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Guido Gherardi
Paolo Maffezioli

Eugenio Orlandelli

Interpolation in extensions
of first-order logic

Abstract. We prove a generalization of Maehara’s lemma to show that the extensions

of classical and intuitionistic first-order logic with a special type of geometric axioms,

called singular geometric axioms, have Craig’s interpolation property. As a corollary, we

obtain a direct proof of interpolation for (classical and intuitionistic) first-order logic with

identity, as well as interpolation for several mathematical theories, including the theory

of equivalence relations, (strict) partial and linear orders, and various intuitionistic order

theories such as apartness and positive partial and linear orders.

Keywords: Craig’s interpolation theorem, Maehara’s lemma, sequent calculi, first-order

theories, singular geometric rules.

1. Introduction

Craig’s interpolation theorem [4] is a central result in first-order logic. It
asserts that for any theorem A ! B there exists a formula C, called inter-

polant, such that A ! C and C ! B are also theorems and C only contains
non-logical symbols that are contained in both A and B (and if A and B
have no non-logical symbols in common, then either ¬A is a theorem or B
is). The aim of this paper is to extend interpolation beyond first-order logic.
In particular, we show how to prove interpolation in extensions of intuition-
istic and classical sequent calculi with singular geometric rules, a special case
of geometric rules investigated in [14]. Interpolation for singular geometric
rules will be obtained by generalizing a standard result, reportedly due to
Maehara in [20] and known as “Maehara’s lemma” [12].1

The proof of Maehara’s lemma for intuitionistic and classical first-order
logic requires cut elimination. For systems extending first-order logic with
axioms it is not all straightforward to prove Maehara’s lemma, since such
systems are not generally cut-free (cf. [21, §4.5] and [16, §6.3] for di↵erent
approaches to non-logical axioms). For example, in the calculus LKe, an
extension of Gentzen’s LK for first-order logic with identity, cuts on identi-

Presented by Name of Editor; Received December 1, 2005
1In this work we shall not consider semantic methods to prove interpolation. These have

been applied extensively to non-classical logics in [7]; there are also proofs of interpolation
for non-classical logics that are more similar to our approach, especially [1, 6, 11].
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ties s = t are not eliminable (cf. Theorem 6 in [20], where these cuts are
called “inessential”). Fortunately, interpolation can still be proved for first-
order logic with identity. The drawback of the existing proofs, however, is
that they are indirect, in the sense that the interpolant is not built using
exclusively the rules of the calculus. In [21], for example, a translation is
used to reduce interpolation for first-order logic with identity to the case of
pure first-order logic.2 A di↵erent route is taken in [8], using the method
of “axioms in the context”, where interpolation is again not proved directly
in LKe, but in a variant of LK, equivalent to LKe, in which all derivable se-
quents have the axioms governing the identity predicate in the context.3 On
the other hand, in this paper interpolation is proved via a generalization of
Maehara’s lemma to a class of extensions of first-order logic (which include
first-order logic with identity as a particular case) and using no other means
than the rules of the calculus (Lemma 13).

Our generalization of Maehara’s lemma is based on previous work by
Negri and von Plato who have shown (in a series of papers starting from
[15]) how to recover cut elimination (as well as the admissibility of other
structural rules) for extensions of the calculi G3c and m-G3i for classical and
intuitionistic first-order logic. Of particular interest for the present work are
the extensions with geometric rules, investigated in [14].4 Once cut elimina-
tion is recovered in this way, we impose a singularity condition on geometric
rules to isolate those containing at most one non-logical predicate (iden-
tity will be counted as logical). Our main result is to show that Maehara’s
lemma holds when G3c and G3i are extended with singular geometric rules
(Lemma 13). Then interpolation follows easily from the generalized Mae-
hara’s lemma (Theorem 14). Finally, we consider applications of Theorem
14 and we show that singular geometric rules include many interesting ex-
tensions of intuitionistic and classical first-order logic, especially (classical
and intuitionistic) first-order logic with identity, the theory of equivalence
relations, (strict) partial and linear orders, the theory of apartness and the
theory of positive partial and linear orders.

2For other proofs of interpolation via translation see [19] and [2].
3Thanks to a referee for bringing this to our attention.
4We depart from Negri’s approach in taking the intuitionistic single-succedent calculus

G3i instead of the multi-succedent m-G3i of [14]; in Theorem 8 we will also prove, along
the way, that cut elimination holds for geometric extensions of G3i.
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2. Classical and intuitionistic sequent calculi

The language L is a first-order language with individual constants and no
functional symbols. Terms (s, t, u, . . . ) are either variables (x, y, z, . . . ) or
individual constants (a, b, c . . . ). L contains also denumerably many k-ary
predicates P k, Qk, Rk, . . . for each k � 0. L may also contain the identity.
All predicates, except identity, are non-logical. Moreover, it is convenient
to have two propositional constants ? (falsity) and > (truth). Formulas are
built up from atoms P k(t1, . . . , tk), the constants ? and > using logical op-
erators ^, _, !, 9 and 8 as usual. We use P,Q,R, . . . for atoms, A,B,C, . . .
for formulas and �,�,⇧, . . . for (possibly empty) finite multisets of formu-
las. The negation ¬A of a formula A is defined as A ! ?. Moreover, let
�,� be an abbreviation for � [� (where [ is the multiset union) and

V
�

(
W

�) stand for the conjunction (disjunction, respectively) of all formulas
in �. Moreover, if � is empty, then

V
� ⌘ > and

W
� ⌘ ?, where ⌘ in-

dicates syntactic identity (up to ↵-congruence) between expressions of the
object-language.

The substitution of a variable x with a term t in a term s (in a formula
A, in a multiset �) will be indicated as s[ tx ] (A[ tx ] and �[ tx ], respectively)
and defined as usual. To indicate the simultaneous substitution of the list
of variables x1, . . . , xn (abbreviated in x̄) with the list of terms t1, . . . , tn
(abbreviated in t̄), we use [ t̄x̄ ] in place of [ t1 ... tnx1 ... xn

]. Later on, we shall also
need a more general notion of substitution of terms for terms (not just
variables) which will be proved to preserve derivability (Lemma 6).

Finally, let FV(A) be the set of free variables of a formula A and let
Con(A) be the set of its individual constants. Let the set of terms Ter(A) be
A is FV(A)[Con(A). Moreover, if Rel(A) is the set of non-logical predicates
of A then we define the language L(A) of A as Ter(A)[Rel(A). Notice that
= /2 L(A), for all A. Such notions are immediately extended to multisets of
formulas �, by letting FV(�) to be defined as

S
A2� FV(A), and analogously

for Con(�), Ter(�), Rel(�) and L(�).
The calculus Gc (Gi) is a variant of LK (LI) for classical (intuitionistic,

respectively) first-order logic, originally introduced by Gentzen in [9]. In the
literature, especially in [21] and [16], Gc and Gi are commonly referred to
as G3c and G3i but we will omit ‘3’ in the interest of readability. Moreover,
we will write G to refer to either Gc or Gi. A sequent in Gc is a pair h�,�i
of multisets, indicated as � ) �. The calculus Gc consists of the following
initial sequents and logical rules (where y is an eigenvariable in R8 and L9,
i.e. y must not occur free in the conclusion of these rules):
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The calculus Gc

P,� ) �, P

?,� ) �
L?

� ) �,> R>

A,B,� ) �
A ^B,� ) �

L^
� ) �, A � ) �, B

� ) �, A ^B
R^

A,� ) � B,� ) �
A _B,� ) �

L_
� ) �, A,B
� ) �, A _B

R_

� ) �, A B,� ) �
A ! B,� ) �

L!
A,� ) �, B

� ) �, A ! B
R!

A[ tx ], 8xA,� ) �

8xA,� ) �
L8

� ) �, A[ yx ]

� ) �, 8xA R8

A[ yx ],� ) �

9xA,� ) �
L9

� ) �, 9xA,A[ tx ]

� ) �, 9xA R9

Sequents in Gi are defined as in Gc, except that � must contain exactly
one formula. The calculus Gi has the following initial sequents and logical
rules (again, y is an eigenvariable in R8 and L9).

The calculus Gi

P,� ) P

?,� ) C
L?

� ) > R>

A,B,� ) C
A ^B,� ) C

L^ � ) A � ) B
� ) A ^B

R^

A,� ) C B,� ) C
A _B,� ) C

L_ � ) A
� ) A _B

R_1
� ) B

� ) A _B
R_2

A ! B,� ) A B,� ) C
A ! B,� ) C

L!
A,� ) B

� ) A ! B
R!

A[ tx ], 8xA,� ) C

8xA,� ) C
L8

� ) A[ yx ]

� ) 8xA R8

A[ yx ],� ) C

9xA,� ) C
L9

� ) A[ tx ]

� ) 9xA R9
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A derivation in G is a tree of sequents which grows according to the
rules of G and whose leaves are initial sequents or conclusions of a 0-premise
rule. A derivation of a sequent is a derivation concluding that sequent and
a sequent is derivable when there is a derivation of it. As usual, we consider
only pure-variable derivations: bound and free variables are kept distinct,
and no two rule instances have the same variable as eigenvariable, see [21, p.
62]. Moreover, ↵-congruent formulas are identified and we permit renaming
of bound variables in order to always keep bound and free variables disjoint,
see [21, p. 67]. The height h of a derivation is defined inductively as follows:
the derivation height of an initial sequent or of a conclusion of a 0-premise
rule is 0, the derivation height of a derivation of a conclusion of a one-
premise rule is the derivation height of its premise plus 1, and the derivation
height of a derivation of a conclusion of a n-premise rule (n � 2) is the
maximum of the derivation heights of its premises plus 1. A sequent is h-
derivable if it is derivable with a derivation of height less than or equal to
h. A rule is admissible if the conclusion is derivable whenever the premises
are derivable; a rule is height-preserving admissible if the conclusion is h-
derivable whenever the premises are h-derivable. Derivations will be denoted
by D,D1,D2, . . . . We agree to use D ` � ) � to indicate that D is a
derivation in G of � ) � and ` � ) � to indicate that � ) � is derivable;
finally, `h � ) � indicates that � ) � is h-derivable. We will use a
double-line rule of the form

⇧ ) ⌃
� ) �

R

to indicate that � ) � is derivable from ⇧ ) ⌃ by a (possibly empty)
sequence of instances of the rule R. It is easy to see that initial sequents
with A,� ) �, A, for an arbitrary A, are derivable in G (where � is empty
for Gi).

The following structural rules for Gc (weakening, contraction and cut)
are valid in the standard semantics of Gc.

Structural rules of Gc

� ) �
A,� ) �

Wkn
� ) �

� ) �, A
Wkn

A,A,� ) �
A,� ) �

Ctr
� ) �, A,A
� ) �, A

Ctr

� ) �, A A,⇧ ) ⌃
�,⇧ ) �,⌃

Cut
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However, we can safely leave them out without impairing the completeness
of Gc, since they are all admissible in it. In fact, weakening and contraction
are also height-preserving admissible. Regarding Gi, the structural rules are:

Structural rules of Gi

� ) C
A,� ) C

Wkn
A,A,� ) C
A,� ) C

Ctr

� ) A A,� ) C
�,� ) C

Cut

These rules are also valid in the model-theoretic semantics for intuitionistic
logic, but just like in the classical case, they are all admissible in Gi (again,
weakening and contracting are height-preserving admissible) and there is no
need to take any of them as primitive. The proof of the admissibility of the
structural rules in any of the two calculi requires some preparatory results.
First, the height-preserving admissibility of substitution in G.

Lemma 1. In G, if `h � ) � and t is free for x in �,� then `h �[ tx ] )
�[ tx ].

Second, the so-called inversion lemma. Intuitively, a rule is invertible
when it can be applied backwards, from the conclusion to its premises, and
it is height-preserving invertible when it is invertible with the preservation of
the derivation height (for a precise definition of height-preserving invertible
rule see [21, p. 76-77]).

Lemma 2. In Gc all rules are height-preserving invertible. In Gi all rules,

except R_, L ! and R9, are height-preserving invertible. However, L ! is

height-preserving invertible with respect to its right premise.

With height-preserving admissibility of substitution and inversion lemma
it is possible to prove the admissibility of the structural rules.

Theorem 3. In G weakening and contraction are height-preserving admis-

sible. Moreover, cut is admissible.

The proof of Lemma 1, Lemma 2, and Theorem 3 are standard and the
interested reader is referred to [21] and [16].

2.1. From axioms to rules

Extensions of G are not, in general, cut free; this means that Theorem 3
does not necessarily hold in the presence of new initial sequents or rules.
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For example, a natural way to extend Gc to cover first-order logic with
identity is to allow derivations to start with initial sequents of the form
) s = s and s = t, P [sx] ) P [tx], corresponding to the reflexivity of identity
and Leibniz’s principle of indescernibility of identicals, respectively (we call
these sequents S1 and S2). Notice that S2 is in fact a scheme which becomes
s = t, s = s ) t = s, when P is x = s. From this, via cut on ) s = s, one
derives s = t ) t = s, namely the symmetry of identity. However, such a
sequent has no derivation without cut. Therefore, cut is not admissible in
Gc+ {S1, S2}, though it is admissible in the underlying system Gc.

In [15] Negri and von Plato have shown how to recover cut elimination
for (classical) first-order logic with identity by transforming S1 and S2 into
an equivalent pair of rules of the form:

s = s,� ) �
� ) �

Ref =
P [tx], s = t, P [sx],� ) �

s = t, P [sx],� ) �
Repl=

If one replaces S1 and S2 with the corresponding rules, it is easy to
derive s = t ) t = s without any application of cut. More generally, cut
elimination holds in Gc + {Ref ,Repl} (cf. Theorem 4.2 in [15] and [16,
§6.5]). This result can be, and has been, extended in di↵erent directions.
Here we are particularly interested in the fact, established by [14], that cut
elimination holds in extensions of Gc with geometric rules (of which the rules
of identity are special cases). The result will be reviewed briefly below, while
for a more thorough discussion on this topic the reader is referred to [14] or
the monograph [17].

In [14] Negri also showed that cut elimination holds for geometric theories
formulated as extensions of the multi-succedent calculus m-G3i for intuition-
istic logic, introduced in [5]. For our purposes, however, it is better to work
in Gi as the underlying logical calculus for intuitionistic logic. In this way
we can rely on the proof of Maehara’s lemma for Gi already available in the
literature (whereas to our knowledge no attempt has been made to obtain
a similar result for m-G3i). In fact, it is not entirely obvious how to prove
Maehara’s lemma for m-G3i. Working in Gi is thus more advantageous as far
as Maehara’s lemma is concerned, but one needs first to make sure that cut
elimination holds in the presence of geometric rules. Thus, after introducing
geometric rules, we will show that the standard cut-elimination procedures
goes through with minor adjustment in geometric extensions of Gi (Theorem
8).
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2.2. Geometric theories

A geometric axiom is a formula following the geometric axiom scheme below:

8x̄(P1 ^ · · · ^ Pn ! 9ȳ1M1 _ · · · _ 9ȳmMm)

where each Pj is an atom and each Mi is a conjunction of a list of atoms
Qi1 , . . . , Qi` and none of the variables in any ȳi are free in the Pjs. We shall
conveniently abbreviate Qi1 , . . . , Qi` in Qi. In a geometric axiom, if m = 0
then the consequent of ! becomes ?, whereas if n = 0 the antecedent of
! becomes >. A geometric theory is a theory containing only geometric
axioms. An m-premise geometric rule, for m � 0, is a rule following the
geometric rule scheme below:

Q⇤
1, P1, . . . , Pn,� ) � · · · Q⇤

m, P1, . . . , Pn,� ) �

P1, . . . , Pn,� ) �
R

where each Q⇤
i is obtained from Qi by replacing every variable in ȳi with a

variable which does not occur free in the conclusion. Such variables will be
called the eigenvariables of R. Without loss of generality, we assume that
each ȳi consists of a single variable. In sequent calculus a geometric theory
can be formulated by adding on top of G finitely many geometric rules (recall
that � contains exactly one formula in Gi).

Moreover, geometric rules are assumed to satisfy a natural closure prop-
erty for contraction (see [16, 6.1.7]).

Definition 4 (Closure condition). If a geometric extension G
0 of G contains

a rule where a substitution instance of the principal formulas produces a
rule with repetition of the form:

Q⇤
1, P1, . . . , Pn�2, P, P,� ) � · · · Q⇤

m, P1, . . . , Pn�2, P, P,� ) �

P1, . . . , Pn�2, P, P,� ) �
R

then G
0 contains or is closed under the following contracted instance of the

rule:

Q⇤
1, P1, . . . , Pn�2, P,� ) � · · · Q⇤

m, P1, . . . , Pn�2, P,� ) �

P1, . . . , Pn�2, P,� ) �
Rc

As an illustration, we consider the rule Trans6 in the theory PO (see §
5.3):
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s 6 u, s 6 t, t 6 u,� =) �
s 6 t, t 6 u,� =) �

Trans6

Clearly, as an instance of such a rule we have:

s 6 s, s 6 s, s 6 s,� =) �
s 6 s, s 6 s,� =) �

Trans6

Hence PO has to be closed under the following contracted instance

s 6 s, s 6 s,� =) �
s 6 s,� =) �

Transc6

For PO we don’t need to add the contracted rule Trans
c
6, because it is

admissible thanks to rule Ref 6. In general, however, this is not the case.
Let G

g be any extension of G with finitely many geometric rules satis-
fying the closure condition (from now on, we will tacitly assume that the
closure condition is always met). We now show that cut elimination and the
admissibility of the structural rules hold in G

g. Although we will heavily
rely on [14], we start by introducing a more general notion of substitution
that allows an arbitrary term u (possibly a constant) to be replaced by a
term t. In the presence of such general substitutions, special care is needed
in order to maintain the height-preserving admissibility of substitutions. In
particular, general substitutions are height-preserving admissible, provided
that the replaced term u does not occur essentially in the calculus. Intu-
itively, a term u occurs essentially in a rule R when u cannot be replaced
(by an arbitrary term), namely when u is a constant and u already occurs
in the axiom from which R is obtained. More precisely,

Definition 5. A constant u occurs essentially in a geometric axiom A if
and only if, for some t 6⌘ u, A[ tu ] is not an instance of the axiom A.

Moreover, we say that a term u occurs essentially in a geometric rule R when
it does so in the corresponding axiom. For example, in the geometric axiom
¬1 6 0 of non-degenerate partial orders (see [17, p. 116]) both 1 and 0 occur
essentially; hence they also occur essentially in the corresponding geometric
rule Non-deg :

1 6 0,� ) �
Non-deg

Now we show that the general substitution [ tu ] is height-preserving ad-
missible in G

g, provided that u occurs essentially in none of its geometric
rule.



10 Guido Gherardi, Paolo Ma↵ezioli, Eugenio Orlandelli

Lemma 6. In G
g
, if `n � ) �, t is free for u in �,�, and u does not occur

essentially in any rule of G
g
, then `n �[tu] ) �[tu].

Proof. If u is a variable, the claim holds by extending Lemma 1 to G
g.

Otherwise, let u be an individual constant. We can think of the derivation
D of � ) � as

�0 ) �0

�0[uz ] ) �0[uz ]
[uz ]

where �0 ) �0 is like � ) � save that it has a fresh variable z in place
of u. Note that this is always feasible for purely logical derivations, and it
is feasible for derivations involving geometric rules as long as these rules do
not involve essentially the constant u. We transform D into

�0 ) �0

�0[tz] ) �0[tz]
[tz]

where t is free for z since we assumed it is free for u in � ) �. We have
thus found a derivation (D[tu]) of �[tu] ) �[tu] that has the same height as
the derivation D of � ) �.

We can now show that Lemma 2 and Theorem 3 still hold in G
g. In fact,

for Gcg a proof has already been given in [14].

Theorem 7 (Negri). In Gc
g
all geometric and logical rules are height-

preserving invertible. Weakening and contraction are also height-preserving

admissible and cut is admissible.

At this point we need to show that the same holds for Gi. A similar re-
sult has been proved by Negri in [13] for a subclass of geometric rules, called
universal rules. In fact, Negri only considers specific instances of universal
rules expressing the axioms of the constructive theory of apartness and ex-
cess, see §5.5 and §5.6. Moreover, in [13] only the quantifier-free version of
Gi is considered. Here we extend Negri’s result and show the admissibility of
the structural rules for the full calculus Gi extended by arbitrary geometric
rules. Then,

Theorem 8. In Gi
g
all the geometric rules and all logical rules, except R_,

L ! and R9, are height-preserving invertible. However, L ! is height-

preserving invertible with respect to its right premise. Moreover, weakening

and contraction are height-preserving admissible and cut is admissible.

Proof. The proof of height-preserving invertibility of the geometric and
logical rules for Gig does not di↵er substantially from that for Gi and is left
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to the reader. We take a closer look at the admissibility of the structural
rules.

Weakening. To show that weakening is height-preserving admissible in
Gi

g, we need to extend the proof for Gi with the cases arising from geometric
rules R. These cases can be dealt with as for geometric rules over m-Gi and
Gc [14, Thm. 2]. In particular, if R is an m-premises (m � 1) geometric
rule with a variable condition on y, we replace y with a fresh variable not
occurring in the weakening formula, then we apply the inductive hypothesis
and, finally, we apply R. If R is an m-premises (m � 1) geometric rule
without variable condition, we can apply directly the inductive hypothesis
and then R. Finally, if R is a 0-premise geometric rule, the conclusion of
weakening is obtained directly by R.

Contraction. Once again, the new cases arising by the addition of ge-
ometric rules to Gi are similar to the cases in which these rules are added
to m-Gi or to Gc [14, Thm. 4]. This means we have three cases: of the
occurrences of the contraction formula either (i) none, or (ii) exactly one,
or (iii) both are principal in the final step of the derivation of the premise.
The first and the second case can be dealt with by induction and the third
by the closure condition.

Cut. To show that cut is admissible we need to prove that if ` � ) A
and ` A,� ) C then ` �,� ) C. The proof is by induction on the
weight of the cut formula A with a sub-induction on the sum of heights of
derivation of the two premises (cut-height, for short). As for the proof of
the admissibility of Cut over m-Gig [14, Thm. 5], we consider only the new
cases arising from the geometric rules R.

1. The left premise of Cut is by a 0-premise geometric rule R. Hence also
the conclusion of Cut is a conclusion of an instance of R.

2. The right premise is by a 0-premise geometric rule R and the cut formula
is not principal in it. We proceed as in case 1.

3. The right premise is by an instance of a 0-premise geometric rule R and
the cut formula is principal in it. In this case we know that A is atomic
(or > or ?) and we consider the last step of the derivation of the left
premise. If it is by a 0-premise (logic or geometric) rule or it is an initial
sequent, we proceed as in case.5 If the left premise is inferred by an m-
premises (m � 1) logical or geometric rule, then the cut formula is not

5Observe that, unlike the cases of m-Gig and Gcg, the cut formula A must be principal
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principal in it and we can permute the cut upwards in the left premise
(if the last rule applied in the left premise has eigenvariables, we rename
them before permuting the cut to avoid clashes).

4. If the cut formula is not principal either in the left or in the right premise
and this premise is inferred by an m-premises (for m � 1) geometric rule
R, then, after having renamed any eigenvariable of R to avoid clashes,
we permute the cut upwards with respect to this premise.

5. Finally, if the cut formula is principal in both premises, neither premise
has been derived by a geometric rule and we proceed as for Gi.

3. Singular geometric theories

To prove interpolation in extensions of first-order logic, the class of geometric
rules seems too large. Thus, we restrict our attention to a proper sub-class
of it and we introduce the class of singular geometric theories. In the next
section we will prove (Lemma 13) that Maehara’s lemma holds for singular
geometric extensions of first-order logic.

A singular geometric axiom is a geometric axiom with at most one non-
logical predicate and no constant occurring essentially. A singular geometric

theory is a theory containing only singular geometric axioms. In sequent
calculus a singular geometric theory can be formulated by extending G with
finitely many geometric rules of form:

Q⇤
1, P1, . . . , Pn,� ) � · · · Q⇤

m, P1, . . . , Pn,� ) �

P1, . . . , Pn,� ) �
R

where no constant occurs essentially and that satisfy the following singularity
condition:

|Rel(Q⇤
1, . . . ,Q

⇤
m, P1, . . . , Pn)|  1 (?)

Singular geometric axioms are ubiquitous in mathematics. Here, for exam-
ple, is an incomplete list of singular geometric axioms for a binary relation
R (the list is partly taken from [3, p. 48-50]).

in the left premise when this premise is an initial sequent.
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R is reflexive 8x(> ! xRx)
R is irreflexive 8x(xRx ! ?)
R is transitive 8x8y8z(xRy ^ yRz ! xRz)
R is intransitive 8x8y8z(xRy ^ yRz ^ xRz ! ?)
R is co-transitive 8x8y8z(xRy ! xRz _ zRy)
R is splitting 8x8y8z(xRy ! xRz _ yRz)
R is symmetric 8x8y(xRy ! yRx)
R is asymmetric 8x8y(xRy ^ yRx ! ?)
R is anti-symmetric 8x8y(xRy ^ yRx ! x = y)
R is trichotomous 8x8y(> ! x = y _ xRy _ yRx)
R is linear 8x8y(> ! xRy _ yRx)
R is Euclidean 8x8y8z(xRz ^ yRz ! xRy)
R is left-unique 8x8y8z(xRz ^ yRz ! x = y)
R is right-unique 8x8y8z(zRx ^ zRy ! x = y)
R is connected 8x8y8z(xRy ^ xRz ! yRz _ zRy)
R is nilpotent 8x8y8z(xRz ^ zRy ! ?)
R is a left ideal 8x8y8z(xRy ! xRz)
R is a right ideal 8x8y8z(xRy ! zRy)
R is rectangular 8x8y8z8v(xRz ^ vRy ! xRy)
R is dense 8x8y(xRy ! 9z(xRz ^ zRy))
R is total 8x9y(> ! xRy)
R is confluent 8x8y8z(xRy ^ xRz ! 9u(yRu ^ zRu))
R is left-oriented 8x8y(> ! 9z(zRx ^ zRy))
R is right-oriented 8x8y(> ! 9z(xRz ^ yRz))

It is evident that a number of important classical and intuitionistic math-
ematical theories are singular geometric. Regarding the classical ones, the
theory of partial orders (R is reflexive, transitive and anti-symmetric), the
theory of linear orders (R is a linear partial order), as well as the theo-
ries of strict partial orders (R is irreflexive and transitive) and strict linear
orders (R is a trichotomous strict partial order) are singular geometric. Con-
structive singular geometric theories, on the other hand, include von Plato’s
theories of positive partial orders [18] (R is irreflexive and co-transitive) and
positive linear orders (R is an asymmetric positive partial order), as well as
the theory of apartness (R is irreflexive and splitting). Also the theory of
equivalence relations (R is reflexive, transitive and symmetric) falls within
the class of singular geometric. Finally, the fact that a relation R is func-
tional (total and right-unique) can be axiomatized using singular geometric
axioms. Singular geometric axioms are important in logic, too. Specifically,
the axioms of identity are singular geometric.
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= is reflexive 8x(x = x)
= satisfies the indescernibility of identicals 8x8y(x = y ^ P [xz ] ! P [yz ])

Notice that the indiscernibility of identicals satisfies the singularity con-
dition (?) because identity is a logical predicate. Hence, first-order logic with
identity is a singular geometric theory.

Cut elimination for singular geometric rules clearly follows from cut elim-
ination for geometric rules. More precisely, let Gs be any extension of G with
singular geometric rules. Then:

Corollary 9. All derivability properties expressed in Lemma 6, Theorem

7 and Theorem 8 hold for G
s
.

Proof. Straightforward, since all singular geometric rules are geometric.

4. Interpolation with singular geometric rules

The standard proof of interpolation in sequent calculi rests on a result due to
Maehara which appeared (in Japanese) in [12] and was later made available
to international readership by Takeuti in his [20]. While interpolation is a
result about logic, regardless the formal system (sequent calculus, natural
deduction, axiom system, etc), Maehara’s lemma is a “sequent-calculus ver-
sion” of interpolation. Although originally Maehara proved his lemma for
LK, it is easy to adapt the proof so that it holds also in G (cf. [21, §4.4]).
We recall from [21] some basic definitions.

Definition 10 (partition, split-interpolant). A partition of a sequent � ) �
is an expression �1 ; �2 ) �1 ; �2, where � = �1,�2 and� = �1,�2 (for =
the multiset-identity). A split-interpolant of a partition �1 ; �2 ) �1 ; �2

is a formula C such that:

I ` �1 ) �1, C

II ` C,�2 ) �2

III L(C) ✓ L(�1,�1) \ L(�2,�2)

We use �1 ; �2
C
=) �1 ; �2 to indicate that C is a split-interpolant for

�1 ; �2 ) �1 ; �2.

Moreover, we say that a C satisfying conditions (I) and (II) satisfies
the derivability conditions for being a split-interpolant for the partition
�1 ; �2 ) �1 ; �2, whereas if C satisfies (III) we say that it satisfies
the language condition for being a split-interpolant for the same partition.
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Lemma 11 (Maehara). In Gc every partition �1 ; �2 ) �1 ; �2 of a

derivable sequent � ) � has a split-interpolant. In Gi every partition

�1 ; �2 ) ; A of a derivable sequent � ) A has a split-interpolant.

The proof is by induction on the height h of the derivation. If h = 0
then � ) � is an initial sequent or a conclusion of a 0-premise rule and the
proof is as in [21].6 If h = n + 1 one uses as induction hypothesis the fact
that any partition of the premises of a rule R has a split-interpolant. For a
detailed proof the reader is again referred to [21].

From Maehara’s lemma it is immediate to prove Craig’s interpolation
theorem.

Theorem 12 (Craig). If A ) B is derivable in G then there exists a C such

that ` A ) C and ` C ) B and L(C) ✓ L(A) \ L(B).

Proof. Let A ) B be derivable in G and consider the partition A ; ? )
? ; B of A ) B. By Lemma 11, this partition has a split-interpolant,

namely there exists a C such that A ; ? C
=) ? ; B. Hence ` A ) C and

` C ) B and L(C) ✓ L(A) \ L(B) by Definition 10.

If a calculus satisfies Theorem 12, we say that it has the interpolation
property. Now we extend Lemma 11 to extensions of G with singular geo-
metric rules.

In the proof of Lemma 13 we shall only consider singular geometric rules
where each Q⇤

i is a single atom Q⇤
i . More precisely, we consider singular

geometric rules of the form

Q⇤
1, P1, . . . , Pn,� ) � · · · Q⇤

m, P1, . . . , Pn,� ) �

P1, . . . , Pn,� ) �
R

where � consists of exactly one formula in Gi. This allows some notation
simplification and will significantly improve the readability of the proof. It
does not impair the generality of the result.

Lemma 13. In Gc
s
every partition �1 ; �2 ) �1 ; �2 of a derivable sequent

� ) � has a split-interpolant. In Gi
s
every partition �1 ; �2 ) ; A of a

derivable sequent � ) A has a split-interpolant.

Proof. The proof extends that of Lemma 11. Let R be a singular geometric
rule with m premises and let ⇧,� ) � be its conclusion, where ⇧ is the

6Notice, however, that the proof given in [21] contains a misprint and the split-
interpolant for the partition of the initial sequent �1, P ; �2 ) �1, P ; �2 (their notation
adjusted to ours) is ?, and not ? ! ? as stated in [21, p.117].
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multiset P1, . . . , Pn of the atomic principal formulas of R, if any. We consider
the following generic partition of the conclusion:

⇧1,�1 ; ⇧2,�2 ) �1 ; �2

where ⇧1,⇧2 = ⇧ and �1,�2 = � and �1,�2 = �, and where �1 = ?
and �2 = A for Gi

s. Moreover, let ⇥ be the multiset Q⇤
1, . . . , Q

⇤
m of active

formulas of R, if any. We organize the proof in three exhaustive cases:

1. Rel(⇥,⇧) ✓ Rel(⇧1,�1,�1);

2. Rel(⇥,⇧) ✓ Rel(⇧2,�2,�2);

3. Rel(⇥,⇧) 6✓ Rel(⇧,�,�).

Observe that these three cases are exhaustive since singular geometric rules
have at most one non-logical predicate in their principal and active formulas
and, therefore, when Case 3 does not hold at least one of Cases 1 and 2
holds. We give a proof of the three cases for Gc, and then we show the
modifications needed for Gi.

Case 1 for Gc
s. If R is an m-premise(s) rule for m � 1, then by the

inductive hypothesis (IH) every partition of each of the m premises of R has
a split-interpolant. In particular, for each k 2 {1, . . . ,m}, there is a Ck such
that:

(Ik) ` Q⇤
k,⇧1,⇧2,�1 ) �1, Ck

(IIk) ` Ck,�2 ) �2

(IIIk) L(Ck) ✓ L(Q⇤
k,⇧1,⇧2,�1,�1) \ L(�2,�2)

If, instead, R is a 0-premise rule then (I1), (II1), and (III1) hold trivially if
we impose that C1 ⌘ ? and we delete the two instances of Q⇤

1.
We start by assuming that ⇧2 is the non-empty multiset Pij+1 , . . . , Pin ,

and then we show the modifications needed when ⇧2 = ?. Consider now
the following derivation D1, where the topmost sequents are derivable by
(I1) - (Im):

Q⇤
1,⇧2,⇧1,�1 ) �1, C1

Q⇤
1,⇧2,⇧1,�1 ) �1, C1, . . . , Cm

Wkn

Q⇤
1,⇧2,⇧1,�1 ) �1,

Wm
i=1 Ci

R_ . . .

Q⇤
m,⇧2,⇧1,�1 ) �1, Cm

Q⇤
m,⇧2,⇧1,�1 ) �1, C1, . . . , Cm

Wkn

Q⇤
m,⇧2,⇧1,�1 ) �1,

Wm
i=1 Ci

R_

⇧2,⇧1,�1 ) �1,
Wm

i=1 Ci
R

V
⇧2,⇧1,�1 ) �1,

Wm
i=1 Ci

L^

⇧1,�1 ) �1,
V

⇧2 !
Wm

i=1 Ci
R!

(1)
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Notice that the application of R is legitimate because by assumption R is
applicable to Q⇤

i ,⇧,� ) � and none of the eigenvariables of the Q⇤
i ’s can

occur free in some Ck, since L(Ck) ✓ L(�2,�2). Notice also that in some
particular case the double-line stands for the empty sequence of instances,
e.g., the steps by R_ when R is a 0- or 1-premise rule.

Consider a second derivation D2, where the left-topmost sequents are
initial sequents since ⇧2 = Pij+1 , . . . , Pin and the right-topmost ones are
derivable by (II1)–(IIm):

⇧2,�2 ) �2, Pij+1 · · · ⇧2,�2 ) �2, Pin

⇧2,�2 ) �2,
V

⇧2
R^

C1,�2 ) �2 · · · Cm,�2 ) �2
Wm

i=1 Ci,�2 ) �2
L_

Wm
i=1 Ci,⇧2,�2 ) �2

Wkn

V
⇧2 !

Wm
i=1 Ci,⇧2,�2 ) �2

L!

(2)

When ⇧2 = ? we modify D1 by using left weakening instead of L^ to
add

V
⇧2 –i.e., > – to the antecedent, and we modify D2 by deriving the

conclusion of R^ by an instance of R> instead of by instances of R^.
Let t1, . . . , t` be all terms such that t1, . . . , t` 2 Ter(

V
⇧2 !

Wm
i=1Ci)

and (•) t1, . . . , t` /2 Ter(⇧1,�1,�1) \ Ter(⇧2,�2,�2). We use t to denote
t1, . . . , t`. We show that

(‡) t1, . . . , t` /2 Ter(⇧1,�1,�1)

For each k  m, (IIIk) entails that Ter(Ck) ✓ Ter(�2,�2). Hence,
Ter(

V
⇧2 !

Wm
i=1Ci) ✓ Ter(⇧2,�2,�2). By this and (•) we immediately get

that (‡) holds.
Let now z̄ be variables z1, . . . , z` not occurring in D1 and D2. Lemma 6

applied to D1 shows that:

` ⇧1,�1 ) �1, (
^

⇧2 !
m_

i=1

Ci)[
z̄
t̄ ]

Here (‡) ensures that the substitution [ z̄t̄ ] has no e↵ect on ⇧1,�1,�1. By `
applications of R8 to the derivable sequent above we obtain:

(IC) ` ⇧1,�1 ) �1, 8z̄((
^

⇧2 !
m_

i=1

Ci)[
z̄
t̄ ])

Moreover, by applying ` instances of left weakening and then ` instances of
L8 to the conclusion of D2 we obtain:
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(IIC) ` 8z̄((
^

⇧2 !
m_

i=1

Ci)[
z̄
t̄ ]),⇧2,�2 ) �2

Let C be 8z̄((
V
⇧2 !

Wm
i=1Ci)[ z̄t̄ ]). By (IC) and (IIC), we have established

that C satisfies the derivability conditions for being a split-interpolant of the
given partition. We now show that it also satisfies the language condition,
namely:

(IIIC) L(C) ✓ L(⇧1,�1,�1) \ L(⇧2,�2,�2)

First, if s is a term in Ter(C), it is a term occurring in
V
⇧2 !

Wm
i=1Ci that

is not in the list t̄. By (•), we have:

(III.1C) s 2 Ter(⇧1,�1,�1) \ Ter(⇧2,�2,�2)

Next, we show that:

(III.2C) Rel(C) ✓ Rel(⇧1,�1,�1) \ Rel(⇧2,�2,�2)

By assumption, we are in Case 1, i.e., Rel(⇥,⇧) ✓ Rel(⇧1,�1,�1). The
following set-theoretic reasoning shows that (III.2C) holds:

Rel(C)
IIIk
✓

Rel(⇧2) [ (Rel(⇥,⇧1,⇧2,�1,�1) \ Rel(�2,�2))
distrib.
=

Rel(⇥,⇧1,⇧2,�1,�1) \ Rel(⇧2,�2,�2)
Case 1
=

Rel(⇧1,�1,�1) \ Rel(⇧2,�2,�2)

We conclude that:

Q⇤
1,⇧1,⇧2,�1 ; �2

C1=) �1 ; �2 · · · Q⇤
m,⇧1,⇧2,�1 ; �2

Cm==) �1 ; �2

⇧1,�1 ; ⇧2,�2
8z̄((

V
⇧2!

Wm
i=1 Ci)[ z̄t̄ ])===============) �1 ; �2

Observe that when ⇧2 = ? the split-interpolant of the conclusion can be
simplified as follows:

8z̄((
Wm

i=1Ci)[ z̄t̄ ])

Case 2 for Gc
s. The proof di↵ers substantially from that of Case 1 only

as far as the derivability conditions are concerned. Thus, we give a detailed
analysis of these and leave to the reader the task to check that also the
language condition is satisfied. By IH every partition of each premise of an
m-premises (m � 1) rule R has a split-interpolant. In particular, for all
k 2 {1, . . . ,m}, there is a Ck such that:
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(Ik) ` �1 ) �1, Ck

(IIk) ` Ck, Q⇤
k,⇧1,⇧2,�2 ) �2

(IIIk) L(Ck) ✓ L(�1,�1) \ L(Q⇤
k,⇧1,⇧2,�2,�2)

In case R is a 0-premise rule, (I1), (II1), and (III1) hold by imposing C1 ⌘ >
(and deleting the two instances of Q⇤

1).
Let D1 be the following derivation, where the topmost sequents are deriv-

able by (II1) - (IIm):

C1, Q
⇤
1,⇧1,⇧2,�2 ) �2

C1, . . . , Cm, Q⇤
1,⇧1,⇧2,�2 ) �2

Wkn
· · ·

Cm, Q⇤
m,⇧1,⇧2,�2 ) �2

C1, . . . , Cm, Q⇤
m,⇧1,⇧2,�2 ) �2

Wkn

C1, . . . , Cm,⇧1,⇧2,�2 ) �2
R

Vm
i=1 Ci ^

V
⇧1,⇧2,�2 ) �2

L^
(3)

Consider now another derivation D2 where the left topmost sequents are
derivable by (I1) - (Im) and the right ones are initial sequents (we take
Pi1 , . . . , Pij = ⇧1 if ⇧1 6= ?, else, as we did in (2), we derive the conclusion
of the right top-most instance(s) of R^ by R>):

�1 ) �1, C1 · · · �1 ) �1, Cm

�1 ) �1,
Vm

i=1 Ci
R^

⇧1,�1 ) �1,
Vm

i=1 Ci
Wkn

⇧1,�1 ) �1, Pi1 · · · ⇧1,�1 ) �1, Pij

⇧1,�1 ) �1,
V

⇧1
R^

⇧1,�1 ) �1,
Vm

i=1 Ci ^
V

⇧1
R^

(4)

Let t̄ be all terms t1, . . . , t` such that t1, . . . , t` 2 Ter(
Vm

i=1Ci ^
V

⇧1) and
t1, . . . , t` /2 Ter(⇧1,�1,�1) \ Ter(⇧2,�2,�2). As in the previous case, it is
easy to show that:

(‡) t1, . . . , t` /2 Ter(⇧2,�2,�2)

Moreover let z̄ be variables z1, . . . , z` new to D1 and D2. We reason analo-
gously to the previous case to obtain:

(IC) ` ⇧1,�1 ) �1, 9z̄((
m̂

i=1

Ci ^
^

⇧1)[
z̄
t̄ ])

As above, thanks to (‡), we also obtain:

(IIC) ` 9z̄((
m̂

i=1

Ci ^
^

⇧1)[
z̄
t̄ ]),⇧2,�2 ) �2
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Let C be 9z̄((
Vm

i=1Ci ^
V

⇧1)[ z̄t̄ ]). Given that Rel(⇥,⇧) ✓ Rel(⇧2,�2,�2),
and given that we have quantified away all terms in t̄, we have:

(IIIC) L(C) ✓ L(⇧1,�1,�1) \ L(⇧2,�2,�2)

We conclude that C is a split-interpolant of the given partition.

�1 ; Q⇤
1,⇧1,⇧2,�2

C1=) �1 ; �2 . . . �1 ; Q⇤
m,⇧1,⇧2,�2

Cm==) �1 ; �2

⇧1,�1 ; ⇧2,�2
9z̄((

Vm
i=1 Ci^

V
⇧1)[ z̄t̄ ])==============) �1 ; �2

As for the previous case, when ⇧1 = ? we have a simpler split-interpolant
of the conclusion:

9z̄((
Vm

i=1Ci)[ z̄t̄ ])

Case 3 for Gc
s
. We can proceed either as in Case 1 or as in Case 2. If

we proceed as in Case 1, we obtain the following split-interpolant:

Q⇤
1,⇧1,⇧2,�1 ; �2

C1=) �1 ; �2 · · · Q⇤
m,⇧1,⇧2,�1 ; �2

Cm==) �1 ; �2

⇧1,�1 ; ⇧2,�2
8z̄((

V
⇧2!

Wm
i=1 Ci)[ z̄t̄ ])===============) �1 ; �2

The proof that the formula C presented above is the split-interpolant of
the conclusion is exactly as for Case 1, save for the relational part (III.2C)
of the language condition. In this case we are assuming that Rel(⇥,⇧) 6✓
Rel(⇧,�,�). By the singularity condition (i.e. |Rel(⇥,⇧)|  1), this implies

(+) Rel(⇧1,⇧2) = ?

and
(++) Rel(⇥) \ Rel(⇧2,�2,�2) = ?

Hence, we can show that (III.2C) holds via the following set-theoretic rea-
soning

Rel(C)
IIIk
✓

Rel(⇧2) [ (Rel(⇥,⇧1,⇧2,�1,�1) \ Rel(�2,�2))
distrib.
=

Rel(⇥,⇧1,⇧2,�1,�1) \ Rel(⇧2,�2,�2)
(+),(++)

=

Rel(�1,�1) \ Rel(�2,�2)
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Case 1 for Gi
s. The proof is the same as for Case 1 in Gc

s (with �1 = ?
and �2 = A) save for the derivations D1 and D2 presented in (1) and (2)
that are not Gi

s-derivations. It is immediate to see that we can obtain a
Gi

s-derivation from the derivation in (1) by simply omitting the instances
of weakening and applying directly instances of R_ to the leaves. On the
other hand, the derivation D2 presented in (2) becomes a Gi

s-derivation by
simply dropping the singleton multiset �2 from the left top-most sequents
and then adding an instance of weakening on the left premise of L !.

Case 2 for Gi
s. The proof is the same as for Case 2 in Gc

s, since the
derivations presented in (3) and (4) are Gi

s-derivation when �1 = ? and
�2 = A.

Case 3 for Gi
s. We may proceed as for Case 1 for Gi

s save for the
relational part (III.2C) of the language condition where we reason as in
Case 3 for Gcs.

From Lemma 13 it is immediate to conclude that singular geometric ex-
tensions of classical and intuitionistic logic satisfy the interpolation theorem,
namely:

Theorem 14. G
s
has the interpolation property.

5. Applications

We now consider some corollaries of Theorem 14 in which the strategy for
building interpolants provided in Lemma 13 is applied. Notice that in the
theories considered in this section all contracted instances are admissible
and, hence, we can ignore them, see the discussion after Definition 4.

5.1. First-order logic with identity

We start with first-order logic with identity. Recall that a cut-free calcu-
lus for classical first-order logic with identity has been presented in [15] by
adding on top of Gc the rules Ref = and Repl= corresponding to the reflexiv-
ity of = and Leibniz’s principle of indescernibility of identicals, respectively.
In intuitionistic theories, on the other hand, identity is often treated di↵er-
ently and we will provide a constructively more acceptable treatment of iden-
tity later in dealing with apartness. In general, however, nothing prevents us
from building intuitionistic first-order logic with identity in a parallel fashion
to the classical case. This is, for example, the route taken in [21] and we will



22 Guido Gherardi, Paolo Ma↵ezioli, Eugenio Orlandelli

follow suit. More specifically, let G
= be G + {Ref =,Repl=}. Notice that,

since Ref = and Repl= are geometric rules, cut elimination holds in Gi
= in

virtue of Theorem 8. Moreover, since they are also singular geometric, it
follows from our Theorem 14 that in G

= the interpolation property holds,
i.e.

Corollary 15. G
=

has the interpolation property.

Proof. We determine the split-interpolants as applications of the proce-
dures given in the proof of Lemma 13. The rule Ref = can be treated as an
instance of Case 1 with ⇧2 = ? (obviously, it could also have been treated
as an instance of Case 2). Depending on whether both s 2 Ter(C) and
s 62 Ter(�1,�1) or not, we have then, respectively:

s = s,�1 ; �2
C
=) �1 ; �2

�1 ; �2
8z(C[zs ])=====) �1 ; �2

s = s,�1 ; �2
C
=) �1 ; �2

�1 ; �2
C
=) �1 ; �2

For Repl=, there are four possible partitions of the conclusion:

• s = t, P [sx],�1 ; �2 ) �1 ; �2

• �1 ; s = t, P [sx],�2 ) �1 ; �2

• P [sx],�1 ; s = t,�2 ) �1 ; �2

• s = t,�1 ; P [sx],�2 ) �1 ; �2

Accordingly, we need to consider four sub-cases. As in Case 1 of Lemma 13,
when ⇧2 = ?, the interpolant for the first partition is as follows:

P [tx], s = t, P [sx],�1 ; �2
C
=) �1 ; �2

s = t, P [sx],�1 ; �2
C
=) �1 ; �2

The interpolant for the second partition is obtained by reasoning as in Case
2 with ⇧1 = ? of Lemma 13:

�1 ; P [tx], s = t, P [sx],�2
C
=) �1 ; �2

�1 ; s = t, P [sx],�2
C
=) �1 ; �2

The interpolant for the third partition is found as in Case 1 of Lemma 13,
depending on whether t 2 Ter(P [sx],�1,�1) (left derivation in the box below)
or not (right derivation in the box below).

P [tx], s = t, P [sx],�1 ; �2
C
=) �1 ; �2

P [sx],�1 ; s = t,�2
s=t!C
====) �1 ; �2

P [tx], s = t, P [sx],�1 ; �2
C
=) �1 ; �2

P [sx],�1 ; s = t,�2
8z(s=z!C[zt ])=========) �1 ; �2
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Lastly, the interpolant for the fourth partition is found as in Case 2 of
Lemma 13, depending on whether t 2 Ter(P [sx],�2,�2) or not:

�1 ; P [tx], s = t, P [sx],�2
C
=) �1 ; �2

s = t,�1 ; P [sx],�2
s=t^C
====) �1 ; �2

�1 ; P [tx], s = t, P [sx],�2
C
=) �1 ; �2

s = t,�1 ; P [sx],�2
9z(s=z^C[zt ])========) �1 ; �2

5.2. Equivalence relations

In a perfectly parallel fashion, we obtain the theory of equivalence relations
by adding to G the rules corresponding to the reflexivity, transitivity and
symmetry of a binary relation ⇠. Thus, EQ = G+ {Ref ⇠ , Trans⇠ , Sym⇠}.

s ⇠ s,� ) �
� ) �

Ref⇠
s ⇠ u, s ⇠ t, t ⇠ u,� =) �

s ⇠ t, t ⇠ u,� =) �
Trans⇠

t ⇠ s, s ⇠ t,� =) �
s ⇠ t,� =) �

Sym⇠

From the fact that these rules are singular geometric, it follows that:

Corollary 16. EQ has the interpolation property.

Proof. The case of Ref ⇠ is like that for Ref = in G
=, the only di↵erence

being that, when ⇠ is not in Rel(�,�), the rule Ref ⇠ becomes an instance
of Case 3.7 We consider in detail the cases of Trans⇠ and Sym⇠.

Regarding Trans⇠, there are four possible partitions of the conclusion:

• s ⇠ t, t ⇠ u,�1 ; �2 ) �1 ; �2

• �1 ; s ⇠ t, t ⇠ u,�2 ) �1 ; �2

• s ⇠ t,�1 ; t ⇠ u,�2 ) �1 ; �2

• t ⇠ u,�1 ; s ⇠ t,�2 ) �1 ; �2

For the first two partitions, we find the split-interpolant by reasoning as
in Case 1 with ⇧2 = ? and Case 2 with ⇧1 = ?, respectively. Hence, a
split-interpolant for the first and second partitions is:

7Otherwise, it is an instance of Case 1 or of Case 2, and then the split-interpolant of
the conclusion can be determined as we have shown for Ref =, except for the use of the
existential quantifier when we have an instance of Case 2 only and we must quantify away
s.
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s ⇠ u, s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

�1 ; s ⇠ u, s ⇠ t, t ⇠ u,�2
C
=) �1 ; �2

�1 ; s ⇠ t, t ⇠ u,�2
C
=) �1 ; �2

For the last two partitions we can proceed as in Case 1 or as in Case 2.
By proceeding as in Case 1 we find the following split-interpolants, assuming,
respectively, u 62 Ter(s ⇠ t,�1,�1) and s 62 Ter(t ⇠ u,�1,�1):

s ⇠ u, s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

s ⇠ t,�1 ; t ⇠ u,�2
8z(t⇠z!C[zu])
=========) �1 ; �2

s ⇠ u, s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

t ⇠ u,�1 ; s ⇠ t,�2
8z(z⇠t!C[zs ])=========) �1 ; �2

If, instead, u 2 Ter(s ⇠ t,�1,�1) or s 2 Ter(t ⇠ u,�1,�1), then we do not
quantify them away and we have, respectively:

s ⇠ u, s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

s ⇠ t,�1 ; t ⇠ u,�2
t⇠u!C
=====) �1 ; �2

s ⇠ u, s ⇠ t, t ⇠ u,�1 ; �2
C
=) �1 ; �2

t ⇠ u,�1 ; s ⇠ t,�2
s⇠t!C
====) �1 ; �2

Regarding Sym⇠, there are two possible partitions of the conclusion:

• s ⇠ t,�1 ; �2 ) �1 ; �2

• �1 ; s ⇠ t,�2 ) �1 ; �2

We find the split-interpolant by reasoning as in Case 1 with ⇧2 = ? and
Case 2 with ⇧1 = ?, respectively. Hence we have:

t ⇠ s, s ⇠ t,�1 ; �2
C
=) �1 ; �2

s ⇠ t,�1 ; �2
C
=) �1 ; �2

�1 ; t ⇠ s, s ⇠ t,�2
C
=) �1 ; �2

�1 ; s ⇠ t,�2
C
=) �1 ; �2

5.3. Partial and linear orders

Now we consider some well-known order theories. We start with partial
orders. In sequent calculus, the theory of partial orders is obtained by ex-
tending Gc

= with the following rules corresponding to the axioms of re-
flexivity, transitivity and anti-symmetry of a binary relation 6. Thus, let
PO = Gc

= + {Ref 6 , Trans6 , Anti-sym6}:

s 6 s,� ) �
� ) �

Ref6
s 6 u, s 6 t, t 6 u,� =) �

s 6 t, t 6 u,� =) �
Trans6

s = t, s 6 t, t 6 s,� =) �
s 6 t, t 6 s,� =) �

Anti-sym6
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Linear orders are obtained by assuming that the partial order 6 is also linear,
i.e LO = PO+ {Lin6}.

s 6 t,� ) � t 6 s,� ) �
� ) �

Lin6

Both PO and LO are singular geometric theories, hence:

Corollary 17. LO (hence, PO) has the interpolation property.

Proof. The procedure for building the interpolants for Ref 6 and Trans6
are the same as those for Ref ⇠ and Trans⇠, respectively, in EQ; that for
Anti-sym6 is like that for Trans⇠, save that here there is no need to quantify
away any term occurring in the split-interpolant.

For Lin6, only one partition of the conclusion has to be considered,
namely �1 ; �2 ) �1 ; �2. Its interpolant can be found as in Case 3 of
Lemma 13 with ⇧2 = ?, provided that 6 is not in Rel(�,�). Assuming that
both s and t are in Ter(C1, C2) but not in Ter(�1,�1):

s 6 t,�1 ; �2
C1=) �1 ; �2 t 6 s,�1 ; �2

C2=) �1 ; �2

�1 ; �2
8z18z2((C1_C2)[

z1
s

z2
t ])

==============) �1 ; �2

If, instead, s or t is in Ter(�1,�1), or if it is not in Ter(C1, C2), then it is
not quantified away. Else, if 6 is in Rel(�,�), we proceed as in Case 1 or 2
of Lemma 13 as for rule Ref ⇠, cf. footnote 7.

Unlike G
= and EQ, the underlying logical calculus of both PO and LO is

the classical one. The reason is that linearity is intuitionistically contentious
and normally it requires a di↵erent, more constructively acceptable, axiom-
atization that will be considered in Section 5.6.

5.4. Strict partial and linear orders

The theory of strict partial orders consists of the axioms of first-order logic
with identity plus the irreflexivity and transitivity of <. As we did for PO

and LO, we consider this theory to be based on classical logic, i.e. by adding
on top of Gc= the following rules:

s < s,� =) �
Irref<

s < u, s < t, t < u,� =) �
s < t, t < u,� =) �

Trans<
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Let SPO be Gc
= + {Irref <,Trans<}. Total strict partial orders are then

obtained assuming that < is also trichotomous, i.e. SLO = SPO+{Trich<}:

s = t,� =) � s < t,� =) � t < s,� =) �
� =) �

Trich<

Corollary 18. SLO (hence, SPO) has the interpolation property.

Proof. We show how to find the interpolants for Irref < and Trich<, while
Trans< is identical to Trans⇠. We start with Irref <. There are two possible
partitions of its conclusion, namely

• s < s,�1 ; �2 ) �1 ; �2

• �1 ; s < s,�2 ) �1 ; �2

As in Case 1 with ⇧2 = ? (and m = 0) and as in Case 2 with ⇧1 = ?
(and m = 0) of Lemma 13, we find the split-interpolant for each partition
as follows:

s < s,�1 ; �2
?
=) �1 ; �2 �1 ; s < s,�2

>
=) �1 ; �2

Regarding Trich<, we need to consider only one partition of the conclu-
sion, namely �1 ; �2 ) �1 ; �2, whose interpolant can be found as in Case
3 of Lemma 13 with ⇧2 = ? when < is not in Rel(�,�). Assuming that
both s and t are in Ter(C1, C2, C3) but not in Ter(�2,�2):

s = t,�1 ; �2
C1=) �1 ; �2 s < t,�1 ; �2

C2=) �1 ; �2 t < s,�1 ; �2
C3=) �1 ; �2

�1 ; �2
8z18z2((C1_C2_C3)[

z1
s

z2
t ])

================) �1 ; �2

If s or t is in Ter(�2,�2), or if it is not in Ter(C1, C2, C3), then it is not
quantified away. Else, if < is in Rel(�,�), we proceed as in Case 1 or 2 of
Lemma 13 as for rule Ref ⇠, cf. footnote 7.

5.5. Apartness

We noticed earlier that in intuitionistic theories the identity relation is not
always treated as in classical logic. In particular, identity is defined in terms
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of the more constructively acceptable relation of apartness. Apartness was
originally introduced by Brouwer (and later axiomatized by Heyting in [10])
to express inequality between real numbers in the constructive analysis of
the continuum: whereas saying that two real numbers a and b are unequal
only means that the assumption a = b is contradictory, to say that a and
b are apart expresses the constructively stronger requirement that their dis-
tance on the real line can be e↵ectively measured, i.e. that | a � b | > 0
has a constructive proof. Classically, inequality and apartness coincide, but
intuitionistically two real numbers can be unequal without being apart. The
theory of apartness consists of intuitionistic first-order logic plus the irreflex-
ivity and splitting of 6=. Following [13], the theory of apartness is formulated
by adding on top of Gi the following rules:8

s 6= s,� =) A
Irref 6=

s 6= u, s 6= t,� =) A t 6= u, s 6= t,� =) A
s 6= t,� =) A

Split 6=

Let AP = Gi+ {Irref 6= , Split 6=}. Given that these two rules are singular
geometric rules, it follows that:

Corollary 19. AP has the interpolation property.

Proof. As above, we show how to find the interpolants for Irref 6= and
Split 6=. The former is identical to that of Irref < in SPO.

In the case of Split 6=, there are two possible partitions of the conclusion:

• s 6= t,�1 ; �2 ) ; A

• �1 ; s 6= t,�2 ) ; A

For the first partition, we use Case 1 of Lemma 13 with ⇧2 = ?. Thus,
if u 62 Ter(s 6= t,�1) and u 2 Ter(C1, C2), a split-interpolant for the first
partition is:

s 6= u, s 6= t,�1 ; �2
C1=) ; A t 6= u, s 6= t,�1 ; �2

C2=) ; A

s 6= t,�1 ; �2
8z(C1[zu]_C2[zu])==========) ; A

For the second partition, we use Case 2 of Lemma 13 with ⇧1 = ?.
Thus, if u 62 Ter(s 6= t,�2, A) and u 2 Ter(C1, C2), a split-interpolant for the
second partition is:

8Notice that Negri’s underlying calculus is a quantifier-free version of Gi.
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�1 ; s 6= u, s 6= t,�2
C1=) ; A �1 ; t 6= u, s 6= t,�2

C2=) ; A

�1 ; s 6= t,�2
9z(C1[zu]^C2[zu])==========) ; A

When u is, respectively, in Ter(s 6= t,�1) or in Ter(s 6= t,�2, A), as well as
when it is not in Ter(C1, C2), we do not quantify it away .

5.6. Positive partial and linear orders

Just like apartness is a positive version of inequality, so excess ⌦ is a pos-
itive version of the negation of a partial order 6. Excess relation was in-
troduced by von Plato in [18] and has been further investigated by Ne-
gri in [13]. The theory of positive partial orders consists of intuitionis-
tic first-order logic plus the irreflexivity and co-transitivity of ⌦.9 Let
PPO = Gi+ {Irref ⌦ , Co-trans⌦}

s ⌦ s,� =) A
Irref⌦

s ⌦ u, s ⌦ t,� =) A u ⌦ t, s ⌦ t,� =) A

s ⌦ t,� =) A
Co-trans⌦

The theory of positive linear orders extends the theory of positive partial
orders with the asymmetry of ⌦. Specifically, let PLO = PPO+ {Asym⌦}:

s ⌦ t, t ⌦ s,� ) A
Asym⌦

Given that all these rules are singular geometric, from Theorem 14 it follows
that

Corollary 20. PPO and in PLO have the interpolation property.

Proof. The cases of Irref⌦ and of Co-Trans⌦ are like the analogous cases
for rules Irref 6= and Split 6= and the split-interpolants can be obtained by
those in the proof of Corollary 19. For rule Asym⌦ we have four possible
partitions of the conclusion

• s ⌦ t, t ⌦ s,�1 ; �2 ) ; A

• �1 ; s ⌦ t, t ⌦ s,�2 ) ; A

9Co-transitivity and splitting should not be confused. In particular, splitting (along
with irreflexivity) gives symmetry, whereas co-transitivity does not. This is what distin-
guishes apartness (which is symmetric) from excess (which in general is not).
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• s ⌦ t,�1 ; t ⌦ s,�2 ) ; A

• t ⌦ s,�1 ; s ⌦ t,�2 ) ; A

Their split-interpolants are like those for rule Anti-sym6, except that
here we have a 0-premise rule. For the first and second partitions we have,
respectively:

s ⌦ t, t ⌦ s,�1 ; �2
?
=) ; A �1 ; s ⌦ t, t ⌦ s,�2

>
=) ; A

Finally, for the last two partitions we have, respectively:

s ⌦ t,�1 ; t ⌦ s,�2
t⌦s!?
====) ; A t ⌦ s,�1 ; s ⌦ t,�2

s⌦t!?
====) ; A

To conclude, we have shown (Lemma 13) how to extend Maehara’s lemma
to extensions of classical and intuitionistic sequent calculi with singular ge-
ometric rules and provided a number of interesting examples of singular
geometric rules that are important both in logic and mathematics, espe-
cially in order theories. In particular, we have shown that Lemma 13 covers
first-order logic with identity and its extension with the theory of (strict)
partial and linear orders. We have also proved that the same holds for the
intuitionistic theories of apartness, as well as for positive partial and linear
order. Along the way, we have also provided a cut-elimination theorem for
geometric extensions Gig of the intuitionistic single-succedent calculus Gi.
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