst.

4. The above are accompanied by visualization, text construction and re-
porting tasks that aim the process of understanding and communicating
the main findings.

Models in a dashboard. Whereas speedometers and charts are the current
state of practice in the area of BI, our vision extends beyond that. The automatic
assessment and critical characterization of the presented data will be part of the
BI of the near-future. See some simple cases based on the example of observing
sales data of an international company:

• Sales data will be automatically characterized with respect to a decision
tree that classifies them (e.g., as ”successful”, ”risky”, ”potentially haz-
ardous” etc).

• Sales per country will be automatically clustered to reveal similarities and
differences, as a first step towards understanding outliers and non-expected
behavior.

• Aggregate sales over significant periods will be fed into time series analysis
and forecasting methods to automatically detect trends, seasonalities and
to deduce future values.

We consider the plugging of data analysis algorithms in the back-stage of a
dashboard as an indispensable part of BI. These algorithms can range from
very simple ones (e.g., finding the top values of a cuboid, or detecting whether
a dimension value is systematically related to top or bottom sales) to very
complicated ones (like, for example, outlier detection, dimensionality reduction,
etc). Most importantly, as the operation of the algorithms will likely be as

6

transparent as possible to the end user, their execution will require an almost
automatic tuning of their parameters. The findings of these algorithms will be
models of the data that are typically (not always) used to annotate the existing
data with characterizations and offer focus points to the visualization of the
dashboard (forecasts, outliers, dimension values that dominate top or bottom
measures, . . .). The models themselves give a multitude of results. However,
some of these results indicate that a part of a dashboard’s data are of important
interestingness value to the end user. Due to that, we collectively refer to
the important results of the execution of these algorithms as highlights, in an
attempt to show that the aim is to enrich the current data-intensive dashboards
with knowledge that is worth exploring or using for decision making.

Example 2. Assume now that the Ministry of Labor, based on the data of a
previous census, has set-up some goals for the improvement of labor. Assume
also that per combination of education type and workplace, a specific goal, say
Weekly Working Target, has been assigned, saying that if the average number
of weekly hours at work is in the area of [40-55] for any category, then this
is Expected behavior, whereas any other amount outside this domain is either
Low, or Excessive. This is exactly what business analysts call a Key Perfor-
mance Indicator (KPI)

Then, assume that the analyst of the Ministry wishes to evaluate the situation
based on these goals, and in fact, in more details than the aggregate summary
of Example 1. The analyst issues the composition of two commands:

Describe the data of CO in more details by workplace;
Assess Hours Per Week using Weekly Working Target.

The results are then depicted in the cube CN of Table 2. The system has auto-
matically performed the following actions for the analyst:

• First, the necessary data are retrieved from the underlying database and
the new cube, say CN is computed. This is practically a drill-down, in
traditional OLAP terminology. The data are depicted in the first three
columns of Table 2 (intentionally in non-pivot form for reasons to be made
obvious right away).

• Second, the KPI, which is a very illustrative example of a model, assesses
the data by labeling them according to the measure values of the new cube
CN (column ”Assessment”). Observe that every cell of the cube is mapped
to the respective value of the model!

• Finally, in an effort to discover interesting part of the new cube, an inter-
estingness assessment is performed, in an attempt to answer the question:
”what is really surprising for the user?” To this end, a simple discrepancy
model is used to split data based on the label assigned, as illustrated by the
two antagonistic components displayed in the right-most part of Table 2.
The highlight selection algorithm of the system selects the first of the two

7

right-most columns, thus marking the cells with assessment Low as the
most interesting.

Assessment Discrepancy Discrepancy

Assoc

Federal-gov 41.15 Expected 0 1
Local-gov 41.33 Expected 0 1
State-gov 39.09 Low 1 0
Private 41.06 Expected 0 1
Self-emp-inc 48.68 Expected 0 1
Self-emp-not-inc 45.88 Expected 0 1

Post-grad

Federal-gov 43.86 Expected 0 1
Local-gov 43.96 Expected 0 1
State-gov 42.96 Expected 0 1
Private 45.19 Expected 0 1
Self-emp-inc 53.05 Expected 0 1
Self-emp-not-inc 43.39 Expected 0 1

Some-college

Federal-gov 40.31 Expected 0 1
Local-gov 40.14 Expected 0 1
State-gov 34.73 Low 1 0
Private 38.73 Low 1 0
Self-emp-inc 49.31 Expected 0 1
Self-emp-not-inc 44.03 Expected 0 1

University

Federal-gov 43.38 Expected 0 1
Local-gov 42.34 Expected 0 1
State-gov 40.82 Expected 0 1
Private 43.06 Expected 0 1
Self-emp-inc 49.91 Expected 0 1
Self-emp-not-inc 44.44 Expected 0 1

Table 2: Assessment with KPI

1.3. Contribution and outline

The main contribution of this paper is that it structures a vision for the BI
of the near future in terms of a data model, the Intentional Analytics Model,
with novel concepts and operators. We aim our definitions to be broad enough,
yet as precise as possible; at the same time, we want to link them as much as
possible to the intentional nature of the next generation of BI tools, where the
end-user requests information at a very high level and the system transforms
these requests to concrete execution of algorithms in order to compute, visualize
and comment data and important highlights among them as an answer to the
information request made by the end-user.

1. We redefine what an OLAP query is and place particular emphasis to the
introduction of high-level intentions as the pillar of querying. We propose
several intentional operators addressing fundamental informational needs,
like describe, assess, explain, predict and suggest to replace the existing
data-centric state of the art operators like roll-up and drill down.

2. We redefine what a query answer is and we complement data with mod-
els to produce, along with visualizations and textual commentaries (not
covered in this paper), dashboards as answers to user queries.

3. As part of this fundamental change of what a query answer is, we address
the problem of integrating an extensible, heterogeneous sets of information

8

models (ranging from simple correlations, to clusters and decision trees) in
a uniform framework. Similarly to prediction cubes [10], this is achieved
by extending each cell of a cube with both data and model information
that pertain to it – practically converting information on models (the
members of each cluster, the paths of a decision tree, the expected values
of a regression formula) to data that annotate each cell. This data-to-
model mapping is proved very powerful in that it allows the information
of models to be treated as part of each cell, independently of the model
type that generated it.

4. We facilitate the comparison of alternative models in terms of their inter-
estingness via this integrated framework. We propose a simple method for
assessing the significance of each model –practically, the surprise it brings
to the user– that is built upon the data-to-model mapping. Hence, we are
able to compute highlights, independently of the model types used.

Outline. The paper is structured as follows. In Section 2 we present back-
ground OLAP concepts and cube queries and we complement them with funda-
mental concepts of our method, specifically, models and highlights. In Section 3,
we present our method for interestingness assessment and highlight selection.
We present the intentional operators in Section 4. Related work is surveyed in
Section 6. We conclude with open roads for future work in Section 7.

2. Data, Models, Model Components, Highlights and Dashboards

In this Section, we detail the fundamental concepts behind our proposal. We
believe that the traditional understanding of the multidimensional data model is
not adequate any more, and the emphasis of this paper is on its extension with
models, highlights and intentional operators; therefore, we confine ourselves to
presenting a simplified version of the data model in this section, and refer the
interested reader to the Appendix for its thorough formal definition.

In our approach, each state of an OLAP session in the Intentional Analyt-
ics Model is a dashboard the user sees. A dashboard is ultimately based on
the generating data provided by a finite collection of intentional queries, posed
to the underlying database. However, a sharp distinction from previous ap-
proaches is that we do not restrict ourselves to data but enrich them with a
set of interesting findings, which come in terms of models, i.e., results of data
mining or machine learning algorithms applied over the data of a dashboard,
and significant annotations of data with reference to the components of these
models, to which we refer as highlights.

2.1. Data, cubes and cube queries

In this subsection we provide a concise formal background for modeling
hierarchies, cubes, and queries.

The following list provides a fundamental terminology for the subsequent
discussions

9

• We assume an environment structured as a multidimensional space. We
assume that dimensions provide a context for facts [8]. A dimension is
practically the active domain of attributes for facts, that is internally
hierarchically structured.

• Each dimension comes with a hierarchy of levels. Each dimension (e.g.,
StoreGeography or SalesDate)is a lattice of levels (e.g., City, Prefecture,
Country, or Day, Week, Month, Y ear). Each level comes with an ac-
tive domain of values and there are hierarchical mappings between values
(e.g., the ancestor of city Paris at the country level is France). Domains
have identifier attributes as well as other properties (e.g., a city can have
population, surface, geolocation, etc). Being lattices, all hierarchies start
with a common, lowest possible level of coarseness and, all its paths end
up at a common highest level of coarseness (holding a single value, all).

• Facts are structured in cubes. A cube is defined with respect to several
dimensions, fixed at specific levels and also includes a number of measures
to hold the measurable aspects of its facts. Each record of a cube, also
known as cell is a point in the multidimensional space of the cube’s di-
mensions hosting a set of measures. A detailed cube is a cube having all its
dimensions fixed at the lowest possible level. Cubes may also be enriched
via derived measures, computed by applying functions (e.g., profit is a
derived measure computed as price ∗ qty − cost).

• A subcube is a subset of a cube derived by selecting a set of cells from a
cube via a selection filter.

• A cube query is a cube too, specified by (a) the detailed cube over which it
is imposed, (b) a selection condition that isolates the facts that qualify for
further processing, (c) the grouping levels, which determine the coarseness
of the result, and (d) an aggregation over some or all measures of the cube
that accompanies the grouping levels in the final result.

Example 3. Consider the detailed cube for the well known Adult (a.k.a cen-
sus income) dataset referring to data from 1994 USA census. There are 8 di-
mensions (Age, Native Country, Education, Occupation, Marital status, Work
class, Race and Gender) in the data set and a single measure, Hours per Week.
Each dimension comes with a lowest possible level, which we denote as L0.
This detailed data set will be the basis of our running example. Formally
this detailed cube is a function DS: Dom(Age.L0) × . . . ×Dom(Gender.L0) →
Dom(Hours per Week), of schema ⟨{Age,. . . ,Gender},{Hours per Week}⟩.

Example 4. The following cube query produces the cube of Table 16:
CN = ⟨DS,
Education.L3=’Post-secondary’ and Work class.L2=’With-Pay’,
⟨ALL,ALL,L2,ALL,L0,ALL,ALL⟩,
Avg(Hours per Week)⟩

10

where the selection condition fixes Education to ’Post- Secondary’ (at level L3),
and Work to ’With-Pay’ (at level L2), data is grouped by Education at level 2,
and Work at level 0, and the Avg of Hours per Week is requested.

Weekly Hrs Assoc Post-grad Some-college University

Federal-gov 41.15 43.86 40.31 43.38
Local-gov 41.33 43.96 40.14 42.34
State-gov 39.09 42.96 34.73 40.82
Private 41.06 45.19 38.73 43.06
Self-emp-inc 48.68 53.05 49.31 49.91
Self-emp-not-
inc

45.88 43.39 44.03 44.44

Table 3: A new cube CN as the output of the cube query of Example 14

For the reader familiar with OLAP terminology, the new cube CN resulting
from the query, is practically the result of a Drill-Down operation over the old
cube CO of Example 1.

2.2. Models

Models are concise, information-rich knowledge artifacts [11] that allow users
to

• compute or predict values for measures that widen the users’ view on the
situation presented by the observed data;

• document a-priori known, or discovered relationships hiding in the data;

• annotate data with respect to their status, based on a labeling scheme.

The space of possible models is vast as they range from simple functions
(e.g., grossSales = qty * price) and measure correlations (e.g., the application of
Kendal correlation to the pair [avgDailyTemperature, amtIceCreamSold]) to more
elaborate schemes such as decision trees, clustering, etc.

2.2.1. Model Types

To create models we rely on an extensible palette of model types. Model
types are molds for individual models. Essentially, model types are meta-
concepts, used in the same fashion as data types are used for models of attributes
in the relational data model, or complex types for object-valued attributes in the
object-relational data model. Following the traditional terminology, the models
that abide by the mold of a model type are called its ’instances’.

Definition 1 (Model Type). A model type is defined by (i) a name, (ii) a
signature for its input, including (ii’) a complex-type attribute model parameters
with model-dependent parameters, (iii) a signature for its output, as a list of
model components (to be defined next) including (iii’) a complex-type attribute
model characterization with statistical characteristics of the entire model.

11

The semantics of a model type is not formally represented but rather intu-
itively implied by its name; this also implies the algorithm to be executed for the
computation of models. The term “signature” implies a structuring in a list of
named attributes (if needed, of complex type).

Observe that the definition, apart from structuring the input and the output
takes into consideration two important aspects. Concerning the input, we want
the input signature to host (a) the attributes and parameters that participate
in the feeding of the algorithm’s execution (e.g., the algorithm and the distance
used for clustering) as well as (b) the binding choices that we make (e.g., how
many values we want for a top-k selection). Concerning the output, apart from
providing a structure (see model components in the sequel), we also want to
measure characteristics of the output, as for example, objective quality measures
like ARI for clustering, ROC for prediction, etc.

2.2.2. Models: roles, taxonomy, usage

Models as instantiations of model types. A model is determined by ap-
plying a model type to a cube. This requires binding the attributes in the input
and output signatures to specific levels and/or measures in the cube schema.
For instance, a decision tree that receives a generic set of attributes as input
and relates them to a labeling attribute via an output tree structure is a model
type; a decision tree on cube LastYearCustomerPurchases over [location, age, in-
come] that characterizes each fact using a labeling attribute purchaseHeight with
values {low, med, high} is a model.

Definition 2 (Model). A model is an instance of a model type, with (i) a
binding to a cube C over which it is imposed, (ii) a binding of the input signature
of the model type to levels/measures of C and constants (including binding the
model parameters), (iii) the population of the output of the model type with model
components, along with the computation of the model’s model characterization
with statistical characteristics.

Example 5. Consider the cube CN of Example 14. Table 4 shows two models
of two different model types over this cube. The first model is of type Rank and
the second one is of type KPI. The input binding of the first model is ⟨Hours
per Week⟩. The input binding of the second model is ⟨{⟨[0,40), Low⟩, ⟨[40 −
55),Expected⟩, ⟨[55−],Excessive⟩},Hours per Week⟩. The population of the
outputs of the two models correspond respectively to columns Rank and Assess-
ment of the table.

Role and purpose. A model is a concise representation of some knowl-
edge about the data. This knowledge can be some relationship between data
attributes, some property or characterization of subsets of data, or some com-
puted value over the existing data. At the same time, despite its conciseness,
typically a model also serves as an enrichment of the underlying data – in other

12

Weekly Hrs Rank Assessm.

Assoc

Federal-gov 41.15 17 Expected
Local-gov 41.33 16 Expected
State-gov 39.09 22 Low
Private 41.06 18 Expected
Self-emp-inc 48.68 4 Expected
Self-emp-not-inc 45.88 5 Expected

Post-grad

Federal-gov 43.86 10 Expected
Local-gov 43.96 9 Expected
State-gov 42.96 14 Expected
Private 45.19 6 Expected
Self-emp-inc 53.05 1 Expected
Self-emp-not-inc 43.39 11 Expected

Some-coll.

Federal-gov 40.31 20 Expected
Local-gov 40.14 21 Expected
State-gov 34.73 24 Low
Private 38.73 23 Low
Self-emp-inc 49.31 3 Expected
Self-emp-not-inc 44.03 8 Expected

Univ.

Federal-gov 43.38 12 Expected
Local-gov 42.34 15 Expected
State-gov 40.82 19 Expected
Private 43.06 13 Expected
Self-emp-inc 49.91 2 Expected
Self-emp-not-inc 44.44 7 Expected

Table 4: Two models over cube CN

words, each record of the data can be extended, annotated, or, in any case,
enriched with extra information by the model.

A Taxonomy of models. In typical Machine Learning terminology, a
model is a concise description of a data set that tries to “fit” the data in an
accurate and semantically rich way; as such, it is driven by the data. Yet, some
relevant and concise description of data (e.g., a formula on how measures inter-
relate, or some rule-based KPI) may as well be part of the domain knowledge
the user has. Like in [12], we use the term model in both cases. So, in our
approach models come in two flavors: (a) user-driven models, where it is the
analyst who defines a model for the relationship/labeling of a set of attributes,
based on her a-priori domain knowledge, and (b) data-driven models, where the
analyst requests from the system to extract a model from a specified cube.

Regardless of flavors, a model enriches a cube in one or more of the following
ways, to which we refer as intentions in this paper:

1. Description: the model describes the relationship between levels/measure
of the cube(s), or between facts, or between existing and newly computed
facts (e.g., customers are clustered according to their purchase frequency);

2. Assessment : the model characterizes each fact, or an entire cube, typically
by comparing it to a baseline (e.g., the overall sales of TVs of this month
are “disappointing” with reference to the average of last 3 years);

3. Explanation: the model gives an explanation for some relevant observation
by concisely representing hidden relationships among the levels/measures
of the cube(s) (e.g., the purchase amount of a customer is mainly deter-
mined by her age and income);

13

4. Prediction: the model forecasts cube facts (e.g., sales during next Christ-
mas period are expected to be 10% higher than last year).

5. Suggestion: the model suggests the next query(s) in the analysis using a
recommendation strategy (e.g., users who did a similar assessment of sales
of TVs then saw sales of TVs in the neighboring countries).

In Figure 1, we concisely detail how alternative models (both user and data
driven) are grouped for different intentions. For the sake of space, the figure
does not include the two complex-type attributes that are present in all model
types, namely: the complex-type model parameters attribute is omitted from the
Input signature column, and the complex-type model characterization attribute
is omitted from the Output signature column. The term Name Of Measure
practically refers to the fact that models are applied over measures and thus, a
parameter of which measure is going to be used for the application of the model
is necessary.

Name Input signature Output signature
Model types for description

Top-k ⟨Number Of Values,Name of Measure⟩ ⟨Rank⟩
Outlier ⟨Threshold,Name of Measure⟩ ⟨Outlierness⟩
Clustering ⟨Number Of Clusters,Name of Measure⟩ ⟨Cluster1, . . . ,Clustern,Representative⟩
Shrink ⟨Number Of Cells,Name of Measure⟩ ⟨Cell1, . . . ,Celln⟩
Dominating Slice ⟨Name of Measure⟩ ⟨DomSlice1, . . . ,DomSlicen⟩

Model types for assessment
KPI ⟨{Labeling Rules},Name of Measure⟩ ⟨Assessment⟩
Function-based
Benchmark

{function parameters} ⟨Discrepancy⟩

Model types for explanation
Correlation ⟨Threshold,Name of Measure⟩ ⟨Participation⟩
Regression ⟨Threshold,Name of Measure⟩ ⟨Discrepancy⟩
Decision tree ⟨{⟨Range,Label⟩},{⟨Attributes⟩},Name of Measure⟩ ⟨Label⟩
Statistical test ⟨Threshold,Name of Measure⟩ ⟨Discrepancy⟩

Model types for prediction
Auto-Regression ⟨Threshold,Name of Measure⟩ ⟨Discrepancy⟩
Time Series De-
composition

⟨{Thresholds},Name of Measure⟩ ⟨Trend,Seasonality,Noise⟩

Model types for suggestion
Content-based ⟨Number Of Queries⟩ ⟨QueryID⟩
Collaborative ⟨Number Of Queries⟩ ⟨QueryID⟩
Hybrid ⟨Number Of Queries⟩ ⟨QueryID⟩

Figure 1: A grouping of model types, organized per intention.

How to work with models. In terms of usage, the way of working with
models is as follows:

1. Model construction or retrieval. Model construction is the step dedicated
to taking the input data and extracting or assigning an abstraction of
the relationships hidden in them. Be it the assignment of a function that
computes a new measure, the choice of a time series analysis algorithm
that splits a time series measure to 3 new measures (trend, periodicity,

14

noise), or, the construction of a decision tree over the particular cube, the
construction of a model is a representation of the relationships between
the involved attributes.

2. Application of the model to the data. An extra step, which we introduce
as a particularity of our method, is the linkage of the model to the data.
Model application, is the step that computes, for each tuple of the input
data, the output measures that the model type carries. Each input tuple
is then practically extended with a set of output attributes pertaining to
the model.

3. Highlight extraction. Highlight extraction is the step that focuses the
interest of the user to a subset of the annotated data. By reusing the
output of the model, highlight extraction algorithms can pick potential
”hidden jewels” or highlights out of the vastness of available data, and
decide which of them are more significant for the user

Of course, the steps can be blended for optimization purposes; here we sep-
arate them to illustrate their role. In the subsequent subsections, we will elabo-
rate more on the structure and role of the output of a model and its linkage to
the data as well as on the issue of highlights. Before that, however, we would
like to address the following important issue.

Can we automate parameter tuning and model invocation? Tuning the pa-
rameters for the invocation and application of a model type can range from
one extreme, where everything is specified by the user, to the other extreme,
where predefined values exist for every possible parameter. A middle-ground
alternative is to consider a dynamic generation of models and tuning of param-
eters depending on the properties (size, content, etc.) of the cube the model is
applied to. A statistical test can be used to decide whether a given model fits
the data of the cube; for instance, the Hopkins statistics can be used to check
for clustering tendency [13] and decide whether clustering is worth testing on
the cube. We note that an entire field of research, called meta-learning, is de-
voted to answering problems like how to choose a learning algorithm based on
data characteristics [14]. Practically, automated machine learning frameworks
and tools (like e.g., auto-sklearn [15]) can be used to automatically select an
algorithm and its parameters for a given dataset, given a computation cost.

2.2.3. Model Components

Model Components. The output of a model is of particular importance.
The elements of the output of each model are called output model components.
Specifically, we require that the output obeys a signature, meaning that the
output is always structured as a list of attributes (it can be just one), each
pertaining to a different component. Examples of output model components
include:

• A time series splits each of its points to 3 measurements, specifically error,
trend and seasonality (practically creating 3 times series in the place of
one, whose sum reconstructs the original one).

15

• A clustering scheme includes a set of clusters, each coming with a centroid,
as well as with an indication, for each tuple, of its participation to a specific
cluster.

• A classification decision tree includes a tree structure, best expressed as
the composition of a set of paths, leading to characterization classes; again,
each class comprises a set of tuples in the underlying cube that pertain to
it.

• An outlier includes an outlier strength measurement per cell.

• A top-k or a ranking components includes selecting the uppermost k values
and annotating the rest as of no interest, or, respectively, the ranking of
all cells in terms of their measure value.

Data-to-model mappings. Is it possible to uniformly handle the hetero-
geneity of different model types? Clearly, a cluster is inherently different from
a decision tree or the formula for a trend. Is there a unifying common ground
to cover them all? The unifying essence of all the plethora of diverse model
types is that all of them are annotations of the original data. At the end of the
day, every component of a complex model type (be it a cluster id, a path in
a decision tree and a resulting class, a characterization of the top-k tuples, or
a trend formula): (a) refers to a subset of the input data and vice-versa, and,
(b) refers to the overall model via a part-of relationship. So, once a model of
the underlying data is available, our solution to the problem is to provide a
distinct identity to the components of a complex model type (here: as a dis-
tinct attribute) and annotate or characterize the data with respect to the model
component that pertains to them. In fact, this step can be blended within the
model extraction itself. Examples of such annotations follow:

• Assuming a time series model that splits a time series to trend, seasonality
and noise, these attributes can be appended to the generating data set.

• Assuming a cluster model, the generating data can be annotated with the
id of the cluster to which they belong.

• Assuming a classification model, the input data can be labeled via an
extra attribute with respect to the class(es) of the model to which they
belong.

• Assuming a model of top-k values of a measure, the input data can be
annotated with their rank, and whether they belong in the top-k set or
not.

The above observations allow us to provide a data-to-model mapping.
A notable property of our modeling is that we require model components to be
directly mapped and linked to their generating data in a bidirectional mapping,
so that the end-user can navigate back and forth between cube cells and their
models.

16

Antagonism. In addition to the components in its output, it is possible
that the binding of a model induces antagonistic components that provide an
assignment of the cells of the cube to different components. Examples of antag-
onistic model components include:

• one component for each cluster of a clustering, to identify the participation
of each cell to the cluster, and one component to identify the representa-
tive(s) of the cluster (e.g., medoid);

• one component for the outliers and one component for the non-outliers,
based on a threshold on outlier strength measurement;

• one component for the top-k cells and one component for the non-top-k
cells.

More frequently than not, this assignment to groups is a partition, i.e.,
each cell belongs to exactly one component. However, there are exceptions,
like for example fuzzy clustering or fuzzy labeling. The ability to provide this
assignment of cells to antagonistic components is fundamental to facilitate the
highlight selection process. Take for example the case where we split the cells
of the cube on the basis of a top-5 model (i.e., we set Number of V alues = 5
at the binding of the top-k model type) and we have two components, (a) one
containing the top-5 cells, and, (b) another with the rest of the non-top-5 cells.
The highlight selection process will then select which of these two components
bears the greatest amount of new information to the user. Thus, the term
antagonistic is justified, as the respective components antagonize to provide the
maximum amount of surprise to the user. The antagonists can be either (a)
components produced directly as the output of the model extraction algorithm,
or (b) components derived from the regular output to serve the purpose of
highlight extraction. As an example of the former case, consider any labeling
algorithm (KPI, decision tree, or other), which by definition separates the cells
into groups with the same label producing one component per label, so that these
different components can antagonize with each other on which is the actual
highlight. As an example of the latter case, consider the case of top-k cells,
where the output component Rank is used to derive two antagonists: Top-k
and Non-Top-k.

Practically, we can define a model component as follows.

Definition 3 (Model Component). A model component is a named attribute
containing either the result of a model construction algorithm, or produced in-
ternally, as an induced attribute to be derived for highlight selection. The extent
of a model component depends on the nature of the model. A model component
can be annotated with its statistical characterizations via a component charac-
terization attribute.

The statistical strength of each component (the number of cells being outliers,
or the cohesion of a cluster) is different than the one of the entire model. Here,
each component carries it own statistical characteristics.

17

Example 6. While Table 4 of Example 14 shows output components of two
models over the cube CN , Table 5 shows the facts of cube CN together with
two antagonistic components of model Top-5, respectively attribute Top-5 and
attribute Non-top-5, with their extents.

Top-5 Non-top-5

Assoc

Federal-gov 41.15 0 1
Local-gov 41.33 0 1
State-gov 39.09 0 1
Private 41.06 0 1
Self-emp-inc 48.68 1 0
Self-emp-not-inc 45.88 1 0

Post-grad

Federal-gov 43.86 0 1
Local-gov 43.96 0 1
State-gov 42.96 0 1
Private 45.19 0 1
Self-emp-inc 53.05 1 0
Self-emp-not-inc 43.39 0 1

Some-college

Federal-gov 40.31 0 1
Local-gov 40.14 0 1
State-gov 34.73 0 1
Private 38.73 0 1
Self-emp-inc 49.31 1 0
Self-emp-not-inc 44.03 0 1

Univesity

Federal-gov 43.38 0 1
Local-gov 42.34 0 1
State-gov 40.82 0 1
Private 43.06 0 1
Self-emp-inc 49.91 1 0
Self-emp-not-inc 44.44 0 1

Table 5: Two antagonistic components of model type Top-k over cube CN

The ability to annotate each cell of a cube with respect to a model compo-
nent is of extreme importance and the driving force behind our definition, that
practically models components as attributes of the relational data model. The
possibility of integrating a vast space of heterogeneous models via a simple and
uniform representation, which also facilitates a data-to-model mapping as sug-
gested in [16], allows us to practically treat models as data too and use them for
addressing the user’s information needs!

2.3. Highlights

As already mentioned, the set of highlights of the dashboard is a set of
important findings that accompany the dashboard. These can be findings of
any nature, e.g., important outliers in the contents of the dashboard’s data,
all the tuples belonging to a certain class of a classification scheme, the top or
bottom values of a measure, etc.

What is interesting for the user, however? Are there universal notions (esp.,
formulae) for interestingness [17]? Should we personalize interestingness for
each user on the grounds of a profile? Maybe interestingness is defined by what
everyone else found interesting? Or maybe interestingness is fundamentally
dependent upon the combination of data and the original intention the user had
when he queried the data? We are mainly driven by the last option, without,
of course, disqualifying the others and in full comprehension that there is quite

18

some research effort before crystallizing to a specific stance on the problem.
Again, the holy grail here is to fully automate the proactive highlighting of data
of interest for the user.

Whenever the result of a new user query is computed and new data, cuboids
if you will, are acquired to answer the query, one or more models are auto-
matically computed. The fundamental idea of our approach is that, ideally,
one of the antagonistic components of one of these models is the most adequate
to respond to the intention of the user. The determination of the quality that
discriminates the most appropriate component, which we call interestingness,
depends on several factors, including its relevance to the original intention, its
novelty (to which extent it reveals new information that was previously unknown
to the user) or its surprise (to which extent it contradicts previous beliefs of the
user). For example, assume the user is assessing a measure (e.g., Sales) with
respect to a benchmark (e.g., lastYearSales) and the model annotates each cell
by its difference to the respective cell of the previous year and measures the
z score of the difference over the population of differences. Then, the model
can produce 3 components based on the ranges of z score, e.g., (a) up to σ,
(b) between 1 ⋅ σ and 2 ⋅ σ, and (c) higher than 2 ⋅ σ. The last component and
the cells pertaining to it (those with z score higher than 2 ⋅ σ) constitute the
highlights of the operation.

The essence of highlight selection is therefore the identification of a specific
model component that maximizes the interestingness of the information delivered
to the user by it with respect to her original intention. The highlight is, then,
the combination of the component and the data that refer to it.

The generalization of the above intuition to more sophisticated selection
criteria is possible, of course. So, whereas here we select the top-1 component
with respect to its interestingness, one can imagine schemes where the top-k
are selected, or any component that surpasses an interestingness threshold. As
already mentioned, the possibilities for defining highlight selection criteria are
open and subject to lots of future work. In any case, we assume that we have
(a) a scoring function interestingness() that returns an interestingness score
for each of the components of M , and, (b) a criterion φH to determine which
component(s) qualify for highlights.

Another particular aspect that plugs into highlight selection is the idea of
digging out the essence of a component. As every component annotates all the
data of the input cube, assume now that we have a criterion for selecting its ”core
data”. Assume that each model type has a selection criterion for the core data
of its components, which we denote with MC.coreElements that returns the set
of elements that mostly pertain to the intuitive essence of a component, along
with their respective cube cells, obtained via the 1:1 data-to-model mapping,
which we denote MC.coreCells. To give a couple of concrete examples, here is
a short list:

• Assume a clustering model with clusters being modeled as bitmaps, hav-
ing 1 for the data that pertain to it and 0 for the rest. Then, the cells
annotated with 1 comprise the essence of the component.

19

• Assume a decision tree, with classification paths being its components.
Each path is also a bitmap of 1 and 0 depending on whether each cell
pertains or not this path. The cells annotated with 1 in a path component
are its essential, core cells.

• Alternatively, assume a classification scheme where the cube cells are as-
signed a particular label within a single-component model. Then, the core
cells of the component are the ones that abide by the criterion used (”ex-
pected” values if the criterion is non-outlierness, ”low” or ”high” values if
the criterion is outlierness.

So overall, depending on the model type T that induces a structure for its
output components and the criterion φH , for each component we can compute
a subset of the core elements, as well as the respective core cells that define
the essence of the component. Notably, in the case where all components are
bitmaps (which is always the case for a component with a discrete domain of
values), the computation of the core elements and cells is independent of the
criterion φH .

Definition 4 (Highlight). Given an intentional query q issued over a cube
CO of a dashboard, and resulting to a new cube c, a new model M over cube c,
with components M.MC1, . . . ,M.MCk, a criterion for highlight selection φH (on
the basis of a component scoring function interestingness), then, a highlight h
is a tuple including (a) M.MCI , (b) the elements of M.MCI that are qualified
as its core elements, and (c) the data of the new cube CN that pertain to it, via
MCI .coreCells, fulfilling the 1:1 mapping between (b) and (c) – i.e., a triplet
h = {MCI , MCI .coreElements, MCI .coreCells}

In other words, there are many facets of a highlight: it is the most ”inter-
esting” component, and, at the same time, the data that pertain to it.

2.4. Packaging it all in a dashboard, or, what the answer to a query really is

Having detailed models, model components and highlights, it is now time
to integrate them into the big picture. We define dashboards as collections of
cubes, coming along with their models and components. We refer to such a
cube as an enhanced cube.

Definition 5 (Enhanced Cube). The triple of a cube C, its (set of) models
M, and its highlights is called an enhanced cube.

Definition 6 (Dashboard). A dashboard is a set of enhanced cubes.

A dashboard comes with visualizations, generation of textual commentaries
and possibly automatic compilation of reports. We consider the inherent inte-
gration of these aspects into the overall framework as part of the future work
and refer the interested reader to [18] for a first discussion and [9] for a review
of related work.

20

3. Highlight Selection via a new Interestingness Measure

In this section, we present our approach for selecting significant highlights
based on interestingness assessment. We start by motivating the subjective
interestingness measure we adopt for significance. We then detail the highlight
selection algorithm. Finally, we reuse our running example to conclude the
section with a concrete case of highlight selection.

3.1. Interestingness measure

Exploratory Data Analysis (EDA) aims to provide insights to users by pre-
senting them with human-digestible pieces of ”interesting” information about the
data [19]. One particular EDA activity, Exploratory Data Mining (EDM), and
mainly pattern-mining, has been particularly active in developing Interesting-
ness Measures (IM) to filter the large set of artifacts resulting of the mining.
In this context, interestingness has been quantified mainly in an objective way,
in the sense that measures are agnostic of variations among users. Only re-
cently has the concept of subjective interestingness been formalized, first as a
quantification of unexpectedness relying on the concept of a belief system. This
belief system formalizes the beliefs of the data miner, to which mining arti-
facts are contrasted to determine their interestingness [20]. In other words, the
quantification of the subjective interestingness of an artifact is the result of its
confrontation with a background model related to the user’s prior knowledge.

We believe that, in our context of user-centered analytical querying, interest-
ingness must be defined subjectively, in the same vein as it is for EDM. However,
to the best of our knowledge, no such concept of subjective interestingness exists
in the general landscape of Interactive Database Exploration [21]. In this paper
we introduce a completely novel scheme for interestingness assessment, which
(a) exploits the fact that the user is involved in sessions of OLAP intentional
queries (thus, previously seen results constitute prior beliefs) to offer the de-
sired subjectivity, (b) since exploration takes place within a strictly structured
information space (i.e., the multidimensional space defined by hierarchies), let
us relate these previously seen cells to the new ones, and (c) quite importantly,
takes the models derived into consideration, while at the same time staying
model-independent. The core of our framework is the assessment of surprise,
which is practically the difference of belief for the same subset of the multidi-
mensional space, before and after an intentional query has been issued.

In our context, a user starts with a cube CO, expresses an intention q (e.g.,
Describe, Assess, etc.) that triggers the computation of new cube CN , to-
gether with a set of k models M1, . . . ,Mk, each of them with their components,
MC1

1 , . . . ,MCkm. Instead of interactively presenting one artifact extracted from
the data chosen after its confrontation to prior knowledge, we are interested in
presenting one of the antagonistic components among MC1

1 , . . . ,MCkm, chosen
as interesting after its confrontation with CO. Therefore we measure surprise us-
ing an interestingness measure that quantifies for each antagonistic component
the surprise brought by cube CN to cube C0, as detailed next. The component
with the highest surprise score is chosen to highlight the cells of CN .

21

3.2. Principle of highlight selection
This generic principle of significance computation and highlight selection is

depicted in Figure 2 and detailed in Algorithm 1. As displayed in Figure 2, this
principle consists of the following steps. First, the intentional query is evaluated
to get the new cube CN from CO. Second, the models associated with the
intention are instantiated and the components MC1

1 , . . . ,MCkm are obtained.
Subsequently, a significance score is computed locally for each of the two cubes
(step 3), and these scores are contrasted, resulting in a surprise score for each
cell of CN (step 4). Then, each component among MC1

1 , . . . ,MCkm aggregates
the surprise scores for the cells pertaining to it, resulting in a surprise score for
this component (step 5). In a similar vein, we aggregate the component scores
to compute surprise scores for entire models (Step 6). Finally, the component
that maximizes the score is chosen for highlighting the cells of CN that pertain
to it (step 7).

Figure 2: Principle of highlight selection

Algorithm 1 describes the highlight selection procedure. The algorithm re-
ceives as input the two cubes CO and CN , a set of model components MC1

1 ,
. . ., MCkm over CN , and a set of functions depending on the intention. These
functions include: (a) a relation proxies that relate the cells of CN with the
ones of CO (e.g., an ancestor relationship if the logical operation triggered by
the intention is a drill-down), (b) a significance function for assessing how signif-
icant a cell is (note that this function may use one measure value or more), (c) a

22

Algorithm 1: Highlight selection

Data:
cube CO

cube CN

set of models {M1, . . . ,Mk} with their components MC1
1 , . . . ,MCkm

n:m relationship proxies between the cells of CO and CN

function significance for computing the significance of a cell
function D for surprise characterization
function AC for computing component scores
function AM for computing model scores
Result:
a component among MC1

1 , . . . ,MCkm
1 for all cells cO in CO do
2 compute cO.significance

3 for all cells cN in CN do
4 compute cN .significance

5 for all cells cN in CN do
6 compute

cN .surprise = D(cN .significance, cN .proxies.significance)
7 for all components in MC1

1 , . . . ,MCkm do
8 compute MCij .surprise = ACcN ∈MCij

(cN .surprise)

9 for all models in M1, . . . ,Mk do
10 compute M i.surprise = AM

MCij∈M
i(MCij .surprise)

11 return the component maximizing MCij .surprise;

function D for computing the surprise between two significance scores, and (d)
two functions AC and AM for aggregating surprise scores by model components
and models, respectively. A few notes are due here:

• The relation proxies is of N :M nature to facilitate arbitrary relationships
of old and new cells that can be produced via selections, roll-up’s, drill-
down’s, or similar operations. In the typical scenario, the relationship
will be annotated with a ’1’ in one of its two ends, facilitating easier
computations of the subsequent steps.

• The significance score is of great importance as it characterizes each cell
with an objective importance (which is necessary in order to get the algo-
rithm going). In our example that follows, significance is measured as out-
lierness, computed via a z-score; however, it is easy to conceive alternative
objective significance scores, like, for example, the inverse (”typicality” if
you will) to serve different intentions, the very same value of the measure,
its rank, or others. Our framework is open-ended from this aspect for
plugging more significance measures.

23

• The surprise is the core of our method. Surprise exploits the fact that
old and new cells are related via proxies, as they represent the same
subspace of the entire multidimensional space. Thus, we can exploit this
fact and contrast the prior and new belief (i.e., measure). For the rare
case where the proxies relationship is not straightforwardly defined for
some cell, special care must be taken to contrast the cell’s significance to
some representative significance value of the proxy cube (e.g., the mean
or the average significance). Practically, this means that if there is no
straightforward set of proxy cells (e.g., ancestor or descendants), we map
the new cell to the entire previous cube. In the typical case, the D function
can be a simple subtraction (as we envision it and use it here), or, again
in an open-ended vein, another contrasting function (for example, one
might consider the overall tendency of values in a subcube: if all values
are increasing due to a trend, then the surprise s much less).

• The aggregation functions AC and AM can be any desirable aggregate
function. In our example that follows we use the average value, however,
sum, max, min, or other can be used too.

The algorithm unveils as follows. In lines 1-2 (respectively 3-4), a score is
computed for each cell of CO (respectively CN) using the significance function.
In lines 5-6, a surprise score is computed for each cell of CN , by contrasting their
significance score with the score(s) in their relatives in CO. In line 7-8, a surprise
score is computed for each components, by aggregating the surprise scores of the
cells participating to the component. In line 9-10, a surprise score is computed
for each models, by aggregating the surprise scores of the components of this
model.

Before presenting a concrete example, we believe it is worth presenting a
summary of the novelty and merits of our framework:

• We offer an interestingness framework that exploits the divine simplicity
of the multidimensional data space of OLAP, as well as the existence of
models along with the data – and it is thus, appropriate for the new model
of OLAP that we propose.

• We escape the trap of objective, non-contextualized interestingness mea-
sures and provide a subjective measure, exploiting the transitions that
OLAP queries via our operators offer, and based on the idea of prior be-
lief (facts of the old cubes contrasted to the facts of new cubes). We base
our approach to surprise as the difference of belief for the same subset of
the multidimensional space, obtained again by exploiting the relationship
between old and new cells.

• We provide a method that exploits the data-to-model mappings of our
model and is therefore independent of model types (which we deem as a
major feature of the framework)

24

• We provide an open-ended framework where new definitions for objective
significance, subjective surprise, delta, and aggregate functions are always
possible.

Note that we provide a bottom-up method for computing highlights, starting
from cells and ending up in models. The possibility of a top-down method, is
of course, an open issue, but falls outside the scope of this paper.

Example 7. Recall cube CO of Example 1. Assume the user issues the inten-
tion with CO Describe Avg Working Hours by giving more details for workclass
at the most detailed level. The first step in processing this intention results in
evaluating the cube queries of Example 14 to drill-down to cube CN , recalled
below in Table 6.

The highlight selection algorithm is called with cubes CO, CN , a set of models
and their model components and a set of functions. Regarding the models and
model components, in this example, for the sake of brevity, we consider only
two model components of two different models. They are displayed mapped on
the cube CN in Table 6: (i) the top-5 cells (the 5 cells in yellow, note that this
component is also presented in Example 6 in binary form) and (ii) the outliers
greater than two standard deviation (the 2 cells in blue). The cell in green
participates to both components. This example shows how the algorithm chooses
among these two components.

The functions are as follows. The proxies relationship allows to find in cube
CO the ancestor of a cell of CN . The significance function used to compute the
significance of each cell is the z-score, i.e., the number of standard deviations
the value of this cell is from the mean of all the values of the aggregate cube.
Function D is the difference and function AC (respectively function AM) is the
average.

CN Assoc Post-grad Some-coll. Univ.

Federal-gov 41.15 43.86 40.31 43.38
Local-gov 41.33 43.96 40.14 42.34
State-gov 39.09 42.96 34.73 40.82
Private 41.06 45.19 38.73 43.06
Self-emp-inc 48.68 53.05 49.31 49.91
Self-emp-not-inc 45.88 43.39 44.03 44.44

Table 6: Cube CN

The algorithm starts by computing the z-score for the cells of CO, which
results in the scores displayed in Table 7. Then the same is done for CN ,
resulting in Table 8.

The surprise score of each cell cN of CN is computed as the difference of its
z-score with the one of its ancestor in CO, resulting in Table 9. The score of each
component is computed by averaging the surprise scores of the cells participating
to this component. In our example, this score is (0.222 + 1.134 + 0.697 + 0.552

25

z-cores of CO Assoc Post-grad Some-coll. Univ.
Gov 0.8167 0.1039 1.5759 0.3613
Private 0.7101 0.6240 1.4628 0.0641
Self-emp 1.1053 1.2862 0.7888 1.0827

Table 7: Significance scores of the cells in Cube CO

z-scores of CN Assoc Post-grad Some-coll. Univ.
Federal-gov 0.554 0.123 0.764 0.003
Local-gov 0.509 0.148 0.806 0.257
State-gov 1.069 0.102 2.158 0.636
Private 0.576 0.456 1.159 0.077
Self-emp-inc 1.328 2.420 1.485 1.635
Self-emp-not-inc 0.628 0.006 0.166 0.268

Table 8: Significance scores of the cells in Cube CN

+ 0.447)/5 = 0.61 for the top-5 cells and (1.134 + 0.582)/2 = 0.85 for outliers,
meaning that in this example, the two cells of CN with to extreme values will be
highlighted.

surprise in CN Assoc Post-grad Some-coll. Univ.
Federal-gov 0.263 0,019 0.812 0.358
Local-gov 0.308 0,044 0.770 0.105
State-gov 0.252 0,002 0.582 0.275
Private 0.134 0,168 0.304 0.013
Self-emp-inc 0.222 1.134 0.697 0.552
Self-emp-not-inc 0.477 1.280 0.623 0.814

Table 9: Surprise scores of the cells in Cube CN

4. Intentions

In this section we discuss the deeper essence of the intentional nature of
our proposal: user operations or, equivalently, transitions between the states
of an OLAP session, i.e., dashboards. The main idea is that we move from
a declarative model of logical operators, like roll-up and drill down, to an in-
tentional analytics model where the user expresses high-level requirements like
“explain a certain phenomenon” or “predict the future values”, and these high-
level requirements are automatically translated into specific logical operators,
models, and highlights that will carry the answer. To this end we provide a
set of intentional operators; the term operator refers to an algebraic, template

26

representation of an operation that can be applied over any cube, whereas the
term intentional query refers to a concrete instantiation of the operator, over a
specific cube C of a dashboard.

Before detailing the operators, we need to detail the process that takes place
once a user submits an intentional query to the system. The process is generic
and the semantics of the process of query execution are identical for any operator
(although, naturally, an optimizer can be constructed in order to mix or prune
the steps of the process to achieve a faster execution). The process of query
execution includes the following steps:

1. Data acquisition. During this step, the system translates the intentional
operator used in the query to a logical one, which is executed on Cold to
retrieve the necessary data for subsequent tasks in the form of a new cube
Cnew. Note that, depending on the expression of the user’s intention, the
same intention operator can be translated into different logical operators.

2. Model construction. A set of model types (in the trivial case, just one) are
applied to Cnew; in the case of models that are mined from the underlying
data, the corresponding extraction algorithm is fired so as to obtain the
model. The cube Cnew is practically extended with the model components
of the resulting models – remember that each component comes with one
or more attributes as its output, with one value per cell of the cube for
each attribute (thus model components are linked to the cube’s data as
new measures).

3. Highlight selection. The following step involves computing the significance
of cells, model components and components. The reason is that we have
fired several models to annotate the new data and we treat this as an an-
tagonistic race between them, to decide which one is the most informative
for the user. The algorithms on the selection of the best model for the
intentional query are detailed in Section 3 and here we give a very short
overview, in order to facilitate the discussion of the intentional operators
in this section. For each cell of cube Cnew a significance score is com-
puted by applying a significance evaluation algorithm to a specific subset
of its measures, depending on the intentional operator that is applied. We
aggregate significance scores for model components and models, based on
the participation of cube cells to them. Based on these scores, we can pick
(a) the model component with the maximum significance score, (b) the
model that contains it and (c) its corresponding cells as the highlights of
the new cube.

4. Packaging. Once all data, models and highlights have been computed, and
the system has picked the most significant configuration of them to add to
the dashboard, the appropriate visual and textual packaging takes place.
Despite its importance, the details of this task are outside the scope of
this paper, and we do not elaborate further. We refer the reader to [9] for
more information on related work and simple techniques for this task.

27

The language we propose includes five intention operators:

• Describe, which provides an answer to the user asking “show me my busi-
ness”. This is done by describing one or more cube measures (e.g., revenue
in a sales cube), possibly focused on one or more dimension members (e.g.,
food product category and March 2018), either at some given granularity
(e.g., storeNation) or using a given number of clusters or producing a result
with a given maximum size.

• Assess, which provides an answer to the user asking “is my business
good?”. The goal is to judge one or more cube measures, possibly fo-
cused on one or more dimension members, with reference to some baseline
(e.g., with reference to past values of the same measure, or to its val-
ues for other members, or to some benchmark) and using some KPI for
comparison.

• Explain, which provides an answer to the user asking “why is this hap-
pening?”. This is done by revealing some hidden information that is not
part of the dashboard the user is observing, for instance in the form of a
significant correlation between two cube measures or using a decision tree
that classifies facts based on level members.

• Predict, which provides an answer to the user asking “what will my busi-
ness be like in the future?”. This is done by showing data not in the
original cubes, but derived from them for instance with time-series anal-
ysis or regression.

• Suggest, which provides an answer to the user asking “where should I look
next?”. The goal here is to show data similar to those the current user,
or similar users, have been interested in, for instance using collaborative
query recommendation approaches.

In the sequel, we introduce these operators in more detail.

4.1. Describe

The describe operator is invoked to enrich the user’s dashboard with more
data that are currently missing; the user’s intention is to know something more
about a set of facts. The general syntax for invoking this operators is shown
below (in extended Backus-Naur form):

with cube describe measure {, measure} [for subcube] [by ({level} ∣ size inte-
ger)]

In practice describe can be invoked using either a generic signature or a
specific one; in all cases, it specifies the cube c on which the operator should be
applied, the measures of c which have to be described, and optionally a subcube
of c on which to focus. In the following we assume for simplicity that a single
measure m and a subcube consisting of a single slice on dimension member v is
specified.

28

The first signature of Describe refers to a specific measure, m and, optionally,
to a dimension member, say v

with c describe m for v

The goal of this invocation is to facilitate focusing on a specific subset of the data
space without changing the level of abstraction. In both this and the subsequent
variants, the for clause can optionally be added to focus the execution on a subset
of the cells of c that pertain to the specific member (practically applying a filter
that retains only the cells with this value).

A second signature of Describe includes a by clause that comes in more than
one variants. The by clause results in a change of granularity which can come
by drilling down to more detailed data or by abstracting to coarser descriptions
of the cube. These coarser descriptions, in turn, can be computed either by
rolling up, or by reducing the cube to a specified size that includes only its most
characteristic cells (which, in turn, can be done either by clustering or applying
the shrink operator [22]).

The first of the abstraction-altering variants is

with c describe m for v by l

where l is a level. Again, the for clause is optional. Note also that the previous
variant of Describe is a special case of this one.

This invocation practically instructs the system to execute a cube query.

1. Data acquisition. Data are obtained by the specification of a cube query,
including a filter on v (selection in relational algebra, or slice-n-dice in
OLAP terminology), a projection of measure m (projection in relational
algebra) and a change of abstraction dictated by l (roll-up or drill down,
depending on where the current cube is located)

2. Model construction. Several models are applicable to support the invo-
cation of the operator, specifically: (a) find the top-k values of m and
highlight the facts yielding the top value, or (b) find the dominating
row/column of c for the values of m and highlight its facts, or (c) de-
tect the outliers for m and highlight the outlier facts with the highest
score.

3. Highlight selection: the generic highlight selection algorithm mentioned in
the beginning of this section is applied over the cells of the cube, using the
measure m for significance assessment. For the case of describe, the cells
are divided in antagonizing components like topk vs non-topk, dominant
vs non-dominant etc, based on their value of m. Then, the component
that is scored by the algorithm as the most interesting, along with its
respective cells, are selected as highlights.

The second variant is

with c describe m by size k

29

where k is an integer. This variant, after data acquisition, requires to either
apply a clustering algorithm to detect k clusters and highlight the medoids, or
to apply the shrink operator [23] to reduce the result to k cells. In the first case,
the output of the model is a set of attributes, including (a) one attribute per
cluster, where each cell marks its participation to its respective cluster, and (b)
an attribute to track the cluster medoids. Remember that for each cell of the
cube we have a mapping to the respective attributes of the model; so, in the
case of clusters each cell is ”annotated” with a bit vector that tells us to which
cluster the cell participates and whether it is also its medoid or not. In the
second case the output of the model is a set of k cells, each summarizing a set of
cube cells yielding similar values; each cell is annotated with the approximation
introduced by the shrinking.

Example 8. Consider the cube CO of Example 1, and the intention:

with CO Describe Hours per Week by WorkClass.L0

Processing this intention results in the cube CN in Table 10 where two cells
have been automatically highlighted to display the two most significant outliers.
In the data acquisition step, the cube query of Example 16 is derived from the
expression of the intention and evaluated to produce CN . Specifically, the by
Work clause of the expression indicates that the logical Drill-down operation is to
performed over cube CO to obtain CN . In the model construction step, the model
types associated with the Describe intention (see Table 1) are instantiated to
produce models computed over CN , and their respective components are mapped
to the cube. Table 11 illustrates this for outliers detection, where outliers are
detected using the Grubbs test, i.e., by computing for each measure value the
number of standard deviations they are from the mean of all values. The two
components are produced with the binding ⟨2,Hours per Week⟩ where 2 indicates
that outliers measure values whose score is above two standard deviations from
the mean. In the last step, the highlight extraction algorithm is called with z-score
for significance computation (function significance) and difference for surprise
computation (function D). Details of the computation can be found in Example
7 of Section 3. The algorithm outputs component Outliers, that achieves the
best surprise score, resulting in highlighting the two outliers shown in Table 10.

Weekly Hrs Assoc Post-grad Some-coll. Univ.

Federal-gov 41.15 43.86 40.31 43.38
Local-gov 41.33 43.96 40.14 42.34
State-gov 39.09 42.96 34.73 40.82
Private 41.06 45.19 38.73 43.06
Self-emp-inc 48.68 53.05 49.31 49.91
Self-emp-not-inc 45.88 43.39 44.03 44.44

Table 10: Output of intention: with CO Describe Hours per Week by Work

30

Outlierness Outliers Non-outliers

Assoc

Federal-gov 41.15 -0.55 0 1
Local-gov 41.33 -0.50 0 1
State-gov 39.09 -1.06 0 1
Private 41.06 -0.57 0 1
Self-emp-inc 48.68 1.327 0 1
Self-emp-not-inc 45.88 0.628 0 1

Post-grad

Federal-gov 43.86 0.123 0 1
Local-gov 43.96 0.148 0 1
State-gov 42.96 -0.10 0 1
Private 45.19 0.455 0 1
Self-emp-inc 53.05 2.419 1 0
Self-emp-not-inc 43.39 0.005 0 1

Some-college

Federal-gov 40.31 -0.76 0 1
Local-gov 40.14 -0.80 0 1
State-gov 34.73 -2.15 1 0
Private 38.73 -1.15 0 1
Self-emp-inc 49.31 1.485 0 1
Self-emp-not-inc 44.03 0.165 0 1

Univesity

Federal-gov 43.38 0.003 0 1
Local-gov 42.34 -0.25 0 1
State-gov 40.82 -0.63 0 1
Private 43.06 -0.07 0 1
Self-emp-inc 49.91 1.635 0 1
Self-emp-not-inc 44.44 0.268 0 1

Table 11: Outlier model and components for cube CN

The Describe operator practically covers the operators FocusOn and Ab-
stract of the short version of this paper [18], both in terms of data acquired and
models fired (top-k values, clustering).

4.2. Assess

How do we handle the case when the user wants to tell the system: ”please
tell me how good, bad, normal, unexpected, . . . is the situation I observe for this
particular (sub)cube or cell?”. From the philosophical point of view, among
many definitions, the closest to our fully automated mentality suggests that as-
sessment boils down to the case where ”results are assessed in relation to some
predetermined goal” [24]. In our case, this practically means that we compare
the observed status (for us: observed cube) to a possible benchmark that de-
fines an expected value, and automatically label the divergence of the attained
to the desired performance (for us: measure). In any case, the overall idea of
assessment requires (a) a benchmark against which the current performance is
going to be compared, (b) the actual execution of the comparison (e.g., a simple
difference, or the difference of the z-scores, in the case of simple measures), and
(c) a characterization of the result of the comparison either via explicitly spec-
ified rules (as in a KPI) or via automatically computed ”outlierness” measures
(e.g., a z-score).

We resort to the invocation of benchmark models for describing measures.
Benchmark models are models that can be linked to the observed cube, by
relating each cell of the observed cube with an ”expected” value. Remember
that models come always with output measures, therefore we can place the role
of a benchmark that tells us what the expected performance should be as the
output of a model.

31

Definition 7 (Benchmark Model). Given a cube c with a measure m, a
benchmark model b for c.m is any model having a benchmark measure b.mcomp

in its output that extends each cell of the cube with a new value that is to be
contrasted to the respective value of m. An extra discrepancy measure of the
benchmark model, b.d, is reserved to store the result of this comparison.

The invocation of the Assess operator follows the syntax
with cube assess measure {, measure} [for subcube] using bench-

mark model {, benchmark model}
Again, the syntax of the operation can include a selection on specific slices

of the cube, via the for clause, and specific measures. The interesting part
involves the specification of benchmark models. We envision an open, extensible
list of benchmark models for a cube:

• A predefined goal for each cell (i.e., via the retrieval of the respective KPI)

• Any query that returns a cube with the same coordinates with the ob-
served cube, and any measure (data- or function-based) that can be con-
trasted to the observed measure of the cube, via a 1:1 mapping of cells

• A benchmark model for the past performance of a cube via the invocation
of a lastKV alues(cube.measure) operator that computes an aggregate
statistic over the last k values for each cell of the cube

• A benchmark model that combines the performance of all peers of the
observed cube (i.e., find siblings a-la Cinecubes’ put-in-context operator)

• A benchmark model that translates the general context of the observed
cube (via a roll-up action) to its expected value

• Any predefined golden standard peer, like, e.g., comparing a stock value
to the S&P 500 index, or the performance of a specific EU country over a
certain measure against the European average

• A benchmark model that involves computing a forecasted/expected value
via a forecasting function that involves other/past measure values e.g.,.
expectedV alue(m1) = f(m2, . . . ,mk))

The list is open to additions of course, but the main message is that, for each
cell of a (sub)cube, we provide an expected value via a benchmark model.

The semantics of the invocation of Assess is as follows:

1. Data acquisition: the system obtains the necessary data via (a) the ap-
propriate cube query that prescribed (sub)cube, and (b) the retrieval or
computation of the prescribed benchmark model’s output, along with a
1:1 mapping of cells to it.

2. Model construction: the models used per se, and the values that they gen-
erate for each of the cells being assessed, along with a discrepancy model
component tracing the difference of a model’s output from the measure
value, per cell.

32

3. Highlight selection: we apply the generic highlight selection procedure
to the discrepancy measure and obtain the model component with the
maximum aggregate discrepancy from the measure of the cube, along with
its cells, as the highlights of the new cube.

Example 9. Consider the cube CN = ⟨DS, education.L3 =′ Post−secondary′
and work class.L2 =′ With−Pay′, ⟨ALL,ALL,L2,ALL,L0,ALL,ALL⟩, Avg(Hours per Week)⟩
fixing Education to ’Post-Secondary’ (at level L3), and Work to ’With-Pay’ (at
level L2), and grouping by Education at level 2, and Work at level 1. Assume the
user wishes to check to what extent working hours per week for Female deviate
from the data of CN . Doing so can be done with the following intention:

with CN assess Hours per Week using qFemale

where qFemale is a benchmark cube query drilling down from CN to the L0
level of dimension Gender and selecting Female, i.e.,:

⟨DS,
Gender.L0 = ’Female’ and education.L3 = ’Post-secondary’ and work class.L2

= ’With-Pay’,
⟨ALL,ALL,L2,ALL,L0,ALL,L0⟩,
Avg(Hours per Week)⟩
The data acquisition step consists of executing qFemale. In the model con-

struction step, a discrepancy model is used to compute the difference between
average hours per week for Females and the overall average hours per week of
CN , splitting the results in two components MC− and MC+ according to the
sign of the difference. In the highlight selection step, the highlight selection
algorithm is called with the following parameters:

• the cube CN

• the cube CF retrieved by qFemale

• components MC− and MC+

• function proxies(x) maps a fact CF of CF to the fact CN of CN having
the same coordinates

• function significance(x) returns the value of measure Hours per Week of
fact x

• function surprise(x, y) = y − x

• function AC(x) = ∣CN ∣ − sum(x) where sum is the traditional sum aggre-
gation function.

With these parameters, the algorithm picks component MC+ i.e., the com-
ponent having the highest count of deviations, according to the aforementioned
highlight selection rule.

33

Gender= Discre-
Female pancy MC− MC+

Assoc

Federal-gov 41.15 40.66 0.49 0 1
Local-gov 41.33 37.61 3.72 0 1
State-gov 39.09 39.36 -0.27 1 0
Private 41.06 38.05 3.1 0 1
Self-emp-inc 48.68 42.07 6.61 0 1
Self-emp-not-inc 45.88 38.47 7.41 0 1

Post-grad

Federal-gov 43.86 47.76 -3.9 1 0
Local-gov 43.96 43.83 0.13 0 1
State-gov 42.96 40.14 2.82 0 1
Private 45.19 41.55 3.64 0 1
Self-emp-inc 53.05 48.73 4.32 0 1
Self-emp-not-inc 43.39 38.28 5.11 0 1

Some-college

Federal-gov 40.31 38.25 2.06 0 1
Local-gov 40.14 35.45 4.69 0 1
State-gov 34.73 34.01 0.72 0 1
Private 38.73 34.86 3.87 0 1
Self-emp-inc 49.31 43.96 5.35 0 1
Self-emp-not-inc 44.03 36.57 7.46 0 1

University

Federal-gov 43.38 42.41 0.97 0 1
Local-gov 42.34 41.66 0.68 0 1
State-gov 40.82 38.95 1.87 0 1
Private 43.06 39.45 3.61 0 1
Self-emp-inc 49.91 44.83 5.08 0 1
Self-emp-not-inc 44.44 39.04 5.4 0 1

Table 12: Assessment wrt Gender=’Female’

One can also envision an invocation of the operator without a prescribed
benchmark and the assessment with various alternative models, appropriately
selected – however, for the moment we stick to a well specified benchmark.
The operator Assess extends and covers the operator Compare of the short
version of this paper [18], which practically carries the same intention. The
operator Verify of the short version of this paper [18] that involves comparing
the behavior of the observed cube with its broader context (e.g., a rolled-up
cube) can similarly be facilitated by the current operator Assess using the
broader context as a benchmark model.

4.3. Explain

The hardest possible task that the user can ask the system to do is to in-
struct it ”please explain to me why I see what I am seeing!”. Explanation is
fundamentally the delineation of causation for an observed phenomenon. Prac-
tically, explanation answers the question Why? for an observed phenomenon,
by providing a causal model for it. In the case where a person is performing
the explanation, and, even more typically, in the case of scientific explanations,
several alternative causal models can be constructed and, out of them the per-
son picks the one that most satisfactorily aligns with the observed data [25]. To
avoid the well known confusion between causation and correlation, and since
determining causation requires a too sophisticated process that cannot be auto-
mated, the term ’explanation’ in this paper refers at the automated revelation
of hidden correlations and information that are not directly observable as parts
of the dashboard.

34

In the preliminary version of this paper [18], we introduced a pair of opera-
tors, Analyze which was intended to provide a collection of data for a cube at
a more detailed level and Explain for more elaborate (but again data-oriented)
actions that try to highlight interesting subsets or aggregations of data. Here,
we collectively group these alternatives under the new operator Explain that
provides an emphasis to models, rather than data for the explanation of phe-
nomena.

We discriminate two kinds of phenomena that need explanation (thus pro-
ducing two variants of the operator’s invocation). In the first case, ”explain”
means: give me an explanation model for the measure I am observing (e.g.,
”why do the Sales for Rhodes have a value of 2500?”). In the second case,
”explain” means: give me an explanation model for the discrepancy from my
benchmark model (”why are the Sales for Rhodes down by 1000 units com-
pared to last year?”), which practically refers to comparing the models for two
different cubes.

In accordance with the aforementioned theory on explanation, our operator
requires (a) a phenomenon (in the form either of a simple measure, or of two
comparable measures) for which we ask, (b) a question ”why?”, as well as (c) the
provision of ”the most fit” model as an answer to the ”why?” question. Again,
the process for explaining practically requires the acquisition of the necessary
data, the computation of one or more explanation models, and the assessment
of its results by evaluating the important model components.

The simplest invocation of the Explain operator follows the syntax
with cube explain measure [for subcube] using explanation model (at-

tribute list) {, explanation model (attribute list)}

where: we start with a cube (possibly extended with derived measures); we
restrict our focus to a specific measure; define a subcube via the appropriate
selections (if the for part is absent, we refer to the entire cube); and use one or
more explanation models over a set of attributes (for example, the attribute to
test correlation with measure, or the attribute list over which a linear regression
will be tested, or the attribute needed to be used as a factor in a hypothesis
testing, or the attributes needed to perform decision tree analysis, etc.).

There are several possibilities for models that can be used as explanatory
means:

• Performing statistical tests between different descriptions at different lev-
els of granularity of the same multidimensional space (i.e., via roll-up’s
or drill down’s) to establish an analogy between their statistical measures
via, e.g., t-tests or F-tests

• Correlating the measure with one (or a vector of) correlation measure(s)
listed in an attribute-list of other measures and (attributes of) dimension
levels

• The extraction of a regression formula that relates it with an attribute-list

35

of other measures and (attributes of) dimension levels and its comparison
to the result of this formula

• A decision tree that classifies the measure with respect to an attribute-list
of other measures and (attributes of) dimension levels

Deciding highlights, in an automated way is not straightforward and this
is due to the fact that the split of cells in different components is not always
straightforward. For example, although any labeling scheme has a natural way
to split cells by target labels, correlation / regression schemes are not directly
separable. However, as we can still annotate individual cells with their contri-
bution to the overall correlation or with the discrepancy of the actual to the
expected value, we still have (a) model component measures per cell and (b) the
possibility of separating them in different classes via thresholds (e.g., cells that
deviate too much from the expected value, or cells whose concordant tuples are
too many in a Kendall correlation).

The semantics of the execution of the invocation of the Explain operator
are as follows:

1. Data Acquisition: we obtain the data for the cell/(sub)cube

2. Model construction: we compute the specified explanation models over the
specified attribute list. Depending on the model, the output comprises
several computed measures (model components) which annotate the cells
of the cube.

3. Highlight selection: we apply the generic highlight selection procedure to
the measures produced by the binding of parameters to the model type
and obtain the model component with the maximum surprise, along with
its cells, as the highlights of the new cube.

The second variant of the operator utilizes a Comparison Cube. A com-
parison cube is just another, previously specified, cube with the same schema,
against which the current (sub)cube is to be contrasted. The execution differs
from the above, in the sense that the explanation model is going to be computed
for both cubes, and it is their differences that have to be presented.

with cube explain measure [for subcube] using explanation model (at-
tribute list) {, explanation model (attribute list)} against comparison cube

The essence of the operator is the demonstration to the user of the differences
in the models of the antagonizing cubes. This is of course specific to the model
type. For example, the difference in correlation is just a numerical value, whereas
the difference in a decision tree is a set of paths, along with the change in the
strength measures per path.

Example 10. Assume the user used to be in cube CO and nagivates to cube
CN via a describe operation that drills down from Work.L1 to Work.L2. Then,
suppose the user, after observing the new data, wonders ”why is my data in

36

gov like this?” with the following hypothesis in mind: does drilling down to
CN drastically change the variance of data? One alternative is that variance
remains approximately the same (null hypothesis), and the other is that it does
not (alternative hypothesis). Practically, the explanation here is ”if my data are
like this, this is because variance at a finest granularity is somehow propagated
to the level I am seeing now”. Then, we have the intention:

with CN explain Hours per Week for Work.L1 = gov using F-test (work class.L0)

against describe C0 for Work.L1 = gov

This means that the answer to the user’s intention is the subset of CN corre-
sponding to gov that highlights how cells behave with respect to the mean of CO

for gov. Data acquisition is the drill down to CN for gov. Model construction
is the application of the F-test between the two cubes (for gov), and computing
a discrepancy for each cell value to the mean of CO (for gov), resulting in two
components (Table 13): (a) one for cells deviating by more than one standard
deviation, and, (b) its complement. Note that each component can be inter-
preted as corresponding to one of the hypotheses (e.g., component ”> stdev”
corresponds to the alternative hypothesis). Highlight selection is done by calling
the highlight selection algorithm with the following parameters:

• the cube obtained by applying the selection L1.work class=gov over CO,
denoted COgov

• the cube obtained by applying the selection L1.work class=gov over CN ,
denoted CNgov

• components ”< stdev” and ”> stdev”

• function proxies(x) that maps each fact CN of CNgov to its ancestor in

COgov

• in this case, we use two different significance functions: significanceCNgov(x)
returns the value of x for the cells of CNgov, and significanceCOgov(x) re-

turns the mean of the cells of COgov.

• function surprise(x, y) = y − x

• function AC(x) = ∣CN ∣ − sum(x) where sum is the traditional sum aggre-
gation function.

One could have easily used a single significance function, e.g., a z-score. We
opted for this setup in order to illustrate that the specific settings for the involved
functions can vary. Determining whether there exist significance / surprise /
aggregation functions outperforming the others with ”universal” applicability is
of course a matter of future research.

37

F-test Discrepancy >stdev <stdev

Assoc
Federal-gov 41.15 0.907 -0.02 0 1
Local-gov 41.33 0.907 0.15 0 1
State-gov 39.09 0.907 -2.08 0 1

Post-grad
Federal-gov 43.86 0.907 2.68 1 0
Local-gov 43.96 0.907 2.78 1 0
State-gov 42.96 0.907 1.78 0 1

Some-college
Federal-gov 40.31 0.907 -0.86 0 1
Local-gov 40.14 0.907 -1.03 0 1
State-gov 34.73 0.907 -6.44 1 0

University
Federal-gov 43.38 0.907 2.20 0 1
Local-gov 42.34 0.907 1.16 0 1
State-gov 40.82 0.907 -0.35 0 1

Table 13: Explanation for with CO explain Hours per Week for gov using F-test (work class.L0)

As already mentioned, the current operator covers both the Analyze and the
Explain operators of [18]. As open problems, one can envision the usage of all
the attributes of the data set, in a setup of the operator where the attribute-list
is missing for the query specification. One can also envision a specification of
the operator without any explicit assignment of explanatory model (in which
case all possible models are computed and subsequently assessed). Yet, this
leaves open the specification of attributes to be considered for each individual
case – to avoid the complexity, we have simply focused on the case where a
specific explanation in terms of both model and attributes is requested.

4.4. Predict

After having observed what the current situation of the state of affairs is,
and after an analyst has assessed it by comparing it to relevant benchmarks
and tried to explain it by understanding the hidden correlations behind the
participating variables, the next possible task is to pose the question “can you
please tell me how the measurement will evolve in the next period?”

Prediction of a future variable is typically based on the idea of using previous
measurements of a time series to forecast the following measurements. The main
observable of a time series is a measure, recorded at different time points as it
evolves over time [26]. There is, of course, the case where a regression model
is used, to relate the observed measure to the values of other variables, and,
as already mentioned, this is a very powerful explanatory tool. But typically,
forecasting for time series is grouped in two different types of tasks. The first
type of task has to do with relating the prediction to the past via a plethora of
alternative values, ranging from very naive ones (like averaging, or using drift)
to elaborate ones, like exponential smoothing and even more sophisticated ones,
like ARIMA models that combine the autoregression of relating the future to
past values with the moving average models that predict the future based on
the past prediction errors. The second type of task requires splitting the time
series to three components, specifically (a) trend (for the long term behavior of
the series), (b) seasonality (for repeating behaviors) and (c) error —or noise-
for the very local discrepancies of each time point from the combination of the
other two factors.

38

The operator Predict requires (a) a measure evolving with respect to (b) a
time dimension and (c) a predictive model that computes the predicted value.
The simplest syntax of the operator is:

with cube predict next k points of measure [for subcube] over time di-
mension using predictive model

where the predictive model can be any method of time series implemented by
the system (STL, exponential smoothing, ARIMA, etc) [26] to compute the next
k values of the measure.

The semantics of the execution is as follows:

• Data Acquisition: we obtain the data for the (sub)cube and sort them by
the values of the time dimension.

• Model construction: we compute the predictive model; depending on the
model the output can be (a) the expected values (one per input cell)
along with a vector of the forecasted k points, as well as the error of the
prediction, or (b) a set of measures (trend, season, noise), and of course,
the k forecasted points.

• Highlight selection: by definition, the k forecasted values are the highlights
of the operation.

One can also envision the execution of multiple predictive models along with a
highlight selection with respect to their error levels.

Example 11. Assume that we have available the time evolution of a certain
measure. Although the Adult data set does not have such a measure, assume
that we work with the data depicted in the first two columns in the left-hand
side of Table 14. The data are actually the OECD countries average weekly
work hours, for all declared employment. This is the old cube CO. The data
do not demonstrate any seasonality, as all tests confirm, so the resulting time
series is practically the sum of trend and noise. We have performed a Loess trend
extraction to the time series, that gave us trend and noise, and subsequently,
we used autoregression over the trend to predict the next 5 years. The two
antagonizing components are (a) the old values and (b) the new ones, and since,
we are actually predicting values, by definition the highlight is the component
with the new values.

4.5. Suggest

The Suggest intention allows to answer to questions like: ”where else should
I be looking now?”, i.e., questions asked when the phenomenon to be analyzed
is not clear in the user’s mind, the overall analysis has not yet focused on
some particular restricted zone of the dataset, or the user simply thinks there
is more to do to investigate the phenomenon. The user expects the system to
answer her intention by recommending one or more queries, by using a given
recommendation strategy.

39

Year Weekly hrs Known Predicted
2000 40.52 1 0
2001 38.80 1 0
2002 38.58 1 0
2003 38.48 1 0
2004 38.40 1 0
2005 38.43 1 0
2006 38.39 1 0
2007 38.20 1 0
2008 38.07 1 0
2009 37.78 1 0
2010 37.77 1 0
2011 37.67 1 0
2012 37.66 1 0
2013 37.53 1 0
2014 37.59 1 0
2015 37.60 1 0
2016 37.53 1 0
2017 37.73 0 1
2018 37.86 0 1
2019 37.95 0 1
2020 38.02 0 1
2021 38.07 0 1

Table 14: Predicting Weekly Hours

The intention here is essentially to benefit from the expertise of other users,
or to let the system automatically steer the current user towards zones in the
dataset that are relevant, based on the data. Therefore invoking the Suggest
intention requires a recommendation model that indicates what type of sug-
gestions is sought and what recommendation strategy will be used to compute
it.

The invocation of the Suggest operator follows the syntax:

with cube suggest using recommendation model

The using clause is optional, and if the recommendation model is omitted,
different alternative recommendation strategies are tried.

We distinguish between the following traditional recommendation model
types:

• content-based: suggested queries are computed based on the data of the
analyzed dataset and the data viewed by the user in the current explo-
ration. Models of this type include YMAL [27], or the discovery driven
operators proposed by Cariou et al. [28] and Sarawagi [4]. The latter
operator, called INFORM, applies entropy maximization to lead the user
to surprising parts of the cube given the user’s current exploration.

• collaborative: suggested queries are computed based on a query log and
the beginning of the current exploration. Models of this type include
collaborative query recommender systems that essentially differ in the
way they compute similarity between the current exploration and past
explorations, like those described in [29, 30, 31], to list a few.

40

• hybrid: combination of the two above types. QueRIE is an example of a
hybrid query recommender system [32], where a ”mixing factor” is used
to determine the importance of the content-based strategy with respect
to the collaborative one.

Conceptually, and independently of its type, a recommender system can be
seen as a prediction system that computes a score of interest for some queries
(the candidate recommendations), rank them, and suggest the query(ies) having
the highest score. This score, together with classical quality measures associated
with recommendations (diversity, serendipity, etc.), participates in the charac-
terization of the recommendation.

The semantics of the invocation of Suggest is as follows:

• Data acquisition: the system obtains the necessary data via (a) access-
ing outside data needed by the recommendation model (query logs, user
profiles, etc.), (b) the appropriate cube queries to retrieve the cubes cor-
responding to queries that are the candidate recommendations.

• Model construction: in this step, all cube queries executed during the first
step receive a score corresponding to the application of the recommenda-
tion model(s) used. Each of them is turned into a model component.

• Highlight selection: the goal of this step is to select the final recommenda-
tion, i.e., among all the components computed in the previous step (each
representing a candidate recommendation), the one achieving the best pre-
diction score. Displaying this recommendation under the form of a high-
light is made by i) providing as output of the intention the union of all
cubes corresponding to candidate recommendations, and ii) highlighting
in this cube the cells of the component corresponding to the recommen-
dation.

Example 12. Consider our running example with the Adult dataset. Assume a
user starts analyzing the cube and only knows the global average of this dataset,
40.93, shown in a cube named C. The user invokes the following Suggest inten-
tion:

with C suggest using INFORM

where INFORM is a version of the INFORM operator [4]3.
Assume that the INFORM model finds in the dataset that the two cubes of

Example 1 and 14 are the most informative in the sense of its internal scor-
ing mechanism (precisely, the Kullback-Leibler divergence between actual data
and cubes where the global average is uniformly distributed), scoring respectively
0.0034 and 0.0058.

The highlight selection algorithm is then called with:

3In this version of the INFORM operator, Avg is used as the aggregation function.

41

Score Candidate 1 Candidate 2

Assoc

Federal-gov 41.15 0.0058 0 1
Local-gov 41.33 0.0058 0 1
State-gov 39.09 0.0058 0 1
Gov 40.73 0.0034 1 0
Private 41.06 0.0058 0 1
Private 41.06 0.0034 1 0
Self-emp-inc 48.68 0.0058 0 1
Self-emp-not-inc 45.88 0.0058 0 1
Self-emp 46.68 0.0034 1 0

Post-grad

Federal-gov 43.86 0.0058 0 1
Local-gov 43.96 0.0058 0 1
State-gov 42.96 0.0058 0 1
Gov 43.58 0.0034 1 0
Private 45.19 0.0058 0 1
Private 45.19 0.0034 1 0
Self-emp-inc 53.05 0.0058 0 1
Self-emp-not-inc 43.39 0.0058 0 1
Self-emp 47.24 0.0034 1 0

Some-college

Federal-gov 40.31 0.0058 0 1
Local-gov 40.14 0.0058 0 1
State-gov 34.73 0.0058 0 1
Gov 38.38 0.0034 1 0
Private 38.73 0.0058 0 1
Private 38.73 0.0034 1 0
Self-emp-inc 49.31 0.0058 0 1
Self-emp-not-inc 44.03 0.0058 0 1
Self-emp 45.7 0.0034 1 0

Univesity

Federal-gov 43.38 0.0058 0 1
Local-gov 42.34 0.0058 0 1
State-gov 40.82 0.0058 0 1
Gov 42.14 0.0034 1 0
Private 43.06 0.0058 0 1
Private 43.06 0.0034 1 0
Self-emp-inc 49.91 0.0058 0 1
Self-emp-not-inc 44.44 0.0058 0 1
Self-emp 46.61 0.0034 1 0

Table 15: Suggesting

• the initial cube C,

• the output cube is the union of cubes CO and CN of Examples 1 and 14,

• each of these cubes correspond to one of the components,

• the proxies relationship maps each cell of CO and CN to the corresponding
cell of C,

• significance(x) returns the score of the recommendation for CO and CN

and 0 for the cells of C,

• surprise(x, y) = x − y,

• AC(x) outputs e.g., max(x) to get the component’s score.

The algorithm outputs the component corresponding to the query producing
the cube CN .

42

5. Experiments

We have implemented a Cube Query Engine as a research prototype to
accommodate our proposal. We call our system Delian Cube Engine (to honor
the mathematical Delian Problem); the code is publicly available as Free Open
Source Software at https://github.com/pvassil/DelianCubeEngine.

Figure 3: Delian Cube Engine: A dimension and cube description (bottom right), a cube
query and its result (bottom and top middle, respectively) and a set of models and their
model components as bitmaps.

Our Delian Cube Engine operates on top of a relational DBMS to support
query answering and allows the registration of dimension hierarchies and cubes,
in order to facilitate the answering of aggregate queries along the lines prescribed
in the respective definition, involving selections on the levels, aggregations (and,
internally, implicit joins of the fact to the dimension tables, in order to correctly
construct the respective relational query). Practically, the user needs to map
the tables of an underlying star schema to the respective dimension and cube
structures. Once the cube dataset is registered and mapped to its underlying
relational database, the system is ready to be queried. The user deals with cube
queries, instead of using SQL, in a simple cube query language. The queries
are passed from the front-end to the back-end of the engine for processing via
an RMI connection. There, the following steps take place: (a) there is a model
selection phase, where model extraction algorithms are selected to be applied
on the results of the cube query, (b) there is a translation of the cube query into
the respective SQL query that will actually be executed over the underlying
database, (c) the resulting recordset is again translated back to cells and a

43

https://github.com/pvassil/DelianCubeEngine

cube is produced as an answer, (d) the selected model extraction algorithms
are applied to the result of the query, (e) all the resulting cells, cubes, models,
and model components are packaged and transferred back to the front-end for
presentation (Fig. 3).

To assess the practicality of the method we have worked with a cubified
version of the PKDD99 schema. The setup of both the client and the server
parts, as well as the execution of all experiments, have been performed on a
rudimentary laptop with an Intel i5-7200U CPU at 2.5GHz, 8GB install RAM,
and a 512GB disk. We have worked with the original PKDD99 data set on
bank loans, which is of small size, and artificially generated larger versions of
it at 1M and 10M rows. The data set has a cube on loans; the amount loaned
is the measure and the dimensions are accounts (generalized to geographical
regions, with 3 levels), date, and status of the loan (practically single level). We
execute a session that (1) starts by querying the entire cube, (2) focuses on the
loan contracts that are running without problems, (3 and 4) compares drilled-
down variants in terms of geography and date, and, finally, (5) re-focuses on a
particular region where all contracts are queried. The execution of the queries
is accompanied with the generation and execution of models: ranking, outlier
detection, K-Means and KPI assessment.

Figure 4: Breakdown of query and model execution time for the same query session, over
different sizes for the same schema. All times are with hot cache.

The querying time scales linearly with the cube size, and we depict them
only in the first of the sub-Figures of Fig. 4 to avoid visually suppressing the
key message of the experiments which is found in the model generation and
execution: in all cases, the model generation requires simply a few milliseconds
(and frequently, fractions of them)! This is expected, as the models operate on
the query result and not on the underlying cube. Thus, the psychological limit
of 500 msec for producing an answer is not affected at all by the application of
our models, in our experiment. We recognize that the visualizations employed
are näıve, and thus fail to plug-in any time costs due to the visualization part
—however, we consider this to be a matter of an open, wide field of research for
the future.

44

6. Related work

6.1. Coupling data and models

The idea of coupling data and analytical models is not completely new. Al-
ready in the mid-90’s, inductive databases were proposed to couple data with
patterns, i.e., generalizations extracted from the data. In this framework knowl-
edge discovery is modelled as an interactive process in which users can query
data as well as patterns using an ad hoc query language [33].

More specifically, in [16], among the research challenges in BI the authors
emphasized the need to achieve a unified view of data and models that describe
data, so that this two components can be used and queried together. The in-
tuition proposed to move from data to models and vice-versa is that of folding
data into models and unfolding models into data. Our approach goes exactly in
this direction, being folding/unfolding achieved through the definition of com-
ponents.

Some degree of data-to-model unification is actually achieved in MauveDB
[34], which provides language constructs for declaratively specifying model-based
views of data based on a variety of commonly used statistical models, meant
as simplified descriptions of the underlying data. Though the authors recog-
nize that the view definition has to be model-specific, they suggest to rely on
the common aspects of different models to decrease the variation in the view-
definition statements. They also indicate as the most promising approach to
query processing over model-based views that of materializing an intermediate
model-specific representation of the view. While their work is mostly focused
on maintaining model-based views and transparently querying them in a SQL-
like fashion, ours introduces intentional operators as a querying abstraction and
uses highlights to emphasize relevant findings.

Most recently, the Northstar system has been proposed as a support to inter-
active data science [35]. Importantly, among the key requirements for interactive
data science, the author mentions that of enabling users to seamlessly switch
between data exploration and model building. To this end he developed the
Alpine Meadow optimizer, which features a declarative language for machine
learning tasks and a real-time strategy for hyper-parameter tuning.

6.2. Exploratory querying and data exploration

Interactive Database Exploration (IDE) is the process of exploring a database
by means of a sequence of queries aiming at answering an often imprecise user
information need. Typically, an exploration includes several queries where the
result of each query triggers the formulation of the next one. Many approaches
have recently been developed to support IDE, as illustrated by a recent survey
of the topic [21]. In their survey, Idreos et al. adopt a top-down viewpoint and
classify the existing approaches in three main categories: user interaction, mid-
dleware and database layer. Techniques range from visual optimization (like
query result reduction [36]), automatic exploration (like query recommenda-
tion [27]), assisted query formulation (like data space segmentation [37]), data
prefetching (like result diversification [38]) and query approximation [39].

45

One of the conclusion of this survey is that declarative “exploration” lan-
guages are still to be invented. We believe that the present work is a first step
towards such a language.

OLAP exploration of data warehouses is a particular use case of database ex-
ploration that enables to work with simplifying assumptions, precisely, the mul-
tidimensional star schema or the regularities of multidimensional queries. Many
approaches have been specifically developed to support OLAP exploration, as
illustrated by the next subsection.

6.3. OLAP models and operators

The research on traditional models for OLAP and its operators (roll-up,
drill-down, slice, drill-across) practically concluded around the turn of the mil-
lennium. We refer the interested reader to an excellent survey [2].

Apart from the traditional operators, related research has explored the pos-
sibility of providing operators with more knowledge extraction results. In an
emblematic paper in the area, Sarawagi introduces the DIFF operator in [3],
which returns a set of tuples that most successfully describe the difference of
values between two cells of a cube that are given as input. The same author
in [4] describes a method that profiles the exploration of a user and uses the
Maximum Entropy principle to recommend which unvisited parts of the cube
can be the most surprising in a subsequent query. In [5], Sathe and Sarawagi
introduce the operator RELAX which verifies whether a pattern observed at a
certain level of detail is also present at a coarser level of detail, too.

The Cinecubes method, introduced in [40] and [9] is aimed to provide auto-
mated reporting as a result to an original OLAP query. The proposed method
enriches an original OLAP query with auxilliary queries to aid (a) the com-
parison and assessment of the result of the query to similar data and (b) the
explanation of the result with values at the most detailed level. So, the result
of the Cinecubes system can coarsely be grouped as the result of two operators:
the first operator computes queries for values similar to ones defining the selec-
tion filters of the original query and the second one by drilling down into the
dimensions of the result, one dimension at a time. The Cinecubes method also
comes with the features of (a) (simple) highlight extraction, (b) packaging the
result as a story, presented as a Powerpoint story, with text commenting on the
highlights, audio produced automatically from the text and visualization of the
query results in slides. We refer the interested reader to [9] which also includes
the discussion of data narration and visualization, that is not covered here.

The Shrink operator [22, 23] goes in the direction of approximate query
answering, whose main goal is to increase query efficiency by returning a reduced
result while minimizing the approximation introduced. In particular, Shrink
aims at balancing data precision with data size in cube visualization via pivot
tables. To this end it takes as input a cube and compresses it to a given target
size; this is done by fusing cube slices into a single representative slice, in such
a way that the information loss is minimal. Other approaches to approximate
query answering for OLAP are presented in [41, 42, 43].

46

Finally, in [10] the OLAP paradigm is reused to explore prediction cubes
besides traditional data cubes. In a prediction cube, each cell summarizes a pre-
dictive model trained on the data corresponding to that cell. Specifically, each
cell can measure either the accuracy of the model, or the similarity between two
models, or the model predictiveness based on a test-set. This approach empow-
ers decision making by supporting users in searching for interesting subsets of
data in the light of a prediction model; however, differently from our approach,
it does not identify highlights nor it provides a goal-oriented query language.

6.4. Query Recommendations

Query recommendation refers to the situation where (a) a user submits a
query to the system and (b) the system follows up with suggesting subsequent
queries to aid the user’s exploration. The suggestion can be based on the user’s
profile, history of queries, history of other users’ queries, or other information.
Query recommendation has recently attracted many attentions for Interactive
Database Exploration [44, 27, 32] and particularly in the case of OLAP explo-
ration of data cubes [45, 46, 47, 30, 31, 48, 49], including approaches applied to
spatial OLAP [50, 51]. See [44, 52, 31, 53] for a broader discussion.

As it is the case for general purpose recommender systems, query recommen-
dation methods can be classified into content-based approaches, collaborative
approaches, or combination thereof. Content-based approaches compute sug-
gestions based on the data seen by the user and and unseen data. For instance,
Cariou et al., in [28] describe a method that mines the most interesting dimen-
sion for a user to explore, based on his history. As already mentioned, a similar
problem has been addressed in [4]. Jerbi et al. [45] propose an approach where
recommendations are computed based on the navigation context and prefer-
ences stated in the user profile. Collaborative approaches take advantage of the
wisdom-of-the-crowd effect. The authors of [47, 31] use the query log of previous
users to find similar queries which can give information to user who may not
know it is available. Drushku et al. [49] use the query log of previous users to
detect user intents and recommend queries that fit the user’s current intents.

As explained in Section 4, our suggest intention encapsulates these recom-
mendation strategies in their variety.

6.5. Intensional querying

Non-conventional query answering includes a variety of answering mecha-
nisms and happens when either the user has no clear formulation of his needs
(e.g., he does not know what he really wants) or has a good understanding of his
needs but is flexible enough to accept an alternate, approximate or intensional
answer. Among several kind of non-conventional answers, we distinguish inten-
sional query answering as the more relevant to our work. According to [54], an
intensional query answer complements the extensional one by including either
a concise description of the answer or some useful facts about it.

47

Intensional query answering relies generally on knowledge like integrity con-
straints, inference rules (in knowledge-based systems), ontology (and more fre-
quently a taxonomy), and user’s preferences to either provide more insight about
the extensional answer or give an approximate answer.

Intensional query answering has been applied in many area of computer sci-
ence (e.g., object-oriented databases [55], deductive database [56], and question
answering systems [57, 58]) but, to the best of our knowledge, the only work
related to the OLAP area is [59], that proposes a framework for computing an
intensional answer to an OLAP query by leveraging the previous queries in the
current session. The idea is to use an intensional answer to concisely charac-
terize the cube regions whose data do not change along the sequence, coupled
with an extensional answer to describe in detail only the cube regions whose
data significantly differ from the expectation.

6.6. Interestingness

As explained in Section 3, our approach for highlight selection based on
a significance score is inspired by the framework for subjective interestingness
in exploratory data mining proposed by De Bie [19]. The framework is based
on the idea that the goal of the explorative pattern mining is to pick patterns
that will result in the best updates of the user’s belief state, while presenting a
minimal strain on the user’s resources. In this sense, an interestingness measure
(IM) is subjective in that it depends on the belief of the explorer. A general
definition for this IM is a real-valued function of a background distribution
(that represents the belief) and a pattern (the artifact to be presented to the
explorer). The belief is the probability P(ω) of the event x ∈ ω, i.e., the degree
of belief the user attaches to a pattern (characterized by ω) being present in
the data x. In other words, if this probability is small, then the pattern is
subjectively surprising for the explorer. The data mining process consists of
extracting patterns and presenting first those that are subjectively surprising,
and then refining the belief. Our principle of highlight selection is inspired by
this framework, in the sense that the highlights to be selected maximize the
surprise caused by confronting a significance score computed for the initial cube
(that can be thought of as the user belief) with the significance score computed
for the target cube to select a model component (that can be thought of as the
pattern to be presented).

6.7. Principles behind the foundation of our operators

The foundations of what are the basic operators that users perform during
OLAP and data exploration have been a really difficult problem in our search.
The related literature that we could find does not particularly help towards this
direction.

We start by observing that our approach goes in the direction of reducing the
number of interactions a user needs to achieve her analysis goals. Specifically,
with reference to the Observation-Orientation-Decision-Action loop applied to
BI [60], intentional analytics empowers both the observation phase (look at the

48

data with an expectation of what it should be) and the orientation phase (we
look at the data in different ways depending on what it shows).

Interestingly, intent-driven query formulation in the OLAP context has been
investigated to some extent in [61], which proposes meta-morphing as a way to
have incomplete user queries completed by the system based on the previous in-
teractions of that user. This approach is different from ours mainly in two ways:
(i) an intention for us is not an incomplete query but a high-level analytical goal,
and (ii) query answers for us encompass both data and models.

In [62] the authors perform a semi-structured interview with 25 analysts
to understand what data analysis and visualization entails as a process. The
authors come up with 5 high-level tasks: discovery, wrangling, profiling, mod-
eling and reporting of information. Expectedly (at least for the educated data
warehouse experts) discovery and wrangling of data are the most tedious of
the tasks. However, when it comes to the environment of OLAP, which is
performed over simply-but-neatly organized cubes, these two tasks, along with
profiling (i.e., data quality assurance) have already been completed, either by
the organization ETL workflow, or by a do-it-yourself data wrangling. The rest
of the high-level tasks are too few and too high for our purpose here.

In a similar vein, in [63], the authors propose a taxonomy of user tasks in
exploratory data analysis that include (1) discovery (hypothesis formulation and
determination of the data source that can answer it) , (2) data acquisition (and
preparation), (3) exploration of the data, (4) modeling, via the construction of
a model that explains the data, and, (5) communication of the results to other
people via reports and presentations. The discussed taxonomy is very close to
the one presented in [62] , but similarly suffers from the high-level of abstraction
for the exploration part. Having said that, we also say that we are very close to
the fundamental principle of working with data that this paper outlines: once
the data are ready, users explore to find out what the status is and to understand
the data, and construct models that explain the phenomena – what we add is
more detail on the exploration and, notably, automation of the process.

Another path that we followed was to search for foundations for on-line
search in the web, which is a similar area. In [64] the authors conduct a user
study of 72 participants engaged in 426 user tasks and deduce it is worthwhile
to deduce the intentions that drive the users to perform their searches. We
quote from the abstract of the paper: ”The implication of this research is that
rather than solely addressing a searcher’s expressed information need, searching
systems can also address the underlying learning need of the user.” After a
detailed survey of the literature on learning styles, the authors suggest that the
best candidate to serve as the foundation of the learning tasks of users is the
cognitive learning framework that was proposed by Anderson and Krathwohl as
a refinement to Bloom’s taxonomy.

It is worthwhile to discuss Bloom’s taxonomy and Anderson and Krath-
wohl’s refinement to it [65], [66]. The framework tries to categorize the different
domains of human learning (mainly with a view to children education), and in-
cludes the following main cognitive tasks: (a) remembering, (b) understanding
(by extracting meaning out of messages or activities), (c) applying the material

49

learned via a procedure, (d) analyzing by understanding how the different parts
of artifacts or concepts relate to each other, (e) evaluating based on criteria and
standards, (f) creating of new artifacts by composing individual pieces into a
coherent or functional assembly. Our framework, tries to automate the remem-
bering and application, but at the same time retains the understanding (via the
description of the status in different ways and levels of abstraction), the analysis
(via the explanations provided) and the evaluation parts. We cover the creation
part at the future work section.

6.8. Relationship to our previous work

A first version of this paper appears in [18]. The largest part of [18] is
included in Section 1.2. The rest of the contents of the paper are completely
novel. The initial set of intentional operators of [18] has been abstracted further
in this paper and replaced by the operators of Section 4. The parts on the
model’s definition and the interestingness evaluation are not covered in [18].

7. Conclusions and paths for future research

This paper is a vision paper describing, in broad terms, a potential future for
OLAP, to strengthen its place as the corner stone of BI. We are convinced that,
after 50 years of query answering, it is now time to replace it with effortless,
automatic insight gaining from the user. Instead of making the end user dig
into sets of records, we can increase productivity and the understanding of the
essence of the data by using two pillars, one devoted to querying (i.e., what an
OLAP query is), and another devoted to answering (i.e., what the answer to
an OLAP query is). Specifically, firstly, we want to allow the user to focus on
high-level goals of information acquisition, rather than details of what data to
bring in, and secondly, to automatically suggest focus-points in the answers that
will move the user effort from manual ”jewel mining” to addressing the insights
gained.

Beyond the proposed new viewpoint to OLAP, our call to arms to the re-
search community involves several open roads for research.

New intentional operators. In this paper we have proposed a set of fun-
damental operators for the OLAP tools of the close future. New operators,
esp., as combinations of old ones can also be devised. We would assume as
a pre-requisite for each such operator to come with a graceful linkage to the
overall model proposed here (in an attempt to be able to gracefully plug it in
the respective BI tools under a uniform setting).

Alternatives for full automation. Much like in traditional query processing,
the intentional operators can come with alternative execution algorithms for
the data collection and the model construction, in order to facilitate the opti-
mization of the task. The optimization can be thought, not only in terms of
performance, but also in terms of information content delivered. Of course, the
fine tuning of any algorithms concerning their parameter fixing is also impor-
tant.

50

Optimization concerns. In practice, intentional operators can be envisioned
as sequences of different logical OLAP and ML operators. Besides, the cube
resulting from each logical operator can be enhanced with highlights obtained
by applying different algorithms (e.g., clustering or classification). Thus, much
like for the selection of an execution plan for a SQL query, executing an inten-
tional operator requires an optimization phase to decide which logical operators
and model mining algorithms to execute. How exactly this optimizer will be
structured internally, and what optimization algorithms and tunings will be
employed is clearly a topic of future research.

Packaging into data stories. In this paper we have focused on the deeper
layers of query answering, which involves data acquisition and mining. The
visual representation of all these results, the automatic choice of graphical rep-
resentation, the automatic generation of data stories and the overall packaging
to the user are topics that, despite their importance, have traditionally been
outside the walls of the database community, mainly due to the difficulty of ex-
perimentally verifying the effectiveness of any proposed method. Still, answers
to the automation of the aforementioned tasks are highly valuable and pose
open research topics.

Benchmarking and tools. A free, open-source (FOSS) tool and a reference
benchmark for the future BI (involving data, model, and highlight extraction
requests and sessions) can be a really handy tool for the research community
(otherwise, each new paper will need to improvise on its experimental assess-
ment). A tool will also trigger other research directions like, e.g., the incor-
poration of research results on natural language processing to accept the user
requests, new visualizations to show models and highlights, etc.

Acknowledgments. We are particularly thankful to the reviewers of both
this paper and its preliminary version in DOLAP 2018 for their comments that
helped us enrich the breadth of the related work, and the clarity of concepts
and terminology.

References

[1] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-total, in:
Proceedings of ICDE, 1996, pp. 152–159.

[2] O. Romero, A. Abelló, On the need of a reference algebra for OLAP, in:
Proceedings of DaWaK, 2007, pp. 99–110.

[3] S. Sarawagi, Explaining differences in multidimensional aggregates, in: Pro-
ceedings of VLDB, 1999, pp. 42–53.

[4] S. Sarawagi, User-adaptive exploration of multidimensional data, in: Pro-
ceedings of VLDB, 2000, pp. 307–316.

51

[5] G. Sathe, S. Sarawagi, Intelligent rollups in multidimensional OLAP data,
in: Proceedings of VLDB, 2001, pp. 531–540.

[6] E. F. Codd, Relational database: A practical foundation for productivity,
Commun. ACM 25 (2) (1982) 109–117. doi:10.1145/358396.358400.
URL https://doi.org/10.1145/358396.358400

[7] T. D. Bie, An information theoretic framework for data mining, in: Pro-
ceedings of SIGKDD, 2011, pp. 564–572.

[8] C. S. Jensen, T. B. Pedersen, C. Thomsen, Multidimensional Databases
and Data Warehousing, Synthesis Lectures on Data Management, Morgan
& Claypool Publishers, 2010.

[9] D. Gkesoulis, P. Vassiliadis, P. Manousis, CineCubes: Aiding data workers
gain insights from OLAP queries, Inf. Syst. 53 (2015) 60–86.

[10] B. Chen, L. Chen, Y. Lin, R. Ramakrishnan, Prediction cubes, in: Pro-
ceedings of VLDB, Trondheim, Norway, 2005, pp. 982–993.

[11] M. Terrovitis, P. Vassiliadis, S. Skiadopoulos, E. Bertino, B. Catania,
A. Maddalena, S. Rizzi, Modeling and language support for the manage-
ment of pattern-bases, Data Knowl. Eng. 62 (2) (2007) 368–397.

[12] M. Lombardi, M. Milano, A. Bartolini, Empirical decision model learning,
Artif. Intell. 244 (2017) 343–367.

[13] A. Banerjee, R. N. Davé, Validating clusters using the hopkins statistic, in:
Proceedings of FUZZ-IEEE, 2004, pp. 149–153.

[14] C. Lemke, M. Budka, B. Gabrys, Metalearning: a survey of trends and
technologies, Artif. Intell. Rev. 44 (1) (2015) 117–130.

[15] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
F. Hutter, Efficient and robust automated machine learning, in: Proceed-
ings of NIPS, 2015, pp. 2962–2970.

[16] T. B. Pedersen, Warehousing the world: A vision for data warehouse re-
search, in: New Trends in Data Warehousing and Data Analysis, 2009, pp.
1–17.

[17] L. Geng, H. J. Hamilton, Interestingness measures for data mining: A
survey, ACM Comput. Surv. 38 (3) (2006) 9.

[18] P. Vassiliadis, P. Marcel, The road to highlights is paved with good inten-
tions: Envisioning a paradigm shift in OLAP modeling, in: Proceedings of
DOLAP, 2018.

[19] T. D. Bie, Subjective interestingness in exploratory data mining, in: Pro-
ceedings of IDA, 2013, pp. 19–31.

52

https://doi.org/10.1145/358396.358400
http://dx.doi.org/10.1145/358396.358400
https://doi.org/10.1145/358396.358400

[20] B. Padmanabhan, A. Tuzhilin, A belief-driven method for discovering un-
expected patterns, in: Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining (KDD-98), New York City, New
York, USA, August 27-31, 1998, 1998, pp. 94–100.

[21] S. Idreos, O. Papaemmanouil, S. Chaudhuri, Overview of data exploration
techniques, in: Proceedings of SIGMOD, 2015, pp. 277–281.

[22] M. Golfarelli, S. Graziani, S. Rizzi, Shrink: An OLAP operation for balanc-
ing precision and size of pivot tables, Data Knowl. Eng. 93 (2014) 19–41.

[23] S. Rizzi, M. Golfarelli, S. Graziani, An OLAM operator for multi-
dimensional shrink, IJDWM 11 (3) (2015) 68–97.

[24] H. F. Hansen, Choosing evaluation models. a discussion on evaluation de-
sign, Evaluation 11 (4) (2005) 447–462.

[25] G. R. Mayes, Theories of Explanation, Internet Encyclopedia of Philosophy.

[26] R. J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice,
Otexts.com, 2014.

[27] M. Drosou, E. Pitoura, YmalDB: exploring relational databases via result-
driven recommendations, VLDB J. 22 (6) (2013) 849–874.

[28] V. Cariou, J. Cubillé, C. Derquenne, S. Goutier, F. Guisnel, H. Klajn-
mic, Built-in indicators to discover interesting drill paths in a cube, in:
Proceedings of DaWaK, 2008, pp. 33–44.

[29] C. Sapia, PROMISE: predicting query behavior to enable predictive caching
strategies for OLAP systems, in: Proceedings of DaWaK, 2000, pp. 224–
233.

[30] M. Aufaure, N. Kuchmann-Beauger, P. Marcel, S. Rizzi, Y. Vanrompay,
Predicting your next OLAP query based on recent analytical sessions, in:
Proceedings of DaWaK, 2013, pp. 134–145.

[31] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, S. Rizzi, A collabora-
tive filtering approach for recommending OLAP sessions, Decision Support
Systems 69 (2015) 20–30.

[32] M. Eirinaki, S. Abraham, N. Polyzotis, N. Shaikh, QueRIE: Collaborative
database exploration, IEEE Trans. Knowl. Data Eng. 26 (7) (2014) 1778–
1790.

[33] L. D. Raedt, A perspective on inductive databases, SIGKDD Explorations
4 (2) (2002) 69–77.

[34] A. Deshpande, S. Madden, MauveDB: supporting model-based user views
in database systems, in: Proceedings of SIGMOD, Chicago, Illinois, 2006,
pp. 73–84.

53

[35] T. Kraska, Northstar: An interactive data science system, PVLDB 11 (12)
(2018) 2150–2164.

[36] L. Battle, M. Stonebraker, R. Chang, Dynamic reduction of query result
sets for interactive visualizaton, in: Proceedings of Int’l Conference on Big
Data, 2013, pp. 1–8.

[37] T. Sellam, M. L. Kersten, Meet charles, big data query advisor, in: Pro-
ceedings of CIDR, 2013.

[38] H. A. Khan, M. A. Sharaf, A. Albarrak, Divide: efficient diversification for
interactive data exploration, in: Proceedings of SSDBM, 2014, pp. 15:1–
15:12.

[39] J. M. Hellerstein, P. J. Haas, H. J. Wang, Online aggregation, in: Proceed-
ings of SIGMOD, 1997, pp. 171–182.

[40] D. Gkesoulis, P. Vassiliadis, Cinecubes: cubes as movie stars with little
effort, in: Proceedings of DOLAP, 2013, pp. 3–10.

[41] S. Acharya, P. B. Gibbons, V. Poosala, Congressional samples for approx-
imate answering of group-by queries, in: Proceedings of SIGMOD, 2000,
pp. 487–498.

[42] Y. Feng, S. Wang, Compressed data cube for approximate OLAP query
processing, J. of Computer Science and Technology 17 (5) (2002) 625–635.

[43] F. Buccafurri, F. Furfaro, G. M. Mazzeo, D. Saccà, A quad-tree based mul-
tiresolution approach for two-dimensional summary data, Inf. Syst. 36 (7)
(2011) 1082–1103.

[44] K. Stefanidis, M. Drosou, E. Pitoura, ”You May Also Like” Results in
Relational Databases, in: Proceedings of PersDB, 2009.

[45] H. Jerbi, F. Ravat, O. Teste, G. Zurfluh, Preference-based recommenda-
tions for OLAP analysis, in: DaWaK, Vol. 5691 of Lecture Notes in Com-
puter Science, Springer, 2009, pp. 467–478.

[46] F. Bentayeb, C. Favre, Rok: Roll-up with the k-means clustering method
for recommending OLAP queries, in: DEXA, Vol. 5690 of Lecture Notes
in Computer Science, Springer, 2009, pp. 501–515.

[47] A. Giacometti, P. Marcel, E. Negre, A. Soulet, Query recommendations for
OLAP discovery-driven analysis, Int. J. of Data Warehousing and Mining
7 (2) (2011) 1–25.

[48] E. Negre, F. Ravat, O. Teste, OLAP queries context-aware recommender
system, in: DEXA (2), Vol. 11030 of Lecture Notes in Computer Science,
Springer, 2018, pp. 127–137.

54

[49] K. Drushku, J. Aligon, N. Labroche, P. Marcel, V. Peralta, Interest-based
recommendations for business intelligence users, Information Systems, to
appear.

[50] O. Layouni, F. Alahmari, J. Akaichi, Recommending multidimensional spa-
tial OLAP queries, in: IIMSS, Springer, 2016, pp. 405–415.

[51] S. Bimonte, E. Negre, Evaluation of user satisfaction with OLAP recom-
mender systems: an application to recoolap on a agricultural energetic
consumption datawarehouse, IJBIS 21 (1) (2016) 117–136.

[52] P. Marcel, E. Negre, A survey of query recommendation techniques for data
warehouse exploration, in: Proceedings of EDA, 2011, pp. 119–134.

[53] N. Kozmina, An empirical study of recommendations in OLAP reporting
tool, in: ICEIS 2015 - Proceedings of the 17th International Conference on
Enterprise Information Systems, Volume 1, Barcelona, Spain, 27-30 April,
2015, 2015, pp. 303–312.

[54] A. Motro, Cooperative database systems, Encyclopedia of Library and In-
formation Science 66 (2000) 79–97.

[55] S. Yoon, I. Song, E. K. Park, Intelligent query answering in deductive and
object-oriented databases, in: Proceedings of CIKM, 1994, pp. 244–251.

[56] P. A. Flach, From extensional to intensional knowledge: Inductive logic
programming techniques and their application to deductive databases, in:
Proceeding of Workshop on (Trans)Actions and Change in Logic Program-
ming and Deductive Databases, 1998, pp. 356–387.

[57] F. Benamara, Generating intensional answers in intelligent question an-
swering systems, in: Proceedings INLG, 2004, pp. 11–20.

[58] P. Cimiano, S. Rudolph, H. Hartfiel, Computing intensional answers to
questions - an inductive logic programming approach, Data Knowl. Eng.
69 (3) (2010) 261–278.

[59] P. Marcel, R. Missaoui, S. Rizzi, Towards intensional answers to OLAP
queries for analytical sessions, in: Proceedings of DOLAP, 2012, pp. 49–56.

[60] M. Middelfart, Improving business intelligence speed and quality through
the OODA concept, in: Proceedings of DOLAP, Lisbon, Portugal, 2007,
pp. 97–98.

[61] M. Middelfart, T. B. Pedersen, The meta-morphing model used in TARGIT
BI suite, in: Proceedings of ER, Brussels, Belgium, 2011, pp. 364–370.

[62] S. Kandel, A. Paepcke, J. M. Hellerstein, J. Heer, Enterprise data analysis
and visualization: An interview study, IEEE Trans. Vis. Comput. Graph.
18 (12) (2012) 2917–2926.

55

[63] A. Batch, N. Elmqvist, The interactive visualization gap in initial ex-
ploratory data analysis, IEEE Trans. Vis. Comput. Graph. 24 (1) (2018)
278–287.

[64] B. J. Jansen, D. L. Booth, B. K. Smith, Using the taxonomy of cognitive
learning to model online searching, Information Processing and Manage-
ment 45 (6) (2009) 643–663.

[65] D. R. Krathwohl, A revision of bloom’s taxonomy: An overview, Theory
Into Practice 41 (4).

[66] L. O. Wilson, Anderson and Krathwohl - Bloom’s Taxonomy Revised
(2016).
URL thesecondprinciple.com/teaching-essentials/

beyond-bloom-cognitive-taxonomy-revised/

[67] S. Khoshafian, G. P. Copeland, Object identity, in: Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA’86), Portland, Oregon, USA, Proceedings., 1986, pp. 406–416. doi:

10.1145/28697.28739.
URL https://doi.org/10.1145/28697.28739

[68] A. Giacometti, P. Marcel, A. Soulet, A relational view of pattern discovery,
in: Proceedings of DASFAA, 2011, pp. 153–167.

56

thesecondprinciple.com/teaching-essentials/beyond-bloom- cognitive-taxonomy-revised/
thesecondprinciple.com/teaching-essentials/beyond-bloom- cognitive-taxonomy-revised/
https://doi.org/10.1145/28697.28739
http://dx.doi.org/10.1145/28697.28739
http://dx.doi.org/10.1145/28697.28739
https://doi.org/10.1145/28697.28739

APPENDIX

8. Formalizing data, dimension hierarchies cubes and cube queries

An OLAP session is a sequence of dashboards that the analyst sees, each
with its own information, including data, charts and informative summaries of
KPI performance. The sequence is produced by the actions of the analyst that
changes the contents of the dashboard by requesting more information on the
basis of a set of operations made available to him by the tool.

8.1. Preliminaries on multidimensional modeling

In this Section, we give the formal background of our modeling concern-
ing multidimensional databases, hierarchies and queries. We closely follow the
model of [9] and slightly extend it. As typically happens with multidimensional
models, we assume that dimensions provide a context for facts [8]. This is
especially important considering that dimension values come in hierarchies; ev-
ery single fact can be simultaneously placed in multiple hierarchically-structured
contexts, thus giving users the possibility of analyzing sets of facts from different
perspectives. The underlying data sets include measures that are characterized
with respect to these dimensions. Cube queries involve measure aggregations
at specific levels of granularity per dimension, along with filtering of data for
specific values of interest.

8.2. Domains, dimensions and underlying data

Domains. We assume the following infinitely countable and pairwise dis-
joint sets: a set of level names (or simply levels) UL, a set of measure names
(or simply measures) UM, a set of regular data columns UA, a set of dimension
names (or simply dimensions) UD and a set of cube names (or simply cubes)
UC . The set of data columns U is defined as U = UL ∪ UM ∪ UA. For each L ∈
UL, we define a countable totally ordered set dom(L), the domain of L, which
is isomorphic to the integers. Similarly, for each M ∈ UM, we define an infinite
set dom(M), the domain of M , which is isomorphic either to the real numbers
or to the integers. The domain for the regular data columns of UA is defined in
a similar fashion to the one of measures. We can impose the usual comparison
operators to all the values participating to totally ordered domains { <,>,≤,≥ }.

Dimensions and levels.A dimension D is a lattice (L,≺) such that:

• L = {L1,. . . ,Ln}, is a finite subset of UL.

• dom(Li) ∩ dom(Lj)= ∅ for every i ≠ j.

• ≺ is a partial order defined among the levels of L.

• With D being a lattice, it follows that there is a highest and a lowest level
in the hierarchy. The highest level of the hierarchy is the level D.ALL
with a domain of a single value, namely ’D.all’. Moreover, there is also
the lowest level in the dimension, D.L⊥, for which there does not exist any
other level L’ in L, such that L’ ≺ L⊥.

57

Each path in the dimension lattice, beginning from its upper bound and ending
in its lower bound is called a dimension path. The values that belong to the
domains of the levels are called dimension members, or simply members (e.g.,
the values Paris, Rome, Athens are members of the domain of level City, and,
subsequently, of dimension Geography).

To ensure the consistency of the hierarchies, a family of functions ancL2

L1
is

defined, satisfying the following conditions:

1. For each pair of levels L1 and L2 such that L1 ≺ L2, the function ancL2

L1

maps each element of dom(L1) to an element of dom(L2).

2. Given levels L1, L2 and L3 such that L1 ≺ L2 ≺ L3, the function ancL3

L1

equals to the composition ancL2

L1
○ ancL3

L2
. This implies that:

• ancL1

L1
(x) = x.

• if y = ancL2

L1
(x) and z = ancL3

L2
(y), then z = ancL3

L1
(x).

• for each pair of levels L1 and L2 such that L1 ≺ L2, the function ancL2

L1

is monotone (preserves the ordering of values). In other words:

∀ x,y ∈ dom(L1): x < y ⇒ ancL2

L1
(x) ≤ ancL2

L1
(y), L1 ≺ L2

3. For each pair of levels L1 and L2 such that L1 ≺ L2 the ancL2

L1
function

determines a set of finite equivalence classes Xi such that:

(∀x, y ∈ dom(L1)) (ancL2

L1
(x) = ancL2

L1
(y)⇒ x and y belong to the same Xi).

4. The relationship descL2

L1
is the inverse of the ancL2

L1
function, i.e.,

descL2

L1
(l) = {x ∈ dom(L1) ∶ ancL2

L1
(x) = l}.

Level properties. Levels are also annotated with properties. For each level
L, we define a finite set of functions, which we call properties, that annotate
the members of the level. So, for each level L, we define a finite set of functions
FL = {FL1 , . . . , FLk }, with each such function FLi mapping the domain of L
to a regular data column Ai, s.t., Ai ∈ UA, i.e., FLi : dom(L) → dom(Ai). So,
for example, for the level City, we can define the functions population() and
area(). Then, for the value Paris of the the level City, one can obtain the
value 2M for population(Paris) and 100Km2 for area(Paris).

Schemata. First, we define what a schema is in a multidimensional space.

A schema S is a finite subset of U .

A multidimensional schema is divided in two parts: S = [D1.L1, . . ., Dn.Ln,
M1, . . ., Mm], where:

58

• {L1,. . . ,Ln} are levels from a dimension set D = {D1,. . ., Dn} and level
Li comes from dimension Di, for 1 ≤ i ≤ n.

• {M1,. . ., Mm} are measures.

A detailed multidimensional schema S0 is a schema whose levels are the low-
est in the respective dimensions.

Facts and cubes. Now we are ready to define what a fact is, expressed as
a cell, or multidimensional tuple in the multidimensional space.

A tuple under a schema S = [A1, . . ., An] is a point in the space formed by
the Cartesian Product of the domains of the attributes Ai, dom(A1) × . . . ×
dom(An), such that t[A] ∈ dom(A) for each A ∈ S.

A multidimensional tuple, or equivalently, a cell or a fact, t is a tuple under
a multidimensional schema S = [D1.L1, . . ., Dn.Ln, M1, . . ., Mm].

Having expressed what individual pieces of data, or facts, are, we are now
ready to define data sets and cubes .

A data set DS under a schema S = [A1, . . ., An] is a finite set of tuples
under S.

A multidimensional data set DS, also referred to as a cube, under a schema
S = [D1.L1, . . ., Dn.Ln, M1, . . ., Mm] is a finite set of cells under S such that:

• ∀ t1, t2 ∈ DS, t1[L1,. . ., Ln] = t2[L1, . . ., Ln] ⇒ t1 = t2.

• for no strict subset X ⊂ {L1, . . . , Ln}, the previous also holds.

In other words, M1, . . ., Mm are functionally dependent (in the relational
sense) on levels {L1,. . . ,Ln} of schema S.

A detailed multidimensional data set DS0 is a data set under a detailed
schema S0.

A star schema (D,S0) is a couple comprising a finite set of dimensions D
and a detailed multidimensional schema S0 defined over (a subset of) these
dimensions.

Example 13. Consider the detailed data set DS displayed in Figure 5, coming
from the well known Adult (a.k.a census income) dataset referring to data from
1994 USA census. There are 8 dimensions (Age, Native Country, Education,
Occupation, Marital status, Work class, Race and Gender) in the data set and a
single measure, Hours per Week. Each dimension comes with a lowest possible
level, which we denote as L0. Being a multidimensional data set, immediately
makes DS a detailed cube, so in the subsequent discussions, DS will also be
referred to as C0. This detailed data set will be the basis of our running example.

59

Figure 5: A subset of the detailed data set DS (equiv., C0), with its 8 dimensions at the
lowest possible level of detail and its single measure (depicted in the last column).

8.3. Selections

Selection filters. An atom is true, false, (with obvious semantics) or an
expression of the form ancL1

L0
(L1) θ v, or in shorthand, L1 θ v, with v ∈ dom(L1).

θ is an operator from the set {>,<,=,≥,≤,≠}.
A selection condition φ is a formula involving atoms and the logical con-

nectives ∧, ∨ and ¬. A well-formed selection condition is defined as a selection
condition that is applied to a data set with all the level names that occur in
it belonging to the schema of the data set. In the rest of our deliberations,
we assume that all the selection conditions are well-formed, unless specifically
mentioned otherwise. The expression φ(DS) is a set of tuples X belonging to
DS such that when, for all the occurrences of level names in φ, we substitute
the respective level values of every x ∈ X, the formula φ becomes true.

A detailed selection condition φ0 is a selection condition where all partici-
pating levels are the detailed levels of their dimensions.

8.4. Cube queries

Cube queries. The user can submit cube queries to the system. A cube
query specifies (a) the detailed data set over which it is imposed, (b) the selection
condition that isolates the records that qualify for further processing, (c) the
aggregator levels, that determine the level of coarseness for the result, and (d)
an aggregation over the measures of the underlying cube that accompanies the
aggregator levels in the final result. More formally, a cube query, is an expression
of the form:

c = ⟨ DS0, φ0, [L1, . . . , Ln,M1, . . . ,Mm], [agg1(M0
1), . . . , aggm(M0

m)] ⟩

where

1. DS0 is a detailed data set over the schema S =[L0
1, . . ., L0

n, M0
1 , . . . ,M0

k],
m ≤ k.

2. φ0 is a detailed selection condition,

3. L1, . . . , Ln are levels such that L0
i ≺ Li, 1 ≤ i ≤ n,

60

4. M1, . . . ,Mm, m ≤ k, are aggregated measures (without loss of generality
we assume that aggregation takes place over the first m measures – easily
achievable by rearranging the order of the measures in the schema),

5. agg1, . . . , aggm are aggregate functions from the set {sum, min,max, count}.

The semantics of a cube query in terms of SQL over a star schema are:

SELECT L1,...,Ln, agg1(M0
1) AS M1,...,agg1(M0

m) AS Mm

FROM DS0 NATURAL JOIN D1 ... NATURAL JOIN Dn

WHERE φ0

GROUP BY L1,...,Ln

where D1, . . ., Dn are the dimension tables of the underlying star schema and
the natural joins are performed on the respective surrogate keys 4

A cube query specifies (a) the cube over which it is imposed, (b) a selec-
tion condition that isolates the facts that qualify for further processing, (c) the
grouping levels, which determine the coarseness of the result, and (d) an ag-
gregation over some or all measures of the cube that accompanies the grouping
levels in the final result.

Interestingly, a cube query carries the typical duality of views: it is, at the
same time, both a query, as it involves a query expression imposed over the
underlying data, but, also a cube, as it computes a set of cells as a result that
obey the constraints we have imposed for cubes.

Example 14. The following cube query produces the cube of Table 16: CN =
⟨DS,

education.L3=’Post-secondary’ and work class.L2=’With-Pay’,
⟨ALL,ALL,L2,ALL,L0,ALL,ALL⟩,
Avg(Hours per Week)⟩

where DS is the detailed data set, the selection condition fixes Education to
’Post-Secondary’ (at level L3), and Work to ’With-Pay’ (at level L2), data is
grouped by Education at level 2, and Work at level 1, and the Avg of Hours per
Week is requested.

For the reader familiar with OLAP terminology, the new cube CN resulting
from the query, is practically the result of a Drill-Down operation over the old
cube CO of Example 1.

The expression characterizing a cube has the following formal semantics5:

c = { x ∣(∃y ∈ φ0(DS0)) (x = (ancL1

L0
1

(y[L0
1]), . . . , anc

Ln
L0
n
(y[L0

n]), agg1{G1}, . . . , aggm{Gm})) }

4This assumes identical names for the surrogate keys; in practice, we use INNER joins
along with the appropriate columns of the underlying tables, which might have arbitrary
names.

5With the kind help of Spiros Skiadopoulos

61

Hrs per Week Assoc Post-grad Some-college University

Federal-gov 41.15 43.86 40.31 43.38
Local-gov 41.33 43.96 40.14 42.34
State-gov 39.09 42.96 34.73 40.82
Private 41.06 45.19 38.73 43.06
Self-emp-inc 48.68 53.05 49.31 49.91
Self-emp-not-inc 45.88 43.39 44.03 44.44

Table 16: A new cube CN as the output of the cube query of Example 14

where for every i (1 ≤ i ≤ m) the set Gi is defined as follows:

Gi = { q ∣(∃z ∈ φ0(DS0)) (x[L1] = ancL1

L0
1

(z[L0
1]), . . . , x[Ln] = anc

Ln
L0
n
(z[L0

n]), q = z[M0
i]) }

9. Formalizing Algorithms

To be able to compute the results of model and highlight extraction algo-
rithms, we resort to the modeling of algorithms as functions. We will present
a simple taxonomy of algorithms in the context of our cube model and then,
we will proceed to define the formalization of algorithms as black-box func-
tions. In our subsequent deliberations, we will discuss how algorithms facilitate
the extension of database-generated query results with (a) simple computations
over the query results, (b) model extraction data mining algorithms, and (c)
highlight extraction algorithms isolating the important results of the previous
computations for the dashboard state.

9.1. Algorithms as functions and a taxonomy of functions

Taxonomy. Specifically, we classify algorithms (remember: practically,
functions) in three classes:

• Cell-based algorithms. These algorithms operate locally on a cell, inde-
pendently of the rest of the contents of the input cube. Simple arithmetic
computations belong to this category (e.g., profit = price - cost).

• Subcube-based algorithms. These algorithms can operate by splitting the
input cube to equivalence classes, which we call subcubes, according to
some criterion. Then, the computation of the new attributes for the cells
of the subcube, require the entire sub-cube to be fed to the algorithm
as input. Take for example, (a) a time series decomposition algorithm
producing three new attributes for each input cell (specifically, trend,
seasonality and noise), and, (b) a cube of Sales that is grouped per
Product and Month. Each product, then, defines a time series. Thus, the
algorithm can split the input to a set of subcubes, one per product and
perform time series decomposition for each of its cells. Again, notice that
although, ultimately, each cell gets its own values: (a) we cannot compute

62

the new cell values by looking at each cell in isolation, and on the other
hand, (b) we do not need the entire cube to compute them, but only the
set of values that pertain to the same time series.

• Cube-based algorithms. These algorithms require the entire cube to be
present for the computation of a cell’s extra attribute. Examples of this
kind of algorithms range from very simple algorithms, like determining the
bottom 3 values of a cube to highly sophisticated algorithms like outlier
detection or Fourier analysis.

Given a data set D, and a tuple x belonging to D, an algorithm f , depending
on its category, induces an equivalence class relation eqClassf(x) producing a
set of tuples that include (a) only x for a cell-based algorithm f , (b) all D for
a cube-based f , and (c) a subset of D, depending on the semantics of f , in the
case of subcube-based f .

Algorithms as Functions. We adopt a traditional modeling of algorithms,
which treats an algorithm, or equivalently, a function as a triplet involving the
following signature :

• a algorithm name, say f

• a vector of input parameters, say X = ⟨X1, . . . ,XI⟩

• a vector of output parameters, say Y = ⟨Y1, . . . , YO⟩

To model algorithms and parameters, we assume a countable set of data
computation function names UF and a countable set of parameter names UP ,
which is a subset of the names appearing in UA. Each parameter A, input or
output, is accompanied by a domain, dom(A). We will refer to X as the input
schema of the algorithm and to Y as the output schema of the algorithm. Then,
the algorithm is a relation mapping dom(X1) × . . . × dom(XI) to dom(Y1) ×
. . . × dom(YO).

The call of an algorithm requires fixing a data set over which the algorithm
will be applied and the assignment of the input parameters of the algorithm to
columns of the data set or constants. The latter is done by assigning to them
(a) constant values (without loss of generality we assume constants belonging
to R), or, (b) data columns from a data set. Given an underlying data set, a
valid parameter binding of an algorithm to the data set is a total mapping B: X
→ U ∪ R that uses only constants and data columns of the data set, respecting
also the compatibility of the domains between the algorithm signature and the
members of the binding. Unless explicitly mentioned, all our parameter bindings
of algorithms to cube queries are valid. We denote the binding B of a algorithm
f to a data set D and a valid binding of its input parameters B(X) as B(X ∣D).

Once such a binding has been done, the execution of a algorithm produces
a set of tuples abiding by the output schema Y . To denote the execution of the

algorithm we will use the notation D+ = f
B(X)
D .

63

Assuming a data set D under the schema X and a algorithm f : X → Y , the
extended data set D+ resulting from the execution of f under a binding B(X ∣D)
is defined as follows:

• The schema of D+ is S = X ∪ Y

• For each tuple x ∈ X, there is exactly one tuple s in D+, such that

s[X1, . . . ,XI] = x[X1, . . . ,XI] and s[Y1, . . . , YO] = f
B(X)
D (eqClassf(x))

• No tuples other than the aforementioned belong to D+

Observe, that we want to annotate each input tuple with a set of output
values, independently of whether the algorithm is cell-based or not. In the case

of cell-based algorithms, f
B(X)
D (x) ignores the other tuples of D and uses only

x, whereas in the case of subcube-based algorithms it uses only the subcube
of x. This also means that each time, a tuple x gets the same result with its
equivalence class.

Whenever the details of the binding are not important, we will use a short-
hand notation D+ = f(D).

An extended cube query c+ produced by the application of a algorithm f to
a cube query c under the schema [L1, . . ., Ln, M1, . . ., Mm], i.e., c+ = f(c),
comes with the same semantics as data sets.

9.2. The generating data of a dashboard

As we will demonstrate in the sequel, a dashboard includes a set of queries.
We can exploit the raw generating data of the dashboard (i.e., the data that come
from the underlying database via database queries), to produce derived values for
each of the cells of a cube query, via the application of simple data computing
functions. The produced cells are the generating data of the dashboard.

We employ the term cube query set, or for short, query set for a finite set of
queries C = (c1, . . ., ck). Assuming a query set C = (c1, . . ., ck) for a dashboard
S, the results of the queries of C are the raw generating data of S. Similarly to
query sets, an extended query set C+ = (c+1 , . . ., c+k) is a finite set of extended
queries, providing the generating data of S.

9.3. Algorithm and function composition

The composition f ○ g of two algorithms f and g carries the same semantics
and constraints as the composition of functions in mathematics. The composi-
tion of a list of algorithms f1, . . ., fn is a repetitive application of the composition
operator ((. . .(f1 ○ f2) . . . ○ fn−1) ○ fn).

For the sake of generality, we can also compute the composition of individual
data computing algorithms over simple cube queries. Assume a cube query c
under the schema [L1, . . ., Ln, M1, . . ., Mm]. Assume also the composition
of a list of algorithms F = f1, . . ., fn. We say that the composition of the
algorithms’ list has a valid binding to the cube query c when each algorithm fi

64

has a valid binding to the result of the composition f1 ○ f2 ○ . . . ○ fi−1 applied
over c. The schema and the contents of the extended cube query produced c+

by the application of f1 ○ f2 ○ . . . ○ fn to c are produced as defined above.

10. Formalities for models

10.1. General Principles

Having defined data and algorithms, we ca now proceed to discuss the com-
putation of statistical models from the data. We are going to treat model
construction algorithms as ”black-box” functions without probing into their in-
ternals, and, most importantly, without assuming any specialized properties for
their output. What does a model construction algorithm do? Basically, the
algorithm receives as input (a) a set of input data, and, (b) a set of execution
parameters that have to be fixed for the algorithm’s execution. Without loss of
generality, we can assume that a subset of these parameters will be bound to
string or numerical values and the rest will be mapped to attributes of the in-
put data. The output of a model construction algorithm is a model of the input
data. Depending on the algorithm, the result differs. For instance, a descriptive
model built using unsupervised clustering is basically just a labeling of each
cube’s cells, while a predictive one allows enriching the cube with predictions
and comes with an accuracy score. In summary, the main properties of a model
construction algorithm are outlined as follows:

1. Input: a set of input data, which is the result of an extended cube query
set of the dashboard, along with a binding of the algorithm’s input pa-
rameters.

2. Output: a (possibly complex) result composed of (a) a model of the input
data, and, (b) several characterizations of it (precision, strength, p-value,
etc.).

Models are produced as instances of model types. A model is a concise rep-
resentation of some knowledge about the data. This knowledge can be some
relationship between data attributes, some property or characterization of sub-
sets of data, or some computed value over the existing data. At the same time,
despite its conciseness, typically a model also serves as an enrichment of the
underlying data – in other words, conceptually, each record of the data can be
extended, annotated, or, in any case, enriched with extra information by the
model. We do this by organizing models as sets of model components, with each
model component having exactly one value for each of the cells of the model’s
generating data. This is what we refer to as data-to-model mappings.

10.2. Model Types

Every model construction algorithm has a result type: after the execution
of the algorithm, its output, i.e., the resulting model of the input data is bound

65

to this result type. To facilitate the management of models, we assume an in-
finitely countable domain of data type names UT , each member of which, say
T , has a domain, dom(T).

A model type T is a tuple T = ⟨SI , S⋆O, SP ⟩, where SI , S
⋆
O, SP are schemata

with their members’ names belonging to UA, with SI being the input schema,
S⋆O being the output schema and, SP being the model characterization schema.
The output and characterization schemata are not to be in 1NF and can employ
complex type constructors of the form set or tuple. S⋆O obligatorily includes a
set-valued attribute So ∶ set{A}, A ∈ UA, to be instantiated as a schema of
components at the model level [67].

10.3. Models, Model Components and Data-To-Model Mappings

A model m is an instance of a model type T and it is computed over a
given cube c. To this end, we need a binding. The contents of the model, stored
under the model’s output schema, are structured along model components, which
are practically annotations of the input cube cells with respect to the model being
computed over them. This requires a mapping between the elements of the model
contents and in the input cells.

10.3.1. Models

Given a model type T = ⟨SI , S⋆O, sP ⟩, a cube c, a valid binding B(SI ∣ c) of
SI to c (i.e., assigning levels and measures to the type’s input parameters, along
with any needed constants for the tuning of the algorithms), then, a model m is
a named tuple m = ⟨B(SI ∣ c), SO, sp⟩, with m acting as a (possibly automat-
ically computed) name for the model, SO an output schema belonging to the
domain of S⋆O and sp ∈ dom(SP).6 By definition, a model’s output schema SO
includes SO.So, which we call the output component schema of the model and
simplify its naming as simply So.

There are two necessary explanations here, on the output and the statistical
characterization of a model. Let’s start with the output schema. Assume a
model type of decision trees. The output is a set of paths, with each path being
characterized by an expression and a bitmap vector for the cells of the cube, on
whether they belong to the path or not. So at the model type level the output
schema is a pair S⋆O = ⟨ Paths ∶ set{Expr ∶ String}, SO ∶ set{MC ∶ Boolean}⟩.
Then, at the model level, the model can contain an arbitrary number of paths,
not a-priori known at the type level. Suppose then that a particular model
m has 6 paths, then we model the output schema of m as a pair of (a) the
set Paths = {p1, . . . , p6}, with each path p defined as an expression, e.g., p3 =
age > 10 and weight > 50→ class = overweight and (b) the components schema,

6For the moment, we bind the parameters of a model type’s input schema to a single cube,
and leave the application of model construction algorithms to a combination of cubes as a
generalization for future work.

66

So being a set of components So = {MC1, . . . ,MC6}, defined as Boolean at-
tributes. Then, m.SO is the pair SO = ⟨Paths, So⟩. Naturally, p3 refers to
the model component MC3 which is annotating the cube cells. In an exactly
similar manner, a clustering algorithm has as the output of its model type
a pair including a set of medoids corresponding to a set of clusters, S⋆O = ⟨
Medoids ∶ set{MD ∶ vector{coordinates}}, So ∶ set{MC ∶ Boolean}⟩. A par-
ticular cluster, say cluster c4, can be reconstructed be the respective medoid
MD4 and the model component MC4. The statistical characterization of a
model is an instance of the respective attribute of the model type, can follow
arbitrary structures and can even avoid annotating the cells of the input cube.

What is implied by the above definitions of model and model types is that
model types can be data types of arbitrary complexity, in an object-oriented
manner, and not restricted to be in 1NF. At the same time, the model schemata,
can ultimately be treated in a relational format, as a simple set of attributes.
Even if the data type is a complex data type, it is always possible to un-nest
it into a relational-like structure – and, in any case, it is important that what
matters here, i.e., the model components, are explicitly modeled as attributes.
Attempts to relationaly code mining results already exist [68].

10.3.2. Model Components

A model has an output, which includes a component schema of attributes. So
practically speaking, the result of a model is a data set, with named attributes.
These attributes we call model components.

Assume the aforementioned model m = ⟨B(SI ∣ c), So, sp⟩. A model compo-
nent MC is an attribute belonging to So (equiv., the output component schema
So is composed of model components). Assuming So = {MC1,MC2, . . . ,MCm},
each component MC of So is instantiated with a list of values {v1, v2, . . . , vn},
each vi ∈ dom(MC). We call the values that instantiate MC as the model
component elements or simply elements. We denote the elements of a model
component MC as MC.elements.

10.3.3. Data-To-Model Mappings

Due to the inherent heterogeneity of models and model components, we need
to devise a unifying model to cover them all. The unifying essence of all the
plethora of diverse model types is that, at the end of the day, all of them are
annotations of the original data.

We impose a data-to-models constraint that there is a bijective mapping
between the cells of cube c and the elements of each of its model components.
Thus, we have two ways of viewing the computation of a model m over a cube
c:

• Extended data set computation: practically, the schema of c is extended
with So, and the instances are appropriately matched

• Data-to-model mapping: there is a bijection via the functions fmcc : c.cells
→ MC.elements and its inverse f cmc: MC.elements → c.cells.

67

In other words, we can think of model components as a uniform mechanism
for transforming statistical models to data, and at the same time, extending the
input data with annotations concerning the respective models.

10.4. Highlight Production

The set of highlights of the dashboard is a set of important findings that
accompany the dashboard. These can be findings of any nature, e.g., important
outliers in the contents of the dashboard’s data, all the tuples belonging to a
certain class of a classification scheme, the top or bottom values of a measure,
etc.

To define highlights, we need to introduce two more concepts.

• We need a highlight selection criterion to allow us define which compo-
nent is actually a highlight or not. We devote the entire Section 3 to this
end. From the formal perspective, we assume the existence of a function
(equiv., algorithm) interestingness() that allows to annotate each com-
ponent MC with an interestingness score MC.interestingness. Then, a
highlight selection criterion is a function that assigns true or false to the
component of the output schema of a model, thus assigning to them the
highlight property or not –i.e., φH : M.So → Boolean

• Since each highlight component annotates all the cells of a cube, we need
to isolate only the elements of the component that are of particular impor-
tance. We call this subset, the core data of the highlight. Which elements
qualify as core data is dependent (i) upon the model type (i.e., it is different
if a clustering scheme devotes a bitmap per cluster, in which case we are
interested in ’1”s only, vs., the case of a classification scheme, where each
element is assigned to a class, e.g., ’Low’ or ’Unexpected’), and (ii) possi-
bly, upon the criterion used (i.e., if the interestingness criterion is mostly
focused towards outlierness, values like ’unexpected’ are the highlight’s
core, whereas if the criterion is regularity, exactly the opposite holds).
Since there is a 1:1 mapping between component elements and cube cells,
we denote the core elements of a component as MC.coreElements and
their respective cube cells as MC.coreCells.

Given an intentional query q issued over a cube CO of a dashboard, and
resulting to a new cube c, a new model M over cube c, with components
M.MC1, . . . ,M.MCk, a criterion for highlight selection φH (on the basis of
a component scoring function interestingness), then, the triplet h = ⟨MCI ,
MCI .coreElements, MCI .coreCells⟩ is a highlight, with:

• MCI being a specific component of M , s.t., φH(MCI .interestingness) =
true, i.e., it qualifies as highlight with respect to the selection criterion.

• fMCI
c (MCI .coreCells) = MCI .coreElements, i.e., the core elements and

the core cells fulfill the 1:1 mapping.

68

The modeling that we adopt is open in many ways. First, the interestingness
function can be defined in many ways. Second, the criterion φH is also open to
alternative definitions: e.g., it can be whether the component has the top in-
terestingness, or it is within the top-k, or it has some other property (e.g., it is
in the skyline of interestingness aspects, if one defines a multi-aspect definition
of interestingness in terms of a vector of scores). Finally, the definition of core
cells is also open to different alternatives.

10.5. Dashboards

The triple of a cube C, its (set of) models M, and its highlights H is called
an enhanced cube.

A dashboard S is a finite set of enhanced cubes, S = {c⋆1, . . . , c⋆S}.

11. Operators and their Formal Definition

In this section, we formally define the operators of the Intentional Analytics
Model. In all our deliberations we assume:

• A dashboard S including a finite set of enhanced cubes, S = {c⋆1, . . . , c⋆S}

• An arbitrary enhanced cube c⋆ of S is defined as a triplet with its gen-
erating cube data, its models and highlights, c⋆ = {c+,M,H}, where the
models of the enhanced cube are a finite set of models M = {M1, . . . ,MM}
and the highlights a finite set of highlights H = {h1, . . . , hH} and the ex-
tended c⋆ is produced from a cube query c via a set of functions, where c
= (DS0, φ0, [L1, . . . , Ln,m1, . . . ,mm], [agg1(m0

1), . . . , aggm(m0
m)])

• An arbitrary model M comprises a finite set of model components in its
output M = {MC1, . . . ,MCc}

For each operator we assume a set of model types to be produced after the
application of the operator. We will commonly refer to every such list as T and
each time we will prescribe its components with an indicative set of models to
be produced.

After the execution of each operator, the dashboard S is extended with a
new enhanced cube c⋆ n = {c+ n,Mn,Hn}

The highlights Hn of c⋆ n are automatically computed following the principle
presented in Section 3, using a function called selectHL(). The cubes and
models given as parameters of this function are the initial cube c, the new cube
cn and the set of models Mn . The other parameters, i.e., relation proxies and
functions significance, D, AC and AM , pertain to the subjective aspect of the
interestingness assessment and therefore are predetermined by both the type of
models used and by the user history with the system. They are not detailed

69

any further in what follows, where we simply abbreviate the call to selectHL()
by selectHL(cn,Mn).

The removal of cube from the dashboard is beyond the discussion of this
paper –one can envision explicit removals by the user (user closes the respective
window), or automatic caching-like replacements over a fixed screen, or any
other scheme).

11.1. Describe

The describe operator produces a new enhanced cube by focusing on a sub-
cube at a possibly different aggregation level – practically this is the operator
to add new information to a dashboard. Remember that the general form of
the operator was:

with cube describe measure {, measure} [for subcube] [by ({level} ∣ size inte-
ger)]

Semantics. The ’by level’ variant of the describe operator is formally de-
fined as follows:

c⋆ n = Describe(c, m1, . . . ,md, φ, Di.L), with:

1. First, a cube cn = (DS0, φ∧φ0, [L1, . . . , Li−1, L,Li+1, . . . , Ln,m1, . . . ,md],
[agg1(m0

1), . . . , aggm(m0
d)]) is computed, d ≤ m

2. Second, Mn, a set of models that are computed over cn, via the respective
binding of the model types of T={TtopK , TDomR, TDomC , Toutl} is also
obtained.

3. Third, a set of highlights, Hn, is automatically computed over Mn via an
automatic highlight selection mechanism Hn = selectHL(cn,Mn).

The variant of the operator without the ’by level’ clause is a simplification of
the aforementioned variant, where Ln retains the level it had at c.

The ’size integer’ variant of the describe operator is formally defined as fol-
lows:

c⋆ n = Describe(c, m1, . . . ,md, φ, k), with:

1. First, a cube cn = (DS0, φ∧φ0, [L1, . . . , Ln,m1, . . . ,md], [agg1(m0
1), . . . , aggm(m0

d)])
is computed, d ≤ m

2. Second, apply (a) a clustering’s type Tclust algorithm to the cube cn to
produce k clusters and (b) a shrink’s type Tshr algorithm to produce k
cells, one per target summarizing value. The elements of Tclust’s output
are bitmaps showing the participation or not of a cell to the respective
cluster. The elements of Tshr’s output are bitmaps showing the participa-
tion or not of a cell to the respective shrunk cell.

70

3. Third, a set of highlights, Hn, is automatically computed over Mn via an
automatic highlight selection mechanism Hn = selectHL(cn,Mn).

11.2. Assess

The assess operator is all about comparing the results of a cube to ”similar”
or ”reference” benchmark data that allow us to assess how good the situation
presented by the cube is. Remember that the invocation of the Assess operator
follows the syntax:

with cube assess measure {, measure} [for subcube] using bench-
mark model {, benchmark model}

The formalization of the assess operator is as follows:

c⋆ n = Assess(c, m1, . . . ,mk, φ, B), with the set of benchmark types B =
{T b1 , . . . , T bB}

Assumptions. We assume a set of benchmark model types, UbT , subset of
UT that are used for the computation of the assess operator. Each such type T
must satisfy the following two constraints: (i) whenever bound to a cube c, it
produces a single-component model, with mc being the respective component,
such that a bijection fmcc can be defined (in other words, we can compute a
total 1:1 mapping between the elements of the benchmark and the cells of the
cube), and, (ii) it is accompanied by a computation algorithm fT .

Semantics. The semantics of the operator are as follows.

1. First, we apply φ to c producing a new base cube ca = (DS0, φ ∧ φ0,
[L1, . . . , Ln,m1, . . . ,mk], [agg1(m0

1), . . . , aggm(m0
k)])

2. Second, we apply the algorithms that pertain to the set of types of B over
ca and obtain a set of single-component models Mb = {M b

1 , . . . ,M
b
M}.

3. Third, for each component of the models of Mb, we compute the difference
of its elements with their respective cells of ca and populate an extra set
of models Mδ = {M δ

1 , . . . ,M
δ
M}. The union of Mb and Mδ forms the set

of models Mn for the operator’s execution.

4. Finally, a set of highlights, Hn, automatically computed over Mn via an
automatic highlight selection mechanism Hn = selectHL(cn,Mn) is ob-
tained. Unless otherwise tuned, the selection mechanism picks the mem-
bers of Mb for which the respective member of Mδ is maximized (i.e., the
ones with maximum discrepancy from the benchmarks)

The members of UbT , i.e., the benchmarks along with their underlying com-
putation algorithms is open and extensible (including, for example, having regis-
tered predefined goals for each cell, averaging of sibling cells, last k values, etc).

71

What is important is that for each cell of the cube, we can obtain (typically via
its coordinates) the respective model element in a 1:1 fashion. This enables the
assessment of each cell of the cube, by contrasting it to its respective component
element!

11.3. Explain

The explain operator applies models to the results of cube queries that per-
form statistical (or other) analyses to them. For example, these models may
test the correlation of the cube measures with other attributes, classify the data
on the basis of a classifier, extract regression formulae for the measures, etc.

To apply the model construction algorithms that explain results over the
cubes, we are in need to bind their execution to specific attributes. So, we need
to define the binding in the invocation of the operator.

The simplest invocation of the Explain operator follows the syntax
with cube explain measure [for subcube] using explanation model (at-

tribute list) {, explanation model (attribute list)}

The formalization of the first variant of the explain operator is as follows:

c⋆ n = explain(c, m, φ, T, MB),

with a set of model types T = {T e1 , . . ., T eB} and a set of bindings MB =
{MBe1(A1), . . ., MBeB(AB)} being bindings of the model types of T to the
underlying data.

Assumptions. Much like the assess operator, we assume a set of explana-
tory model types, UeT , subset of UT that are used for the computation of the
explanation operator. Each such type T must satisfy the following two con-
straints: (i) whenever bound to a cube c, it produces valid models, such that for
each of their components, say mc, a bijection fmcc can be defined to the under-
lying cube c (in other words, we can compute a total 1:1 mapping between the
elements of the benchmark and the cells of the cube), and, (ii) it is accompanied
by a computation algorithm f .

We assume that for the bindings to be valid, the members of each set of data
columns Ai are either attributes of the underlying cube c, or properties of the
levels of their dimensions.

Semantics. The semantics are as follows.

1. First, we apply φ to c producing a new base cube ca = (DS0, φ ∧ φ0,
[L1, . . . , Ln,m], [agg(m0)])

2. For each of the involved data types and bindings, we apply the model

construction algorithms to ca, i.e., we execute f
MBe(A)
ca for each MB ∈

MB. This computes the set of models Mn for the operator’s execution.

3. Third, a set of highlights, Hn, is automatically computed over Mn via an
automatic highlight selection mechanism Hn = selectHL(cn,Mn)

72

The second variant of the explain operator does the aforementioned proce-
dure over two cubes (instead of one), which we compare:

with cube explain measure [for subcube] using explanation model (at-
tribute list) {, explanation model (attribute list)} against comparison cube

The essence of the operator is the demonstration to the user of the differences
in the models of the antagonizing cubes. This is of course specific to the model
type. For example, the difference in correlation is just a numerical value, whereas
the difference in a decision tree is a set of paths, along with the change in the
strength measures per path.

Practically, this entails the operator
c⋆ n = explain(c, cc, m, φ, T, MB)

The semantics of the operator are:

1. We perform steps (1) and (2) independently, for c and cc, obtaining Mn

and Mnc with the respective models for the input cubes

2. For each model Mi in Mn and its homologous model M c
i in Mnc , and

for each pair of homologous model components Mi.MCj and M c
i .MCj ,

we compute the difference of their elements, resulting in a new model

Mδ
i . The union of this models is the set Mnδ which constitutes the set of

models of the resulting c⋆ n.

3. Third, a set of highlights are computed over Mnδ as usual.

11.4. Predict

The operator Predict estimates a set of points for (a) a measure, evolving
with respect to (b) a time dimension, via (c) a predictive model that computes
the predicted value. The syntax of the operator is:

with cube predict next k points of measure [for subcube] over time di-
mension using predictive model

The formalization of the operator is as follows:
c⋆ n = predict(c, m, φ, k, A, T)

We assume that the model type T requires for its input a binding B(m,k,A)
for (a) a measure to be predicted, (b) the number of predicted points, k, and
(c) an attribute A (quite possibly a dimension level with time semantics) that
plays the role of time dimension (a cube can have many of them). We also
assume an algorithm f for the computation of the prediction. As a side effect
of the attribute A, the data of the input cube are sorted by A internally in the
execution of f .

Semantics. The semantics are as follows.

73

1. First, we apply φ to c producing a new base cube ca = (DS0, φ ∧ φ0,
[L1, . . . , Ln,m], [agg(m0)])

2. We bind the algorithm f to B(m,k,A) and execute f
B(m,k,A)
ca . This com-

putes the set of models Mn that depending on the algorithm may include
(a) a single component model MP with a vector component for the pro-
jection of k points later, for each point in the input cube, (b) a model
with a component for the expected values on the basis of the regression
-or other- model employed by f , (c) a model with components for trend,
seasonality and noise, etc.

3. Third, a set of highlights, Hn, that is either assigned to include MP (de-
fault) or tuned to be automatically computed over Mn via an automatic
highlight selection mechanism Hn = selectHL(cn,Mn)

74

	1 Introduction and overview
	1.1 The revolution of Intentional Analytics
	1.2 The vision in a nutshell
	1.3 Contribution and outline

	2 Data, Models, Model Components, Highlights and Dashboards
	2.1 Data, cubes and cube queries
	2.2 Models
	2.2.1 Model Types
	2.2.2 Models: roles, taxonomy, usage
	2.2.3 Model Components

	2.3 Highlights
	2.4 Packaging it all in a dashboard, or, what the answer to a query really is

	3 Highlight Selection via a new Interestingness Measure
	3.1 Interestingness measure
	3.2 Principle of highlight selection

	4 Intentions
	4.1 Describe
	4.2 Assess
	4.3 Explain
	4.4 Predict
	4.5 Suggest

	5 Experiments
	6 Related work
	6.1 Coupling data and models
	6.2 Exploratory querying and data exploration
	6.3 OLAP models and operators
	6.4 Query Recommendations
	6.5 Intensional querying
	6.6 Interestingness
	6.7 Principles behind the foundation of our operators
	6.8 Relationship to our previous work

	7 Conclusions and paths for future research
	8 Formalizing data, dimension hierarchies cubes and cube queries
	8.1 Preliminaries on multidimensional modeling
	8.2 Domains, dimensions and underlying data
	8.3 Selections
	8.4 Cube queries

	9 Formalizing Algorithms
	9.1 Algorithms as functions and a taxonomy of functions
	9.2 The generating data of a dashboard
	9.3 Algorithm and function composition

	10 Formalities for models
	10.1 General Principles
	10.2 Model Types
	10.3 Models, Model Components and Data-To-Model Mappings
	10.3.1 Models
	10.3.2 Model Components
	10.3.3 Data-To-Model Mappings

	10.4 Highlight Production
	10.5 Dashboards

	11 Operators and their Formal Definition
	11.1 Describe
	11.2 Assess
	11.3 Explain
	11.4 Predict

