

ALMA MATER STUDIORUM Università di Bologna

Survivin and Sox9: Potential Stem Cell Markers in Canine Normal, Hyperplastic, and Neoplastic Canine Prostate / Bongiovanni, 12 1910 ARCHIVIOISTITUZIONALE **DELLA RICERCA**

Malatesta, D; Brachelente, C; Alma Mater Studiorum Università di Bologna Massimini, M; Archivio istituzionale della ricerca Benazzi, C; Thomas, RE;

Salda, LD.. - In: VETERINARY PATHOLOGY. - ISSN 0300-9858. - STAMPA. - 56:2(2019), pp. 200-207. [10.1177/0300985818794161]

Survivin and Sox9: Potential Stem Cell Markers in Canine Normal, Hyperplastic, and Neoplastic Canine Prostate

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Caposano, F;

Romanucci, M; Grieco, V;

Availability: This version is available at: https://hdl.handle.net/11585/688120 since: 2019-05-30 Published: DOI: http://doi.org/10.1177/0300985818794161

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website. This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Bongiovanni L, Caposano F, Romanucci M, Grieco V, Malatesta D, Brachelente C, Massimini M, Benazzi C, Thomas RE, Salda LD. Survivin and Sox9: Potential Stem Cell Markers in Canine Normal, Hyperplastic, and Neoplastic Canine Prostate. Vet Pathol. 2019 Mar;56(2):200-207.

The final published version is available online at: doi: 10.1177/0300985818794161

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

Veterinary Pathology

Survivin and Sox9, potential stem cell markers in canine normal, hyperplastic and neoplastic canine prostate

Journal:	Veterinary Pathology		
Manuscript ID	VET-16-FLM-0243.R3		
Manuscript Type:	Full Length Manuscript		
Date Submitted by the Author:	18-Jun-2018		
Complete List of Authors:	Bongiovanni, Laura; University of Teramo, Faculty of Veterinary Medicine Caposano, Francesca; Universita degli Studi di Teramo Facolta di Medicina Veterinaria Romanucci, Mariarita; University of Teramo, Faculty of Veterinary Medicine Grieco, Valeria; Veterinary Medicine Faculty, Veterinary Anatomic and Avian Pathology Section; Veterinary Faculty of Milan - University of Milan, dipartimento di Patologia animale, ingiene e sanità pubblica veterinaria Malatesta, Daniela; University of Teramo, Faculty of Veterinary Medicine BRACHELENTE , Chiara; Department of Veterinary Medicine, Massimini, Marcella BENAZZI, Prof Cinzia; University of Bologna, Dept of Veterinary Public Health and Animal Pathology Thomas, Rachel; Utrecht University, Faculty of Veterinary Medicine, Department of Pathobiology Della Salda, Leonardo; University of Teramo, Department of Veterinary sciences		
Keywords:	Dog < Domestic Mammals < Species, Immunohistochemistry < Technology, prostate carcinoma, Sox9, stem cells, survivin		
Abstract:	Canine prostatic carcinoma is a relevant model for human prostatic carcinoma. Survivin is proposed as a cancer biomarker of malignancy in human prostatic cancer. Sox9 is a stem cell marker required for prostate development and expressed in several adult tissues. The aims of the present study were to evaluate the patterns and expression levels of two putative stem cell markers, survivin and Sox9, in canine benign prostatic hyperplasia (BPH) and prostatic carcinoma, in order to investigate their potential as stem cell markers. Immunohistochemistry using specific antibodies was performed on 3 samples of normal prostate gland, 18 samples of canine BPH, and 16 samples of prostatic carcinoma. The basal cell layer of normal and hyperplastic prostatic lobules had nuclear Sox9 immunolabeling, and nuclear and rarely cytoplasmic survivin immunostaining, identifying them as potential stem cell markers. Significantly more frequent (\geq 10% of nuclei)survivin and Sox9 expression was observed in prostatic carcinoma compared with BPH. The potential co-expression of survivin with Sox9, androgen receptor (AR) and p63 was also investigated in selected BPH and prostatic carcinoma cases using immunofluorescence, and a partial co-localization was observed. Results		

1	
2	
Z	
3	
4	
-	
5	
6	
7	
,	
8	
9	
10	
10	
11	
12	
13	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
31	
32	
33	
34	
25	
35	
36	
37	
20	
38	
39	
40	
10	
41	
42	
43	
-+-5	
44	
45	
46	
47	
4/	
48	
4٩	
50	
51	
52	
52	
53	
54	
55	
55	
56	
57	
50	
20	
59	

indicate that Sox9 and survivin could be considered as markers of stemness in canine prostate cells. Given its role in proliferation, cells in the basal cell layer with nuclear survivin expression are likely to be transit amplifying cells that maintain some stem cell proprieties.

SCHOLARONE[™] Manuscripts

1	Survivin and Sox9, potential stem cell markers in canine normal,
2	hyperplastic and neoplastic canine prostate
3	
J	
4	L. Bongiovanni ^{1,5} , F. Caposano ¹ , M. Romanucci ¹ , V. Grieco ³ , D. Malatesta ¹ , C.
5	${ t Brachelente}^2$, M. Massimini 1 , C. Benazzi 4 , R. Thomas 5 , L. Della Salda 1
6	
7	1 Faculty of Veterinary Medicine, University of Teramo (Teramo), Italy
8	2 Department of Veterinary Medicine, University of Perugia (Perugia),
9	Italy.
10	
11	3 Department of Veterinary Science and Public Health, University of Milan
11	(Milan), Italy
12	4 Department of Veterinary Medical Sciences, University of Bologna,Ozzano
13	Emilia (Bologna), Italy
14	5 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht
15	University (Utrecht), the Netherlands.
16	
17	
18	
10	Corresponding author: Laura Bongiovanni, Faculty of Veterinary Medicine,
19	University of Teramo, Località Piano D'Accio, 64100, Teramo, Italy. Present
20	address: Department of Pathobiology, Faculty of Veterinary Medicine,
21	Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands. Email:
22	l.bongiovanni@uu.nl
23	
-	
	1

Veterinary Pathology

Canine prostatic carcinoma is a relevant model for human prostatic carcinoma. Survivin is proposed as a cancer biomarker of malignancy in human prostatic cancer. Sox9 is a stem cell marker required for prostate development and expressed in several adult tissues. The aims of the present study were to evaluate the patterns and expression levels of two putative stem cell markers, survivin and Sox9, in canine benign prostatic hyperplasia (BPH) and prostatic carcinoma, in order to investigate their potential as stem cell markers. Immunohistochemistry using specific antibodies was performed on 3 samples of normal prostate gland, 18 samples of canine BPH, and 16 samples of prostatic carcinoma. The basal cell layer of normal and hyperplastic prostatic lobules had nuclear Sox9 immunolabeling, and nuclear and rarely cytoplasmic survivin immunostaining, identifying them as potential stem cell markers. Significantly more frequent (≥10% of nuclei)survivin and Sox9 expression was observed in prostatic carcinoma compared with BPH. The potential co-expression of survivin with Sox9, androgen receptor (AR) and p63 was also investigated in selected BPH and prostatic carcinoma cases using immunofluorescence, and a partial co-localization was observed. Results indicate that Sox9 and survivin could be considered as markers of stemness in canine prostate cells. Given its role in proliferation, cells in the basal cell layer with nuclear survivin expression are likely to be transit amplifying cells that maintain some stem cell proprieties.

47
 Key words: dog; immunohistochemistry; prostate carcinoma; Sox9; stem cells;
48
 survivin.

Page 4 of 27

51 Canine prostatic carcinoma is considered a relevant model for studying 52 advanced, hormone-refractory prostatic carcinoma in men.^{1,18} Besides man, the 53 dog is the only species to spontaneously develop prostate cancer and these 54 cancers have certain features in common: age of onset, frequency of 55 invasion, sites of metastases, and histological features.¹⁸

It has been proposed that cancer contains a minor population of cells that can self-renew while simultaneously giving rise to tumour cells: cancer stem cells (CSCs).³³ Human¹⁵ and canine²⁵ prostatic tumours appear to contain a subpopulation of cells with stem cell features. CSCs are highly tumorigenenic, have a high metastatic potential, and show a relatively high resistance to traditional cancer therapies.²⁴ These findings have prompted the emergence of a new field of study in cancer treatment involving the targeting of CSCs; accordingly this requires the identification of new cancer stem cell markers.

Survivin represents a well-known cancer therapy-resistance factor that is overexpressed in several tumour types.² A role for survivin has been proposed in tumour initiation and progression, as well as in the maintenance of cancer stem cells.³⁰ It has been proposed that survivin be used as a biomarker for malignancy in early screening for human prostatic cancer.³¹ The overexpression of survivin has been implicated in the development of prostatic carcinoma, leading investigators to evaluate the efficacy of survivin inhibitors as a possible new therapeutic option.³⁵ High expression of survivin has been observed in putative cancer stem cells isolated from prostatic adenocarcinoma in a murine model.^{20,21} However, no data have been published regarding the expression and significance of survivin in canine prostatic tumours.

77 Sox9 is a stem cell marker expressed in several adult tissues and is 78 required for human prostate development.^{14,32} It contributes to the 79 development of human prostatic carcinoma⁷ and is, therefore, considered a

80 potential prognostic marker in human prostatic carcinoma patients.³⁷ 81 However, although Sox9 is expressed in a large proportion of prostate 82 cancers, its relevance to prognosis varies depending on the molecular 83 environment: It has recently been demonstrated that loss of Sox9 expression 84 was associated with prostatic carcinoma recurrence in ERG-positive and 85 PTEN-deleted prostate cancers.⁶

86 Based on the hypotheses that survivin and Sox9 could represent markers of 87 cancer stem cells and malignancy in canine prostatic tumours, the present 88 study aimed to characterize the immunohistochemical (IHC) patterns and 89 levels of expression of survivin and Sox9 in canine benign prostatic 90 hyperplasia (BPH) and prostatic carcinoma.

A further objective was to study the co-localization of survivin with Sox9, p63 and AR in a subset of canine prostatic hyperplastic and neoplastic lesions. p63 has been identified as a prostate basal cell marker required for normal prostatic development^{12,28} and seems to be required for maintainance of progenitor/stem cells.²⁸ It has also been shown that p63 is discontinuously expressed in the basal cells of both normal canine prostatic acini and hyperplastic lobules but dowregulated in canine prostatic carcinoma.²⁹

The androgen/AR axis controls the growth and development of prostate tissue as well as prostatic carcinoma progression, and AR differentially influences the characteristics of normal stem cells and prostate cancer stem cells.⁹ Recently it was shown that AR is expressed in canine BPH and, to a lesser extent, in Prostatic carcinoma.^{9,29} In the prostate, survivin expression seems to be regulated by androgen. Survivin expression/overexpression in human prostatic carcinoma has been proposed as one of the molecular mechanisms of progression to androgen independence. The overexpression of survivin appeared to be sufficient to induce androgen-independent growth of androgen-dependent cells.36

Material and methods Histological examination The present study was carried out using 37 formalin-fixed, paraffin wax-embedded samples of canine prostate tissues from different dogs: 16 BPH, 16 primary prostatic carcinoma, and one necropsy sample of normal canine prostate gland retrospectively collected from the University archives, with unknown fixation time. In addition, fresh material from four additional dogs, including two normal prostate glands and two BPH cases, was formalin fixed for a maximum of 24 h. These additional samples were used specifically to investigate the pattern of Sox9 expression with IHC and the possible effects of formalin fixation time on the immunostaining. Immunohistochemistry

17

32

Histological diagnosis was performed using haematoxylin and eosin (HE)stained slides, according to WHO guidelines.¹⁷ Prostatic carcinoma samples were further classified based on the histological subtypes²⁷ and the Gleason-like grading system.²⁶ Immunohistochemistry (IHC) was performed using specific primaryantibodies

(Table S1), according to a previously described technique.³ Briefly, deparaffinized and rehydrated sections were incubated with 3% H2O2 in absolute methanol for 45min to inhibit endogenous peroxidase activity and then rinsed in 0.05M Tris-buffered saline (TBS, pH 7.6) for 5min. Antigen retrieval was performed by heat treatment in Tris-EDTA buffer, pH9.0 in a microwave oven for 5min (four cycles). After the last treatment, sections were left for 20min in the buffer for cooling. To reduce non-specific binding, slides were then incubated with normal goat serum (code MR*HRP-650, Biospa, Milan, Italy) for 10min at room temperature before overnight incubation with the primary Ab in a humidified chamber at 4°C. After

Veterinary Pathology

rinsing with TBS, immune complexes were treated at room temperature for 30min with secondary biotinylated goat anti-mouse or anti-rabbit antibodies (1:200 dilution; Vector Laboratories Inc., Burlingame, California, USA) and subsequently visualized using an avidin-biotin complex (ABC) method (Vectastain ABC Kit, Vector Laboratories) for 30min. Peroxidase activity was detected by a 5min application of 0.1% H2O2 in 3-3'-diaminobenzidine solution (code D5905, Sigma-Aldrich, St. Louis, Mo, USA) followed by counterstaining with Mayer's haematoxylin (Merck, Darmstadt, Germany) for 1min before rinsing, dehydrating and mounting. A negative control was performed in all instances by omitting the primary Ab and incubating tissue sections with TBS and/or replacing it by an Ab of irrelevant specificity (rabbit anti-human von Willebrand factor polyclonal Ab, from DAKO, Glostrup, Denmark). Sections of canine tissues known to display expression of the investigated molecules, as indicated in Table S1, were used as positive controls.

¹⁵² Double immunofluorescence

Double immunofluorescence was used to qualitatively investigate survivin-Sox9, survivin-p63 and survivin-AR nuclear co-expression in 16 selected cases (eight BPH and eight prostatic carcinoma) based on our previous published study²⁶, using specific antibodies (Table S1). Tissue samples were treated as described for the immunohistochemical procedure. A sequential protocol was used for double staining. Primary antibodies were applied overnight at 4°C. The first secondary Ab, biotinylated goat anti-rabbit (for survivin) (1:200 dilution; Vector Laboratories, Burlingame, CA, USA) was applied and incubated for 30min at room temperature, and slides were then incubated with fluorescein-conjugated avidin (1:100 dilution in 0.1M NaHCO3, 0.15M NaCl buffer, pH 8.2-8.5; Vector Laboratories) for 10min at room temperature. An avidin/biotin blocking step was performed by incubating slides for 15min with avidin and then biotin (Avidin/Biotin

Blocking Kit, code SP-2001, Vector Laboratories) at room temperature. A further protein blocking step was performed by incubating slides with normal goat serum (Vector Laboratories) for 15min at room temperature, before the overnight application of the second primary Ab. The second secondary Ab, biotinylated goat anti-rabbit (for Sox9, AR) or anti-mouse (for p63) (1:200 dilution; Vector Laboratories) was applied and incubated for 30min at room temperature, and slides were then incubated with Texas Red-conjugated avidin (Vector Laboratories) diluted 1:100 in a buffer composed of 0.1M NaHCO3 and 0.15M NaCl, pH 8.2-8.5, for 10min at room temperature. Nuclei were counterstained with4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories).

177 Quantification of immunolabelling and statistical analysis

Nuclear and cytoplasmic survivin and nuclear Sox9 immunolabelling were assessed semiquantitatively by two pathologists (LB and MR) in ten randomly selected HPF (40X) and graded as percentage of all neoplastic cells as follow: 0, absent; 1 (low), >0 and <10% of cells; 2 (moderate), 10 to <25% of cells; 3 (high), 25 to <50% of cells; 4 (very high), >50% of cells. Labelling intensity of cytoplasmic survivin was graded as no (0), weak (-/+), moderate (+) or strong (++) labelling.

Fisher's exact test was used to compare semiquantitatively assessed immunoreactivity in BPH and prostatic carcinoma. For this purpose, both survivin cytoplasmic score and survivin and Sox9 nuclear score were evaluated. The cases were grouped according to the nuclear score as follows: <10% positive nuclei (absent and very low number of positive nuclei) versus ≥10% positive nuclei (low/moderate and high number of positive nuclei). This choice depended on the distribution of nuclear score values for each protein and on several statistical analyses performed. Analyses were performed using SPSS statistical software, with P <0.05 $\,$ considered to be significant.

Veterinary Pathology

2		
3	195	
4		
5	196	Results
6 7		
8	197	Histological examination
9		
10	198	Histological features are reported in Table S2 (Please, refer to the online
11	199	version of the manuacrint for supplemental material). In half of the
13		version of the manuscript for suppremental material). In nation the
14 15	200	prostatic carcinoma cases (8/16), a single histological pattern was seen
16	201	(four papillary, three solid/undifferentiated and one small acinar/ductal);
17	202	a mixed pattern was observed in the other 8 cases. Necrosis was observed in
18 19	203	- 12/16 (75%) cases and 2/16 (12.5%) were characterized by abundant fibrous
20		12/10 (75%) cases and 2/10 (12.5%) were characterized by abundant fibrous
21	204	tissue (formerly termed "scirrhous prostatic carcinoma").
22		
24	205	Immunohistochemistry
25		
20 27	206	The IHC results are summarized in Table 1 and S2.
28		
29	207	Survivin expression in normal gland, BPH and prostatic carcinoma
30 31	200	
32	208	Survivin-positive nuclei were present among the basal/reserve cell layer of
33	209	normal (Fig.1) and hyperplastic prostatic lobules [0-10% of cells in the
34	210	11/16 (68 75%) cases with positive labeling! (Fig 2) Even if a single case
36	244	11/10 (00,75%) cases with positive tabering, (Fig.2). Even if a single case
37	211	of normal gland was analyzed, normal prostatic tissue surrounding the BPH
30	212	lesions was also evaluated, showing the same pattern of expression of the
40	213	molecule. Meet of the PDU cases $(12/16, 75^{\circ})$ should nately cutoplasmic
41		morecure. Most of the Brn cases (12/10, 75%) showed patchy cytopiasmic
42 43	214	immunostaining, with a low to moderate (0-25% of neoplastic cells)
44	215	expression in most of the cases (10/12, 83,3%). In contrast, prostatic
45	216	carcinomas had more diffuse cytoplasmic expression as well as nuclear
46 47	217	caleinomas had more arruse cycoprasmie expression as werr as nuclear
48	217	expression of survivin. Cytoplasmic staining was observed in all the
49	218	prostatic carcinoma samples, with half of the cases (8/16) showing low to
50 51	219	moderate everyopics (0-25% of peoplectic colle) and the other half birt
52	220	moderate expression (0-25% of meoprastic cells) and the other half high
53	220	expression (>25% of neoplastic cells). Positive nuclei were present inall
54	221	except one case of prostatic carcinoma, with most (9/16, 56%) showing
55		· · · · · · · · · · · · · · · · · · ·
סכ 57		8

Page 10 of 27

222 moderate to high expression (10 to >50% of positive nuclei)(Fig.3), present 223 mainly among the neoplastic cells with basal cell morphology in the areas 224 with tubular-papillary pattern .

225 Sox9 expression in normal gland, BPH and prostatic carcinoma

Sox9-positive nuclei were observed in scattered cells among the basal/reserve cell layer of 2 of 3 normal prostatic glands (Fig.4) and 5 of 15 hyperplastic lobules (Fig.5). Of these positive cases, two normal glands and 2 BPH cases were freshly sampled, while the other 3 BPH cases werefrom the archive and the fixation time was not known, suggesting that prolonged fixation may interfere with Sox9 immunostaining.³⁴ Among prostatic carcinomas, 9/16 cases were positive and most (7/9) showed a moderate to high expression (>25% of neoplastic cells with nuclear immunolabelling)(Fig.6).

236 Double immunofluorescence

From a qualitative evaluation of the immunofluorescence-stained slides, only a partial co-localization of survivin and p63 (survivin+/Sox9+) was observed. In BPH, survivin-/p63+ nuclei were more numerous (5-10%), survivin+/p63- nuclei were scattered and rare, and survivin+/p63+ nuclei were few (<5% of cells were double-positive) and observed among basal cells (Fig.7). In contrast, in prostatic carcinoma, survivin+/p63- nuclei were more numerous (10-25%), and survivin+/p63+ nuclei were scattered and few (<5% of cells were double-positive). p63 cytoplasmic immunostaining was also evident (Fig.8).

In BPH cases, a higher number of survivin-/AR+ cells (>50%) was observed compared to survivin+/AR+ cells (5-10%), while no survivin+/AR- cells were observed (Fig.9). Nuclear immunolabelling in prostatic carcinoma was characterized by numerous survivin+/AR+ cells (25-50%) and survivin+/AR-

http://mc.manuscriptcentral.com/vetpath

Veterinary Pathology

cells were also evident (10-25%) (Fig.10). Several neoplastic cells showed an intense aberrant AR cytoplasmic expression as well as cytoplasmic immunolabelling for survivin. In BPH cases, survivin+/Sox9- cells were more numerous (between 10 and 25%) than survivin+/Sox9+ cells (<5% of double positive cells), while no survivin-/Sox9+ cells were observed (Fig.11). In the prostatic carcinoma cases, a higher number of survivin+/Sox9+ (double-immunostained) cells was observed (Fig.12), with intense nuclear and faint cytoplasmic immunolabelling, and a few (<5%) survivin+/Sox9- and survivin-/Sox9+ cells. Statistical Analysis Both nuclear survivin and Sox9 expression appeared to be higher (≥10% of neoplastic cells with positively labeled nuclei) in prostatic carcinoma compared with BPH cases (p<0.01 for both). No significant differences were observed in cytoplasmic survivin expression comparing BPH with prostatic carcinoma cases. Discussion This study is the first to characterize the IHC expression of survivinand Sox9 in normal, hyperplastic and neoplastic canine prostate. The mainaims were to verify if Sox9 and survivin are expressed by canine prostatic epithelial cells and if they could represent prostatic stem cellmarkers. The nuclear immunostaining observed in the basal cell layer of normal prostate gland is consistent with Sox9 as a stem cell marker in canine prostate, similar to what has been reported in the human literature. 7 In contrast to our predictions, the first round of testing with Sox9 immunohistochemistry, using cases selected from the University'sarchives, showed no positive cells in the normal glands, and only a few positive

277 samples among the BPH cases. A second round of testing, using freshly 278 sampled prostatic tissue fixed in formalin for 24 hours, revealed positive 279 staining in all four cases, and it was more intense and evident than that 280 observed in samples with longer fixation time. This suggests that prolonged 281 formalin fixation time decreased Sox9 antigen detection, indicating that 282 this antigen is more vulnerable to degradation than the other investigated 283 molecules (such as survivin, p63, AR).³⁴

284 The role of survivin in stem cells¹⁶ might indicate that the positive cells 285 found in the basal cell layer of normal glands are stem cells. However, 286 since survivin also has a role in proliferation, it is also possible that 287 these cells represent partially differentiated, proliferating, transit 288 amplifying cells that maintain some stem cell properties.

The prostate basal cell marker p63 had already been shown to be involved in epithelial development by regulating stem cell/transit amplifying cells, their differentiation, and cell death.8,22 Results obtained from the immunofluorescence study showed that in BPH survivin and p63 are expressed in different cells, with only partial, minimal co-localization. Our hypothesis is that they mark transit amplifying cells in these lesions, an undifferentiated population of cells in transition between stem cells and differentiated cells, with intermediate features. This would support the previously reported theory that at least two biologically distinct populations of basal cells exist in the canine prostate gland¹⁹ and that these cells can be involved in the development/maintenance of BPH.

300 Other recent studies characterizing the expression of stem cell markers 301 have shown that co-expression of CD44 and CD133 detects stem cells in 302 canine prostatic cancer cell lines.^{23,24} Further studies should be done in 303 order to investigate whether survivin and Sox9 are co-expressed with these 304 markers.

Veterinary Pathology

In human prostatic tissue, survivin expression is regulated by androgen stimulation.³⁶ In the canine prostatic tissue studied here, the presence of survivin+/AR- cells in prostatic carcinoma, together with the increased expression of survivin in prostatic carcinoma compared to BPH, would suggest a role for survivin in the progression to androgen independence in the dog as well. The survivin+/AR- cells could represent a subpopulation of androgen-independent tumour cells. These may be important in the early stages of development of prostate cancer and, if present in human prostatic carcinoma, may be the cause of the failure of androgen ablation therapy that occurs in most human advanced cases.¹⁰ Our findings would suggest the presence, in canine prostatic carcinoma, of a subpopulation of neoplastic cells with low levels of AR and high levels of survivin and some features of stem cells (prostatic stem cells or transit amplifying cells). This supports the possibility that this tumour derives from basal/stem cell-like epithelial cells expressing low levels of AR.^{11,18}

The origin of CSCs within solid tumours has not yet been clarified and would appear to vary based on tumour type: tumour cells could originate from normal tissue stem cells or from partially differentiated transit amplifying cells that undergo oncogenic transformation to produce CSCs.¹³ Further studies should be done to better characterize this subpopulation and its features of stemness, and to investigate the possible regulation of the AR-activated pathways on survivin expression in canine prostatic tissue and prostatic neoplasms.

329 Acknowledgements

We thank the Veterinary Pathology Diagnostic Centre of the Utrecht University for providing tissue blocks of canine prostatic lesions, as well as Marina Baffoni and Saskia Essen-van Dorresteijn for their technical support.

2		
3	334	
4		
5 6 7	335	References
8 9	336	${f l}.$ Argyle DJ. Prostate cancer in dogs and men: a unique opportunity to
10 11	337	study the disease. Vet J. 2009;180(2):137-8.
12 13	338	2. Athanasoula KCh, Gogas H, Polonifi K, Vaiopoulos AG, Polyzos A,
14 15	339	Mantzourani M. Survivin beyond physiology: orchestration ofmultistep
16 17	340	carcinogenesis and therapeutic potentials. Cancer Lett.
18 19	341	2014;347(2):175-82.
20 21	342	3.Bongiovanni L, Mazzocchetti F, Malatesta D, et al.
22 23	343	Immunohistochemical investigation of cell cycle and apoptosis
24 25	344	regulators (survivin, β -catenin, p53, caspase 3) in canine
26 27	345	appendicular osteosarcoma. BMC Vet Res. 2012; 11;8:78.
28 29	346	4.Bongiovanni L, Suter MM, Malatesta D, et al. Nuclear survivin
30 31	347	expression as a potentially useful tool for the diagnosis of canine
32 33	348	cutaneous sebaceous lesions. Vet Dermatol. 2012;23(5):394-e73.
34 35	349	5. Bongiovanni L, Suter MM, Inverso A, et al. Sox9 and CK15 as markers
36 37	350	of malignancy in canine cutaneous sebaceous lesions. Abstract in the
38 39	351	proceedings of the II Joint European Congress of the ESVP, ECVP, ESTP
40 41	352	- Berlin, 27th-30th August 2014.
42 43	353	6. Burdelski C, Bujupi E, Tsourlakis MC, et al. Loss of SOX9Expression
44 45	354	Is Associated with PSA Recurrence in ERG-Positive and PTEN Deleted
46 47 48	355	Prostate Cancers. <i>PLoS One.</i> 2015;10(6):e0128525.
49	356	7.Cai C, Wang H, He HH, et al. ERG induces androgen receptor-mediated
51	357	regulation of SOX9 in prostate cancer. J Clin Invest.
52 53	358	2013;123(3):1109-22.
54		
55 56		
57		13
58		
59		

1		
3	359	8.Candi E, Rufini A, Terrinoni A et al. Differential roles of p63
4 5	360	isoforms in epidermal development: selective genetic complementation
6 7	361	in p63 null mice. Cell Death Differ. 2006; 13: 1037-1047.
8 9 10	362	9. Di Zazzo E, Galasso G, Giovannelli P, et al. Prostate cancerstem
11	363	cells: the role of androgen and estrogen receptors. Oncotarget.2016;
12 13 14	364	7(1):193-208.
15 16	365	10. Feldman BJ, Feldman D. The development of androgen-independent
17 18	366	prostate cancer. Nat Rev Cancer. 2001; 1(1):34-45.
20 21	367	11. Gallardo F, Mogas T, Baró T, et al. Expression of androgen, oestrogen
22	368	alpha and beta, and progesterone receptors in the canineprostate:
23 24	369	differences between normal, inflamed, hyperplastic and neoplastic
25 26 27	370	glands. <i>J Comp Pathol</i> . 2007;136(1):1-8.
28	371	12. Signoretti S, Waltregny D, Dilks J, et al. p63 is a prostate basal
30	372	cell marker and is required for prostate development. Am J Pathol.
31 32 33	373	2000;157:1769-1775.
34	374	13. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation.
35 36 37	375	Cell. 2011;144(5):646-674.
38 39	376	14. Huang Z, Hurley PJ, Simons BW, et al. Sox9 is required for prostate
40 41	377	development and prostate cancer initiation. Oncotarget.
42 43	378	2012;3(6):651-63.
44 45	379	15. Huang CK, Luo J, Lee SO, Chang C. Concise review: androgen receptor
46 47	380	differential roles in stem/progenitor cells including prostate,
48 49	381	embryonic, stromal, and hematopoietic lineages. Stem Cells.
50 51	382	2014;32(9):2299-308.
52 53	383	16. Kapinas K, Kim H, Mandeville M, et al. microRNA-mediated survivin
54 55	384	control of pluripotency. J Cell Physiol. 2015;230(1):63-70.
56 57 58	14	
59 60		http://mc.manuscriptcentral.com/vetpath

17. Kennedy PC, Cullen JM, Edwards JF, et al. World HealthOrganisation. Histological Classification of Tumors of the Genital System of Domestic Animals. Armed Forces Institute of Pathology, Washington DC, 1998. 18. Lai CL, L'Eplattenier H, van den Ham R, et al. Androgen receptor CAG repeat polymorphisms in canine prostate cancer. J Vet Intern Med. 2008;22(6):1380-4. 19. Leav I, Schelling KH, Adams JY, Merk FB, Alroy J. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductalorigin of carcinoma. The Prostate. 2001;48:210-224. 20. Liao CP, Adisetiyo H, Liang M, Roy-Burman P. Cancer stem cells and microenvironment in prostate cancer progression. Horm Cancer. 2010; 1(6):297-305. 21. Liao CP, Adisetiyo H, Liang M, Roy-Burman P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 2010;70(18):7294-303. 22. Little NA, Jochemsen AG. p63. Int J Biochem Cell Biol. 2002;34(1):6-9. 23. Liu W, Moulay M, Willenbrock S, et al. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258. Anticancer Res. 2015;35(4):1917-27. 24. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancerstem cells. Annu Rev Cell Dev Biol. 2007;23:675-99.

1		
3	411	25. Moulay M, Liu W, Willenbrock S, et al. Evaluation of stem cell marker
4 5	412	gene expression in canine prostate carcinoma- and prostate cyst-
6 7	413	derived cell lines. Anticancer Res. 2013;33(12):5421-31.
8 9 10	414	$26.\ {\tt Palmieri\ C.,\ Grieco\ V.\ Proposal\ of\ Gleason-like\ grading\ system\ of\ }$
10 11	415	canine prostate carcinoma in veterinary pathology. Res Vet Sci.2015.
12 13 14	416	103:11-5.
15 16	417	27. Palmieri C., Lean FZ, Akter SH, et al. A retrospective analysis of
17	418	111 canine prostatic samples: histopathological findings and
18 19	419	classification. Res Vet Sci. 2014. 97(3):568-73.
20 21 22	420	28. Pignon JC, Grisanzio C, Geng Y, Song J, Shivdasani RA, SignorettiS.
23	421	p63-expressing cells are the stem cells of developing prostate,
24 25	422	bladder, and colorectal epithelia. Proc Natl Acad Sci U SA.
26 27 28	423	2013;110(20):8105-10.
29	424	29. Romanucci M, Frattone L, Ciccarelli A, et al. Immunohistochemical
30 31	425	expression of heat shock proteins, p63 and androgen receptor in
32 33	426	benign prostatic hyperplasia and prostatic carcinoma in the dog.Vet
34 35	427	Comp Oncol. 2016;14(4):337-349.
30 37 38	428	$30.\ { m Ryan}$ BM, O'Donovan N, Duffy MJ. Survivin: a new target for anti-
39 40	429	cancer therapy. Cancer Treat Rev. 2009;35(7):553-62.
41 42	430	31. Shariat SF, Lotan Y, Saboorian H, et al. Survivin expression is
43 44	431	associated with features of biologicallyaggressive prostate
45 46	432	carcinoma. <i>Cancer</i> . 2004;100:751-757.
47 48	433	32. Thomsen MK, Francis JC, Swain A. The role of Sox9 inprostate
49 50 51	434	development. Differentiation. 2008;76(6):728-35.
52 53	435	33. Visvader JE, Lindeman GJ. Cancer stem cells: current status and
54	436	evolving complexities. Cell Stem Cell. 2012;10(6):717-28.
55 56 57 58	16	5
59 60		http://mc.manuscriptcentral.com/vetpath

Page 18 of 27

437	34. Webster JD, Miller MA, Dusold D, Ramos-Vara J. Effects of prolonged
438	formalin fixation on diagnosticimmunohistochemistry indomestic
439	animals. J Histochem Cytochem. 2009. 57(5):753-61.
440	35.Wiechno PJ, Sadowska M, Kalinowski T, Michalski W, Demkow T. Does
441	pharmacological castration as adjuvant therapy for prostate cancer
442	after radiotherapy affect anxiety and depression levels, cognitive
443	functions and quality of life? <i>Psychooncology</i> . 2013;22(2):346-51.
444	36. Zhang M, Latham DE, Delaney MA, Chakravarti A. Survivinmediates
445	resistance to antiandrogen therapy in prostate cancer. Oncogene.
446	2005;24(15):2474-82.
447	37. Zhong WD, Qin GQ, Dai QS, et al. SOXs in human prostate cancer:
448	implication as progression and prognosis factors. BMC Cancer.
449	2012;12:248.
450	
451	
452	Figure Legends
453	Figures 1-3. Immunohistochemistry for survivin. Figure 1. Normal prostate
454	gland, dog 1. Scattered positive nuclei among the basal cell layer (arrows
455	and weak, patchy cytoplasmic immunostaining are present. Figure 2. Benign
456	prostatic hyperplasia (BPH), dog 7. Weak cytoplasmic immunostaining and
457	scattered positive nuclei (arrows), some of which are in the basal cell
457 458	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic
457 458 459	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic
457 458 459 460	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic immunostaining among the neoplastic cells of a solid prostatic carcinoma,
457 458 459 460 461	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic immunostaining among the neoplastic cells of a solid prostatic carcinoma, with intensely positive mitotic figures (arrow). Figures 4-6.
457 458 459 460 461 462	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic immunostaining among the neoplastic cells of a solid prostatic carcinoma, with intensely positive mitotic figures (arrow). Figures 4-6. Immunohistochemistry for Sox9. Figure 4. Normal prostate gland, dog 2.
457 458 459 460 461 462 463	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic immunostaining among the neoplastic cells of a solid prostatic carcinoma, with intensely positive mitotic figures (arrow). Figures 4-6. Immunohistochemistry for Sox9. Figure 4. Normal prostate gland, dog 2. Positive nuclei are evident in the basal cell layer (arrows). Figure 5.
457 458 459 460 461 462 463 463	scattered positive nuclei (arrows), some of which are in the basal cell layer (arrowhead) of hyperplastic prostatic lobules. Figure 3. Prostatic carcinoma, dog 35. Numerous positive nuclei and weak, patchy cytoplasmic immunostaining among the neoplastic cells of a solid prostatic carcinoma, with intensely positive mitotic figures (arrow). Figures 4-6. Immunohistochemistry for Sox9. Figure 4. Normal prostate gland, dog 2. Positive nuclei are evident in the basal cell layer (arrows). Figure 5. BPH, dog 15. Several positive nuclei are shown, mainly present in the basal

Veterinary Pathology

2		
3	465	cell layer(arrows). Figure 6. Prostatic carcinoma, dog 22. Numerous
4 5	466	positive nuclei were observed among the neoplastic cells of apapillary
6 7	467	prostatic carcinoma.
8 9 10	468	Figures 7-8: Double immunofluorescence for survivin and p63; nuclei
11	469	counterstained with 4',6-diamidino-2-phenylindole (DAPI). Figure 7: BPH,
12 13	470	dog 10. Only a partial co-localization of survivin and p63 was observed,
14 15	471	showing a higher number of survivin-/p63+ nuclei in basal cells and few
16 17	472	survivin+/p63+ cells. Figure 8.: prostatic carcinoma, dog 19. More frequent
18	473	survivin+/p63- and only few survivin+/p63+ nuclei were observed with
19	474	infrequent p63 cytoplasmic immunostaining. Figures 9-10: Double
20 21 22	475	immunofluorescence for survivin and AR; nuclei counterstained with DAPI.
22	476	Figure 9:: BPH, dog 6. Higher number of nuclear survivin-/AR+ cells
25	477	compared to survivin+/AR+ cells was observed in BPH cases, without any
26 27	478	nuclear survivin+/AR- cells. Most of the cells show cytoplasmic survivin
28 29	479	expression. Figure 10: prostatic carcinoma, dog 22. Rare cells had nuclear
30 31	480	labelling for both survivin and AR (arrow), but survivin+/AR- nuclear
32 33	481	labelling was also evident. Figures 11-12: Double immunofluorescence for
34	482	survivin and Sox9; nuclei counterstained with DAPI. Figure 11: BPH, dog 18.
35 36	483	Most of the cells have survivin+/Sox9- cytoplasmic labeling (green arrow).
37 38	484	Figure 12: prostatic carcinoma, dog 32. Numerous neoplastic cells in the
39	485	prostatic carcinoma cases evaluated showed survivin+/Sox9+ double
40 41	486	immunostaining (arrows), with intense nuclear and faint cytoplasmic
42 43	487	survivin immunolabelling.
44 45	<u>188</u>	
46	400	
47 48	489	
49	405	
50 51	490	
52		
53	491	
55		
56		18
57 58		10
59		
60		nttp://mc.manuscriptcentral.com/vetpath

Table 1. Expression of survivin and Sox9 in normal prostate, benign prostatic hyperplasia, and prostatic carcinoma of dogs. The data show immunohistochemistry grades.

Case N°	Nucelar survivin	Cytoplasmic survivin	Sox9	
Normal g	land			
1	1	0	0	
2*	-	-	1	
3*	-	-	1	
BPH				
4	1	1,+	0	
5	0	1,++	0	
6	1	1, -/+	0	
7	1	1,+	0	
8	0	1,++	0	
9	1	1, -/+	0	
10	1	2, ++	0	
11	1	2, ++	0	
12	0	1, -/+ to +	1	
13	1	4, ++	0	
14	1	0	3	
15	1	3,++	0	
16	0	0	0	
17	1	0	0	
18	1	1,+	1	
19	0	0	0	
20*	-	-	1	
21*	-	-	1	
PCa				
22	1	1, -/+	0	
23	2	4, ++	4	
24	1	4, +/++	4	
25	1	2, ++	0	
26	1	1, -/+	-	
27	2	1, +/++	4	
28	4	4, ++	4	
29	1	4,++	-	
30	4	4, +/++	4	
31	1	1, -/+ with small clusters ++	1	
32	2	3, ++	0	
33	2	Cribiform: 3, +, Rest: 4, +++	2	
34	2	3, +	2	
35	3	1, +/++	1	
36	0	1, -/+	0	
37	3	1, -/+	0	

Grades for immunolabelling, as percentage of all neoplastic cells: 0, absent; 1, >0 and <10% of cells; 2, 10 to <25% of cells; 3, 25 to <50% of cells; 4, >50% of cells. BHP: benign prostatic hyperplasia. PCa: prostatic carcinoma. *: maximum 24 h of formalin fixation time.

180x180mm (300 x 300 DPI)

180x181mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
37	
22	
24	
25	
22	
50 27	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

60

Supplemental Table S1 - Methods used for immunohistochemistry.

MOLECULE	ANTIBODY TYPE	SOURCE	WORKING DILUTION	POSITIVE CONTROL
Sox9	Rabbit PAb	Santa Cruz Biotecnology	1:700	Canine normal skin ⁵
Survivin	Rabbit PAb	NOVUS Biologicals	0.7 µg/ml	Canine sabaceous carcinoma ⁴
p63	Mouse MAb	DAKO	1:400	Canine prostatic hyperplasia ²⁶
AR	Rabbit PAb	Santa Cruz Biotecnology	1:500	Canine prostatic hyperplasia ²⁶

PAb: polyclonal antibody; MAb: monoclonal antibody.

Supplementary table S2. The table sows tumour type, prostatic carcinoma histopatterns, Gleason/like score, presence of necrosis and immunohistochemistry grades.

Case N°	Histotype	Histo-pattern	Gleason/like score	Necrosis	Nuclear survivin	Cytoplasmic survivin	Sox
1	Normal gland				1	0	0
2							1
2	Normal gland*				-	-	1
3	Normal gland*				-	-	1
4	BPH				1	1,+	0
5	BPH				0	1,++	0
6	BPH				1	1, -/+	0
7	BPH				1	1,+	0
8	BPH				0	1,++	0
9	BPH				1	1, -/+	0
10	BPH				1	2, ++	0
11	BPH				1	2.++	0
12	BPH	<u> </u>			0	1 / 1 / 1	1
		prostatitis and PIN areas			0	1, -/+ to +	1
13	BPH	With			1	4, ++	0
14	BPH	With prostatitis			1	0	3
15	BPH	-			1	3,++	0
16	BPH				0	0	0
17	BPH	With			-1	-0	-0
10	ррц	prostatitis With			1	1 .	1
10	ып	prostatitis			I	1,+	1
19	BPH	With			0	0	0
20	BPH*	prostatitis			-	-	1
21	BPH*				-	-	1
22	PCa	Papillary	8	No	1	1, -/+	0
23	PCa	Small	10	Yes	2	4,++	4
-		acinar/ductal, solid, signet	-			,	-
24	PCa	Papillary, solid	9	Yes	1	4, +/++	4

25	РСа	Papillary	8	Yes	1	2, ++	0
26	PCa	Small acinar/ductal, solid	9	No	1	1, -/+	-
27	PCa	Papillary, small acinar/ ductal, solid with abundant fibrous stroma	9	Yes	2	1, +/++	4
28	PCa	Solid	10	Yes	4	4, ++	4
29	PCa	Cribiform, solid	10	Yes	1	4,++	-
30	РСа	Solid with squamous metaplasia and abundant fibrous stroma	8	Yes	4	4, +/++	4
31	РСа	Papillary with cystic structures	9	No	1	l, -/+ with small clusters ++	1
32	РСа	Solid, cribiform, papillary	9	Yes	2	3, ++	0
33	РСа	Cribiform, signet-ring, papillary	10	Yes	2	Cribiform: 3, +, Rest: 4, +++	2
34	PCa	Cribiform, papillary	10	Yes	2	3, +	2
35	PCa	Solid	10	Yes	3	1, +/++	1
36	PCa	Papillary	8	No	0	1, -/+	0
37	PCa	Small acinar /ductal	7	Yes	3	1, -/+	0

Grades for immunolabelling, as percentage of all neoplastic cells: 0, absent; 1, >0 and <10% of cells; 2, 10 to <25% of cells; 3, 25 to <50% of cells; 4, >50% of

cells. BHP: benign prostatic hyperplasia. BHP: benign prostatic hyperplasia.

PCa: prostatic carcinoma. *: maximum 24 h of formalin fixation time.

Supplemental Table S1 - Methods used for immunohistochemistry.

MOLECULEANTIBODY TYPESOURCEWORKING DILUTIONPOSITIVE CONTROLSox9Rabbit PAbSanta Cruz Biotecnology1:700Canine normal skin ⁵ SurvivinRabbit PAbNOVUS Biologicals0.7 µg/ml Canine sabaceous carcinoma ⁴ Canine prostatic hyperplasia ²⁶ P63Mouse MAbDAKO Biotecnology1:400Canine prostatic hyperplasia ²⁶ ARRabbit PAbSanta Cruz Biotecnology1:500Canine prostatic hyperplasia ²⁶					
Sox9Rabbit PAbSanta Cruz Biotecnology1:700Canine normal skin5SurvivinRabbit PAbNOVUS Biologicals0.7 µg/ml carcinoma4Canine sabaceous carcinoma4p63Mouse MAbDAKO PAb1:400Canine prostatic hyperplasia26ARRabbit PAbSanta Cruz Biotecnology1:500Canine prostatic hyperplasia26	MOLECULE	ANTIBODY TYPE	SOURCE	WORKING DILUTION	POSITIVE CONTROL
SurvivinRabbit PAbNOVUS Biologicals0.7 µg/mlCanine sabaceous carcinoma4p63Mouse MAbDAKO1:400Canine prostatic hyperplasia26ARRabbit PAbSanta Cruz 	Sox9	Rabbit PAb	Santa Cruz Biotecnology	1:700	Canine normal skin 5
p63Mouse MAbDAKO1:400Canine prostatic hyperplasia26ARRabbit PAbSanta Cruz Biotecnology1:500Canine prostatic hyperplasia26	Survivin	Rabbit PAb	NOVUS Biologicals	0.7 µg/ml	Canine sabaceous carcinoma ⁴
ARRabbitSanta Cruz1:500Canine prostaticPAbBiotecnologyhyperplasia26	p63	Mouse MAb	DAKO	1:400	Canine prostatic hyperplasia ²⁶
	AR	Rabbit PAb	Santa Cruz Biotecnology	1:500	Canine prostatic hyperplasia ²⁶

PAb: polyclonal antibody; MAb: monoclonal antibody.

Supplementary Table S2. The table shows tumour type, prostatic carcinoma histo-patterns, Gleason/like score, presence of necrosis and immunohistochemistry grades.

Case N°	Histotype	Histo-pattern	Gleason/ like score	Necrosis	Nuclear survivin	Cytoplasmic survivin	Sox9
1	Normal gland				1	0	0
2	Normal gland*				_	-	1
3	Normal gland*				-	-	1
4	BPH				1	1. +	0
5	BPH				0	1 ++	0
6	BPH				1	1/+	0
7	BPH				1	1.+	0
8	BPH				0	1, ++	0
9	BPH				1	1, -/+	0
10	BPH				1	2, ++	0
11	BPH				1	2, ++	0
12	BPH	Cystic with prostatitis and PIN areas			0	1, -/+ to +	1
13	BPH	With prostatitis			1	4, ++	0
14	BPH	With prostatitis			1	0	3
15	BPH	*			1	3,++	0
16	BPH				0	0	0
17	BPH	With prostatitis			1	0	0
18	BPH	With prostatitis			1	1,+	1
19	BPH	With prostatitis			0	0	0
20	BPH*				-	-	1
21	BPH*				-	-	1
22	PCa	Papillary	8	No	1	1, -/+	0
23	PCa	Small acinar/ductal, solid, signet ring	10	Yes	2	4, ++	4
24	PCa	Papillary, solid	9	Yes	1	4, +/++	4
25	PCa	Papillary	8	Yes	1	2, ++	0
26	PCa	Small acinar/ductal, solid	9	No	1	1, -/+	-
27	РСа	Papillary, small acinar/ ductal, solid with abundant fibrous stroma	9	Yes	2	1, +/++	4
28	PCa	Solid	10	Yes	4	4.++	4
29	РСа	Cribiform, solid	10	Yes	1	4,++	-
30	РСа	Solid with squamous metaplasia and abundant fibrous stroma	8	Yes	4	4, +/++	4
31	PCa	Papillary with cystic structures	9	No	1	1, -/+ with small clusters ++	1
32	PCa	Solid, cribiform, papillary	9	Yes	2	3, ++	0
33	PCa	Cribiform, signet-ring, papillary	10	Yes	2	Cribiform: 3, +, Rest: 4, +++	2
34	PCa	Cribiform, papillary	10	Yes	2	3, +	2
35	PCa	Solid	10	Yes	3	1, +/++	1
36	PCa	Papillary	8	No	0	1, -/+	0
37	PCa	Small acinar /ductal	7	Yes	3	1, -/+	0

Grades for immunolabelling, as percentage of all neoplastic cells: 0, absent; 1, >0 and <10% of cells; 2, 10 to <25% of cells; 3, 25 to <50% of cells; 4, >50% of cells. BHP: benign prostatic hyperplasia. BHP: benign prostatic hyperplasia. PCa: prostatic carcinoma. *: maximum 24 h of formalin fixation time.