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The increasing competition within the food industry sector makes the requisite of
innovation in processes and products essential, leading to focus the interest on the
application of new processing technologies including high pressure homogenization
(HPH) and ultra high pressure homogenization (UHPH). In this context, the present
research aimed at evaluating the effects of two UHPH treatments performed at 200 MPa
for 2 and 3 cycles on quality and functionality of organic kiwifruit juice stored at
three different temperatures, i.e., 5, 15, and 25◦C. The results showed that only the
treatment performed at 200 MPa for 3 cycles was able to significantly increase the
shelf-life of organic kiwifruit juices when stored at refrigeration temperature, avoiding
also phase separation that occurred in the sample treated at 0.1 MPa (control) after 20
days of refrigerated storage. The obtained data showed also that the highest applied
pressure was able to increase some quality parameters of the juice such as viscosity
and luminosity (L∗) and increased the availability of total phenol content consequently
enhancing the juice total antioxidant activity. The application of a treatment at 200 MPa
for 3 cycles allowed to obtain a stable kiwifruit juice for more than 40 days under
refrigerated storage. A challenge to implement this technology in food process as full
alternative to thermal treatment could be represented by the adoption of pressure level
up to 400 MPa followed by the packaging in aseptic conditions.

Keywords: non-thermal treatment, fruit juice, storage, color, antioxidant activity, viscosity

INTRODUCTION

Mild non-thermal processes have recently drawn considerable attention in the food processing
sector, on the account of their ability to combine microbial inhibition with high retention of
qualitative, nutritional, and sensory features of raw materials and ingredients. This great interest
from industry is generated in response to consumer’s demand for new products characterized by
high functionality and sustainability properties. Among the emerging non-thermal processes, such
as high pressure processing, pulsed electric field (PEF), high pressure homogenization (HPH) is
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considered by an extensive literature as one of the most
promising alternative to traditional heat treatments for food
stabilization ad differentiation of several products such as
fermented milks, emulsions, egg-based liquid preparation, and
fruit juices (Lanciotti et al., 1994; Wuytack et al., 2002; Diels and
Michiels, 2006; Bevilacqua et al., 2009; Patrignani et al., 2009a,
2010, 2013; Zhao et al., 2014; Ferragut et al., 2015).

Mechanisms of microbial inactivation due to HPH processing
are the result of different events such as cavitation, shear
stress, turbulence, and impingement which arise during the
food treatment (Zamora and Guamis, 2015; Patrignani and
Lanciotti, 2016). HPH has also been proved to inactivate or
modulate the activity of enzymes that cause phase separation
in fruit or vegetable juices, to preserve the initial juice color,
flavor, and aromas and, finally, to retain the nutritional
and functional features of the treated matrices (Patrignani
et al., 2013; Błaszczak et al., 2017). Several authors verified
the efficacy of this treatment on several matrices such as
vegetable milks (Gul et al., 2017), vegetable and fruit juices
(Briñez et al., 2006; Betoret et al., 2009; Donsì et al., 2009;
Patrignani et al., 2009b; Bevilacqua et al., 2012; Patrignani
et al., 2013), milk (Lanciotti et al., 2004a; Hayes et al., 2005),
milk-based products (Lanciotti et al., 2004b; Patrignani et al.,
2009a; Massoud et al., 2016), and liquid whole egg (Velazquez-
Estrada et al., 2008), suggesting also the combination of HPH
with further hurdles such as low storage temperature and
low pH in order to increase food shelf-life (Briñez et al.,
2006; Huang and Kuo, 2015). However, an improvement of
the existing HPH technology was also encouraged, resulting
in the production of new types of homogenizers and valves,
able to reach levels of ultra high pressure homogenization
(UHPH) between 200–400 MPa, that allowed to obtain shelf
stable products without negative effects on their quality
(Zamora and Guamis, 2015).

On the other side, the food industry has highlighted
the necessity of tailor-made protocols in order to maximize
the shelf-life of HPH and UHPH treated products without
detrimental effect on the nutritional functionality. In fact,
according to the literature data, HPH and UHPH are reported
to reduce nutritional compounds loss (Gul et al., 2017). Some
authors evaluated the polyphenols, vitamin C and provitamin
A content, and antioxidant activity of apple (Suárez-Jacobo
et al., 2012) and orange juices (Velázquez-Estrada et al.,
2013) when treated by HPH and UHPH, reporting that this
treatment allowed to significantly preserve these compounds
compared to the traditional pasteurization process. However,
according to our knowledge, scarce references are available
in the literature concerning the use of UHPH and its effect
on the quality and functionality of organic kiwifruit juice
(Yi et al., 2017).

In this framework, the principal aim of this research was
to evaluate the effects of two UHPH treatments performed at
200 MPa for 2 and 3 cycles on the overall quality, functionality,
and safety of organic kiwifruit juice, immediately after the
treatments and during the storage at three different temperatures
(5, 15, and 25◦C). In order to assess the effects of the proposed
treatments, the naturally occurring microbial population, pH,

color, viscosity, antioxidant activity, and total phenol content
were investigated on the UHPH juice samples and their
controls (samples treated at 0.1 MPa). Moreover, the presence
of some natural occurring pathogenic species such as Listeria
monocytogenes, Salmonella spp., and Escherichia coli was also
evaluated during the kiwifruit juice storage.

MATERIALS AND METHODS

Kiwifruit Juice Preparation and (Ultra)
High Pressure Homogenization
Treatments
Organic kiwifruits (Actinidia deliciosa cultivar “Hayward”) were
bought on a local market located in Cesena (Italy) and
properly stored until the laboratory trials. They were sorted
by homogeneous size of 40 mm diameter and a length of
80 mm and refractometric index of 13 ± 1 ◦Brix. The raw
organic kiwifruit juice was obtained by using a lab extractor
(Russel Hobbs, 27700-56) and divided in three 5-L batches
and subjected, after eliminating the seeds, to different UHPH
treatments performed at 0.1 MPa (used as control), 200 MPa for
2 cycles, and 200 MPa for 3 cycles. For all the UHPH treatments,
a PANDA high pressure homogenizer (GEA, Parma, Italy), able
to reach 220 MPa and provided of a thermal exchanger and a
R-type valve was used. The valve assembly comprised a ceramic
ball-type impact head, a stainless steel large inner diameter
impact ring, and a carbide passage head made of tungsten.
The homogenizer was previously washed with 1% NaOH water
solution, hot water, and finally refrigerated sterilized water. The
inlet temperature of the juice was about 4◦C and the increase
rate of temperature was about 2◦C/10 MPa. The maximum
temperature reached during the most severe UHPH treatment
was about 44◦C, measured by a temperature probe inside the
equipment. The controls and treated samples were collected in
250 mL sterilized glass bottles, stored at 5, 15, and 25◦C and
analyzed over time.

Microbiological Analyses and pH
The cell loads of naturally occurring yeasts, total coliforms, and
lactic acid bacteria were counted by plate counting on Sabouraud
Dextrose Agar (Oxoid Ltd., Basingstoke, United Kingdom),
Violet Red Bile Agar (Oxoid Ltd.), and de Man, Rogosa, and
Sharpe Agar (Oxoid Ltd.), respectively. Decimal dilutions of
the samples, performed in Ringer solution [0.9% (w/v) NaCl],
were inoculated in Petri dishes and incubated 48 h at 25◦C
for yeasts, 48 h at 37◦C for Lactobacilli, and 24 h at 37◦C for
total coliforms. Moreover, at each sampling time, the presence of
L. monocytogenes, Salmonella enteritidis, and E. coli was assessed
in all the juice samples. The presence of the three pathogenic
species was investigated according to the ISO methods ISO 6579-
1:2017 (2017); ISO 11290-1:2017 (2017); and ISO 16649-3:2015
(2015), respectively.

The pH was measured immediately after juice treatments
and during the storage by using a pH-meter Basic 20 (Crison
Instruments, Barcelona, Spain).
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Viscosity and Color Analyses
Viscosity of juices was measured by a vibrational viscometer
(Viscosilite 700 Hydramotion), previously calibrated with
distilled water (viscosity = 1cP).

Color of kiwifruit juice samples was measured using a
spectrophotocolorimeter HUNTERLAB ColorFlexTM, mod.
A60-1010-615 (Reston, Virginia). For each sample, L∗, a∗, and b∗

parameters from CIELAB scale were measured.

Determination of Total Phenolic Content
(TPC) and Total Antioxidant Capacity
(TAC)
Kiwifruit juice samples were analyzed without any extraction
using a UV-1601 spectrophotometer from Shimadzu (Duisburg,
Germany). Each sample and calibration point were analyzed
in three replicates (n = 3). The TPC of samples was assessed
by means of the Folin-Ciocalteu method (Singleton and Rossi,
1965). The samples absorbances were measured at 750 nm and
the phenolic content was calculated on the basis of the gallic
acid calibration curve (from 30 to 1000 µg/mL). The results were
expressed as mg/100 mL of juice.

To determine the TAC, the ABTS and DPPH assays were
performed. The ABTS assay was performed as described
by Laporta et al. (2007), while the DPPH assay was
evaluated according to Bonoli et al. (2004). The decrease
in absorbance was assessed at 517 nm in the 0–30 min
range (at 25◦C). The values obtained for both TAC assays
were compared to the concentration–response curve of

the standard Trolox and expressed as µmol of Trolox
equivalent (TE)/100 mL.

Data Analysis
The data are the means of two independent experiments and
three repetitions and were analyzed using Statistica software
(8.0; StatSoft., Tulsa, OK, United States) by two-way ANOVA
followed by Tukey honest significant difference (HSD) test at
p < 0.05 level to monitor changes over time as well as differences
among treatments.

RESULTS

Microbial Inactivation and pH
In Table 1, the cell loads of naturally occurring yeasts
immediately after the different UHPH treatments and during
storage at different temperature are reported. The UHPH
treatments adopted were able to reduce the initial level of
naturally occurring yeasts (2.4 log CFU/mL) under the detection
limit (1 log CFU/mL), immediately after the process. During
the storage at 5◦C, the control juice reached the microbiological
spoiling threshold fixed at 6 log CFU/mL between 27 and 32 days.
However, the phase separation in the juice was observed already
at 20 days of storage at 5◦C.

On the contrary, the naturally occurring yeasts present in the
organic kiwifruit juice were not able to recover after the treatment
at 200 MPa for 3 cycles at 5◦C, while their potential growth was
reduced after the treatment at 200 MPa for 2 cycles. In fact, the

TABLE 1 | Yeast cell loads (log CFU/mL) detected in organic kiwifruit juices immediately after the treatments and during storage at 5, 15, and 25◦C in relation to the
pressures applied.

Cell load (log CFU/mL)

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa 2.4 ± 0.2 2.5 ± 0.1 3.9 ± 0.2 4.6 ± 0.6a –∗ –∗

200 MPa × 2 cycles ∗∗ ∗∗ ∗∗ 1.5 ± 0.1b 2.3 ± 0.2 4.0 ± 0.5

200 MPa × 3 cycles ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

15◦C

T0 T2 T5 T7 T9 T12 T14

0.1 MPa 2.4 ± 0.2 3.0 ± 0.3 3.2 ± 0.6 4.7 ± 0.4 –∗ –∗ –∗

200 MPa × 2 cycles ∗∗ ∗∗ ∗∗ ∗∗ 1.5 ± 0.1 –∗ –∗

200 MPa × 3 cycles ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 4.4 ± 0.4 5.9 ± 0.3

25◦C

T0 T2 T5 T7 T9

0.1 MPa 2.4 ± 0.2 4.7 ± 0.2 –∗ –∗ –∗

200 MPa × 2 cycles ∗∗ ∗∗ –∗ –∗ –∗

200 MPa × 3 cycles ∗∗ ∗∗ ∗∗ 2.0 ± 0.3 5.4 ± 0.4

∗Not performed because the juice spoiled.
∗∗Under the detection limit.
Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.
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spoiling threshold was never achieved for this samples and the
yeast cell load after 40 days of storage was 4 log CFU/mL.

As expected, as the sample storage temperature increased,
a decrease of the juice shelf-life was observed. The samples
submitted to the most intense treatment (200 MPa × 3 cycles)
spoiled after 14 and 9 days when the storage temperature
was 15 and 25◦C, respectively. The control sample (treated at
0.1 MPa) spoiled between 7 and 9 days at 15◦C and only after
5 days at 25◦C.

In the kiwifruit juice treated at 200 MPa for 2 cycles, the
yeast cell loads reached the spoilage threshold between 10 and
12 days at 15◦C.

For all the considered samples and storage temperatures, total
coliforms and lactic acid bacteria never exceeded 1 and 1.5
log CFU/mL, respectively (data not shown). L. monocytogenes,
Salmonella spp., and E. coli were never found in the samples
(data not shown).

In Table 2, the pH values of the samples, in relation to
the UHPH treatments applied and the storage temperature, are
reported. The application of the UHPH treatments in the juice
determined a decrease in pH values, which was more pronounced
in samples treated with most intense HPH treatment. However,
independently on the storage temperature, the sample pH
decreased over time.

Viscosity and Color Analyses
In Table 3, the viscosity values recorded for organic kiwifruit
juice, in relation to the UHPH treatments applied and storage
temperature, are reported. Treatments at 200 MPa × for 2
and 3 cycles resulted in a higher viscosity compared to the
control kiwifruit juice. In general, during the storage at 5◦C,
a decrease of viscosity was observed in all samples, which was

more pronounced for control samples and those treated with
200 MPa × 2 cycles. Moreover, while in the control sample the
separation of the phases was observed at 20 days, the reduction
of the macromolecule size in the treated samples induced a
delay in separation and sedimentation. Juices stored at higher
temperatures maintained a similar viscosity during the entire
period, which was 14 days for samples stored at 15◦C and 7 days
for those stored at 25◦C.

Table 4 shows the color parameters measured in control and
treated samples during storage at three different temperatures.
Lightness (L∗) of fresh kiwifruit juice was 33.40. The HPH
treatments caused a significant increase of this parameter in
comparison to the control samples. Concerning a∗ and b∗

parameters, respectively, the red/green and the yellow/blue
parameter, both samples treated at 200 MPa showed lower
values compared to the control sample. During the storage at
all considered temperatures, a slight decrease of L∗ together
with increasing of a∗ was observed, while b∗ remained almost
unchanged in control and 200 MPa × 2cycles treated samples.
The samples pressured for 3 cycles presented similar color during
the entire storage period.

Total Phenolic Content (TPC) and Total
Antioxidant Capacity (TAC)
The total phenolic content of most HPH treated kiwifruit juices
significantly increased with respect to the controls from 35 to
42 mg/100mL of juice. During the storage at 5◦C, TPC decreased
slightly, mainly during the first 15 days, although samples treated
at 200 MPa for 3 cycles did not show significant differences
(p< 0.05; Figure 1A). During the storage at higher temperatures,
TPC values decreased in all the samples although the highest
values were observed in HPH samples (Figures 1B,C).

TABLE 2 | pH values detected in organic kiwifruit juices immediately after the treatments and during storage at 5, 15, and 25◦C in relation to the pressures applied.

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa 3.34 ± 0.01a 3.28 ± 0.02a 3.14 ± 0.01 3.10 ± 0.03 –∗ –∗

200 MPa × 2 cycles 3.27 ± 0.01b 3.17 ± 0.02b 3.12 ± 0.01 3.09 ± 0.01 3.09 ± 0.02 3.17 ± 0.02

200 MPa × 3 cycles 3.25 ± 0.02b 3.15 ± 0.02b 3.03 ± 0.01 3.06 ± 0.01 3.07 ± 0.01 3.15 ± 0.02

15◦C

T0 T2 T5 T12 T14

0.1 MPa 3.34 ± 0.01a 3.24 ± 0.02a 3.19 ± 0.01a –∗ –∗

200 MPa × 2 cycles 3.27 ± 0.01b 3.24 ± 0.01a 3.18 ± 0.01a –∗ –∗

200 MPa × 3 cycles 3.25 ± 0.02b 3.22 ± 0.01a 3.13 ± 0.01b 3.10 ± 0.02 3.05 ± 0.01

25◦C

T0 T2 T5 T7 T9

0.1 MPa 3.34 ± 0.01a 3.20 ± 0.01a –∗ –∗

200 MPa × 2 cycles 3.27 ± 0.01b 3.19 ± 0.02a –∗ –∗

200 MPa × 3 cycles 3.25 ± 0.02b 3.20 ± 0.02a 3.18 ± 0.01 3.04 ± 0.02 3.02 ± 0.02

∗Not performed because the juice spoiled.
Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.
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TABLE 3 | Viscosity (cP) of organic kiwifruit juices immediately after the treatment and during storage at 5, 15, and 25◦C in relation to the pressure applied.

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa 1.6 ± 0.1b 1.7 ± 0.1c 1.4 ± 0.1b 1.1 ± 0.0b –∗ –∗

200 MPa × 2 cycles 2.0 ± 0.1a 2.5 ± 0.2a 2.3 ± 0.2a 1.2 ± 0.1a 1.2 ± 0.1b 1.3 ± 0.1b

200 MPa × 3 cycles 1.8 ± 0.1ab 2.2 ± 0.1b 2.1 ± 0.1a 1.3 ± 0.1a 1.5 ± 0.1a 1.7 ± 0.2a

15◦C

T0 T2 T5 T12 T14

0.1 MPa 1.6 ± 0.1b 1.5 ± 0.2b 1.5 ± 0.1a –∗ –∗

200 MPa × 2 cycles 2.0 ± 0.1a 2.2 ± 0.1a 1.5 ± 0.1a –∗ –∗

200 MPa × 3 cycles 1.8 ± 0.1ab 2.1 ± 0.1a 1.6 ± 0.2a 1.8 ± 0.1 1.9 ± 0.1

25◦C

T0 T2 T5 T7

0.1 MPa 1.6 ± 0.1b 1.5 ± 0.1b –∗ –∗

200 MPa × 2 cycles 2.0 ± 0.1a 1.8 ± 0.1a –∗ –∗

200 MPa × 3 cycles 1.8 ± 0.1ab 1.8 ± 0.1a 1.8 ± 0.2 1.8 ± 0.1

∗Not performed because the juice spoiled.
Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.

Both treated juices presented a significantly higher antioxidant
activity, measured by DPPH, compared to the control sample.
As previously observed for TPC, also the antioxidant activity
decreased over storage in all the samples, independently on the
temperature (Figures 2A–C). ABTS results (data not shown)
followed the same trend with an interesting positive Pearson’s
correlation with the DPPH method: r2 = 0.913 p < 0.0001,
r2 = 0.923 p < 0.0001, and r2 = 0.983 p < 0.0001, for 0.1 MPa,
200 MPa × 2 cycles, and 200 MPa × 3 cycles, respectively.

DISCUSSION

In the present investigation, the effects of two UHPH treatments
performed at 200 MPa for 2 and 3 cycles were investigated on
the microbiological stability, color, viscosity, and functionality
(availability of polyphenols and antioxidant activity) of organic
kiwifruit juice during storage at 5, 15, and 25◦C. The performed
UHPH treatments promoted an instantaneous reduction of
naturally occurring yeasts, reaching values under the detection
limit according to the used sampling method. According to
the available literature data, the microbial inactivation effect
of the HPH processing is influenced by several factors, such
as the level of applied pressure and the number of cycles,
the different sensitiveness of the microorganisms present and
the chemic-physical characteristics of the matrix (Diels and
Michiels, 2006; Zamora and Guamis, 2015; Patrignani and
Lanciotti, 2016). It is also fundamental to consider the effect
of temperature during dynamic pressure treatments, since, an
increase of around 2.0◦C per 10 MPa can be observed in the
food matrix during homogenization. However, Floury et al.
(2004) and Pinho et al. (2011) did not observe such temperature
increase upon HPH treatment, possibly because of the extremely

short time of the treatment duration (less than 1 s). However,
in the present research, to minimize the product temperature
increase, generated during the treatment, and its effects, a
thermal exchanger was applied in order to avoid exceeding the
temperature of 44◦C.

As microbiological threshold for the kiwifruit juice spoilage,
in accordance with the literature data, a yeast cell load level of 6
log CFU/mL was considered. Indeed, yeasts represent the main
spoiling agents for this kind of products, characterized by low pH
and high sugar content (Donsì et al., 2009; Patrignani et al., 2010,
2013). Although all the UHPH treatments reduced the initial
yeast cell loads under the detection limit, it is clear, according to
the data, that the applied pressure, especially 200 MPa for 2 cycles,
induced sub-lethal damages on the yeast population that was able
to recover as function of the storage temperature adopted and
level of pressure. Moreover, results suggest that HPH efficiency
for microbial inactivation is influenced by various factors,
including not only the matrix characteristics and processing
parameters, but also the physiological diversity within a microbial
population (Ferragut et al., 2015), probably characterized also
by different stress resistance and ability to recover. For this
reason, in order to validate the effectiveness of a new treatment,
the estimation of resistant cells, at the viable but not culturable
(VBNC) state, within a microbial population, must be also taken
into consideration (Arioli et al., 2019). In the present research,
the combination of a UHPH treatment at 200 MPa for 3 cycles
and the product refrigeration during storage resulted in a stable
and safe organic kiwifruit juice for more than 40 days, without
detrimental effects on color, viscosity, and antioxidant activity.
The decrease in pH observed in HPH treated kiwifruit juices is in
accordance with the data obtained by several authors and can be
attributed to the modification of the equilibriums between salts
induced by the HPH treatment (Patrignani et al., 2009b, 2013).
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TABLE 4 | Lightness (L∗), a∗, and b∗ values of organic kiwifruit juices immediately after the treatment and during storage at 5, 15, and 25◦C in relation to the pressure
applied.

L∗

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa 33.4 ± 0.7b 34.6 ± 0.6b 30.3 ± 0.4b 30.5 ± 0.2b –∗ –∗

200 MPa × 2 cycles 38.68 ± 0.08a 38.6 ± 0.6a 36.5 ± 0.2a 35.5 ± 0.8a 35.4 ± 0.3a 35.2 ± 0.4b

200 MPa × 3 cycles 38.9 ± 0.2a 38.5 ± 0.5a 36.2 ± 0.1a 36.5 ± 0.8a 36.9 ± 0.4a 37.7 ± 0.2a

15◦C

T0 T2 T5 T12 T14

0.1 MPa 33.4 ± 0.7b 32.3 ± 0.8b –∗ –∗ –∗

200 MPa × 2 cycles 38.68 ± 0.08a 38.1 ± 0.4a –∗ –∗ –∗

200 MPa × 3 cycles 38.9 ± 0.2a 38.9 ± 0.2a 37.99 ± 0.01 36.3 ± 0.2 37.1 ± 0.5

25◦C

T0 T2 T5 T7

0.1 MPa 33.4 ± 0.7b 33.4 ± 0.7b –∗ –∗

200 MPa × 2 cycles 38.68 ± 0.08a 38.68 ± 0.07a –∗ –∗

200 MPa × 3 cycles 38.9 ± 0.2a 38.9 ± 0.2a 37.5 ± 0.3 36.4 ± 0.2

a∗

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa −2.4 ± 0.3a
−1.8 ± 0.1a

−2.7 ± 0.2a
−2.1 ± 0.2a –∗ –∗

200 MPa × 2 cycles −3.7 ± 0.2b
−4.6 ± 0.2b

−3.4 ± 0.1b
−2.9 ± 0.1b

−2.8 ± 0.2a
−2.7 ± 0.1a

200 MPa × 3 cycles −3.4 ± 0.3b
−4.4 ± 0.2b

−3.7 ± 0.2b
−3.2 ± 0.2c

−3.2 ± 0.2b
−3.15 ± 0.07b

15◦C

T0 T2 T5 T12 T14

0.1 MPa −2.4 ± 0.3a
−3.4 ± 0.2a –∗ –∗ –∗

200 MPa × 2 cycles −3.7 ± 0.2b
−4.3 ± 0.2b –∗ –∗ –∗

200 MPa × 3 cycles −3.4 ± 0.3b
−4.2 ± 0.1b

−3.7 ± 0.1 −3.6 ± 0.1 −3.7 ± 0.2

25◦C

T0 T2 T5 T7

0.1 MPa −2.4 ± 0.3a
−2.4 ± 0.3a –∗ –∗

200 MPa × 2 cycles −3.7 ± 0.2b
−3.7 ± 0.1b –∗ –∗

200 MPa × 3 cycles −3.4 ± 0.3b
−3.4 ± 0.3b

−3.0 ± 0.2 −2.8 ± 0.1

b∗

5◦C

T0 T5 T16 T26 T33 T40

0.1 MPa 16.3 ± 0.6a 10.9 ± 1.0b 13.9 ± 0.5a 15.0 ± 0.3a –∗ –∗

200 MPa × 2 cycles 14.0 ± 0.5ab 13.8 ± 0.7a 13.1 ± 0.6a 15.1 ± 0.2a 15.3 ± 0.3a 15.9 ± 0.3a

200 MPa × 3 cycles 12.6 ± 0.6b 12.6 ± 0.7a 11.6 ± 0.2b 13.1 ± 0.4b 14.7 ± 0.2b 15.37 ± 0.04b

15◦C

T0 T2 T5 T12 T14

0.1 MPa 16.3 ± 0.6a 15.1 ± 0.3a –∗ –∗ –∗

(Continued)
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TABLE 4 | Continued

T0 T2 T5 T12 T14

200 MPa × 2 cycles 14.0 ± 0.5ab 13.2 ± 0.4b –∗ –∗ –∗

200 MPa × 3 cycles 12.6 ± 0.6b 13.0 ± 0.4b 11.1 ± 0.2 11.0 ± 0.2 12.5 ± 0.5

25◦C

T0 T2 T5 T7

0.1 MPa 16.3 ± 0.6a 16.3 ± 0.6a –∗ –∗

200 MPa × 2 cycles 14.0 ± 0.5ab 14.0 ± 0.3ab –∗ –∗

200 MPa × 3 cycles 12.6 ± 0.6b 12.6 ± 0.6b 12.3 ± 0.2 11.9 ± 0.4

∗Not performed because the juice spoiled.
Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.

From a technological point of view, the increase of viscosity
of organic kiwifruit juice in relation to the UHPH treatment
applied is a very promising result. Treatments at 200 MPa both
for 2 and 3 cycles resulted in a higher viscosity compared to
the control kiwifruit juice. This increase was probably due to
the structural modification induced by the UHPH treatment,
as observed also by Yan et al. (2017) in tomato juice. HPH
promotes the disarrangement of the cell clusters into single cells
and/or cell fragments. The release and solubilization of cell wall
constituents, such as pectin and proteins, cause the increase of
the volume fraction of particles and lead to the improvement
of particle interactions, thus increasing viscosity (Thakur et al.,
1995). However, a decrease in viscosity after HPH treatment has
been reported for orange juice (Leite et al., 2014) as well as for
banana juice (Calligaris et al., 2012).

Karacam et al. (2015) observed a higher viscosity (gel like
structure) in strawberry juice treated at 100 MPa for 2 passes
(cycles), compared to 5 passes. According to the authors, the
temperature increase during the treatment at 100 MPa × 2
passes reached the optimal temperature for the activation of
PME (43◦C). Similar results were also observed on mango and
apricot juice after HPH depending on pressure increase, inlet
temperature, and passes number (Patrignani et al., 2013; Zhou
et al., 2017). However, in the present study, the number of passes
did not seem to have an influence on the viscosity, probably
because temperature increase was similar for both treatments.

Lightness of fresh kiwifruit juice was similar to the value
reported by Islam et al. (2012) for organic kiwifruit juice
(L∗ = 32.00). HPH treatment caused a significant increase of
this parameter in comparison to the control samples, which
could be due to the higher light scattering properties of smaller
size particles (Calligaris et al., 2012). A similar result was also
observed by Yi et al. (2017) on apple juice with 50% of kiwifruit
addition upon the application of dynamic pressure. Although
some authors observed a fair decrease in L∗ and an increase in a∗

parameter in kiwifruit puree (Fernández-Sestelo et al., 2013) and
mango juice (Zhou et al., 2017), in our research, the hyperbaric
treatments demonstrated to be able to enhance the typical green
color of kiwifruit juice.

The samples pressured with 3 cycles presented similar
color during the entire storage period. Similar results were
observed by Calligaris et al. (2012) in banana juice stored for

30 days. Lightness of the homogenized banana juice samples
decreased only after 20 days of storage; however, homogenized
juice remained always lighter than the untreated one during
the entire storage period. In our study, the evolution of
color in samples stored at the higher temperatures (15 and
25◦C) could not be verified due to the juice spoilage already
after few days. However, Guan et al. (2016) observed that
storage of mango juice at room temperature promotes a
greater decrease of lightness and increase of redness compared
to storage at 4◦C, induced by faster browning reactions.
According to the literature data, kiwifruit juice includes a large
variety of functional components such as phenolic compounds,
antioxidants, potassium, vitamin C, vitamin E, and fibers
(Fernández-Sestelo et al., 2013). Moreover, kiwifruit intake is
reported to increase cytokine production and exert antioxidant
effects (Iwasawa et al., 2010). Unfortunately, processes involving
thermal treatments strongly decrease the product’s quality
and functionality due to changes induced in thermolabile
phytocompounds (Błaszczak et al., 2017). In the present research,
the application of UHPH determined a significant increase
of the availability of total polyphenols. These data are in
agreement with previous literature reports which suggest that
the HPH and UHPH process can increase extractability of
antioxidant components by breaking down of the cell walls
components (Patras et al., 2009a,b). Moreover, an increase
in homogenization pressures resulted in a better retention of
bioactive compound during storage in low pulp mandarin
juice at 20 and 100 MPa (Betoret et al., 2017). Similarly,
in the present research, the use of 200 MPa for 3 cycles
determined, during the storage, a slower reduction of total
polyphenols in kiwifruit juice. Moreover, an increase of the initial
antioxidant activity was observed in the samples treated by HPH,
independently by the level of pressure applied. These results
may be explained by a partial inactivation of polyphenoloxidase
and peroxidise enzymes involved in the degradation of phenolic
compounds in vegetable matrix (Guan et al., 2016) as observed
by Bot et al. (2018) on apple juice treated at 150 MPa
for 10 passes.

On the other hand, the antioxidant activity of
the treated juice was found to decrease during
storage, indicating an incomplete enzyme inactivation
(Betoret et al., 2017).
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FIGURE 1 | Total phenolic compounds content (mg/100 mL) of organic kiwifruit juices in relation to the high pressure applied, during storage at 5 (A), 15 (B), and
25◦C (C). Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.
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FIGURE 2 | Total antioxidant activity [µmol of Trolox equivalent (TE)/100 mL] by DPPH assay of organic kiwifruit juices in relation to the high pressure applied, during
storage at 5 (A), 15 (B), and 25◦C (C). Means followed by different letters means significant differences (p < 0.05) among samples at each day of storage.
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CONCLUSION

Since juices stabilized by UHPH are not yet available in the
market, the present research presents high industrial relevance,
as it provides useful information related to the processing
conditions that can allow to obtain safe kiwifruit juices with
prolonged shelf-life.

The application of a treatment at 200 MPa for 3 cycles allowed
to obtain a stable kiwifruit juice for more than 40 days under
refrigerated storage and to extend the shelf-life of 1 week at room
temperature with respect to the control, increasing at the same
time the polyphenols availability and its antioxidant activity, and
allowing to better retain the color.

A further challenge to implement this technology for fluid
decontamination as a full alternative to thermal treatment
could be represented by the introduction of new generation
equipment capable to reach 400 MPa in the traditional process
lines also endowed of packaging system in aseptic conditions.
Moreover, in the perspective of industrial applications,
studies based on predictive microbiology, as well as a deeper

comprehension of the action mechanisms of UHPH on the
physiological state of microbial cell, play a key role for
process optimization.
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