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Stable s-minimal cones in R3 are flat for s � 1
By Xavier Cabré at Barcelona, Eleonora Cinti at Bologna and Joaquim Serra at Zurich

Abstract. We prove that half spaces are the only stable nonlocal s-minimal cones in R3,
for s 2 .0; 1/ sufficiently close to 1. This is the first classification result of stable s-minimal
cones in dimension higher than two. Its proof cannot rely on a compactness argument perturb-
ing from s D 1. In fact, our proof gives a quantifiable value for the required closeness of s to 1.
We use the geometric formula for the second variation of the fractional s-perimeter, which
involves a squared nonlocal second fundamental form, as well as the recent BV estimates for
stable nonlocal minimal sets.

1. Introduction

In this paper we prove that half spaces are the only stable nonlocal s-minimal cones – with
smooth boundary away from 0 – in dimension n D 3 for s 2 .0; 1/ sufficiently close to 1 (see
Theorem 1.2). The same classification result for stable s-minimal cones in dimension n D 2
for any s 2 .0; 1/ has been established in [15]. For short, we will refer to nonlocal s-minimal
cones as s-minimal cones.

For minimizing cones (a stronger assumption than stability) a similar flatness result was
proven by Savin and Valdinoci [14] in dimension n D 2 for any s 2 .0; 1/, and by Caffarelli
and Valdinoci [6] in every dimension 2 � n � 7 for s 2 .0; 1/ sufficiently close to 1. The result
in [6] relies on the classification of classical (s D 1) minimizing cones of Simons [16] and
extends it to s sufficiently close to 1 through a compactness argument.

Our statement is also “for s sufficiently close to 1”, but – unlike in [6] – it cannot be
deduced from the limit case s D 1 by some sort of compactness argument. The reason being
that – unlike in the framework of minimizers – Ek being stable cones for the sk-perimeter with
sk " 1 does not guarantee the sequence Ek to be compact. We must rule out, for instance, an
hypothetical situation in which the traces of Ek on S2 were (unions of) curves with their total
classical perimeter increasing to infinity. As a matter of fact, and at least in R3, proving the
compactness of sequences Ek of stable cones turns out to be as difficult as proving the flatness
result – which then trivially gives the compactness since planes through the origin are compact.

The authors have been supported by MINECO grants MTM2014-52402-C3-1-P and MTM2017-84214-C2-
1-P, and are part of the Catalan research group 2014 SGR 1083. The first author is member of the Barcelona
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Let us remark also that the classification of stable cones in low dimensions turns out
to be significantly more challenging for s 2 .0; 1/ than in the classical case s D 1. Indeed, as
mentioned above, when n D 2, the classification of stable s-minimal cones – for all s 2 .0; 1/ –
requires already a clever idea [7,15]. Moreover, in the case n D 3 of this paper, there is an even
larger gap of difficulty between s 2 .0; 1/ and s D 1. Indeed, in the classical perimeter case
s D 1, the trace à† \ S2 on the sphere of every stationary1) cone † � R3 with C 2 boundary
away from 0 is immediately a maximal circle – and here the stability assumption is not even
required. This is proven just using that the zero mean curvature condition on à† is equivalent
to a zero tangential curvature condition for the C 2 curve à† \ S2. For s 2 .0; 1/, however,
the nonlocal character of the equation of s-minimal cones makes it impossible for such sort of
“ODE-type” approach.

Before stating precisely our main result, we recall the notion of fractional s-perimeter,
which was introduced by Caffarelli, Roquejoffre, and Savin in [5]. Given a set E in Rn and
a bounded open set � � Rn, we define the fractional s-perimeter of E in � as

Ps.E;�/ WD L.E \�;E
c
\�/C L.E \�;Ec \�c/C L.E \�c ; Ec \�/;

where Ec denotes the complement of E in Rn and, for two disjoint measurable sets A and B ,
L.A;B/ denotes the quantity

L.A;B/ WD

Z
A

Z
B

1

jx � yjnCs
dx dy:

Minimizers for the fractional perimeter, with special interest in their regularity, were
studied in several works; see [1, 5–7, 12, 14]. However, to our knowledge, the only available
results for stable sets of the s-perimeter have been obtained in [7, 15]. The article [7] includes
sharp BV and energy estimates in every dimension n � 2, and quantitative flatness results in
dimension n D 2.

Let us state the main result of the current paper. We say that † � Rn is a cone when
�† D † for all � > 0. We will always take † to be an open set. Its boundary à†, a hyper-
surface in Rn, will also be called a cone. The following is the definition of stability that we use.

Definition 1.1. Let † � Rn be a cone with nonempty boundary of class C 2 away from
the origin. We say that † is stable if

lim inf
t!0

1

t2
.Ps.�

t
X .†/; B1/ � Ps.†;B1// � 0

for all vector fields X 2 C1c .B1 n ¹0º;R
n/. Here �tX W R

n ! Rn denotes the integral flow
of X at time t (which is a smooth diffeomorphism for t small).

Throughout the paper, † being stable as in this definition will also be referred to as †
being a stable cone for the s-perimeter in Rn, or † being a stable s-minimal cone in Rn.

Note that �tX is the identity in a neighborhood of 0 and, thus, this is the weakest possible
notion of stability of cones that one may assume. In Section 2 we will briefly discuss other
notions of stability for the s-perimeter.

It is easy to see that if † is as in Definition 1.1 (in particular, à† is C 2 away from 0),
then à† is stationary away from 0, and hence it is a solution of the nonlocal minimal surface

1) à† has zero mean curvature.
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equation (also away from 0). Moreover, using that † is a cone, one can show (see the proof
of Theorem 1.2 for the details) that à† is a viscosity solution of the nonlocal minimal surface
equation also at 0.

The following is our main result.

Theorem 1.2. There exists s� 2 .0; 1/ such that for every s 2 .s�; 1/ the following state-
ment holds.

Let† � R3 be a cone with nonempty boundary of class C 2 away from 0. Assume that †
is stable as in Definition 1.1. Then † is a half space.

As mentioned before, Theorem 1.2 is the first classification result for stable s-minimal
cones in dimension n D 3. The analogue result for n D 2 and for any s 2 .0; 1/was established
in [15] (see also the quantitative version [7]).

We stress that our result is not a perturbative result from s D 1 which could be obtained
by some sort of compactness argument. In fact, a careful inspection of our proof gives an
explicit (computable) value for s�, something impossible when using compactness arguments.

A consequence of Theorem 1.2 is the following.

Corollary 1.3. There exists s� 2 .0; 1/ such that for every s 2 .s�; 1/ the following
statement holds.

Let E be an open subset of R3. Assume that àE is nonempty and of class C 2, and that E
is a stable set for the s-perimeter. Then E is a half space.

For the reasons explained next, the proof of Corollary 1.3 will be given in full detail in
the forthcoming paper [4]. It follows a rather standard (at least in the context of minimizers)
blow-down approach. Besides the classification of stable cones from Theorem 1.2, the proof
of Corollary 1.3 needs the following four ingredients, which are known in the setting of stable
s-minimal sets provided that their boundaries are C 2:

(i) universal perimeter estimate (established for C 2 stable sets in [7]),

(ii) density estimates (established for C 2 stable sets in [4]),

(iii) monotonicity formula (established for minimizers in [5] with a proof that works also for
C 2 stable sets),

(iv) improvement of flatness (established for minimizers in [5] with a proof that works also
for C 2 stable – or even stationary – sets).

Note that in the context of classical minimal surfaces, (i), (ii), and (iv) are known for
minimizers but not for stable surfaces.

The main obstruction to remove the C 2 assumption is (iv), since the improvement of
flatness in [5] has been established for viscosity solutions of the nonlocal minimal surface
equation. Although it is obvious that C 2 stable s-minimal sets are viscosity solutions, the same
is not known for generic stable sets.

Properties analogous to (i)–(iv) will appear in our forthcoming paper [4] in the context of
stable solutions to the fractional Allen–Cahn equation

.��/
s
2u D u � u3; juj < 1 in Rn:(1.1)
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We will prove there a classification result analogous to Corollary 1.3, but now for equation (1.1).
The proofs for solutions to (1.1) and for s-minimal surfaces are roughly the same and, more-
over, both use some tools that are not needed in the present paper (e.g., the Caffarelli–Silvestre
extension). For these reasons, we have decided to differ the details of the proof of Corollary 1.3
to [4].

The abstract classification result in [4] (which was actually the primary motivation of the
present paper) is:

Theorem ([4]). Assume that for some pair .n; s/, with s 2 .0; 1/, the half-spaces are the
only stable s-minimal cones in Rm (which are smooth away from 0) for 2 � m � n. Then every
stable solution of equation (1.1) in Rn is a one-dimensional profile, that is, u.x/ D �.e � x/
for some increasing function � W R! .�1; 1/ and e 2 Sn�1.

As a consequence of this statement and of Theorem 1.2, we establish in [4]:

(i) one-dimensional profiles are the only stable solutions of equation (1.1) when n D 3 and
s 2 .0; 1/ is sufficiently close to 1,

(ii) one-dimensional profiles are the only monotone solutions of equation (1.1) when n D 4
and s 2 .0; 1/ is sufficiently close to 1.

Previously, one-dimensional symmetry of stable solutions to (1.1) for s
2
< 1
2

was only known
in dimension 2.

The proof in [4] of the classification result for (1.1) establishes that blow down sequences
u.Rkx/ converge to �† � �†c , where † is a stable minimal cone which, after a dimension
reduction, can be assumed to be smooth away from 0. Furthermore, in [4] we prove density
estimates ensuring the local uniform convergence of the level sets of u to à† (in the sense
of the Hausdorff distance). As a consequence, if we know that the cone is a half space, the
improvement of flatness theory for “genuinely nonlocal” phase transitions established in [10]
gives that u must be a one-dimensional profile.

Let us finally comment on the proof of Theorem 1.2. It will use three important ingredi-
ents from recent works, namely:

(a) The second variation formula for the nonlocal perimeter from [8, 11], which involves
a squared nonlocal second fundamental form and that we recall in Theorem 3.1.

(b) The behavior as s " 1 of the optimal constant in the fractional Hardy inequality in dimen-
sion two, which can be found for instance in [13], and which we recall in Theorem 3.3.

(c) The universal BV estimate for stable sets of [7], which we recall in Theorem 3.5. In
particular, the information that its best constant may be bounded by C

1�s
when s " 1.

To prove Theorem 1.2, we plug in the stability inequality given by (a) a radial function
that “almost saturates” the Hardy inequality (b) in dimension two. Then we integrate in the
radial variable, and appropriately use the universal BV estimate (c) – at every scale – to relate
the integrals on à† (a curved two dimensional cone) with the integrals in R2 appearing in the
Hardy inequality. With this, we obtain an integral control on à† \ S2 for the nonlocal version
of the squared second fundamental form of à†. This control is given in Proposition 4.3 and is
the main goal of Section 4.

Concluding the flatness of the cone from the control in Proposition 4.3 is not a straight-
forward task. To do it, we need a series of lemmas on curves on S2 – given in Section 5 – the
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cornerstone of which is Lemma 5.1. It establishes bounds on the length of a curve on S2 from
an integral control on its squared nonlocal second fundamental form. Interestingly, a crucial
ingredient in the proof of Lemma 5.1 is an elementary “topological” observation on closed
injective curves in the cylinder S1 � .�1; 1/, which is given in Lemma 5.2. The application of
these lemmas gives that, for s close enough to 1, the curve à† \ S2 is a simple curve that is
very close – in a C 1;

1
4 norm – to a maximal circle. We conclude that the curve must be a maxi-

mal circle using the classification of s-minimal Lipschitz graphs of Figalli and Valdinoci [12].
The proof of Theorem 1.2 is given in Section 6 by combining all the previous results.

2. On the notion of stable sets for the s-perimeter

Throughout the paper the notion of stability that we consider is the one of Definition 1.1,
which is given specifically in the context of cones in R3 with C 2 boundary away from 0. In
this setting, Definition 1.1 is the weakest notion of stability one can think of – note that we do
not need to allow perturbations that affect the vertex of the cone.

For the sake of clarity, we recall now the notion of stability that was introduced and used
in [7], and we explain below why this was done. It applies to general sets of finite s-perimeter.

Definition 2.1 ([7], stability). A set E � Rn with Ps.E;�/ <1 is said to be stable
in � if for every given vector field X D X.x; t/ 2 C1c .� � .�1; 1/IR

n/ we have

lim inf
t!0

1

t2
.Ps.�

t
X .E/ \E;�/ � Ps.E;�// � 0

and
lim inf
t!0

1

t2
.Ps.�

t
X .E/ [E;�/ � Ps.E;�// � 0;

where �tX is the integral flow of X at time t .

Another possible notion of stability, which is weaker than the one given in Definition 2.1
above, is the following:

Definition 2.2. A set E � Rn with Ps.E;�/ <1 is said to be weakly stable in � if
for every given vector field X D X.x; t/ 2 C1c .� � .�1; 1/IR

n/ we have

lim inf
t!0

1

t2
.Ps.�

t
X .E/;�/ � Ps.E;�// � 0;

where �tX is the integral flow of X at time t .

Notice that every stable set E (i.e., satisfying Definition 2.1) is also weakly stable (in the
sense of Definition 2.2), as it is immediately shown using the inequality

Ps.�
t
X .E/;�/C Ps.E;�/ � Ps.�

t
X .E/ \E;�/C Ps.�

t
X .E/ [E;�/:

For s 2 .0; 1�, both definitions are known to be equivalent2) when applied to sets E with
C 2 boundary in �. Thus, our stability assumption in Definition 1.1 and Theorem 1.2 is equiv-

2) See Remark 3.2.
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alent to the cone with C 2 boundary away from the origin being stable in Rn n ¹0º in the sense
of Definition 2.1, and also to being weakly stable in Rn n ¹0º as in Definition 2.2.

Note that, for the classical perimeter (s D 1), Definition 2.1 – and not Definition 2.2 – is
the correct notion of stability in order to rule out cones such as “the cross”

¹.x1; x2/ 2 R2 W x1x2 > 0º

to be stable. The reason is that Definition 2.1 allows “infinitesimal” perturbations that “break
the topology” of E – while Definition 2.2 does not. In Definition 2.1 the topology may be
changed, for instance, when E is the above “cross” and �tX is a translation near the origin.
As an example, �tX .E/ [E could be given by ¹.x1 � t /.x2 � t / > 0º [ ¹x1x2 > 0º, which is
a connected set, while E is disconnected.

The previous example shows that the two notions of stability are indeed different in the
limit case s D 1 of the classical perimeter. For s 2 .0; 1/, however, some heuristics seem to sug-
gest that the two definitions might be equivalent. For instance, “the cross” is no longer weakly
stable, due to nonlocal effects. However, it is an open question whether (or not), in the nonlocal
case s 2 .0; 1/, every weakly stable set is stable. This statement, if true, would be very useful to
obtain – using the BV estimates of [7] – clean compactness results for stable sets for the s-peri-
meter – with s 2 .0; 1/ fixed –, since weak stability is better suited for passages to the limit.

3. Previously known ingredients that our proof uses

As explained in the introduction, the proof of Theorem 1.2 uses three main ingredients
from previous works, which we gather here.

First, we will use a formula, found in [8, 11], for the second (normal) variation of the
fractional perimeter. We state it in R3 but an analogue in Rn also holds true.

Theorem 3.1 ([8, 11]). Let † � R3 be a stable cone for the s-perimeter. Assume that
à† is C 2 away from 0. Then, for every � 2 C 2c .R

3 n ¹0º/, we haveZ
à†
c2s;à†.x/j�.x/j

2 dH 2.x/ �

“
à†�à†

j�.x/ � �.y/j2

jx � yj3Cs
dH 2.x/ dH 2.y/;

where

c2s;à†.x/ WD

Z
à†

j�†.x/ � �†.y/j
2

jx � yj3Cs
dH 2.y/

and �†.x/ denotes the outward normal vector to † at x 2 à†.

Remark 3.2. Theorem 3.1 is an application (to the case of cones in R3) of a second
variation formula found in [8, 11] for stationary sets E � Rn with C 2 boundaries. Namely, if
X is a smooth vector field and àE is stationary and C 2, we have

lim
t!0

1

t2
.Ps.�

t
X .E/;�/ � Ps.E;�//(3.1)

D

“
àE�àE

j�.x/ � �.y/j2

jx � yjnCs
dHn�1.x/ dHn�1.y/

�

Z
à†
c2s;à†.x/j�.x/j

2 dHn�1.x/;
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where � D X � �E . A standard approximation argument then shows that (3.1) holds for all �
Lipschitz and compactly supported on àE.

Using this formula, we can show that, in the class of C 2 sets, the two notions of stability
in Definitions 2.1 and 2.2 are equivalent. Indeed, when àE is C 2 we have

lim inf
t!0

1

t2
.Ps.�

t
X .E/ \E;�/ � Ps.E;�//

D

“
à†�à†

j��.x/ � ��.y/j2

jx � yjnCs
dHn�1.x/ dHn�1.y/

�

Z
à†
c2s;à†.x/j�

�.x/j2 dHn�1.x/;

where �� denotes the negative part of � D X � �E . The same holds with \ replaced by [ and
the negative part replaced by the positive part. From these observations, it follows that the
stronger notion of stability (Definition 2.1) holds whenever the weaker definition of stability
(Definition 2.2) holds.

We recall now the precise dependence on the power � as � " 1 in the definition of the
fractional Laplacian in Rd :

.��/��.x/ D cd;�

Z
Rd

�.x/ � �.y/

jx � yjdC2�
dy;

where

(3.2) cd;� D 2
2���

d
2
�.d

2
C �/

��.��/
D 22���

d
2
�.d

2
C �/

�.2 � �/
�.1 � �/:

In particular, we observe that, up to a positive multiplicative constant, cd;� behaves like 1 � �
as � " 1. Note also that integration by parts yieldsZ

Rd
�.x/.��/��.x/ dx D cd;�

Z
Rd
�.x/

�Z
Rd

�.x/ � �.y/

jx � yjdC2�
dy

�
dx(3.3)

D
cd;�

2

Z
Rd

Z
Rd

j�.x/ � �.y/j2

jx � yjdC2�
dx dy:

Our proof requires the knowledge of the behavior as � " 1 of the best constant in the
Hardy–Rellich inequality involving the H� seminorm – see3) for instance [13]. We will also
use the fact that the inequality is (almost) saturated by radial C1c .R

d n ¹0º/ functions. That
radial functions saturate the inequality is proved in [13, Section 3.3]. Moreover, by a standard
approximation argument, we can choose these radial functions to be smooth and identically
zero in a neighborhood of the origin, since points have zero H� capacity in Rd for d � 2.

Theorem 3.3 (see [13]). Given d � 2 and 0 < � < d
2

, the inequality

Hd;�

Z
Rd

ju.x/j2

jxj2�
dx �

Z
Rd
u.x/.��/�u.x/ dx

3) Note that there is a typo in the expression for the optimal constant in in [13, formula (1.6)].
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holds for every u 2 H� .Rd / with optimal constant

(3.4) Hd;� D 2
2�
�2.d

4
C

�
2
/

�2.d
4
�
�
2
/
D 22��2.

d

2
� �/2

�2.d
4
C

�
2
/

�2.d
4
�
�
2
C 1/

;

where � is the Gamma function.
Moreover, for every � > 0 there exists a nontrivial (not identically zero) radial function

� D �.jxj/ 2 C1c .R
d n ¹0º/ such thatZ

Rd
�.x/.��/��.x/ dx � .Hd;� C �/

Z
Rd

j�.x/j2

jxj2�
dx:

Next, we rewrite in polar coordinates the last inequality of the theorem, for d D 2.

Corollary 3.4. Let � 2 .1
2
; 1/. There exists a radial function � 2 C1c ..0;C1//, � 6� 0,

such that
I Œ�; �� � C.1 � �/J Œ�; ��;

where

I Œ�; �� WD

Z 1
0

dr r1�2�
Z 1
1

d� � j�.r/ � �.r�/j2
“
S1�S1

dH 1. OX/dH 1. OY /

j OX � � OY j2C2�
;(3.5)

J Œ�; �� WD

Z 1
0

dr r1�2� j�.r/j2;(3.6)

and C is a universal constant (in particular, independent of � ).

Proof. First, we observe that the best constant in Theorem 3.3 for d D 2 satisfies

H2;� � C.1 � �/
2

(where C is a positive universal constant) as one can see from the last expression in (3.4). Com-
bining equality (3.3), where cd;� is given by (3.2), and the second inequality of Theorem 3.3
with the choice � D C.1 � �/2, we deduce that there is a radial function

� D �.jxj/ 2 C1c .R
d
n ¹0º/;

with � 6� 0, satisfying

(3.7) C.1 � �/2
Z

R2

j�.jxj/j2

jxj2�
dx � .1 � �/

“
R2�R2

j�.jxj/ � �.jyj/j2

jx � yj2C2�
dx dy:

Finally, we use polar coordinates x D r OX , y D t OY , where r; t 2 .0;C1/ and OX; OY 2 S1, and
we integrate only in the set ¹jxj � jyjº on the right-hand side of (3.7), to get

C.1 � �/

Z 1
0

dr r1�2� j�.r/j2

�

Z 1
0

dr r

Z 1
r

dt t

Z
S1
dH 1. OX/

Z
S1
dH 1. OY /

j�.r/ � �.t/j2

r2C2� j OX � t
r
OY j2C2�

D

Z 1
0

dr r1�2�
Z 1
1

d� �

Z
S1
dH 1. OX/

Z
S1
dH 1. OY /

j�.r/ � �.r�/j2

j OX � � OY j2C2�
;

where in the last equality we have used the change of variables t D r� . This concludes the
proof of the corollary.
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Finally, we state the estimate established in [7] for the classical perimeter of stable sets
for the s-perimeter, keeping track on how the constant in the estimate blows up as s " 1.

Theorem 3.5 ([7]). Let E � Rn be a stable set for the s-perimeter in Br.z/, where
z 2 Rn, r > 0. Assume that àE is C 2 in that ball. Then

PerB r
2
.z/.E/ �

C

1 � s
rn�1;

where PerB r
2

.E/ denotes the relative (classical) perimeter of E in B r
2
.z/ and C D C.n; s/ is

bounded as s " 1.

Proof. The theorem follows by inspection of the proof of [7, Theorem 1.7], taking into
account the explicit dependence of the constants on s as s " 1. For the sake of clarity, we write
here below the crucial estimates in [7, proof of Theorem 1.7], with the precise dependence of
all constants on s, as s " 1. In the sequel C will denote positive constants depending only on
n and s (possibly different ones) which remain bounded as s " 1. Note that [7, Theorem 1.9],
applied to the kernel

K.z/ D jzj�n�s;

gives that

(3.8) PerB1.E/ � C
�
1C

p
Ps.E;B4/

�
if E is a stable set in B4, where C only depends on n. We rewrite now [7, inequalities (3.8)
and (3.9)] keeping track of the dependence on s of all constants. We have

.1 � s/Ps.E;B4/ � .1 � s/

“
B4�B4

j�E .x/ � �E .y/j

jx � yjnCs
dx dy(3.9)

C 2.1 � s/

“
B4�B

c
4

1

jx � yjnCs
dx dy

� .1 � s/

“
B4�B4

j�E .x/ � �E .y/j

jx � yjnCs
dx dy C C

� C.PerB4.E/C 1/;

with C D C.n; s/ bounded as s " 1, where for the last inequality we refer to [2, Theorem 1 and
Remark 5] or to [9, proof of Proposition 2.2]. Hence, (3.8), (3.9), and Young inequality lead to

PerB1.E/ � C
�
1C

1

.1 � s/
1
2

.1C PerB4.E//
1
2

�
� C

�
1C

1

ı.1 � s/
C ı

�
C ıPerB4.E/

for all ı > 0. Arguing exactly as in [7, end of the proof of Theorem 1.7] (that is, rescaling and
using [7, Lemma 3.1]), we deduce that

PerB1.E/ �
C

1 � s
:

Thus, after rescaling, we conclude the statement of the theorem.
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4. Bounding the squared nonlocal second fundamental form

In this section we denote by  the intersection of the boundary of the cone à† � R3 and
the sphere S2 D ¹x 2 R3 W jxj D 1º. Note that  is a finite union of C 2 simple curves on S2.

In the following lemma we compute the stability formula of Theorem 3.1 for a radial test
function � D �.r/, where r D jxj.

Lemma 4.1. Let † be a stable cone for the s-perimeter in R3. Assume that à† is C 2

away from 0. Let us call  WD à† \ S2, where S2 WD ¹x 2 R3 W jxj D 1º. Then, for every
� 2 C 2c ..0;C1//, we have

AJ Œ�; 1Cs
2
� �

Z 1
0

dr r�s
Z 1
1

d� � j�.r/ � �.r�/j2
“
�

dH 1. Ox/dH 1. Oy/

j Ox � � Oyj3Cs
;

where
A WD

Z


dH 1. Ox/ c2s;à†. Ox/

and J Œ�; 1Cs
2
� is given by (3.6).

Proof. We take the radial test function � D �.jxj/ in the stability inequality of Theo-
rem 3.1, and we use polar coordinates x D r Ox, y D t Oy to obtainZ



dH 1. Ox/

Z


dH 1. Oy/

Z 1
0

dr r

Z 1
0

dt t
j�.r/ � �.t/j2

jr Ox � t Oyj3Cs

�

Z


dH 1. Ox/

Z 1
0

dr r c2s;à†.r Ox/j�.r/j
2:

We observe that since † is a cone, �†.r Ox/ D �†. Ox/ for all r > 0 and thus, denoting Oy D y
jyj

,

c2s;à†.r Ox/ D

Z
à†

j�†. Ox/ � �†. Oy/j
2

jr Ox � yj3Cs
dH 2.y/ D

Z
à†

j�†. Ox/ � �†. Oz/j
2

jr Ox � r Ozj3Cs
r2 dH 2. Oz/

D
c2s;à†. Ox/

r1Cs
:

Hence, using that à† � à† D ¹jxj > jyjº [ ¹jyj > jxjº up to measure zero sets, and the sym-
metry of the integrand with respect to interchanging x; y, we obtain

2

Z


dH 1. Ox/

Z


dH 1. Oy/

Z 1
0

dr r

Z 1
r

dt t
j�.r/ � �.t/j2

jr Ox � t Oyj3Cs
� A

Z 1
0

dr

rs
j�.r/j2;

where
A D

Z


dH 1. Ox/ c2s;à†. Ox/:

Doing the change of variables t D r� , we obtain

2

Z


dH 1. Ox/

Z


dH 1. Oy/

Z 1
0

dr r

Z 1
1

d�
r2

r3Cs
�
j�.r/ � �.r�/j2

j Ox � � Oyj3Cs
� A

Z 1
0

dr

rs
j�.r/j2;

and the lemma follows recalling the definition of J Œ�; 1Cs
2
� in (3.6).
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The following lemma allows to estimate the integral on  �  , appearing in the previous
lemma, by the integral on S1 � S1 that appears in I Œ�; �� of Corollary 3.4 for � D 1Cs

2
. Here it

is crucial to use in every ball Br. Ox/, with Ox 2  and r 2 .0; 1
2
/ the universal perimeter estimate

from Theorem 3.5.

Lemma 4.2. Let† be a stable cone for the s-perimeter in R3, of class C 2 away from 0.
Let us call  WD à† \ S2, where S2 WD ¹x 2 R3 W jxj D 1º. Then, for all � > 1, we have“

�

dH 1. Ox/dH 1. Oy/

j Ox � � Oyj3Cs
�
CH 1./

1 � s

Z
S1�S1

dH 1. OX/dH 1. OY /

j OX � � OY j3Cs
;

where S1 WD ¹X 2 R2 W jX j D 1º and C D C.s/ is bounded as s " 1.

Proof. Applying Theorem 3.5 to the stable cone †, we obtain that, for all Ox 2  and
r 2 .0; 1

2
/, we have

(4.1) H 1. \ Br. Ox// �
C

1 � s
r;

where C denotes a constant depending only on s which is bounded as s " 1. In particular, by
a covering argument we obtain H 1./ � C

1�s
.

We now take any couple of points Ox 2  and OX 2 S1 WD ¹X 2 R2 W jX j D 1º. Let us
show that, for all � > 1,

(4.2)
Z


dH 1. Oy/
1

j Ox � � Oyj3Cs
�

C

1 � s

Z
S1
dH 1. OY /

1

j OX � � OY j3Cs
:

Indeed, we use a dyadic ring decomposition

 n ¹ Oxº D
[

�1�k�1

Ak; where Ak D  \ .B2k . Ox/ n B2k�1. Ox//:

Using (4.1), we obtain

H 1.Ak/ �
C

1 � s
2k :

Then, using that

j Ox � � Oyj2 D 1C �2 � 2� Ox � Oy D .� � 1/2 C 2�.1 � Ox � Oy/

and that 2�322k � 2�1j Ox � Oyj2 D 1 � Ox � Oy � 2�122k for y 2 Ak , we obtainZ


dH 1. Oy/
1

j Ox � � Oyj3Cs
D

X
�1�k�1

Z
Ak

dH 1. Oy/
1

j Ox � � Oyj3Cs

�

X
�1�k�1

H 1.Ak/
C

..� � 1/2 C �22k/
3Cs
2

�

X
�1�k�1

C

1 � s
2k

1

..� � 1/2 C �22k/
3Cs
2

�
C

1 � s

Z
S1
dH 1. OY /

1

j OX � � OY j3Cs
;

where the last inequality follows from the previous considerations applied with .†; / replaced
by .R3

C
; S1/. The lemma then follows integrating (4.2) with respect to Ox and OX .
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We can now give the proof of the key integral estimate on  of the squared nonlocal
second fundamental form of à†.

Let us compute c2s;à†. Ox/ in terms of only the trace  D à† \ S2. Recall that c2s;à† was
defined in Theorem 3.1. For this, we introduce the kernel

ks. Ox; Oy/ WD

Z 1
0

t dt

j Ox � t Oyj3Cs
D

Z 1
0

t dt

.t2 C 1 � 2t Ox � Oy/
3Cs
2

;

and we note that, since † is a cone,

c2s;à†. Ox/ D

Z
à†

j�†. Ox/ � �†.y/j
2

j Ox � yj3Cs
dH 2.y/

D

Z


dH 1. Oy/

Z 1
0

dt t
j�†. Ox/ � �†. Oy/j

2

j Ox � t Oyj3Cs

D

Z


j�†. Ox/ � �†. Oy/j
2ks. Ox; Oy/ dH

1. Oy/;

where �† is the exterior normal vector to à†.
We can now state the key integral estimate from which we will deduce our main theorem.

Proposition 4.3. Let † be a stable cone for the s-perimeter in R3, and of class C 2

away from 0. Let us call  WD à† \ S2, where S2 WD ¹x 2 R3 W jxj D 1º. ThenZ


c2s;à†. Ox/ dH
1. Ox/ � CH 1./;

that is, “
�

j�†. Ox/ � �†. Oy/j
2ks. Ox; Oy/ dH

1. Ox/ dH 1. Oy/ � CH 1./;

where C D C.s/ is bounded as s " 1.

Proof. Let � D �.jxj/ be a radial C 2c ..0;C1// test function. Using Lemma 4.1, we
obtain

AJ Œ�; 1Cs
2
� �

Z 1
0

dr r�s
Z 1
1

d� � j�.r/ � �.r�/j2
“
�

dH 1. Ox/ dH 1. Oy/

j Ox � � Oyj3Cs
;

where
A D

Z


dH 1. Ox/ c2s;à†. Ox/

and J Œ�; 1Cs
2
� is given by (3.6). Next, applying Lemma 4.2, we deduce thatZ 1

0

dr r�s
Z 1
1

d� � j�.r/ � �.r�/j2
“
�

dH 1. Ox/ dH 1. Oy/

j Ox � � Oyj3Cs

�
CH 1./

1 � s

Z 1
0

dr r�s
Z 1
1

d� � j�.r/ � �.r�/j2
“
S1�S1

dH 1. OX/dH 1. OY /

j OX � � OY j3Cs

D
CH 1./

1 � s
I Œ�; 1Cs

2
�;
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where I Œ�; �� is as in (3.5). Therefore, we have

AJ Œ�; 1Cs
2
� �

CH 1./

1 � s
I Œ�; 1Cs

2
�:

Finally, choosing � 6� 0 as in Corollary 3.4 (with � D 1Cs
2

) we have

I Œ�; 1Cs
2
� � C.1 � s/J Œ�; 1Cs

2
�:

Since � 6� 0, the proposition follows combining the last two inequalities.

The following lemma gives a lower bound for ks .

Lemma 4.4. For s 2 .1
2
; 1/, we have

ks. Ox; Oy/ � c
1

j Ox � Oyj2Cs
for all Ox; Oy 2 S2

and for some universal constant c > 0.

Proof. Let us call b2 WD 1 � Ox � Oy D 1
2
j Ox � Oyj2. Note that b 2 .0;

p
2/. We have

ks. Ox; Oy/ D

Z 1
0

t dt

..t � 1/2 C 2t.1 � Ox � Oy//
3Cs
2

�

Z 3
2

1
2

.1
2
/ dt

..t � 1/2 C 3b2/
3Cs
2

�
1

2

Z 1
2b

� 1
2b

b d Nt

..b Nt /2 C 3b2/
3Cs
2

�
1

2b2Cs

Z 1
4

� 1
4

d Nt

.Nt2 C 3/
3Cs
2

�
c

j Ox � Oyj2Cs
;

where, in the second inequality, we have used the change of variables Nt D t�1
b

. This concludes
the proof of the lemma.

We observe that, if a connected component 0 of  is parametrized by arc length, then

(4.3) ks.0.t/; 0.Nt // �
c

j0.t/ � 0.Nt /j2Cs
�

c

jt � Nt j2Cs
;

where we have used Lemma 4.4 for the first inequality and that j0.t/ � 0.Nt /j � jt � Nt j for
the second inequality.

We conclude this section with the following embedding.

Lemma 4.5. Let � 2 Œ3
4
; 1/ and I D Œ0; 5��. Given f W I ! R, we have

kf � f k
C
1
4 .I /
� C Œf �H� .I /;

where f D 1
5�

R
I f ,

Œf �H� .I / WD

�
.1 � �/

Z
I

Z
I

jf .t/ � f .Nt /j2

jt � Nt j1C2�
dt d Nt

� 1
2

;

and C is a universal constant.
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Proof. Let us denote

kf kH� .I / D kf kL2.I / C Œf �H� .I /:

Since � � 3
4

, we have that H� .I / is continuously embedded in C
1
4 .I /. Then, using the frac-

tional Poincaré inequality (see e.g. [3, ‘Fact” stated on p. 80]) in the interval I , we obtain

kf � f k
C
1
4 .I /
� Ckf � f k

H
3
4 .I /

D C
®
kf � f kL2.I / C Œf �

H
3
4 .I /

¯
� C Œf �

H
3
4 .I /
� C Œf �H� .I /;

with C universal. We have used, in the last inequality, Remark 5 in [2].

5. Auxiliary results on curves of S 2

In this section we prove geometric estimates for a simple curve 0 in S2 satisfying the
curvature bounds from Proposition 4.3.

Recall that, throughout the paper, the trace on S2 of à†, which we call  , is (since † is
C 2 away from 0) a finite union of C 2 simple closed curves on S2. Moreover, by the perimeter
estimate of Theorem 3.5 we know that the total length of  is bounded by C.1 � s/�1. In addi-
tion, we obtained in Proposition 4.3 a certain integral control on the squared nonlocal second
fundamental form of à†.

Lemmas 5.1 and 5.3 below contain geometric estimates for a closed simple curve (i.e.,
without self-intersections) 0 in S2, whose length is bounded by C.1 � s/�1 and satisfying an
integral control on its squared nonlocal second fundamental form. A crucial point is that the
constants in these estimates do not blow up as s " 1. In the proof of Theorem 1.2 these lemmas
will be applied to the connected components of  .

The first and most important estimate is the following bound, uniform as s " 1, for the
length of 0.

Lemma 5.1. Let s 2 .1
2
; 1/,L> 0, and let 0 D 0.t/ W Œ0; L�! S2 be some C 2 closed

curve without self-intersections and parametrized by arc length – thus L D length.0/. Let
� D 0 ^ 

0
0 be the “clockwise” normal vector (which is tangent to the sphere).

Assume that, for some positive constant C0,

(5.1)
Z L

0

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt � C0L < C1:

Assume in addition that
0 < L �

C0

1 � s
:

Then
L � C

for some constant C depending only on C0.

To prove Lemma 5.1, the following “topological” observation will be crucial.
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Lemma 5.2. Let S1 � .�1; 1/ be the cylinder

¹.x; y; z/ 2 R3 W x2 C y2 D 1; jzj < 1º:

Let � 2 R (mod 2�Z) and z 2 .�1; 1/ be the standard cylindrical coordinates.
Assume that ! W Œ0; 4��! S1 � .�1; 1/ is a C 1 curve of the type

! D !.�/ D .cos �; sin �; z.�//

and satisfying, for some b 2 .0; 1
100
/,

jz.0/j �
b

2
and jz0.�/j �

b

8�
for all � 2 Œ0; 4��:

Assume in addition that ! is injective – i.e., it does not have self intersections – and that
z.0/ < z.4�/.

Let Q! W Œt1; t2�! S1�.�1; 1/ be anyC 1 curve such that Q!.t1/D!.4�/ and Q!.t2/D!.0/
such that Q!..t1; t2// and !..0; 4�// are disjoint. Assume that Q! is parametrized by the arc
length. Let us denote

Q!.t/ D .cos Q�.t/; sin Q�.t/; Qz.t//:

Then, for each �0 2 .0; 2�/, there is at least one t 2 .t1; t2/ such that

Q�.t/ D �0 .mod 2�/; �b � z.�0/ � Qz.t/ � z.�0 C 2�/ � b; and Q� 0.t/ � 0:

As a consequence, using that Q! is parametrized by the arc length and defining

A WD ¹t 2 .t1; t2/ W j Qz.t/j � b; Q�
0.t/ � 0º;

we have
H 1.A/ � 2�:

Proof. Note that

jz.4�/j �
b

2
C 4�

b

8�
� b:

Let us call P D !.0/ D .1; 0; z.0// and Q D !.4�/ D .1; 0; z.4�//.
For each �0 2 .0; 2�/ the open set

.S1 � .�1; 1// n .!.Œ0; 4��/ [ ¹.cos �0; sin �0/º � Œ�b; b�/

has exactly two connected components. The curve Q!, which connects the points Q and P
without intersecting !..0; 4�// starts in the upper connected component (the one containing
a neighborhood of Q) and finishes in the lower connected component (the one containing
a neighborhood of P ). Hence there is at least one time t�0 2 .t1; t2/ at which Q! intersects the
segment ¹.cos �0; sin �0/º � Œ�b; b� to go from the upper to the lower components. It easily
follows that t�0 in A.

For the last inequality in the statement, we use that, as shown above, the image of Q!.A/
under the projection of S1 � .�1; 1/! S1 has length 2� . It follows that the length of Q!.A/ is
at least 2� , and thus also the length of A (since Q! is parametrized by the arc length).

We can now give the proof of Lemma 5.1.
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Proof of Lemma 5.1. Let us assume that 5�N � L < 5�.N C 1/, where N > 0 is an
integer. We need to bound N . Hence, we may clearly assume that N is large enough.

Let us consider the N disjoint intervals Ij WD Œ5�.j � 1/; 5�j /, 1 � j � N , which are
subsets of Œ0; L/. Let

�j WD .1 � s/

Z
Ij

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt

and let j1; j2; : : : ; jN be an ordering for which

�j1 � �j2 � � � � � �jN :

Choose M WD bN
2
c and notice that

max
1�i�M

�ji D �jM �
1

N �M

NX
iDMC1

�ji(5.2)

D
1

N �M
.1� s/

NX
iDMC1

Z
Iji

Z L

0

j�.t/��.Nt /j2ks.0.t/; 0.Nt // dt d Nt

�
1

N �M
.1� s/

Z L

0

Z L

0

j�.t/��.Nt /j2ks.0.t/; 0.Nt // dt d Nt

� 2
C0.1� s/L

N
;

where, in the last inequality, we have used assumption (5.1).
For the sake of clarity, we split the proof into four steps.

Step 1. Let us prove that for I D Iji , where 1 � i �M D bN
2
c, we have

k�.t/ � ek
C
1
4 .I /
� C Œ��H� .I / � Cı

1
2 for some e 2 S2;

� D 1
2
.1C s/ and

ı WD 2
C 20
N
:

Indeed, using in (5.2) the assumption .1 � s/L � C0 we have that, for 1 � i �M D bN
2
c, the

interval I D Iji has length 5� and satisfies

(5.3) .1 � s/

Z
I

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt � 2
C 20
N
D ı:

Now using (4.3), we deduce that

.1 � s/

Z
I

Z
I

j�.t/ � �.Nt /j2

jt � Nt j2Cs
dt d Nt � Cı;

where C is universal. That is, for � D 1Cs
2

and j D 1; 2; 3, we have (recall the definition of
the H� -seminorm in Lemma 4.5)

Œ�j �H� .I / � Cı
1
2 ; where � D .�1; �2; �3/:
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Using Lemma 4.5, we obtain

k�.t/ � ek
C
1
4 .I /
� C Œ��H� .I / � Cı

1
2 for some e 2 R3:

Note that (for ı small enough and up to changing C ) we may assume that e 2 S2 since � 2 S2.
This proves that the velocity (or tangent) vector  00 is almost perpendicular to e in all of I with
a very small error in the angle controlled byCı

1
2 . Recall that we may assume ı to be sufficiently

small since, as mentioned in the beginning of the proof,N may be assumed to be large enough.

Step 2. We have proven in Step 1 that the restriction of 0 to I is Cı
1
2 close to tracing

a maximal circle. As pointed out in the beginning of the proof, we may assume that N is large
enough and thus that ı D 2C20

N
is small enough.

Note that since I has length 5� > 4� , for ı small enough the curve 0jI makes two
loops at the (topological) cylinder S2 \ ¹�1

4
< e � x < 1

4
º, and these loops are Cı

1
2 close to

the “equator” S2 \ ¹e � x D 0º. In particular, the “vertical” displacement is less than Cı
1
2 .

Intuitively, since 0 is a closed curve, it will have to come back again to the starting point of
two loops, and since it does not have self-intersections, the only way this may happen is with
0 passing again between the two loops with the opposite orientation (i.e., “undoing” the loop).
More precisely, let us prove that

(5.4) NA WD

²
Nt 2 Œ0; L� n Iı W je � 0.Nt /j � Cı

1
2 and e � �.Nt / �

1

100

³
;

where Iı � I is an interval to be defined next and with jI0j � 3� , satisfies

(5.5) H 1. NA/ �
19

10
�:

Indeed, let us choose an orthonormal coordinate frame X; Y;Z with origin at 0 and with
Z directed as e. Let us define “cylindrical” coordinates in S2 \ ¹�1

4
< e � x < 1

4
º as follows:

X D cos � cos z; Y D sin � cos z; Z D sin z:

Since 0 is a closed curve without self-intersections, we may apply Lemma 5.2 with

! D 0jIı ; Q! D 0j.Œ0;L�=¹0;Lº/nIı ; and b D Cı
1
2 ;

where Iı � I is an interval for whichZ
Iı

� 0.0.t// dt D 4�

as in Lemma 5.2 – here we abuse notation and omit the fact that ! and Q! would need to
reparametrized by the angle � and by the arc length of the cylinder respectively. From the last
equality we deduce, using

1 D j 00j D .�
0/2 cos2 z C .z0/2 � .� 0/2

�
3

4

�2
if ı is small enough, that jIıj � 3� .
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Applying Lemma 5.2, the set

A WD ¹Nt 2 .Œ0; L�=¹0;Lº/ n Iı W j Qz.Nt /j � Cı
1
2 ; Q� 0.Nt / � 0º

– in the notation of Lemma 5.2 – satisfiesH 1.A/ � 19
10
� . Here, on the right-hand side we need

to choose a number slightly smaller than 2� due to the fact that Q! needs to be reparametrized
by the arc length of the cylinder in order to apply Lemma 5.2 (understanding that ı is chosen
accordingly small enough so that the arc lengths on the sphere near the equator and on cylinder
are almost the same).

Observe also that for every Nt 2 A we have that j Qz.Nt /j is very small (for ı small enough)
and that Q� 0.Nt / � 0. As a consequence4)

e � �.Nt / �
1

100
;

as before in (5.4), provided that ı is small enough. In other words, the normal vector to 0
at Nt , which is tangent to S2, can only have, at most, a tiny positive projection in the “vertical”
direction e. Hence, A � NA and (5.5) follows.

Step 3. For each given Nt 2 NA there exists t 0 2 Iı such that j0.Nt / � 0.t 0/j � Cı
1
2 , with

C universal, since 0jIı makes two full loops to the equator. Hence, we deduce thatZ
I0

1

j0.t/ � 0.Nt /j2Cs
dt � c

Z
I0

1

.ı
1
2 C j0.t/ � 0.t 0/j/2Cs

dt(5.6)

� c

Z
I0

1

.ı
1
2 C jt � t 0j/2Cs

dt

� c

Z 3�
2

0

1

.ı
1
2 C �/2Cs

d� � c.ı
1
2 /�1�s;

where in the third inequality we have used that t 0 2 I0 and that I0 is an interval of length at
least 3� . Now, notice that for all t 2 I0 and Nt 2 NA we have j�.t/ � �.Nt /j � 1 – since the angle
between �.t/ and �.Nt / is at least of 85ı. In addition, recall (5.3) and (5.5) to obtain

ı � .1 � s/

Z
I0

Z
NA

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // d Nt dt(5.7)

� .1 � s/c

Z
NA

Z
I0

1

j0.t/ � 0.Nt /j2Cs
dt d Nt

� .1 � s/
cH 1. NA/

.ı
1
2 /1Cs

� .1 � s/
c

.ı
1
2 /1Cs

for different universal constants c > 0. It follows that�
2
C 20
N

��1� 1Cs
2

D ı�1�
1Cs
2 �

C

1 � s
:

4) Note that if it was jz.Nt /jD 0 at some Nt , the condition Q� 0.Nt /� 0 would be exactly equivalent to �.Nt / �e� 0.
Therefore, if jz.Nt /j is very small, e � �.Nt / cannot be too positive.
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Hence, using that s � 1
2

, we obtain

L � 5�.N C 1/ �
C

.1 � s/
4
7

;

where C depends only on C0.

Step 4. Next we repeat exactly the same argument as in Steps 1, 2, and 3 but now using
(5.2) together with the improved estimate L � C.1 � s/�

4
7 instead of L � C0.1 � s/�1. We

now have that, for 1 � i �M D bN
2
c, the interval I D Iji has length 5� and satisfies

.1 � s/

Z
I

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt � 2
C0.1 � s/L

N

�
C.1 � s/

3
7

N
DW ı0:

Therefore, arguing exactly as above, we obtain�
C.1 � s/

3
7

N

��1� 1Cs
2

D .ı0/�1�
1Cs
2 �

C

1 � s
;

where C depends only on C0. Hence

N

.1 � s/
3
7

�
C

.1 � s/
4
7

and thus
L � 5�.N C 1/ �

C

.1 � s/
1
7

;

where C depends only on C0.
Finally, we repeat exactly the same argument once more but now using (5.2) together with

the improved estimate L � C.1 � s/�
1
7 instead of L � C.1 � s/�

4
7 . We now have that, for

1 � i �M D bN
2
c, the interval I D Iji satisfies

.1 � s/

Z
I

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt � 2
C0.1 � s/L

N

�
C.1 � s/

6
7

N
DW ı00:

Therefore, �
C.1 � s/

6
7

N

��1� 1Cs
2

D .ı00/�1�
1Cs
2 �

C

1 � s
;

and we conclude
N

.1 � s/
6
7

�
C

.1 � s/
4
7

and
L � 5�.N C 1/ � C.1 � s/

2
7 ;

where C depends only on C0.
Note that when s " 1, the previous inequality does not really lead to a contradiction since,

to obtain it, we assumed thatL � 5�N withN � 1 large enough (depending on C0). It follows
from this observation that L � C for s close to 1, where C depends only on C0.
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Finally, once we know that L � C , with C universal and in particular independent of s
for s 2 .1

2
; 1/, we conclude from the integral control on the squared nonlocal second funda-

mental form that 0 converges in C 1;
1
4 norm to a maximal circle as s " 1. This is the content

of the next result.

Lemma 5.3. Let s 2 .1
2
; 1/, L > 0, 0, and � be as in Lemma 5.1. In particular, we

assume that, for some constant C0,Z L

0

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt � C0L:

Assume in addition that
0 < L � C0:

Then L! 2� as s " 1 and, for some e 2 S2, we have

k� � ek
C
1
4 .Œ0;L�=¹0;Lº/

� C.1 � s/
1
2 ;

where C is some constant depending only on C0.
In, particular, for s close enough to 1, the cone generated by (the image of) 0 is a very

flat Lipschitz graph.

Proof. Since 0 is a closed curve, let us reparametrize it as follows:

O0 W S
1
! S2; where O0.�/ D 0

�
L

2�
�

�
; � 2 S1 Š R=¹2�Zº;

where we are identifying R=¹2�Zº and � 2 S1 via the isometry � 7! .cos �; sin �/. Similarly
as in the proof of Lemma 5.1, defining � D 1Cs

2
and using now that L � C0, we obtain

Œ O�i �2
H� .S1/

D .1 � �/

Z
S1

Z
S1

j O�.�/ � O�. N�/j2

j.cos �; sin �/ � .cos N�; sin N�/j1C2�
d� d N�

� C.1 � s/Ls
Z L

0

Z L

0

j�.t/ � �.Nt /j2ks.0.t/; 0.Nt // dt d Nt

� C.1 � s/;

where O�.�/ D �. L
2�
�/ is the normal vector accordingly reparametrized, and where C depends

only on C0. Here we have used that

t D
L

2�
�; Nt D

L

2�
N�; O 00.�/ D

L

2�
;

L

2�
j.cos �; sin �/ � .cos N�; sin N�/j � j O0.�/ � O0. N�/j D j0.t/ � 0.Nt /j;

and (4.3). Using a small variation of Lemma 4.5 – for S1 instead of an interval –, we obtain

kO�.t/ � ek
C
1
4 .S1/

� C Œ O��H� .S1/ � C.1 � s/
1
2

for some e 2 S2. It follows that O�.t/ is almost parallel to e and thus 0 is a small perturbation
of a maximal circle. In particular, L! 2� as s " 1. Note also that the cone generated by 0 is
a Lipschitz graph in the direction e for s sufficiently close to 1.
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6. Proof of main theorem

In this section we finally give the proof of Theorem 1.2.

Proof of Theorem 1.2. Recall that by assumption † is a stable minimal cone for the
s-perimeter in R3. Let us call  WD à† \ S2, where S2 WD ¹x 2 R3 W jxj D 1º. The curve 
can be written as a disjoint union  D 1 [ 2 [ � � � [ J , where i are closed C 2 oriented
curves, each of them connected and without self-intersections.

Let Li denote the length of i and L D
P
1�i�J Li . Applying Theorem 3.5 to the

cone à†, we deduce that

(6.1) L �
C

1 � s
:

Throughout the proof C will denote, possibly different, positive constants depending only on s
and bounded as s " 1.

Step 1. Let us consider first the case J D 1. In this case  is a connected closed curve.
By Proposition 4.3 we have

(6.2)
“
�

j�. Ox/ � �. Oy/j2ks. Ox; Oy/ dH
1. Ox/ dH 1. Oy/ D

Z


dH 1. Ox/c2à†. Ox/ � CL;

where L is the length of  . By Lemma 5.1, we know that L � C . Therefore, using Lemma 5.3
we prove that, if s 2 .0; 1/ is close enough to 1, then  is a small C 1;

1
4 deformation of a maxi-

mal circle and thus à† is a Lipschitz graph.
Since à† is C 2 and stable away from 0, it is a viscosity solution of the fractional minimal

surface equation in à† n ¹0º. Then, since à† is a cone, it must be5) a viscosity solution also
at 0. As a consequence, using the C 1;˛ regularity of sufficiently flat viscosity solutions of the
nonlocal minimal surface equation (see [5, Theorem 6.1] and its proof 6)), we conclude that
à† is C 1;˛ (also at 0) and hence – since it is a cone – it must be a hyperplane. Alternatively,
one could use a standard foliation argument to prove that since à† is a graph (globally) then it
must be minimizer of the s-perimeter (and not just a stable set) on every compact set. Therefore,
since à† is a Lipschitz s-minimal graph, we can also apply [12, Theorem 1.1] and deduce that
† is C1 and hence it must be a hyperplane.

Since now we know that à† is a Lipschitz (minimizing) s-minimal graph, we can apply
[12, Theorem 1.1] and deduce that † is C1 and hence, being a cone, it is necessarily a hyper-
plane.

5) If a C 2 surface touches a cone at 0, the cone is contained in a half-space. Thus, the convex envelope of
the cone is a subsolution (of the fractional minimal surface equation) that touches à† by below along generatrices.
Since à† is s-minimal away from 0, the strong maximum principle yields that à†must be a plane in such a situation.

6) Although [5, Theorem 6.1] is stated for simplicity for minimizers, its proof is really for viscosity solutions
(every minimizer is a viscosity solution as proved in [5]). The fact that the improvement of flatness result from which
[5, Theorem 6.1] holds true for any viscosity solution and not just for minimizers is an interesting nonlocal feature –
this is not true in the local case. As well known to experts, the crucial difference lies in the short nonlocal proof of
the “Harnack inequality” [5, Lemma 6.9], which applies verbatim to viscosity solutions.
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Step 2. Let us now assume that J > 1 and reach a contradiction. Now, (6.2) reads

(6.3)
X
1�i�J

Z
i

dH 1. Ox/

Z


dH 1. Oy/ j�†. Ox/ � �†. Oy/j
2 ks. Ox; Oy/ � C

X
1�i�J

Li :

For each i let

qi WD
1

Li

Z
i

dH 1. Ox/

Z


dH 1. Oy/ j�†. Ox/ � �†. Oy/j
2 ks. Ox; Oy/:

Without loss of generality let us assume that q1 � q2 � � � � � qJ , after relabeling the indexes.
By (6.3) we have P

1�i�J LiqiP
1�i�J Li

� C

and hence,
q1 � C:

Then Lemmas 5.1 and 5.3 yield
0 < � � L1 � C;

with C universal, for s sufficiently close to 1.
It follows, by (6.3), that

(6.4)
JX
iD2

Liqi � C

 
C C

JX
iD2

Li

!
:

Note that we have
P
2�i�J Li � � . Indeed, if this were not true, we would haveZ

2

dH 1. Ox/

Z
2

dH 1.y/ j�†. Ox/ � �†. Oy/j
2 ks. Ox; Oy/ � C

and L2 < � . The proof of Lemma 5.3 then gives that L2 is close to 2� if s is sufficiently close
to 1 – a contradiction with L2 < � . Therefore, (6.4) yields

JX
iD2

Liqi � C

JX
iD2

Li

and thus
q2 � C:

Then, using again Lemma 5.1, we find that

L2 � C;

with C universal.
Next, using Lemma 5.3, we have

k�i .t/ � eik
C
1
4 .Ii /

� C.1 � s/
1
2 for some ei in S2

and i D 1; 2, where �i .t/ is the normal to i at i .t/ – recall that i are parametrized by the
arc length in an interval Ii . Since the two curves do not intersect and are C.1 � s/

1
2 close to
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maximal circles, we must have either

je1 � e2j � C.1 � s/
1
2

or
je1 C e2j � C.1 � s/

1
2 :

In other words, the two curves are very close to the same maximal circle (in C 1;
1
4 norm), but

they may have either the same or opposite orientation.
In the second case (opposite orientations) we use that q1L1 � C and reason exactly as

in Step 3 of the proof of Lemma 5.1 – more precisely, as in (5.6) and (5.7) – to obtain

1

C..1 � s/
1
2 /1Cs

�

Z
1

dH 1. Ox/

Z
2

dH 1. Oy/
1

j Ox � Oyj2Cs
(6.5)

�

Z
1

dH 1. Ox/

Z
2

dH 1. Oy/
j�†. Ox/ � �†. Oy/j

2

j Ox � Oyj2Cs

� C

Z
1

dH 1. Ox/

Z
2

dH 1. Oy/ j�†. Ox/ � �†. Oy/j
2 ks. Ox; Oy/

� q1L1 � C:

This yields a contradiction if s is close to 1.
In the first case, if the two curves 1 and 2 happen to have the same orientation, since

 � S2 is a boundary (of the set † \ S2), then there must be a third curve j� with the op-
posite orientation and trapped between 1 and 2. In this case, reasoning as in (6.5) with 2
replaced by j� we reach a contradiction if s is close to 1. Note though that here we need to
be a bit more careful since we have not proven that j� is very close to the maximal circle in
C 1;

1
4 norm but just in Hausdorff distance (we know that it is trapped between two small per-

turbations of a maximal circle). However, we can proceed exactly as we did in (5.4): define the
set NA of times Nt such that e1 � �j�.Nt / �

1
100

, which will satisfy (5.5), and repeat (6.5) but inte-
grating only on the set ¹ Oy 2 j�. NA/º and not along the whole j� . Doing so we guarantee that
j�†. Ox/ � �†. Oy/j � 1 and the computation would be again identical as in (5.6) and (5.7).
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