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Abstract. Certain applications require that some critical components must undergo 

qualification tests to check their suitability with respect to vibration excitations. Measured field 

data are commonly considered as reference for the synthesis of random stationary signals used 

as excitations for shakers. The current procedures usually generate test profiles in terms of 

PSD, corresponding to random processes with Gaussian probability distribution of values. 

Such signals may be unrealistic in representing the characteristics of the reference data if the 

latter are not Gaussian. The Kurtosis parameter is often used to synthetically represent the 

amount and the amplitude of signal peaks. Its value is 3.0 for Gaussian signals, whereas higher 

values hold for signals featuring high peaks, e.g. due to micro-shocks. In case of accelerated 

fatigue life tests, the synthesized signal must induce, in a limited duration, the same fatigue 

damage which the reference signal cause on the component throughout its expected lifetime. 

The Fatigue Damage Spectrum (FDS) is generally used to quantify the fatigue damage 

potential associated with the excitation. The test signal is synthesized targeting the same FDS 

of the reference profile. This paper presents two kurtosis-control algorithms of signal synthesis 

in combination with a technique able to match the prescribed FDS. 

1.  Introduction 

A common source of failure of mechanical systems operating in many applications (e.g. Automotive 

and Aerospace) is due to high-cycle fatigue induced by vibrations. To ensure that the most critical 

components work properly during their service life, vibration qualification tests are often prescribed. 

The so-called Test Tailoring procedures, now largely preferred to general Standards (e.g. MIL STD 

810F, GAM EG13), require the proper definition of the test profiles (Mission Synthesis) to be used as 

vibratory excitations provided by shakers to the device under test (DUT).  

The synthesis is performed starting from field data, measured for typical operational conditions of 

the components, aiming to reproduce their most important characteristics in laboratory tests. Instead of 

replicating the waveforms of the measured field data, which would result in stochasticity being lost, 

the conventional Mission Synthesis procedures implemented so far [1] generate the test profile in 

terms of a Power Spectral Density (PSD). The physical motion is obtained by applying the Inverse 

Fast Fourier Transform (IFFT) in combination with randomized IFFT phases generated as uniformly 

distributed random variables. Hence, the probability distribution of the synthesized signals is 

Gaussian. This could compromise the reliability of tests since most real applications feature non-

Gaussian distributions. A parameter that accounts for deviations from the Gaussian law is the so-called 

kurtosis [2]: for Gaussian signals its theoretical value amounts to 3, whereas if peaks and bursts are 
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present (e.g. due to micro-collisions) it keeps higher values (Leptokurtic signals). The so-called 

kurtosis-control methods have recently gained increasing interest: their aim is to control both the PSD 

and the kurtosis value of the synthesized signals, in order to finally carry out more realistic tests by 

preserving the nature (i.e. the peaks and bursts) of real-life random excitations. In the literature, 

several kurtosis-control algorithms have been proposed [3-11] but not all of them prove effective in 

transferring peaks and bursts to the DUT. In fact, the response of a lightly damped system to an 

excitation may tend to Gaussian due to a filtering effect [12-14], often referred to as Papoulis’ Rule. 

Hence, in such an instance, the DUT response is not actually different from a Gaussian signal test.  

In accelerated fatigue life tests the fatigue damage induced by real-life vibrations, and accumulated 

by the components throughout its entire life-cycle, should be replicated on the DUT in a shorter time. 

The fatigue damage potential associated with a vibratory excitation is estimated via a function called 

Fatigue Damage Spectrum (FDS) [15]. The FDS is computed from the responses to the excitation of 

many Single-Degree-of-Freedom (SDOF) linear systems with natural frequencies ranging in the 

bandwidth of interest. The current procedures permit the synthesis of a PSD from prescribed FDS and 

duration of the test [1], thus leading to tests with a Gaussian input, possibly suffering from poor 

reliability due to the above mentioned criticalities.  

Two novel kurtosis-control algorithms were proposed in [16] and it was shown that they do not 

suffer from Papoulis’ Rule if their setup parameters are properly chosen. In this work, the algorithms 

are investigated further analyzing the sensitivity of their results to the setup parameters and supporting 

their suitability for accelerated fatigue life tests if the filter proposed by Kihm et al. [17] is properly 

implemented. The different potentialities of the algorithms are finally discussed for practical use. 

2.  Theoretical background 

2.1 Kurtosis control algorithms 

Two novel numerical algorithms have been recently proposed by the authors (comprehensively 

described in [16]) with the aim to synthesize a vibratory profile with the same PSD and kurtosis value 

of a certain reference signal. In this paper the focus is placed on their implementation, in particular on 

the sensitivity of final outcomes to the values of their setup parameters. Hence, the algorithms are 

briefly recalled in the present Section to introduce the parameters and illustrate their meaning.  

The algorithm named as Multi-Level Variance (MLV) algorithm manages to make the synthesized 

signal reach the prescribed PSD and kurtosis value by concatenating 𝑛𝑏 signal-blocks having the same 

PSD but different variance. The variance 𝜎𝑖
2 of the 𝑖𝑡ℎ block is related to the overall variance 𝜎𝑡𝑜𝑡

2 

via the following equation: 

𝜎𝑡𝑜𝑡
2 =

1

𝑛𝑏
∑𝜎𝑖

2

𝑛𝑏

𝑖=1

 (1) 

The 𝑛𝑏  levels of variance are generated randomly complying with Eq.(1) along with the constraint 

for the signal kurtosis value 𝑘𝑡𝑜𝑡: 

𝑘𝑡𝑜𝑡 =
∑ 𝑘𝑖 ∙ 𝜎𝑖

4𝑛𝑏
𝑖=1

𝑛𝑏 ∙ 𝜎𝑡𝑜𝑡
4

 (2) 

In Eq. (2), ki is the kurtosis value of the ith block, and since the blocks are (approximately) 

Gaussian, its value is (approximately) equal to 3. 

The inputs of the algorithm are the following: 

1) duration of the signal to be synthesized, T; 

2) sampling frequency of the signal to be synthesized, Fs; 

3) reference vibratory profile (or, alternatively, a target PSD profile and a target kurtosis value); 

4) ratio between the minimum standard deviation of the blocks (𝜎𝑚𝑖𝑛) and the overall standard 
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deviation 𝜎𝑡𝑜𝑡 of the reference signal: 𝑟𝜎 =
𝜎𝑚𝑖𝑛

𝜎𝑡𝑜𝑡
 . It results: 0 < 𝑟𝜎 ≤ 1. Setting this parameter 

close to zero would lead to synthesized signals with highly variable variance over time, 

whereas the opposite is true if set closer to 1; 

5) duration of the blocks of the signal, 𝑇𝑏; 

6) number of distinctive bursts that the synthesized signal should present, 𝑛𝑝. 

The MLV algorithm leads to identical results to those obtained via the renowned technique of 

signal modulation. This approach consists in modulating a Gaussian signal 𝑥(𝑡) having the desired 

𝑃𝑆𝐷 with an appropriate function 𝑤(𝑡) as in the following equation: 

𝑦(𝑡) = 𝑤(𝑡)𝑥(𝑡) (3) 

in order to obtain a Leptokurtic signal with a desired kurtosis value [15, 18]. This method is effective 

in transferring the kurtosis value to the response of the DUT if the signal bursts of the modulating 

signal have greater duration than the inverse of the bandwidth of the lightly damped system [15]. In 

the case of the MLV algorithm, the Gaussian signal 𝑥(𝑡) is simply obtained by the IFFT of the 

reference PSD with randomly generated harmonic phases, having standard deviation equal to 𝜎𝑡𝑜𝑡,  
whereas the modulating function 𝑤(𝑡) can be expressed as: 

𝑤(𝑡) =

{
 
 
 
 

 
 
 
 

𝜎1
𝜎𝑡𝑜𝑡

  ,        0 ≤ 𝑡 < 𝑇𝑏                               

 .                           
.                          

𝜎𝑖
𝜎𝑡𝑜𝑡

  , (𝑖 − 1) ∙ 𝑇𝑏 ≤ 𝑡 < 𝑖 ∙ 𝑇𝑏               

.                        

.                        
𝜎𝑛
𝜎𝑡𝑜𝑡

  , (𝑛 − 1) ∙ 𝑇𝑏 ≤ 𝑡 < 𝑛 ∙ 𝑇𝑏 = 𝑇    

 (4) 

The concatenated signal blocks are then smoothed by interpolation at the points close to the edges 

in order to remove the discontinuities.  

The blocks generated by the MLV algorithm have the same PSD shape, but different energy (i.e. 

variance). This could be a limitation because signals measured in real applications (hereinafter called 

reference signals) often exhibit variations of the PSD shape over time [16]. In fact, some parts of the 

signal (i.e. blocks) could be narrow-banded, hence components having a natural frequency contained 

in that band could be led to resonance. This important characteristic was sought after in the 

development of the so-called Variable Spectral Density (VSD) algorithm, still devised to synthesize a 

vibratory profile whose kurtosis and PSD match the reference input ones. The VSD algorithm 

manages to achieve this target by concatenating 𝑛𝑏 Gaussian blocks featuring different PSDs. The 

PSD variation over time is obtained by an algebraic manipulation of a matrix made of 𝑛𝑏 columns, 

each one containing the PSD (periodogram) of the corresponding block. The numerical algorithm 

initially sets a matrix that contains the same periodogram in each block, imposed equal to the 

reference PSD: 

[𝐺𝑖𝑗
′ ] = [

𝐺1 𝐺1 ⋯ 𝐺1
⋮ ⋮ ⋱ ⋮

𝐺𝑁ℎ 𝐺𝑁ℎ ⋯ 𝐺𝑁ℎ

]   (5) 

 

where 𝑁ℎ is the number of harmonics of the periodogram of each block. The matrix [𝐺𝑖𝑗
′ ] is then 

manipulated to obtain the general form 

[𝐺𝑖𝑗
′′] = [

𝐺11 𝐺12 ⋯ 𝐺1𝑛𝑏
⋮ ⋮ ⋱ ⋮

𝐺𝑁ℎ1 𝐺𝑁ℎ2 ⋯ 𝐺𝑁ℎ𝑛𝑏

]     
(6) 
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by performing many subsequent operations on each row, the first of which leads the generic ith row to 

take the form: 

       
 
1 1 1[ ]

i iii i
l p pGGG pG G  (7) 

where 𝑝 ∈ [0,1] and 𝑙 is a positive integer such that 𝑙 ≤  𝑛𝑏. The algorithm iterations are fully 

described in [16] where it is shown that the PSD constraint is still respected if the terms of the type 

𝑝𝐺𝑖 are 𝑙 − 1. The focus, here, is intended to be placed on two main aspects: the values of l are 

randomly generated throughout the iterations (still complying with some constraints) and p is an input 

parameter that must be set by the user. As it will also be proven later, the lower the values of 𝑝 the 

more narrow-banded the generated blocks; this implies a greater variability of the RMS over time. 

Also for this algorithm, the last step consists in smoothing the transitions between consecutive blocks 

by interpolation, in order to remove the discontinuities due to their concatenation. 

2.2 Accelerated fatigue life tests 

In general, the fatigue damage potential (estimated through the spectral function FDS) associated with 

the signals synthesized by the MLV and VSD algorithms differs from the reference one. Therefore, if 

the target of the Mission Synthesis procedure is to provide input profiles for accelerated durability 

tests, a further correction is required. In order to adjust the FDS of the synthesized signals to match the 

reference one, the filtering technique described in [17] can be adopted. The steps of the procedure are 

briefly reported: 

1) calculate the FDSs of the reference and synthesized signals, respectively 𝐷𝑟(𝑓) and 𝐷𝑠(𝑓); 

2) define the spectral function (i.e. the filter): 𝐺(𝑓) = [
𝐷𝑟(𝑓)

𝐷𝑠(𝑓)
]

1

𝑏
; 

3) calculate the Inverse Fourier Transform of 𝐺(𝑓) to obtain the impulse response of the filter;  

4) convolve the obtained impulse response with the synthesized signal.  

Now the filtered synthesized signal and the reference profile have the same FDS. It should be noted 

that the application of the filter could generally distort the PSD and kurtosis value of the synthesized 

signals, to which extent will be shown and discussed in Sections 3 and 4. 

3.  Simulation results 

Some examples of application of the two algorithms, starting from two reference profiles and setting 

different values of the setup parameters, are performed in order to delve into the practical impact of 

the user’s choices. Sections 3 and 4 report the results and some discussions, respectively. 

3.1 MLV simulation results: Input 1 

Firstly, the MLV algorithm is applied to the reference signal of Fig. 1a, sampled at 100 Hz. The setup 

parameters are: 

1) duration of the synthesized signal T = 601.59 s  (the same as the reference signal); 

2) output sampling frequency Fs = 100 Hz (the same as the reference signal); 

3) standard deviation ratio 𝑟𝜎  =  0.6; 

4) signal block duration 𝑇𝑏 = 2.5 s; 

5) number of peaks/bursts 𝑛𝑝 = 10. 

The probability distribution of the reference signal is Leptokurtic and kurtosis equals 6.64.                

By inspecting the plot of the signal (Fig. 1a) it can be seen that approximately a dozen distinctive 

bursts/peaks are present, hence why the parameter np related to the number of bursts to appear in the 

synthesized signal was chosen equal to 10. The value of 𝑟𝜎 has been chosen equal to 0.6 to give a 

moderate amount of variability to the RMS over time (cf. Section 2.1). The synthesized signal 
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(MLV1.1) can be seen in Fig. 1b and the PSDs of both the signals are compared in Fig. 1c in linear 

scale. It can be observed that they are acceptably close to each other. The statistical parameters of the 

reference and synthesized signals are shown in Table 1.  

To have a thorough overview of the results, the responses of a SDOF system to the reference and 

synthesized signals are shown in Figs. 2a-b. The natural frequency of the system was set to 12 Hz, 

close to the peak of the PSD, and the damping ratio was arbitrarily set to 3%. The kurtosis values of 

the response of the SDOF system to the reference and synthesized signals are 5.82 and 5.45, 

respectively. One can wonder about the responses of other SDOF systems whose resonance is not 

excited by the excitation PSD peaks. To this aim, the responses of a series of SDOF systems with 

natural frequency ranging in 0-50 Hz (with 0.1 Hz resolution) were computed and the corresponding 

kurtosis values are plotted in Fig. 2c. This proves that even the output signals remain Leptokurtic 

irrespective of the DUT natural frequencies. 

Another example is shown where the parameter 𝑟𝜎 is lowered in order to highlight how the RMS 

variability over time can be significantly increased. The variability is accentuated further by increasing 

the parameter 𝑇𝑏 as well.  In general, to make the kurtosis-control efficient at a particular angular 

frequency 𝜔𝑛 and damping ratio 𝜁, it is suggested that the parameter  𝑇𝑏 be chosen greater than the 

inverse of the bandwidth of the system given by: (2𝜁𝜔𝑛)
−1. Hence, the condition 𝑇𝑏 > (2𝜁𝜔𝑛)

−1 

guarantees that, at a particular frequency 𝜔𝑛 and with a particular damping ratio 𝜁 the system has 

enough time to respond to the bursts of the input, thus leading to a Leptokurtic output as the excitation 

that causes it. The setup parameters of the new run of the algorithm are the following: 

1) T = 601.59 s; 

2) Fs = 100 Hz; 

3) 𝑟𝜎 = 0.2; 

4) 𝑇𝑏 = 5 s; 

5) 𝑛𝑝 = 10. 

The synthesized signal (MLV1.2) is shown in Fig. 3a. It can be seen that the RMS of the nb blocks 

has a higher variability over time with respect to the one shown in Fig. 1b. The PSD comparison and 

statistical parameters are shown in Fig. 3b and in Table 2, respectively. In Fig. 3c, the kurtosis of the 

responses is plotted versus the natural frequency of a series of SDOF systems in the band 5-50 Hz 

(with 0.1 Hz resolution and a damping ratio of 3%). 

3.2.  MLV simulation results: Input 2 

The algorithm is applied to a second reference signal, sampled at 500 Hz (Fig. 4a). The input 

parameters are: 

1) 𝑇 = 287 s  (the same as the reference signal); 

2) 𝐹𝑠 = 500 𝐻𝑧 (the same as the reference signal); 

3) 𝑟𝜎 = 0.2; 

4) 𝑇𝑏 = 2.5 s; 

5) 𝑛𝑝 = 30. 

Also this second reference signal proves Leptokurtic, with the kurtosis equal to 6.47. By inspecting the 

plot of the signal (Fig. 4a), a greater variability over time of the variance parameter can be observed 

with respect to input 1 (Fig. 1a). Hence, the value of 𝑟𝜎 has been chosen equal to 0.2, smaller than for 

the first input processed by the MLV algorithm. The synthesized signal (MLV2) can be seen in Fig. 4b 

and the PSDs of the signals are plotted in Fig. 4c in linear scale. It can be observed that they are 

acceptably close to each other. The statistical parameters of the reference and synthesized signals are 

shown in Table 3. To have a thorough overview of the results, the responses of a SDOF system to the 

reference and synthesized signal are shown in Fig. 5a-b. The natural frequency of the system was set 

to 150 Hz, close to the PSD maximum, and the damping ratio was again defined at 3%. The kurtosis 

values of the response of the SDOF system to the reference and synthesized signals are 9.01 and 6.36, 
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respectively. Unlike the first input, the second reference signal causes the response of the SDOF 

system to have a higher kurtosis than its input, whereas the synthesized signal induces a response with 

a similar kurtosis value to the excitation one. This behavior is very similar or even more pronounced 

also for other natural frequencies of the SDOF systems (in the range 5-250 Hz with 0.5 Hz resolution), 

as it can be inferred from Fig. 5c.  

 

   (a) (b) (c) 

Figure 1. (a) reference signal (Input1); (b) synthesized signal (MLV1.1); (c) PSDs of the two signals. 
 

 
   (a) (b) (c) 

Figure 2. response of a SDOF linear system with 12 Hz natural frequency to the reference (a) and 

synthesized (b) signals; (c) kurtosis of the responses of a series of SDOF systems. 

Table 1. Statistical parameters of the reference (Ref., Input1) and synthesized (Synt., MLV1.1) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.644 0.0125 0.1120 1.610 14.38 

Synt. 6.628 0.0125 0.1120 1.343 12.00 

 
   (a) (b) (c) 

Figure 3. (a) synthesized signal (MLV1.2); (b) PSDs of the reference and synthesized signals; (c) 

kurtosis of the responses of a series of SDOF systems. 
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Table 2. Statistical parameters of the reference (Ref., Input1) and synthesized (Synt., MLV1.2) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.644 0.0125 0.1120 1.610 14.38 

Synt. 6.719 0.0125 0.1120 1.024 9.14 

 
             (a)       (b)                 (c) 

Figure 4. (a) reference signal (Input2); (b) synthesized signal (MLV2); (c) PSDs of the two signals. 

 
             (a)       (b)                 (c) 

Figure 5. response of a SDOF system with 12 Hz natural frequency to the reference (a) and 

synthesized (b) signals; (c) kurtosis of the responses of a series of SDOF systems. 

Table 3. Statistical parameters of the reference (Ref., Input2) and synthesized (Synt., MLV2) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.475 70.98 8.425 61.03 7.244 

Synt. 6.467 70.98 8.425 77.40 9.186 

 

3.3.  VSD simulation results: Input 1 

The VSD algorithm is now applied to the first reference signal of Fig. 1a. The setup parameters are: 

1) T = 601.59 s; 

2) Fs = 100 Hz; 

3) p = 0.5. 

The value of 𝑝 has been chosen equal to 0.5 to give a moderate variability to the RMS over time, its 

meaning being similar to that of parameter 𝑟𝜎 but it also accounts for the extent of bandwidth variation 

of each signal block. The synthesized signal (VSD1.1) is reported in Fig. 6a. The PSDs of the signals, 

plotted in Fig. 6b in linear scale, are acceptably close to each other. The statistical parameters of the 

reference and synthesized signals are shown in Table 4. The kurtosis values of the response of SDOF 

systems (with natural frequencies ranging from 5 to 50 Hz) are plotted in Fig. 6c, which shows that the 

VSD algorithm generates signals prompting system responses with a higher kurtosis than the input. 
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Another example is shown where the parameter 𝑝 is lowered in order to highlight how the RMS 

and bandwidth variability over time among the nb signal blocks can be extremely accentuated by the 

VSD algorithm. The setup parameters were set as follows: 

1) T = 601.59 s; 

2) Fs = 100 Hz; 

3) p = 0.1. 

The synthesized signal (VSD1.2) is shown in Fig. 7a. It can be seen that its RMS has higher 

variability with respect to the one shown in Fig. 6a. The PSD comparison and statistical parameters are 

reported in Fig. 7b and in Table 5, respectively. In Fig. 7c, the kurtosis of the SDOF systems responses 

is plotted (natural frequency from 5 to 50 Hz with 0.1 Hz resolution and damping ratio equal to 3%). 

3.4.  VSD simulation results: Input 2 

The reference signal of Fig. 4a is now processed by the VSD algorithm with the following parameters: 

1) T = 287 s; 

2) Fs = 500 Hz; 

3) p = 0.2. 

The synthesized signal (VSD2) can be seen in Fig. 8a. The PSDs and the statistical parameters of 

the reference and synthesized signals are reported in Fig. 8b (linear scale) and Table 6, respectively. 

The kurtosis of the SDOF systems responses is plotted in Fig. 8c for natural frequencies ranging from 

5 to 250 Hz . 

3.5.  Fatigue Damage Spectrum correction 

In the case of vibration testing intended to assess the fatigue life of a product, the synthesized signal is 

meant to induce (possibly for a short test duration) the same fatigue damage on the DUT that affects 

the latter throughout its expected lifetime. The FDSs of the reference and synthesized signals, 

representing the damage potentials associated with vibratory excitations, should match. The most 

important parameters involved in the their computation are: Wohler’s curve slope 𝑏 of the DUT 

material, the expected lifetime (𝑇𝑅) of the DUT if subjected to the reference signal, the duration (𝑇𝑆) 
of the accelerated fatigue life test when the DUT is excited by the synthesized signal, and the damping 

ratio 𝜁 of the SDOF systems. The reference and synthesized signals (with their own duration T) are 

considered to be consecutively replicated until 𝑇𝑅 and 𝑇𝑆 are reached.  

In order to assess the suitability of the signals synthesized by the two algorithms to serve as input in 

(accelerated) fatigue life tests, their FDSs were computed and compared to the reference ones. The 

values chosen for this application are: 𝑏 = 5, 𝜁 = 3%, 𝑇𝑅 = 100 ℎ, and 𝑇𝑆 = 100 ℎ. 

The test duration 𝑇𝑆 was firstly set equal to the expected lifetime 𝑇𝑅, implying a non-accelerated 

test, in order to better compare and discuss the results. For the sake of brevity, only the processing of 

the synthesized signal VSD2 of Fig. 8a is here analyzed (similar results and conclusions hold for all the 

signals of the former Sections), since its FDS proved to differ from the reference FDS by some orders 

of magnitude at certain frequencies (Fig. 9a). The matching of the two FDSs was achieved by applying 

the filter mentioned in Section 2.2 [17] and can be appreciated in Fig. 9b, whereas Fig. 9c and Table 7 

show the (slight) discrepancy between the PSDs and statistical parameters, respectively, of the filtered 

(VSD2f) and the reference signals. 

If a time reduction factor of 10 is considered (𝑇𝑅 = 100 ℎ, 𝑇𝑆 = 10 ℎ), the FDS computed for the 

synthesized signal differs from the reference one to a greater extent (Fig. 10a), as expected. The effect 

of the filter application to adjust the fatigue damage potential of the synthesized signal is thus much 

more meaningful (Fig. 10b). The PSDs of the reference and the filtered signals are shown in Fig. 10c 

and their statistical parameters reported in Table 8. It is evident that as the test duration decreases, the 

filtering procedure increases the PSD of the synthesized signal, in order to achieve the FDS matching. 

Besides, both the statistical parameters of Table 7 and Table 8 highlight that the distribution of the 

signal remains Leptokurtic, with minor changes to the kurtosis values. 
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             (a)       (b)                 (c) 

Figure 6. (a) synthesized signal (VSD1.1); (b) PSDs of the reference and synthesized signals;            

(c) kurtosis of the responses of a series of SDOF systems. 

Table 4. Statistical parameters of the reference (Ref., Input1) and synthesized (Synt., VSD1.1) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.644 0.0125 0.1120 1.610 14.38 

Synt. 6.669 0.0125 0.1120 0.7918 7.073 

 
  (a)                                                 (b)                                                 (c) 

Figure 7. (a) synthesized signal (VSD1.2); (b) PSDs of the reference and synthesized signals;            

(c) kurtosis of the responses of a series of SDOF systems. 

Table 5. Statistical parameters of the reference (Ref., Input1) and synthesized (Synt., VSD1.2) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.644 0.0125 0.1120 1.610 14.38 

Synt. 6.651 0.0125 0.1120 0.7500 6.699 

 
   (a)                                                 (b)                                                 (c) 

Figure 8. (a) synthesized signal (VSD2); (b) PSDs of the reference and synthesized signals;               

(c) kurtosis of the responses of a series of SDOF systems. 
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Table 6. Statistical parameters of the reference (Ref., Input2) and synthesized (Synt., VSD2) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. 6.475 70.98 8.425 61.03 7.244 

Synt. 6.484 70.98 8.425 56.44 6.700 

 
             (a)       (b)                 (c) 

Figure 9. (a) FDSs of the reference (Input2) and synthesized (VSD2) signals; (b) FDSs of the 

reference and filtered (VSD2f) signals; (c) PSDs of the reference and filtered signals. TR = TS = 100h.  

Table 7. Statistical parameters of the reference (Ref., Input2) and synthesized (Filt., VSD2f) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. (TR = 100h) 6.475 70.98 8.425 61.03 7.244 

Filt. (TS = 100h) 6.599 69.55 8.340 75.56 9.060 
 

 
             (a)       (b)                 (c) 

Figure 10. (a) FDSs of reference (Input2) and synthesized (VSD2) signals; (b) FDSs of the reference 

and filtered (VSD2f) signals; (c) PSDs of the reference and filtered signals. TR = 100h, TS = 10h. 

Table 8. Statistical parameters of the reference (Ref., Input2) and synthesized (Filt., VSD2f) signals. 

 Kurtosis (-) Variance (m2s–4) RMS (ms–2) Peak (ms–2) Crest factor (-) 

Ref. (TR = 100h) 6.475 70.98 8.425 61.03 7.244 

Filt. (TS = 10h) 6.688 180.7 13.44 100.4 7.470 

4.  Discussion 

The results show that the MLV algorithm synthesizes signals able to transfer their Leptokurtic 

distribution to the response of the DUT. In particular, the kurtosis computed for the responses of the 

excited SDOF linear systems remains almost constant irrespective of the latters’ natural frequency 

(Figs. 2c, 3c and 5c), with relatively small fluctuations around a value close to the excitation signal 

kurtosis (Tables 1-3). This can be motivated by the following reason: the blocks constituting the 

synthesized signal all have a wide-band PSD, so that rapid resonant effects cannot occur. The kurtosis 
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transfer is only due to the energy of the bursts appearing in the signal and the high excursions in the 

output cannot physically contain more energy. However, it should be noted that the setup parameters 

may significantly affect the results. In particular, if the bursts’ duration is not long enough, the system 

may not have time to respond thus preventing high excursions to appear in the response. Therefore, the 

choice of the parameter 𝑇𝑏 value is definitely relevant: if the first natural (angular) frequency 𝜔𝑛 and 

damping ratio 𝜁 of the DUT are known, the lower limit can be assessed as (2𝜁𝜔𝑛)
−1. The choice of 

the other two parameters, 𝑛𝑝 and 𝑟𝜎, strictly associated with the number and amplitudes of the bursts 

to appear in the synthesized signal, can be done easily by evaluating the bursts present in the reference 

input and replicating their characteristics. Finally, it is worth recalling that randomness in the 

synthesized profiles is guaranteed since the algorithm generates randomly the modulating function of 

Eq. (4) and manipulates deterministically the phases of only one IFFT block [16]. Different runs of the 

algorithm to process – with unchanged setup parameters – the same reference signal thus provide the 

synthesis of different profiles (all complying with the target PSD and kurtosis). Therefore random 

vibration tests that require a sizable duration (e.g. qualification, functional, reliability tests) can be 

carried out starting from short environmental measurements by concatenating many profiles 

synthesized by the MLV algorithm. 

On the other hand, the VSD algorithm presents different qualities due to the intrinsic generation of 

narrow-banded signal blocks, which can exasperate resonance effects on the DUT: the lower the value 

of parameter 𝑝 the more evident the resonance occurrence. The advantages of this algorithm are two-

fold: (i) the synthesized excitations, though characterized by a relatively low crest factor, are able to 

generate responses with (very) high kurtosis (i.e. with high amplitude peaks) still subjecting the shaker 

to moderate loads; (ii) the kurtosis of the response is not constant with respect to the DUT natural 

frequency and is generally higher than the input kurtosis (which is a case encountered in many 

practical applications, due to the variable spectrogram of real-life vibrations). One limitation of the 

VSD algorithm could be that the PSD variation over time is intrinsically random and cannot be 

controlled. On the other hand, this feature adds to the signal stochasticity, which is also increased by 

the complete aleatory generation of the harmonic phases in the IFFT transform, for each block.  

Both the kurtosis-control algorithms could lead to signals with a fatigue damage potentials very 

different from that of the excitation, since they do not directly control the FDS. If the Mission 

Synthesis is performed for durability testing purposes, the filter proposed by Kihm et al. [17] can be 

effectively applied to correct the FDS of the signals generated by both the MLV and the VSD 

algorithms. As shown by the two cases illustrated in Section 3.5, the new signals feature similar 

Leptokurtic distributions as their corresponding synthesized ones, with slight differences – due to the 

filter action – observed in the PSDs and the statistical parameters. The combination of the VSD 

algorithm with the subsequent FDS correction appears particularly promising for the synthesis of 

excitation signals for accelerated fatigue life tests (recalling the two above mentioned advantages). 

5.  Conclusion 

Two novel kurtosis-control algorithms previously proposed by the authors are here discussed further. 

One algorithm, named Multi-Level Variance (MLV) algorithm, splits the signal to be synthesized into 

blocks of the same size featuring variable variance. Namely, the shape of the PSDs of each block 

remains the same, but the amplitudes are scaled by a proper factor. The overall PSD and kurtosis 

match the reference ones within a certain tolerance. The kurtosis of the response computed for many 

SDOF linear systems tends to be constant with respect to their natural frequencies, keeping values 

close to the excitation kurtosis (due to the generated signals being wide-banded in all the blocks). The 

peaks are thus not filtered, i.e. the problem associated with the Papoulis’ Rule does not occur. 

A second algorithm, named Variable Spectral Density (VSD) algorithm, splits the signal into 

blocks of the same size, with variable PSD. The overall PSD and kurtosis closely approach the 

reference ones. The kurtosis of the output proves to vary conspicuously over the natural frequency of 

the excited SDOF system, due to the generated signals being narrow-banded in some blocks. This 

behavior shows a greater resemblance to the response kurtosis of the reference signal, which is also 
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generally higher than that of the input excitation. Also in this case, the Papoulis’ Rule does not apply.  

The fatigue damage potential of the synthesized and reference signals are different, which generally 

occurs for any kurtosis-control algorithm as well. Such a discrepancy can be compensated for by the 

application of a special filter computed from the Fatigue Damage Spectra (FDS) of the synthesized 

and the reference signals, thus making the algorithms suitable to generate excitation profiles for 

accelerated fatigue life tests. Future efforts will address the simultaneous control of both FDS and 

kurtosis in place of the two-steps procedure adopted here. 

Acknowledgments 

The research is financially supported by Easting s.r.l.s. (Trieste, Italy) and Dana-Rexroth 

Transmission Systems (Trento, Italy), which are gratefully acknowledged. 

References 

[1] Lalanne C 2009 Mechanical Vibration and Shock Analysis-Volume 5: Specification

 Development (London: John Wiley & Sons, Inc-ISTE)  

[2] Lalanne C 2009 Mechanical vibration and shock analysis-volume 3: Random Vibration 

(London: John Wiley & Sons, Inc-ISTE) 

[3] Steinwolf A 2015 Vibration testing of vehicle components by random excitations with increased

 kurtosis Int. J. Vehicle Noise and Vibration Vol 11 pp 39-36 

[4] Zhang J, Cornelis B, Peeters B, Janssens K and Guillaume P 2016 A new practical and intuitive

 method for kurtosis control in random vibration testing Procs. 27th ISMA (Leuven, Belgium)  

[5] Steinwolf A 1996 Approximation and simulation of probability distributions with a variable 

ffffakurtosis value  Computational Statistics and Data Analysis Vol 21 pp 163-180  

[6] Kihm F and Rizzi S A, Ferguson N S and Halfpenny A 2013 Understanding how kurtosis is 

ffffatransferred from input acceleration to stress response and its influence on fatigue life   

       Procs. 11th RASD (Pisa, Italy)  

[7] Cornelis B, Steinwolf A, Troncossi M and Rivola A 2015 Shaker testing simulation of non-

ffffaGaussian random excitations with the fatigue damage spectrum as a criterion of mission 

ffffasignal synthesis Procs. ICoEV (Liubljana, Slovenia)  

[8] Smallwood D O 2005 Generating non-Gaussian vibration for testing purposes Sound and 

ffffaVibrations Vol 39 

[9] Winterstein S R 1988 Nonlinear vibration models for extremes and fatigue ASCE Journal of 

ffffaEngineering Mechanics Vol 114 

[10] Merritt R G 1997 A stochastic model for the pulse method – Part 2: random part Procs. 43rd 

IEST Annual Technical Meeting (Los Angeles, USA)  

[11] Minderhoud J and Van Baren P 2010 Using Kurtosion
®

 to Accelerate Structural Life Testing 

ffffaSound And Vibration Vol 44  

[12] Papoulis A 1972 Narrow-Band systems and Gaussianity IEEE Trans. On Information  

OffaTheory Vol 18 

[13] Papoulis A 1991 Probability, Random Variables and Stochastic Processes (McGraw-Hill)  

[14] Van Baren J and Van Baren P 2007 Kurtosiontm-getting the kurtosis into the resonances, Procs. 

Offa78th SAVIAC 

[15] Lalanne C 2009 Mechanical Vibration and Shock Analysis-Volume 4: Fatigue Damage   

       (London: John Wiley & Sons, Inc-ISTE)  

[16] Pesaresi E and Troncossi M 2018 Synthesis of vibration signals with prescribed power  

      spectraladensity and kurtosis value Procs. 28th ISMA (Leuven, Belgium) 

[17] Kihm F, Halfpenny A and Munson K 2016 Synthesis of Accelerated and More Realistic  

ffffaVibration Endurance Tests Using Kurtosis SAE Technical Paper  

[18] Kihm F, Ferguson N S and Antoni J 2015 Fatigue life from kurtosis controlled excitations 

Procedia Engineering Vol 133 pp 698-713  


