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ABSTRACT

Fourteen polyamine analogues, asymmetric or symmetric substituted spermine (1-9) or methoctramine
(10-14) analogues, were evaluated as potential inhibitors or substrates of two enzymes of the polyamine
catabolic pathway, spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX). Compound 2 turned
out to be the best substrate for PAOX, having the highest affinity and catalytic efficiency with respect to
its physiological substrates. Methoctramine (10), a well-known muscarinic M, receptor antagonist,
emerged as the most potent competitive PAOX inhibitor known so far (K;=10nM), endowed with very
good selectivity compared with SMOX (Ki=1.2 uM vs SMOX). The efficacy of methoctramine in inhibiting
PAOX activity was confirmed in the HT22 cell line. Methoctramine is a very promising tool in the design
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of drugs targeting the polyamine catabolism pathway, both to understand the physio-pathological role of
PAOX vs SMOX and for pharmacological applications, being the polyamine pathway involved in various

pathologies.

Introduction

Polyamine (PA) metabolism plays an important role in cellular
homeostasis, and its dysregulation may contribute to the develop-
ment of several pathological states, including cancer'. Elevated
concentrations of polyamines have been associated with various
types of tumours®; an increase in PA catabolism reaction products,
which are reactive oxygen species and aldehydes (such as acro-
lein), has been implicated in causing cytotoxicity and in the
pathogenesis of various diseases, such as liver and neurological
disorders, and stroke*''. For these reasons, the PA metabolic
pathway has been considered as a rational target for therapeutic
approaches’'?7'® To develop anti-cancer drugs, several PA ana-
logues were designed to ‘hit’ some of the many players of this
complex pathway.

To reduce the naturally occurring PA availability in cancer cells,
some of the developed analogues targeting the biosynthetic path-
way are, for instance, difluoromethyl-ornithine, which inhibits orni-
thine decarboxylase (ODC, the rate-limiting enzyme in the
synthetic pathway)'*'8, methylglyoxal(bis)guanylhydrazone, which
targets S-adenosylmethionine decarboxylase'*'® and the sperm-
ine (SPM) derivative named AMXT1501, which blocks the activity
of polyamine transporters, avoiding the uptake of exogenous
PA'®. In the last years, the PA catabolic pathway is also emerging
as a promising target for chemoprevention'®%°, In addition to

spermidine/spermine N’-acetyltransferase (SSAT), two other key
enzymes of this pathway are acetylpolyamine oxidase (PAOX) and
spermine oxidase (SMOX), which are H,O, producers. PAOX and
SMOX, FAD-containing amine oxidases, have been biochemically
characterised in a wide variety of organisms, including vertebrates,
invertebrates and yeast®?'"23, PAOX is a constitutively expressed
enzyme and its preferred substrates are N’-acetylspermine
(N'AcSPM) and N’-acetylspermidine?*, whereas SMOX is an indu-
cible enzyme specific for SPM® and is highly expressed in some
tissues, such as brain and skeletal muscle?®™’. Recently, in add-
ition to the cytoplasmic and nuclear SMOX isoforms, SMOX activ-
ity was detected also in mitochondria®®. SMOX expression is
increased in some type of cancers, it is induced by some bacterial
infections and inflammatory cytokines, and by some PA analogues,
such as N1,N""-bis(ethyl)norspermine (BenSPM)'#2%2%731 |n each
case, the induction of SMOX is linked to an increase of H,0, pro-
duction and DNA damage, which correlates with the risk of devel-
oping dysplasia/cancer'®?°. In addition, epigenetic factors have
been recently involved in the link between increased SMOX
expression and carcinogenesis>2.

On this basis, the availability of selective SMOX vs PAOX inhibi-
tors would be of great value to develop chemopreventive agents.
Furthermore, the selective inhibition of SMOX and PAOX, could
allow for better understanding of the involvement of PA
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catabolism in modulating tumourigenesis and the mechanism
through which some PA analogues exert their anticancer activity.

Unfortunately, most of the mammalian PAOX and SMOX inhibi-
tors currently available, suffer from poor selectivity, and overcom-
ing this problem still remains an important goal for the
development of novel pharmacological tools. SMOX and PAOX
inhibitors are generally PA analogues®®, such as the irreversible
and “well-known” MDL 72527 (N1,N*-bis(2,3-butadienyl)-1,4-buta-
nediamine)®* (K=20 and 63 uM, for purified murine PAOX and
SMOX respectively)®* and other butadienyl-spermidine derivatives
with improved potency with respect to MDL 72527%.
Interestingly, some guanidine-containing derivatives have also
shown promising inhibitory activity towards PAOX and SMOX.
They include N-prenylagmatine (G3)33, which has emerged as a
good and selective competitive murine PAOX inhibitor (Ki=0.8 uM
for PAOX and Ki=46 uM for SMOX), and iminoctadine (also known
as guazatine), as a good but non-selective murine SMOX and
PAOX inhibitor (K; ~ 0.5 uM). Recently, the antiseptic agent chlor-
hexidine has also been reported to act as a competitive inhibitor
of murine PAOX and SMOX3,

Three-dimensional crystal structures of enzymes may be of
great support in designing and developing more selective SMOX
or PAOX inhibitors. Unfortunately, in the case of mammalian
enzymes, the crystal structure of murine PAOX®” has been solved
at present, while only molecular models are available for mamma-
lian SMOX3839, Previous site-directed mutation studies have indi-
cated that the aminoacids Leu195 and Ala197 in the active site of
PAOX (Glu216 and Ser218 in SMOX) may be important in deter-
mining the different substrate specificity between PAOX and
SMOX. The SMOX E216L/S218A mutant, in which Glu216 and
Ser218 are mutated into PAOX orthologous residues, can oxidise
N'AcSPM in addition to SPM*. However, this experimental result
is not easy to explain on the basis of PAOX three-dimensional
structures®’, which were obtained in complex with N'AcSPM at
pH 5.5, to maintain the oxidised state of FAD, and at pH 8 to
obtain the reduced state of FAD, after its reaction with
the substrate.

The murine PAOX crystal structure®” revealed the very flexible
nature of the protein and an L-shaped active site channel with a
hydrophobic cavity in the interface between the domains adjacent
to the family-invariant and catalytically relevant Lys315%%4"%2 The
PAOX residue Asn313 (Thr in SMOX) plays an important role in
the interaction with the acetyl group of N'AcSPM through hydro-
gen bond formation. His64 also appears to be important in the
interaction with the N5 (deprotonated form) of N'Ac SPM; Asp211
interacts with both the side-chain of His64 and the backbone of
Gly65, maintaining the overall structure of the enzyme. PAOX has
an active site ideal for binding PAs, and the hydrophobic portion
of the active site, which hosts the N’-acetyl group of the sub-
strate, should be able to accommodate large groups allowing van
der Waals interactions with the surrounding residues.

In this context, structure-activity relationship studies with novel
PA analogues may reveal information about the key features of
molecules which give rise to selectivity between PAOX and SMOX

In this study, SPM (1-9) and methoctramine (10-14) ana-
logues****, differing in the polyamine backbone and in the aro-
matic rings on the terminal nitrogen atoms, were used as probes
to search for the optimal molecular features of PA analogues
responsible for selective interactions with PAOX or SMOX. By
means of a kinetic approach, the compounds were screened first
as potential substrates and those inactive as substrates were
tested as potential inhibitors. Methoctramine emerged as a potent
and very selective PAOX inhibitor. Kinetic results were integrated
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with docking simulations and the effectiveness of the most potent
PAOX inhibitor was validated on a cellular model.

Materials and methods
Materials and instrumentations

All chemicals were of analytical-grade and purchased from Fluka-
Aldrich S.rl. (Milan, Italy) with the exception of Amplex Red
reagent (10-acetyl-3,7-dihydroxyphenoxazine), purchased from
Molecular Probes/Invitrogen (Invitrogen s.rl, San Giuliano
Milanese, Italy). Horseradish peroxidase, polyclonal anti-PAOX anti-
bodies produced in rabbit and secondary antibodies (HrP-labelled
anti-rabbit 1gG) were purchased from Sigma-Aldrich S.r.l. (Italy).

The protein concentrations of the samples were determined
according to the method of Bradford*’, with bovine serum albu-
min as standard protein. Stock solutions of the assayed com-
pounds were prepared in water, with the exception of compound
6, which was dissolved in dimethyl sulphoxide, and compounds 8
and 9, dissolved in chloroform/methanol (1/1 v/v). A Cary-Eclipse
fluorimeter (Varian Inc.,, Palo Alto, CA, USA) and a Cary 50 Scan
UV-visible spectrophotometer (Varian Inc.) were used for fluores-
cence and spectrophotometric measurements, respectively.

PA analogues were synthesised as previously reported (com-
pounds 1, 8 and 9 in Bonaiuto et al.*®; compounds 2-7 in
Bonaiuto et al.*’; methoctramine derivatives 10-12 in Melchiorre
et al,*® and Minarini et al.**; compound 13 in Tumiatti et al.*°;
compound 14 in Melchiorre et al.*".

Expression and purification of PAOX and SMOX proteins in E.
coli cells

The recombinant PAOX and SMOX proteins were expressed in
E. coli BL21 DE3 cells and purified according to Bianchi et al.3
and Cervelli et al.?®, respectively. Purified recombinant proteins
were analysed by SDS/PAGE electrophoresis to assess the grade of
purity. Protein concentration was measured by the 460-nm molar
extinction coefficient (e460=9000M~'cm~") which accounts for
FAD absorption.

Amine oxidase activity assay

Amine oxidase activity was determined by measuring the H,0,
generation rate with a peroxidase-coupled continuous assay.
Amplex Red reagent was used as fluorogenic substrate for horse-
radish peroxidase®2. All experiments were carried out in Hepes
50mM, at pH 7.5 and 37°C. Phosphate buffer was not used, in
order to avoid the possible formation of phosphate-SPM derivative
complexes®®. Assays were carried out in a final volume of 800 ul,
in the presence of Amplex Red (100 uM) and horseradish peroxid-
ase type Il (5U/ml). The assay solutions containing SMOX or PAOX
were pre-incubated for 2min (in the presence or absence of the
various compounds); the substrate was then added and the reac-
tion was run continuously for 3 min. Spermine and N'AcSPM were
used as substrates for SMOX and PAOX, respectively. Enzyme
assay concentrations were 0.5 ug/ml and 0.3 ug/ml for PAOX and
SMOX respectively, unless otherwise specified.

Initial velocities were determined by measuring the increase in
fluorescence intensity (Lexc=563nm and Ae,,=586 nm) over time;
H,O, generation rate was calculated from the change in fluores-
cence intensity, by means of calibration curves obtained by serial
dilution of a stock solution of H,O,. For each measurement, the
corresponding blank, measured in the absence of the substrate,
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was subtracted. No significant interference of the various com-
pounds was observed on fluorescence intensity.

Docking simulations

Docking simulations were performed with the recently solved
crystal structure of PAOX (PDB ID: 5LFO*). The three-dimensional
structure of small molecule ligands was built with Schrodinger
Maestro 10.1 (Schrodinger, LLC, New York, NY, 2015). As literature
data indicate that PAs bind within the PAOX active site in tri-pro-
tonated form*?, the atomic charges of the ligands in this form
were calculated with the AtomicChargeCalculator web server™.
Simulations were carried out with AutoDock Vina®. In all simula-
tions, to carry out “blind” predictions of small-molecule binding
sites, the search space (docking grid) included the whole PAOX
structure. The grid spacing was set to 1A per grid unit, and the
exhaustiveness parameter was increased from the default value of
8-24, as suggested by Autodock Vina developers for grid sizes
larger than 27,000 A3 (see http://vina.scripps.edu/tutorial.html).

Simulations were carried out by allowing the flexibility of the
residues to build the walls of the PAOX active sites, i.e. His61,
Trp62, His64, Glu184, Cys186, Val187, Ser188, Phe201, Tyr204,
Asn313, Lys315, 1le358, Phe375, Tyr430, Tyr472, Ser473 and
Thr474. The rotatable bonds of the ligands were kept flexible in
all simulations.

Cell cultures and PAOX activity in HT22 cells

HT22 cells (mouse hippocampal neuronal cell line) were cultured
in Dulbecco’s modified Eagle medium, DMEM high glucose sup-
plemented with 10% foetal bovine serum, 4mM L-glutamine,
100 U/ml penicillin and 100 ug/ml streptomycin (all from Gibco,
Thermo Fischer Scientific) and maintained in a 5% CO, (v/v)
humidified atmosphere at 37°C. Cells were grown until they
reached 70% confluence for a maximum of 25-30 passages.

After trypsinisation, HT22 cell pellets were washed twice with
cold PBS, centrifuged (300 x g for 5 min), resuspended at a density
of about 6 million cells/ml, and incubated in the presence of 2'7'-
dichlorodihydrofluorescein  diacetate  (H,DCF-DA, Invitrogen)
20 uM, at 37°C for 20min in the dark. The cells were then pel-
leted, washed in PBS, resuspended in PBS containing 5mM glu-
cose (at about 0.5 million cells/ml) and then incubated in the
presence of substrate and/or methoctramine (10). All incubations
were performed in the dark. Cells in the absence of substrate and
compounds were run in parallel and were taken as control sam-
ples of the basal H,O, production and DCF fluorescence incre-
ments. After 2 min of pre-incubation at 37 °C with methoctramine
(10), N'AcSPM 2 uM was added as substrate. DCF fluorescence
was monitored at various times for about 30min (excitation at
488 nm; emission spectra in the range 500-650 nm, peak at about
530nm). The increase of fluorescence of H,DCF of each sample
was normalised to the protein concentration of the samples,
which was determined at the end of each experiment after cell
lysis. PAOX activity was calculated as the difference between the
specific activity of samples in the presence of substrate and the
corresponding control sample (absence of substrate). N'-
Acetylspermine concentration was varied from 1 to 150 uM and, in
whole cells, maximum PAOX activity was found at about 5-10 uM;
tyramine 1 mM was also used to evaluate the MAO activity in this
cellular system. At the end of the experiment, a 200-uM pulse of
H,0, was added, to confirm that H,DCF was not saturated.

After the trypsinisation procedure, HT22 cell lysate was
obtained by adding the pelleted cells of 20 mM Hepes (pH 7.5),

1mM EDTA, and protease inhibitor cocktails (4 million cells/
0.1 ml). The lysate was immediately used for amine oxidase activity
assays or frozen in liquid nitrogen until use. The amine oxidase
activity of lysates was ascertained with the standard Amplex Red
horseradish peroxidase assay method reported above, in the pres-
ence of various substrates to test the different amine oxi-
dase activity.

Western blot analysis

SDS-polyacrylamide gel electrophoresis was performed according
to the standard Laemmli method®®, with a 10% acrylamide sepa-
rating gel and a 5% acrylamide spacer gel in Tris-HCl buffer.
Samples (HT22 lysates) were solubilised in buffer containing 8 M
urea, 2% SDS and 5% f-mercaptethanol in 62.5mM Tris-HCl, pH
6.8, boiled at T=100°C for about 1 min; 20% glycerol containing
bromophenol blue for SDS-PAGE was then added. After electro-
phoresis, gels were stained for protein determination with
Coomassie Brilliant Blue R-250 or for Western blotting. Western
blotting was performed overnight at T=25°C, on nitrocellulose
membranes (at 10V and 25mA), with a transfer buffer consisting
of 20% methanol, 0.1% SDS in 50 mM Tris and 384 mM Glycine.
Non-specific binding sites on membranes were blocked by incuba-
tion for 2h in 3% of bovine serum albumin in TBS (50 mM
Tris, 150mM NaCl, pH = 7.5), prior to incubation with primary
antibodies (anti-PAOX 1/400) overnight at 4°C, washed in
TBS with 0.1% Tween 20 for 4-5h, and then incubated with sec-
ondary HRP-conjugated antibodies diluted in blocking solution.
Immunoreactive species were detected by chemiluminescence
reaction with luminol.

Kinetic and statistical analysis

Steady-state kinetic parameters (V,,qx and K,,) were calculated by
fitting the Michaelis-Menten equation to the experimental data
(initial rate of reactions vs substrate concentrations) by non-linear
regression analysis, with Sigma Plot software, version 9.0 (Jandel
Scientific, San Rafael, CA, USA) and the value of the kinetic param-
eter obtained from the best fit and its SEM are reported.

The mode of inhibition was determined by global fit analysis
(GraphPad 5.0 software) of the initial rate of reaction vs substrate
concentration curves, in the presence and absence of inhibitor, to
fit equations for competitive, mixed, non-competitive and uncom-
petitive inhibition models. The fit giving the highest r* value was
selected to calculate the inhibition constant value (K)).

Unless stated otherwise, the correlation coefficient for linear
regression was 0.98 or greater.

For calculating the ICso value of compound 10 in the cellular
system, curve fitting was performed by non-linear regression ana-
lysis using the standard “dose-response” curve equation and the
Sigma Plot software.

To compare the kinetic parameters of sample with inhibitor
with control sample, the Student’s t-test was applied and p <.05
was defined as statistically significant.

All experiments were repeated independently at least three
times, and the experimental data were expressed as the mean-
+ standard deviation (SD).
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Table 1. Chemical structure of polyamine derivatives.
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Compound

Chemical structure

SPM (substrate)

NACSPM (substrate)

18

8? (Bza-DIADO)

9° (Bis-Bza-DIADO)

10° (Methoctramine)

1ne

12¢

13¢

14° (Caproctamine)

Chlorhexidine
(standard inhibitor)

H
HZN\/\/N\/\/\N/\/\NH2
H
H H
YN\/\/N\/\/\E/\/\NHZ
(o}

Monosubstituted SPM analogues

H H
QNWNWNMNHZ
H
I
N\/\/N\/\/\N/\/\NH2
H
Z
L
SN \/\/\/\/\H/\/\NHZ
v
s NSNS ™S wh
H 2
7\ H H
<‘S)\/N\/\/N\/\/\/\/\NH2
UVH\/\/\/\/\/\/\
s NH,

/ N\ H
Q)\/N\/\/O\/\/\O/\/\NH
2

©\/H
N\/\/\/\/\/\/\
NH,

Disubstituted PAs

OCH,

CHj o) CHj OCH,
N SN

OCH; CH3 o) CHj

3Synthesis reported in Bonaiuto et al.*.
BSynthesis reported in Bonaiuto et al.*’.

“Methoctramine derivatives were synthesised as previously reported: methoctramine (10) in Melchiorre et a

Caproctamine (14) in Melchiorre et al.>".

1.*8 and Minarini et al.*°; 13 in Tumiatti et al.>® and
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Results
Selection of polyamine analogues

The aim of this investigation was to discover novel PA derivatives
able to discriminate between PAOX and SMOX active sites. Two
series of PAs were therefore selected (Table 1). The first series
included SPM analogues unsymmetrically substituted on one of
the terminal amino groups with different aromatic rings, such as
benzene (compound 1), naphthalene (compound 2), pyridine
(compound 3) or thiophene (compound 4). In addition, to evalu-
ate the role of secondary amino groups of SPM on SMOX/PAOX
selectivity, PAs 5-8 were included in this study. In particular, the
inner nitrogen atoms of compound 4 were replaced with one or
two methylene groups (compounds 5 and 6, respectively) or with
oxygen atoms (compound 7). Compound 8 (Bza-DIADO) is an ana-
logue of compound 1 in which the inner nitrogen atoms were
replaced with methylene groups. Compounds 6 and 8 are of par-
ticular interest, since they are derivatives of 1,12-diaminododecane
(DIADO), a known PAOX inhibitor®>. The second group of com-
pounds includes symmetrically substituted PAs such as N1,N'*-
dibenzyldodecanediamine (9), tetramine methoctramine (10) and
its derivatives 11-14. Methoctramine (10) is a tetramine bearing a
2-methoxybenzyl moiety on the terminal nitrogen atoms; com-
pounds 11-14 are characterised by inner polymethylene chains of
different lengths and features. In particular, compounds 10-14
could give information on the role played by: (i) different lengths
of the methylene chain separating the inner nitrogen atoms
(10-12); (i) the reduction of the inner flexibility of the molecule,
as in compound 13, which bears a more rigid dipiperidine moiety;
(iii) the inner secondary amine functions, by replacing them with
amide groups (compound 14, also known as caproctamine).

Polyamine analogues as potential substrates of SMOX
and PAOX

All the compounds listed in Table 1 were first assayed as potential
substrates; only some of the unsymmetric, monosubstituted SPM
analogues behaved as substrates of SMOX and/or PAOX (see
Table 2). Compound 1 has already been reported to be a substrate
of SMOX and PAOX (1 is named BnSPM in Hakkinen et al.>”).

Table 2 shows that the analogues acting as substrates showed
higher affinity (lower K, values) and specificity for PAOX than for
SMOX, as K, values were in the nanomolar-submicromolar range
for PAOX and micromolar range for SMOX. Compounds 2 and 4
were the best substrates, with K, of 25 and 44 nM for PAOX, and
15 and 10 uM for SMOX, respectively. In particular, the thiophene
derivative of SPM (compound 4) emerged as the best substrate
for SMOX (K,,=10 uM with respect to K., spm=490 uM and catalytic
efficiency (Vmax/Km) 19 times that for SPM). For PAOX, the best
substrate was compound 2, bearing the more hydrophobic and
hindering naphthalene ring (K,=25nM with respect to
Kmniacspm=382nM and catalytic efficiency 12 times that of
N'AcSPM). It is worth noting that, among the SPM derivatives
(1-4), the presence of a less hydrophobic pyridine (3) ring
reduced the affinity for both enzymes.

These results clearly indicated that the presence of an aromatic
ring at one of the terminal amino functions of the SPM chain
maintains - and in some cases increases — the substrate profile
towards SMOX and PAOX. Conversely, substitution of the two
inner nitrogen atoms of the SPM chain with methylene groups
(compounds 5, 6 and 8) or oxygen atoms (compound 7), greatly
reduces the capability of the enzymes to catalyse the oxidative
deamination of these compounds. The poor activity of PAOX for
triamine 5 and the lack of activity of SMOX and PAOX towards
compounds 6 and 8 support and confirm the crucial role of
the inner secondary amine groups of an SPM derivative as a sub-
strate, since their substitution may transform a substrate into
an inhibitor.

Screening and selection of potential inhibitors

Compounds which did not behave like SMOX or PAOX substrates,
such as 6 and 8, were tested as potential inhibitors together with
compounds 9-14; chlorhexidine and DIADO were used as refer-
ence competitive inhibitors**3¢, For the preliminary screening, the
effects of a fixed concentration of the compounds (50 uM) on the
kinetic parameters were evaluated. Table 3 lists K, values and
residual V.« relative to the control sample. These data clearly
show that all the compounds act mainly by decreasing the affinity
of the substrate for both enzymes, with a low or negligible
effect on Vyax (i.e. the catalytic constant). The more effective

Table 2. Kinetic parameters of compounds 1-8 acting as substrates of murine SMOX and PAOX.

SMOX PAOX
Substrate
Ko (LM) Relative Relative Ko (LM) Relative
(KmSPM/KmPA )a Vmax/Kma Vmaxa (KmNIAcSPM/KmPA)El Vrnax/Kma Relative Vmaxa
1* 19+3 9.35 0.32 0.200 + 0.040 2.5 13
(26) (1.9)
2 15+5 129 0.40 0.025 +0.004 12 0.78
(33) (15)
3 245 + 80 0.414 0.108 0.522+0.043 0.48 0.66
(2) (0.7)
4 10+3 19 0.31 0.044 +0.006 6.52 0.75
(49) (8.7)
5 nd.* na? nd. 1.000 +0.250 0.27 0.70
0.4)
6 n.d.c nad nd. € n.d.c nad nd. €
7 Km> 2000 © 0.82 nd. ¢ nd. nad nd.
8 n.d.c nad nd. € n.d. na¢ nd. €

Enzyme activity was assayed in Hepes 50 mM, pH 7.5, at 37 °C and kinetic analysis as described in the “Materials and methods” section.
3Standard substrate: SPM for SMOX (Vimax=90+20nM H,0, min~"; Knspm = 495+130uM) and N'ACSPM for PAOX (Vimax=107+12nmol H,0, min~'mg~"',

KN acspm=382 + 160 nM).
Compound 1 is named BnSPM in Hikkinen et al.’.

‘Not determinable: saturation not reached in the explored range of compound concentration (maxima concentration tested: 2 mM).

4No significant activity at 2mM of tested compound.
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Table 3. Screening of PA analogues as potential inhibitors of SMOX and PAOX.

SMOX PAOX
Compound
Kmapp (HM) Vmax app/ Kmapp (HM) Vmax app/
(Kmapp/KmO) Vmaxo (Kmapp/KmO) VmaxO
Control 495+130 1 0.38+0.16 1
m M
5 1060+ 70 0.77 Substrate Substrate
(2.1)
6 1740 £ 140 0.82 89+12 0.99
(1.84) (234)
7 Poor substrate Poor substrate 60+ 16 1.2
(157)
8 1990 £ 230 0.69 25+2 0.88
(2.1) (66)
9 1135+ 141 1.01 41+221 1.0
(2.3) (108)
10 8940 + 1600 0.67 nd? nd?
(18)
11 7770580 0.71 nd? nd?
(15.7)
12 5820+ 630 0.62 nd? nd?
(11.7)
13 2501 +490 0.69 134+32 0.80
(5.0 (350)
14 598+ 156 0.53 43+9 1.05
(1.21) (112)
DIADO 600+ 100 0.9 340+0.26 1.3
(1.2) 9
Chlorhexidine® 1402 £124 0.9 1.90+£0.12 1.2
(2.8 (5)

Kinetic parameters were determined in the presence of 50 uM of the PA, with the exception of Chlorexidine, in standard assay condi-

tion as described in the “Materials and methods” section.

“Not determinable: saturation not reached in the explored range of substrate concentration (maxima [N'ACSPM] = 0.6 mM).

B[Chlorhexidine] = 5 LM,

compounds were methoctramine and its derivatives (compounds
10-12), in particular towards PAOX: the affinity for the substrate
decreased more than ten times in the case of SMOX and much
more in the case of PAOX (not determinable at this inhibitor con-
centration). Compound 13, bearing a rigid dipiperidine moiety,
and compound 14, containing the inner amide functions, were
very effective in decreasing the affinity of substrate for PAOX (K,
increase of more than two orders of magnitude), but not for
SMOX. The unsymmetrically substituted SPM analogues appeared
in general less effective than methoctramine derivatives, in par-
ticular towards SMOX. Compounds 6, 8 and 9, representing deriv-
atives of DIADO (PAOX competitive inhibitor), reduced the PAOX
affinity for the substrate by about one order of magnitude, being
more effective as inhibitors than their precursor DIADO. On this
basis, compounds 10-13, the most potent in decreasing the affin-
ity of the substrate for SMOX and PAOX, were selected for kinetic
characterisation.

Kinetic characterisation of the most effective inhibitors of SMOX
and PAOX activity

To investigate the type of inhibition of the selected compounds,
the kinetic parameters (Vinax Km and Viax/Kn) of SMOX and PAOX
were determined in the presence of various concentrations of
these PA analogues, with SPM and N'AcSPM as substrates,
respectively. All the tested compounds were found to act as com-
petitive inhibitors, as clearly shown in Figure 1. The Lineweaver-
Burk plots (double reciprocal plots) of the initial rate of reaction in
the presence of various concentrations of methoctramine deriva-
tives (10-13) did in fact show that only the K, values (intercept
on the x-axis represents —1/K,,) change in the presence of the

compounds. Table 4 lists the inhibition constant (K;) and selectivity
(Kispox/Kipaox) values. These results clearly show that methoctr-
amine and its derivatives (10-13) mainly target PAOX, and, in par-
ticular, methoctramine (10), with a K; of 10nM for PAOX vs
1200nM for SMOX (selectivity 1:120), resulted the most potent
and selective inhibitor. The decrease in the length of the inner
polymethylene chain, as in 11 and 12, led to a reduced inhibitory
potency and selectivity (Kispox: Kipaox 9:1 for 12). A sterically con-
strained dipiperidine chain, as in 13 with respect to 10, also
strongly affected inhibitory potency and specificity (K=10nM of
10 vs K=440nM of 13 for PAOX). In addition, all these methoctr-
amine derivatives were found to be more potent PAOX inhibitors
than the reference inhibitors (chlorhexidine and DIADO). In the
case of SMOX, compounds 10-13 showed increased potency with
respect to DIADO and similar potency with respect to
chlorhexidine.

Docking simulations of selected compounds on PAOX
crystal structure

The structural bases of the binding of selected substrates and
inhibitors to PAOX and SMOX were analysed by docking simula-
tions via AutoDock Vina (see Materials and Methods for details).
Figure 2 shows the PAOX complexes obtained by docking simula-
tions with substrates 2 and 4. In both cases, the compounds bind
to the PAOX active site with a conformation very similar to that
observed in the PAOX crystal structure for substrate N'AcSPM, the
terminal primary amino group of the compound being located
near Phe201 and the hydrophobic moiety on the other end of the
molecule contacting Phe375. Both compounds are characterised
by the presence of secondary amino groups and this is a
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Figure 1. Compounds 10, 11 and 13 act as competitive inhibitors of murine PAOX and SMOX. Double reciprocal plots of PAOX activity in the presence of various con-
centration of compound 10 (A), 11 (B) and 13 (C); Double reciprocal plots of SMOX activity in the presence of various concentration of compound 10 (D), compound
11 (E) and 13 (F). Continuous lines are the results of linear regression analysis of experimental data (r > 0.98). The K; values for the competitive mode of inhibition
were calculated by global fit analysis (GraphPad 5.0 software) and are reported in Table 4.

prerequisite for a PA to act as a substrate of animal polyamine
oxidases, which, in fact, oxidise the carbon atom in eso with
respect to a secondary amino group. Thus, the binding mode
observed and the vicinity of the carbon atom in eso of the com-
pounds to the redox-active N5 atom of FAD (as observed for the
experimental structure of the PAOX- N'AcSPM complex), explain
fairly well their ability to act as substrates.

Inhibitors 10-13 are all predicted to bind in the PAOX active
site, matching the competitive nature of their inhibition. Analysis
of the docking complexes (Figure 3) shows that all the inhibitors
mainly bind through hydrophobic interactions with Trp62 and
Phe375. However, in the case of 10, a hydrogen bond was

Table 4. Inhibition constant values of the most potent methoctramine deriva-
tives and comparison with the reference inhibitors, chlorhexidine and DIADO.

SMOX PAOX Selectivity

Inhibitor Ki (uM) K; (nM) Kismox: Kipaox
10 1240.1 100+ 1.5 120:1

1 1.9+0.2 47+5 40:1

12 46+02 525+84 9:1

13 75+27 439+84 17:1
Chlorhexidine 3.8+0.2 1.25+06 x 10° 31
DIADO >10° 2 6.3+0.8 x 10° >150:1

Kinetic experiments and analysis as described in the “Materials and meth-

ods” section.

*from Bianchi et al.>>.
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Figure 3. Best docking poses obtained for the inhibitors structurally related to methoctramine (10-13) in complex with PAOX. Compound 10 in panel A, 11 in B, 12
in C and 13 in D. Hydrogen bond between Tyr430 and the inhibitor 10 is highlighted in green and indicated by a black arrow.

Figure 4. Representative docking poses obtained for the substrates 2 (A), 4 (B) and SPM (C) onto the SMOX structural model. In each case the representative pose
shown in the figure is one of the nine top-scoring poses according to Autodock Vina scoring function.
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Figure 5. Representative docking poses obtained for the inhibitors 10-13 in complex with the SMOX structural model. Compound 10 in panel A, 11 in B, 12 in C and
13 in D. In each case the representative pose shown in the figure is one of the nine top-scoring poses according to Autodock Vina scoring function.

observed between one of the inhibitor's amino groups and
Tyr430. In addition, the latter inhibitor adopts a “folded” conform-
ation within the PAOX active site, probably due to its length, as
the 2-methoxybenzyl rings stack on to each other on Trp62. This
intramolecular interaction and the hydrogen bond formed with
Tyr430 may lie at the root of the high affinity for PAOX measured
for this inhibitor.

For completeness, docking simulations of substrates and
inhibitors were also carried out on a recently published SMOX
molecular model based on the PAOX crystal structure®. Figure 4
shows the SMOX complexes obtained by docking simulations
with substrates 2, 4 and SPM. Both the synthetic substrates and
the natural substrate are predicted to bind through hydrophobic
interactions with Trp225. Additional electrostatic interactions
with His82 and Glu205 are predicted to stabilise compound 2.
Similarly, both 4 and SPM are predicted to interact with Glu208.
It is worth noting that, in SMOX, the primary amino group points
towards the FAD cofactor, unlike PAOX. Also in the case of
SMOX, inhibitors 10-13 are all predicted to bind in the active
site, once again matching the competitive nature of their inhib-
ition. Analysis of the docking complexes (Figure 5) indicates that
all the inhibitors mainly act through hydrophobic interaction
with Trp225. An additional hydrophobic interaction with Trp80
was observed in the case of the compound 10 complex, the
most potent according to the kinetic results. Lastly, in the case
of compounds 10-12-SMOX complexes, electrostatic interactions
were also observed between the inhibitors’ secondary amine
groups and Glu208.

Biological activity of methoctramine as inhibitor: selectivity
towards other AOs and in cell activity

In order to evaluate the potential effects of the PA analogues on
a cellular system and then in a more complex biological system, it
is important to collect information on their selectivity also on
other types of amine oxidases. In Table 5, the behaviour and the
kinetic parameters of compounds 2, 4 (the best SMOX and PAOX
substrates), 10 and 13 (the best inhibitors) were compared with
those previously obtained with human semicarbazide-sensitive
amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1)* and
MAOs (human MAO A and MAO B)¥. It clearly appears that com-
pound 10 emerged as the best and most selective PAOX inhibitor.
The less potent and selective compound 13 (Kispox/Kipaox =17/1)
was previously found to be a very poor, almost unaffected inhibi-
tor of MAOs and SSAO/VAP-1 (K;>100uM) in comparison with
PAOX and SMOX. It is to emphasise that the selectivity profile of
methoctramine versus the other amine oxidases is much better in
comparison with that of DIADO, which is a selective murine PAOX
inhibitor, (K=8 uM for PAOX vs K=1mM for SMOX)*3, but also an
excellent substrate of the human SSAO/VAP-1 (K,,=13 uM) and of
MAO A°%, differently from methoctramine.

In addition, Table 5 shows that compound 2, the best PAOX
substrate, is not active on MAOs and SSAO/VAP-1, whereas com-
pound 4, the best SMOX substrate, was found to act as a competi-
tive inhibitor of MAO B.

On these bases, we focussed attention on the most
selective compound 10 and evaluated its inhibitory activity in the
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Table 5. Inhibition constant (K)) or K,, values of the most effective inhibitors (10 and 13) or substrates (2 and 4) of SMOX and PAOX in comparison with the K; or

K., values for human MAO A, MAO B and SSAQ/VAP-1.

Compound MAO A MAO B SSAO/VAP-1 SMOX PAOX
2 na.? n.a.P n.a.P Km2=15uM Km2=25nM
Substrate Substrate
4 K:=226 uM ° Ki=23 umP n.e? Ko =10 M Kpp,a = 440M
Substrate Substrate
10 n.a.’ n.a.* n.a.>* Ki=1.2uM Ki=10nM
13 K> 100 uM K;=323 uM© Ki=111 uM® Ki=7.5uM K;=439nM
n.a. not active as substrate or inhibitor up to 50 uM concentration.
Bfrom Bonaiuto et al. 2013%.
“from Bonaiuto et al. 2012,
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Figure 6. Amine oxidase activity and immunodetection of PAOX protein in HT22
cell lysate. (A) Amine oxidase activity was carried out in Hepes buffer, using the
Amplex Red-horseradish peroxidase assay method, at 37°C and specific sub-
strates for the different type of amine oxidases: tyramine (TmM) for MAOs;
N1AcSPM (0.25 mM) for APAOX; SPM (10mM) for SMOX and Putrescine (10 mM)
for diamine oxidases. Activity with tyramine was decreased to 2% with respect to
control sample, after pre-incubation of sample with pargyline (specific MAO
inhibitor); activity with NTAcCSPM was no detectable after pre-incubation of sam-
ple with MDL 72572. The data were presented as the means + SD. Statistical sig-
nificance: p-values <.05 when control (no inhibitor) compared with sample pre-
incubated with inhibitor (paired Student’s t-test). (B) Immunodetection of PAOX
protein in HT22 cells lysate. (a):SDS-PAGE 10%; (b) nitrocellulose membranes
immunostained with anti-PAOX. Lane 1: lysate from HT22 cells (20 ng); Lane 2:
purified mouse PAOX (1 pg); in Lane 3: purified mouse SMOX (1 pug).

mouse hippocampal HT22 cell line. This cell line was chosen
because, with N'AcSPM as substrate, significant PAOX activity
has been found in its cell lysate. In addition, methoctramine (10)
has already been evaluated on HT22 cells (at micromolar
concentrations) as an M2/M4 muscarinic receptor antagonist®®,
proving that this cell line, widely used to evaluate neuroprotective
agents®®®2, possesses the property of correcting cholinergic
neuron hypofunctionality by increasing the release of
acetylcholine.

The presence of other amine oxidases in HT22 cell lysates was
evaluated with specific substrates: tyramine for MAO, SPM for
SMOX, and putrescine for diamine oxidase. The results
(Figure 6(A)) confirmed the known presence of MAOs (as previ-
ously reported®') and the absence of SMOX and diamine oxidase

describe in the “Experimental procedure” Polyamine oxidase activity was calcu-
lated as the difference between the change in fluorescence of samples in the
presence of substrate and the corresponding control sample (absence of sub-
strate). Results were normalised to protein content of cells. Continuous line is the
result of the best fitting of the “dose-response” curve to experimental data using
the SigmaPlot 9.0 software (ICso= 160+ 10 nM; r > 0.98; p<.05).

activity. In addition, activity on N'AcSPM was found to be inhib-
ited by pre-incubation with the irreversible inhibitor MDL 72527,
supporting the presence of PAOX. The expression of PAOX was
also demonstrated by immunodetection of the protein in HT22
lysates (Figure 6(B)). On this basis, the PAOX activity was eval-
uated on whole HT22 cells, with N'AcSPM as substrate, in both
the presence and absence of 10. The results (Figure 7) confirm
the effectiveness of 10 in inhibiting PAOX activity in this cellular
model, with an IC;p = 160+ 10nM, about 16 times higher than
the K; value found with the recombinant enzyme in vitro.

Discussion

With the aim to develop novel anticancer agents and therapeutic
approaches, many researches have been focussed on the design
of PA analogues to target the catabolic PA pathway''*'%'8 In
particular, the discovery of PA analogues acting as substrates or
inhibitors of PAOX and SMOX deserves great interest in the search
of anticancer and chemopreventive agents.

According to the literature, a novel anticancer pharmacological
approach proposes the use of PA analogues as substrates of poly-
amino oxidases, to induce cell death. It has been demonstrated
that, after bovine serum amino oxidase delivering into B16 melan-
oma cells, a slow release of endogenous SPM metabolites (H,0,
and acrolein) was induced, leading to apoptosis and inhibition of
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tumour growth'#'*3%4 |n previous studies, among the various
types of PA analogues investigated to discover selective SMOX vs
PAOX substrates®*>"%5%7 the pentamine N'-(3-aminopropyl)-N*-
(3-((3-aminopropyl)amino)propyl)butane-1,4-diamine  pentahydro-
chloride (3343 in Takao et al.”) emerged as a very good substrate
of SMOX (Vhax/Knm about 2 order of magnitude higher than that
for SPM and no data on PAOX available).

On this basis, in the present study, unsymmetrically and sym-
metrically substituted polyamines structurally related to SPM
(compounds 1-9) and methoctramine (compounds 10-14) were
evaluated by a kinetic approach as potential substrates or inhibi-
tors of SMOX and PAOX enzymes. Among the unsymmetrical SPM
derivatives, we found that the presence of the naphthalene and
thiophene ring at one terminal end (compounds 2 and 4, respect-
ively) confers a strong affinity and very high catalytic efficiency for
PAOX and SMOX, respectively, much higher than those of their
physiological substrates, N'AcSPM and SPM.

According to the new pharmacological approach described
above, exploiting the amino oxidase activity on PA substrates,
compound 2, which joins both high catalytic efficiency and select-
ivity in comparison with other amine oxidases (Table 5), could be
considered a valuable starting point for developing new anti-
cancer agents. The novel substrates (PA analogues, free or after
conjugation with nanoparticles) could be delivered into cancer
cells highly expressing SMOX and/or PAOX to generate in situ
cytotoxic products. In addition, the low K,, and high V,,,/K,, val-
ues of substrates, such as compounds 2 and 4, could allow their
use in clinical application at low concentration, reducing drastic-
ally side effects'*3,

Interestingly, several studies have highlighted the relevant role
of PAOX and SMOX in carcinogenesis, and the level of these
enzymes has been or high?®%®% in some types of cancers. The
aberrant activation of PA-driven oxidative stress due to high level
of SMOX and leading to tumourigenesis, supports a different and
emerging pharmacological approach concerning the development
of PA analogues capable to selectively inhibit SMOX or PAOX.
These inhibitors could be valuable probes to investigate the car-
cinogenesis pathway and could have potential as chemopreven-
tive agents'®%°,

In this study, we found that unlike unsymmetrical SPM ana-
logues, the symmetrically substituted methoctramine analogues
behaved mainly as PAOX inhibitors.

The main finding emerging from our analyses is that com-
pound 10 (methoctramine), already known as a selective M2/M4
muscarinic receptor antagonist’®, acts also as a potent reversible
murine PAOX inhibitor (K=10nM on the recombinant enzyme),
with excellent selectivity with respect to SMOX and other amine
oxidases (MAOs and SSAO/VAP-1). To our knowledge, this is the
most potent competitive inhibitor of PAOX found so far.
Preliminary biological data support its effectiveness at submicro-
molar concentration in inhibiting PAOX activity in HT22 cells.

Taking into account the low cytotoxicity of compound 10
(methoctramine)”"”? and that, at a concentration of 10 uM, it did
not significantly affect other targets of PA metabolism (such as
ODC and SSAT)”', methoctramine emerged as a very promising
tool in the design of potential drugs targeting the PA catabol-
ism pathway.

The availability of selective inhibitors of PAOX could enable to
discriminate between the role played by SMOX compared to
PAOX in the inflammation-induced carcinogenesis and in other
pathologies, in view of new therapeutic applications.

Further studies are necessary and are in progress to evaluate
the novel SMOX and PAOX substrates (compounds 2 and 4) in

cancer cells and to deeply investigate the inhibitory behaviour of
methoctramine in different cellular systems and in systems
expressing both SMOX and PAOX.
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