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ABSTRACT: The organocatalytic axially-enantioselective 
Knoevenagel condensation between prochiral cyclohexanones 
and oxindoles is presented. The reaction, promoted by a pri-
mary amine, proceeded smoothly and furnished unprecedent-
ed examples of novel cyclohexylidene oxindoles displaying 
axial chirality. 

Asymmetric organocatalysis revealed to be an elective plat-
form to perform the synthesis of atropisomers,1 an important 
class of chiral molecules bearing a stereogenic axis that origi-
nates from the restricted rotation along a single bond.2 This 
element of chirality, is the structural feature of many natural 
and bioactive compounds as well as catalysts or ligands for 
asymmetric synthesis.3 An important class of axially chiral 
compounds is represented by allenes and alkylidenecycloal-
kanes4 (Figure 1). 

Figure	1. Examples of axially chiral compounds. 

Because of their diffusion in Nature, the chemistry of chiral 
allenes has been largely studied in the past and various cata-
lytic enantioselective synthesis are known.5 Alkylidenecyclo-
alkanes, despite a few applications as precursors of chiral liq-
uid crystals and in circular dichroism studies,6,4a encountered 
less attention and their catalytic enantioselective syntheses 
are rare. Previous approaches have been focused on two main 
strategies: 1) the construction of the double bond by means of 
Horner-Wadsworth-Emmons (HWE) or Peterson olefination7 
using a stoichiometric amount of chiral reagent or ligands; 2) 
reduction of prochiral alkylidene cyclohexanone derivatives.8 
An important contribute has been recently proposed by Ber-
nardi who realized the first catalytic synthesis of axially chiral 
trisubstituted alkylidenes through organocatalyzed Wittig re-
action.9 Despite the straightforward novelty reported, this re-
action evidenced in general low enantioselectivities and yields 
(Figure 2). The Knoevenagel10 condensation (KC) represents 
one of the earliest and most important organocatalytic ole-
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fination process, however enantioselective versions are rare. 
The first example, has been recently reported by List who 
used the KC for the dynamic kinetic resolution of racemic α-
branched aldehydes.11 Surprisingly, to date the use of this 
venerable transformation for the synthesis of axially chiral 
olefins remains totally unexplored. 
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Figure	2. Previous examples of asymmetric olefinations 
and catalytic enantioselective Knoevenagel condensa-
tion. 

Our idea is to design a new variant of the Knoevenagel reac-
tion that can assemble together prochiral 4-substituted cyclo-
hexanones and 2-oxindoles realizing the enantioselective gen-
eration of a new stereogenic axis in an alkylidene framework 
(Scheme 1). 

Scheme	1.	Strategic	plan	for	the	axially	enantioselec‐
tive	Knoevenagel	condensation	(aEKC).	

	

We envisioned that a chiral amine can form a pair of dia-
stereomeric iminium ions followed by the alkyla-
tion/elimination sequence wherein a point to axial chirality 
transfer path12,1f,1k transforms the 3-alkyl oxindole intermedi-
ate into the new axially chiral tetrasubstituted 3-
alkylideneoxindoles.13 The aEKC represents a breakthrough in 
the field of enantioselective olefinations offering a milder, 
cheaper and easier to handle strategy than the previously re-
ported methodologies which required the use of chiral rea-
gents, stoichiometric amounts of ligands and strong bases. In-
deed, in light of the role that many axially chiral compounds 
cover as drugs and biologically active compounds,14,3a,3b the 
synthesis of novel axially chiral molecules is highly desirable.  

We started our investigation by screening various chiral 
amines as catalysts (Table 1).15 Cinchona alkaloids primary 
amines, due to their ease to condense on the carbonyl group 
of cyclohexanone,16 catalyzed the aEKC in high yield and enan-
tiomeric ratio. 

Table	1.	Screening	of	the	reaction	conditions.a	

	

en-
try 

cata-
lyst 

acid solvent (M) yield 
(%)b 

e.r.c 

1d VII	 H	 MeOH (0.1) 55 14:86 

2 VIII	 H	 MeOH (0.1) 52 85:15 

3 IX	 H	 MeOH (0.1) -- -- 

4 X	 H	 MeOH (0.1) 49 14:86 

5 XI	 H	 MeOH (0.1) 45 83:17 

6 VII	 H	 toluene (0.1) 63 14:86 

7 VII	 H	 toluene (0.4) 90 13:87 

8 VII	 H	 toluene (0.7) 62 14:86 

9 VII	 H	 toluene (1.0) 64 13:87 

10 VII	 A	 toluene (0.4) 70 14:86 

11 VII	 B	 toluene (0.4) 45 12:88 

12 VII	 C	 toluene (0.4) 62 20:80 

13 VII	 D	 toluene (0.4) n.d. 19:81 

14 VII	 E	 toluene (0.4) 60 14:86 

15 VII	 F	 toluene (0.4) n.d. 19:81 

16 VII	 G	 toluene (0.4) 43 15:85 

17 VII	 I	 toluene (0.4) n.d. 22:78 

18 VII	 J	 toluene (0.4) ---- ---- 

19 VII	 K	 toluene (0.4) 12 20:80 

20 VII	 L	 toluene (0.4) 28 19:81 

21 VII	 M	 toluene (0.4) <10 20:80 

22 VII	 N	 toluene (0.4) <10 20:80 

aReactions were performed on a 0.2 mmol scale using a 1:1 
ratio between 1a and 2a. bIsolated yield. cDetermined by 
HPLC using chiral stationary phase. dWhen the reaction was 
performed without molecular sieves, compound 3aa was ob-
tained in 8% yield and 59:41 e.r. after 24 hours. 

A 5 mol % of 9-epi-NH2-QDA (VII), in combination with 10 
mol % of 3,5-dinitrobenzoic acid (H), gave 3aa in 55% yield 
and 14:86 e.r. With this catalytic combination, we studied dif-
ferent solvents finding an increment of the yield using toluene 



 

(entry 6). Despite the reaction was not completely homogene-
ous, a concentration of 0.4 M was perfect to ensure optimal 
reactivity and enantiocontrol (entry 7). Higher values were 
detrimental because of the scarce solubility of oxindole (en-
tries 8-9). The screening of acidic additives (entries 10-21) 
revealed that benzoic acid derivatives provided better results 
than trifluoroacetic acid (TFA) and chiral acids (entries 18-
22). At the end of these detailed screening16 3,5-
dinitrobenzoic acid H remained the best acidic co-catalyst. 

With the optimized conditions the scope and limits of the 
aEKC reaction were studied (Figure 3).  
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Figure	3. Knoevenagel condensation of oxindoles 1a‐l 
with prochiral 4-phenylcyclohexanones 2a‐j. The reac-
tions were performed on a 0.2 mmol scale with a 1:1 
ratio between 1a‐l and 2a. aDetermined via 1H NMR 
with 1,3,5-trimethoxybenzene as internal standard. In 
all cases NMR yields are consistent with isolated 
yields.16 bDetermined by HPLC on chiral stationary 
phase. cIsolated yield and e.r. were determined after fil-
tration of the crude reaction mixture.17 dCatalyst VIII 
was used. e[1a]0= 1.0 M. 

The aEKC could be performed using oxindoles with differ-
ent substituents (3aa‐3la). In general, a good control of the 
stereochemical outcome is obtained. Various substituents 
with different electronic properties gave high yields of the 
corresponding alkylideneoxindole (3ba‐3da,	 3fa‐3ga, 3ja, 
3la) however poor yields can be observed when highly insol-
uble oxindoles were used (3ea, 3ha‐3ia, 3ka). The presence 
of a strong electron-withdrawing nitro group was detrimental 
for both yield and stereocontrol (3ka). The scope of several 
prochiral cyclohexanones 2b‐j was then explored. Good yields 
and e.r. were obtained for new cyclohexylidene oxindoles 

3ab‐3aj with aromatic and aliphatic substituents. In the case 
of aliphatic cyclohexanones, the size of the substituent was a 
discriminant factor (not exclusively) for the enantiomeric ra-
tio of the product. The larger the group the higher the enanti-
oselectivity. This is due to the conformational equilibrium of 
4-substituted cyclohexanones where the presence of a large 
group ensures that only one side of the iminium group is ef-
fectively accessible by the nucleophile. This is the specific case 
of ketones 2g and 2h. With ketones 2f and 2i, the conforma-
tional equilibrium is not completely shifted towards the equa-
torial conformer, and a poor enantiocontrol is observed be-
cause both sides of the iminium ion are accessible. The reac-
tion can be extended to cyclobutanones but with poor yield 
and e.r. (3aj) whilst 4-phenylcyclooctanone is not reactive at 
all. The absolute configuration of 3aa was determined to be 
aR by means of TD-DFT calculation of the electronic circular 
dichroism (ECD) spectra.15 A possible derivatization of the 3-
alkylidene oxindole was identified in the epoxidation of the 
double bond. Enantiopure 3aa was treated with m‐CPBA and 
the resulting epoxide can be isolated in 86% yield as a 5:1 
mixture of diastereoisomers 5aa and 5aa' and both with a 
98.5:1.5 e.r. (Scheme 2a). Furthermore the reproducibility of 
the aEKC was tested in a 1 mmol scale reaction. As showed in 
Scheme 2b compound 3aa was obtained in 85% of isolated 
yeld and 84:16 of e.r.  

Scheme	2.	Epoxidation	of	enantiopure	3aa	and	1.0	
mmol	scale	reaction.

	

In order to investigate the reaction mechanism that ex-
plains the stereochemical outcome of the reaction, a DFT 
computational study was performed.15 The calculations sug-
gest that the reaction pathway follows two distinct events. Af-
ter the formation of an equilibrium mixture of two diastereo-
meric axially chiral iminium ions, the reaction proceeds 
through a selective alkylation of the (aS)-iminium ion. The ad-
dition of the Re face of the oxindole is favored over the Si face 
(TS1). The resulting diastereoisomeric intermediate (GS3) 
undergoes a rate- and stereo-determining E1cb elimination 
(TS2), as usually occurs for Knoevenagel condensation,18 
promoted by the carboxylate anion furnishing the aR product 
as the major enantiomer (Figure 4), in good agreement with 
the experimental results.  

In conclusion we reported the axially enantioselective 
Knoevenagel condensation. The process is highly efficient, 
with a large scope for both ketone and oxindole and furnished 
a rare example of synthesis of axially chiral 3-
alkylideneoxindoles which can be readily functionalized 
through standard organic procedure. This reaction represents 
an important application of aminocatalysis for the synthesis of 
axially chiral oxindoles with possible biological applications. 
The theoretical study gave an important elucidation on the 
reaction mechanism which proceeded through an E1cb elimi-
nation. 



 

 

Figure	 4. Main steps of the proposed reaction mechanism. Corrected relative free energies (ΔΔG313) at the 
M06-2X/6-311++G(2d,p)/SMD(toluene)//M06-2X/6-31G(d)/SMD(toluene) level of theory. All values are in 
kcal/mol. Blue: reaction path to the major (aR)-product; red: reaction path to the minor (aS)-product. Values for the 
red path are expressed relative to the corresponding values of the blue path. Structures are shown only for the reac-
tion path leading to the major product. 
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