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A B S T R A C T

This study investigated the ability of magnetic resonance spectroscopy (1H-MRS) of posterior cingulate cortex
(PCC) and brain volumetry to predict the progression from mild cognitive impairment (MCI) to Alzheimer's
Disease (AD) on the basis of clinical classification at 2 years follow-up. Thirty-eight MCI patients, eighteen
healthy older adults and twenty-three AD patients were included in this study. All participants underwent a
brain-MR protocol (1.5 T GE scanner) including high-resolution T1-weighted volumetric sequence (isotropic
1mm3). Voxel-wise differences in brain volumetry were evaluated using FreeSurfer software and all volumes
were normalized by the total intracranial volume (TIV). Careful localization of 1H-MRS volume of PCC was
performed and data were processed with the LCModel program. MCI patients underwent a complete neu-
ropsychological assessment at baseline and were clinically re-evaluated after a mean of 28 months; twenty-six
MCI patients (68.4%) converted to AD and twelve remained stable.

At baseline these two MCI subgroups did not differ in the global cognitive level (Mini Mental State
Examination, MMSE) or in any of the other cognitive domains; the NAA/ mI ratio in the PCC was able to
differentiate MCI converters from those MCI that did not develop AD (p = 0.022) with a level of accuracy (AUC
area) of 0.779. A significantly reduced volume of parahippocampal gyrus (p = 0.010) and fusiform gyrus
(p = 0.026) were found in the converter MCI subgroup compared to the stable MCI subgroup. The combined use
of both N- acetyl-aspartate (NAA)/myo-Inositol (mI) ratio and volume of parahippocampal gyrus, increases the
overall accuracy (AUC = 0.910) in predicting the conversion to AD two years before the development of clinical
symptoms. Additional longitudinal studies with a broader representative sample of MCI patients and longer
follow-up might be helpful to confirm these results and to elucidate the role of each parameter in predicting the
possible progression to AD, and also to all the other non-AD dementia subtypes.

1. Introduction

Mild Cognitive Impairment (MCI) is an intermediate clinical stage

between the expected cognitive decline of normal aging and the very
earliest features of dementia (Albert et al., 2011). Longitudinal studies
provide evidence for different possible progression of MCI patients,
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ranging from the development of Alzheimer's Disease (AD) or non-AD
dementias to the stabilization or even reversion of cognitive impair-
ments (Mitchell and Shiri-Feshki, 2009). MCI is a very complex and
highly nuanced clinical phenomenon with emerging evidence of the
heterogeneity regarding the neurological, neuropsychological and un-
derlying neuropathology (Petersen et al., 2009; Libon et al., 2010). The
term “MCI due to AD” denotes a subgroup of patients with MCI with a
high likelihood of underlying AD pathology, however the early dis-
tinction of these patients from those MCI that may present other causes
of cognitive decline remains a big challenge. Today, there is converging
belief that effective pharmacological and non-pharmacological treat-
ment, such as cognitive stimulation, transcranial Direct Current Sti-
mulation (tDCS) or repetitive Transcranial Magnetic Stimulation
(rTMS) should focus on early stages of the disease (Freitas et al., 2011).

In clinical practice, a combination of clinical, neuropsychological
and multimodal neuroimaging findings may offer at the MCI stage
substantial information on the possible underlying pathology, thus
leading to the early recognition of prodromal AD cases. In the last years,
while a large body of literature focused on the progression from normal
aging to MCI, thus on the early diagnosis of MCI, only fewer studies
have investigated with advanced MRI techniques the specific features
that may help predicting the progression from MCI to dementia.
Distinguishing “MCI due to AD” from the other MCI subgroups is still a
matter of debate.

Proton Magnetic resonance spectroscopy (1H-MRS) is an advanced
non-invasive MR technique able to detect metabolic neurodegenerative
changes by the quantification of N acetyl-aspartate (NAA), neuro-ax-
onal marker, and myo-Inositol (mI), glial marker (Oz et al., 2014). 1H-
MRS technique show tissue damage that may precede the evidence of
atrophy on morphological imaging and the accuracy of this technique
was demonstrated by the correlation of metabolic MR biomarkers with
clinical and neuropathological severity in neurodegenerative disorders
such as Alzheimer's disease (Kantarci et al., 2008). In addition, the MRS
Consensus Group have indicated the 1H-MRS as a complementary tool
to conventional MRI for diagnosing and monitoring disease progression
and treatment response in neurodegenerative disorders (Oz et al.,
2014).

Kantarci and colleagues reported that quantitative MRI and 1H-
MRS, specifically hippocampal volume and NAA/mI of Posterior
Cingulate cortex (PCC) are good predictors of MCI in cognitively
normal older adults (Kantarci et al., 2013). In another recent study,
Warangai and colleagues showed that cognitively normal elderly sub-
jects with low NAA/mI might be at risk of progression to develop MCI
(Waragai et al., 2017). All these findings highlight the role of these
neuroradiological markers in predicting the development of neurode-
generative disorders in healthy subjects.

Furthermore, the PCC plays a key role in cognitive functioning,
specifically in episodic memory retrieval and attention, and it is in-
volved in maintaining the balance between internal and external
thought (Leech and Sharp, 2014). Previous studies demonstrated that
structural and functional abnormalities in this region are associated
with cognitive impairments in neurodegenerative disorders (Buckner
et al., 2005). The PCC is a highly connected and metabolically active
brain region, therefore, a detailed understanding of the effects of neu-
rodegeneration on the PCC is likely to be important, especially at the
early stage.

The aim of our study was to investigate the ability of 1H-MRS of PCC

and brain volumetry to predict the progression from MCI to AD on the
basis of clinical classification at 2 year follow-up, by evaluating brain
metabolites changes and reduction of specific brain volume regions at
baseline.

2. Materials and methods

2.1. Participants

This retrospective study included 38 MCI patients (20 males; age,
mean ± standard deviation = 73.9 ± 7.4 years) and 25 AD patients
(15 males; age 70.8 ± 9.3 years). Eighteen healthy older volunteers
(10 males; age 65.4 ± 9.5 years) without evidence of neurological,
psychiatric or history of clinically significant diseases known to affect
brain were also included. All patients were referred between 2009 and
2016 to the Functional MR Unit, S.Orsola-Malpighi Hospital, Bologna
(IT), to perform brain MR investigation as part of the diagnostic
workup. Controls were selected from the MR Functional Unit database
of healthy volunteers (Ethical Committee approval Cod.: 120/2014,
7.10.2014).

Diagnosis were performed by neurologists experienced in neurode-
generative disorders, according to international criteria for MCI
(Petersen, 2004) and AD (McKhann et al., 2011).

Clinical and neuropsychological data were collected from clinical
records at baseline and after 24 months; the maximum interval between
the baseline and the MR scan was three months. At follow-up, all MCI
patients that evolved to Parkinson's disease, frontotemporal dementia,
Lewy bodies disease or to any other neurodegenerative disorders dif-
ferent from AD were excluded from the study. Demographic and clinical
features of cases and controls are summarized in Table 1. All subjects
gave consent to personal data processing for research purposes and the
protocol was approved by the local Ethical Committee (v. 1.0 April
2010).

2.2. Neuropsychological assessment

All MCI patients were administered the following standardized
neuropsychological battery: Mini Mental State Examination (MMSE)
(Folstein et al., 1975), a general screening test; Rey Auditory Verbal
Learning Test (RAVLT) (Carlesimo et al., 1996) and visual memory test
(Carlesimo et al., 1996), verbal memory tests; Analogies test (Gallassi
et al., 2002), a verbal reasoning test; Verbal Associative Fluency Test
(Carlesimo et al., 1996) and Category Words Fluency Test (Novelli
et al., 1986), language tests. Furthermore, to explore executive func-
tion, spatial attention and visuo-constructive abilities, Stroop test
(Caffarra et al., 2002), Barrage test (Gallassi et al., 2002), and the Copy
Drawing test (Carlesimo et al., 1996) were administered. The severity of
depression and anxiety symptoms was evaluated using Beck Depression
Inventory (BDI) (Beck et al., 1961) and the State-Trait Anxiety In-
ventory (STAI X1 and STAI X2) (Spielberger, 1980).

2.3. MRI protocol acquisition

Brain MR studies were performed using a 1.5 Tesla GE Medical
Systems Signa HDx 15 system equipped with a quadrature birdcage
head coil. Structural imaging included axial FLAIR T2-weighted images
(repetition time, TR = 8000 ms; inversion time, TI = 2000 ms; echo

Table 1
Demographic and clinical features of the study groups.

Healthy controls (N = 18) MCI non-converter (N = 12) MCI converter (N = 26) AD (N = 25)

Gender (M/F) 10/8 6/6 14/12 15/10
Age M (SD) 65.4 (9.5) 74 (8.3) 73.8 (7.2) 70.8 (9.3)
Follow-up in months M(SD) - 29 (22.6) 27.2 (12.0) -
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time, TE = 93.5 ms; 4 mm slice thickness with no inter-slice gap), FSE
coronal T2-weighted images (TR = 7000 ms TE = 100 ms, 4 mm slice
thickness) and 3D volumetric T1-weighted FSPGR images
(TR = 12.5 ms, TE = 5.1 ms, TI = 600 ms, 25.6 cm2 FOV; 1 mm3 iso-
tropic voxels). Single voxel 1H spectra were obtained from the posterior
cingulate cortex (Volume Of Interest, VOI = 2.0 × 2.0 × 2.0 cm)
(Fig. 1) using the three planes of high resolution 3D T1FSPGR sequence
to optimise the localisation. Suppressed-water proton MR spectra were
acquired using the PRESS localization sequence (PROBE) with
TR = 4000 ms, TE = 35 ms, and averaging 128 FIDs for each acquisi-
tion (Lodi et al., 2009).The total acquisition scan time was about
40 min. Brain MR images obtained from each subject were visualized by
an expert neuroradiologist (RL) in order to exclude other or significant
abnormalities in patients and controls.

2.4. Volumetric analysis

Voxel-wise differences in brain volumetry were evaluated on 3D T1
FSPGR images using the freely available software FreeSurfer v5.3.0
(http://surfer.nmr.mgh.harvard.edu/) and all volumes were normal-
ized by the total intracranial volume (TIV) of each participant.

2.5. Proton MR spectra analysis

The quality of each 1H MR spectrum was visually assessed by an
expert physicist (ClT) blind to the clinical condition, according to
standardized quality criteria (Oz et al., 2014). Peak areas of
NAA + NAA glutamate (NAA), Cr + phospho-Cr (PCr), glycero-
phospho Cho (GPC) + phospho Cho (PCh), and mI, were calculated
using version 6.3 (http://www.lcmodel.com/) of the fitting program
LCModel (Provencher, 2001). Automatic quantitation of localized in
vivo 1H spectra with LCModel, a fully user-independent software, that

analyzes spectra as a linear combination of complete model spectra of
metabolite solutions in vitro. Metabolite content was expressed relative
to Cr + PCr. NAA was also expressed relative to mI. The exclusion
criteria for metabolite evaluation was an LCModel estimated fitting
error > 20%, this being a reliable indicator of poor quality spectra
(Zanigni et al., 2015).

2.6. Statistical analysis

The normality of the distribution of all parameters was tested using
Shapiro-Wilk test. The gender distribution was compared between
groups using Pearson's χ2 -test. The non-parametric Mann-Whitney U
test or Kruskal–Wallis test, followed by a Bonferroni post-hoc test for
multiple comparisons, were used to compare neuropsychological data
and quantitative MR parameters (all cortical and subcortical regions
obtained with FreeSurfer) between groups. In order to determine the
predictive accuracy of the parameters in discriminating MCI converters
from non-converters, the non-parametric area under receiver operating
characteristics (ROC) curve was calculated. Lastly, logistic regression
analysis was used to estimate the probability of conversion to AD as a
function of brain volumetry parameters and metabolite ratios.
Furthermore, to analyse the association between metabolite ratios,
brain volumetry and cognitive functions, Spearman's correlation coef-
ficients were calculated between all variables. Statistical significance
was set at p < 0.05 and all analyses were performed using IBM SPSS
v.25 and Stata, version 15.

3. Results

3.1. Demographic, clinical and cognitive data

After a mean follow-up of 28 months, 26 MCI patients (68.4%)

Fig. 1. Above: example of the posterior cingulate cortex voxel localization projected onto sagittal plane of subject's own T1-wimage. Below: example of 1H-MR
spectra indicating the resonances of interest (NAA: N-acetyl aspartate, ml: myo-Inositol) expressed as parts of million (ppm). Left: MCI non-converter, right: MCI-to-
AD converter.
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converted to AD, and 12 MCI remained stable. At baseline the two MCI
subgroups did not differ in the global cognitive level (MMSE) or in any
of the other cognitive domains (Table 1). Demographic and clinical
characteristics of the study groups are summarized in Table 2. No brain
MRI abnormalities were found in healthy controls and no patients
showed brain lesions suggestive of secondary causes of neurological
diseases.

3.2. Brain volumetry

Compared with healthy controls, MCI and AD patients showed a
widespread pattern of volume reduction in several temporo-parietal
areas. One AD patient was excluded from this analysis due to sub-
optimal FreeSurfer brain MR parcellation.

When we split the MCI group into two subgroups the only para-
meters that were able at baseline to significantly discriminate converter
MCI from stable MCI were the volume of parahippocampal gyrus and
the volume of fusiform gyrus.

Parahippocampal gyrus was also able to discriminate AD patients from
healthy controls with a positive predictive value (PPV) of 91.3%; fusiform
gyrus was able to discriminate both group with a PPV of 87%. Volumetric
analysis showed similar volumes between stable MCI and healthy controls
(parahippocampal gyrus mean 1771.17 ± 220.89 mm3 vs 1857.06
± 254.75 mm3; fusiform gyrus mean 7496.58 ± 1170.45 mm3 vs
8202.44 ± 781.82 mm3). Similar volumes were also found between
converter MCI and AD patients (parahippocampal gyrus mean
1448.08 ± 235.09 mm3 vs 1323.96 ± 349.98 mm3; fusiform gyrus
mean 6600.46 ± 1071.01 mm3 vs 6421.42 ± 1235.61 mm3) (Fig. 2).

A significantly reduced volume of parahippocampal gyrus
(p = 0.010) and fusiform gyrus (p = 0.026) were found in the con-
verter MCI subgroup compared to the stable MCI subgroup.

The areas under the ROC curve showed respectively a good accu-
racy for the parahippocampal gyrus (AUC = 0.853, 95% CI
0.711–0.994) in discriminating the two MCI subgroups and a lower
accuracy for the fusiform gyrus (AUC = 0.705, 95% CI 0.506–0.904)
(Fig. 3).

The optimal cut-off for the parahippocampal gyrus volume that
balanced sensitivity and specificity in discriminating converters from
non-converters was ≤1604mm3. At this cut-off the sensitivity was
84.6%, the specificity 83.3% and the PPV 91.7%.

For the fusiform gyrus the cut-off was ≤7132mm3, with a sensi-
tivity of 73.1%, a specificity of 75.0%, and a PPV of 86.4%. It should be
underscored that for both parameters, parahippocampal gyrus and

fusiform gyrus volume, lower values predicted a higher probability of
conversion to AD.

3.3. Proton MR spectroscopy of the PCC

The NAA/ mI ratio in the PCC differentiates healthy older adults
(mean 1.76 ± 0.17) from MCI (mean 1.56 ± 0.38) (p = 0.011), but
also MCI patients from AD (mean 1.32 ± 0.25) (p = 0.038). This value
was able to discriminate AD patients from healthy controls with a PPV
of 95%. Furthermore, this metabolites ratio was also able to dis-
criminate at baseline MCI converters (mean 1.42 ± 0.23) from those
MCI that did not develop AD (mean 1.85 ± 0.47) (p = 0.022). ROC
curve analysis showed an overall accuracy of 0.779 (95% CI
0.586–0.972). The optimal cut-off was ≤1.52, with a sensitivity of
76.9%, a specificity of 75.0% and a PPV of 87% (Fig. 3).

3.4. Predictive accuracy using combinations of parameters

We carried out a further analysis to determine whether an incre-
mental accuracy could be achieved by combining the parameters. Z-
scores were calculated for each parameter and a binary logistic stepwise
regression analysis was performed. The predicted probability of con-
version obtained from the model using parahippocampal gyrus and
NAA/mI (fusiform gyrus was removed because it was no longer sig-
nificant), was used in a ROC analysis. The overall accuracy (AUC area)
in discriminating the two MCI subgroups obtained by combining
parahippocampal gyrus and NAA/mI increased to 0.910 (95% CI
0.815–1.000). The optimal cut-off was ≤0.69, with a sensitivity of
84.6%, a specificity of 91.7% and a PPV of 95.6% (Fig. 3).

The calculator of the Supplementary Table provides the probability
of conversion to AD estimated using logistic regression models
(Supplementary material).

3.5. Correlation analysis

A significant correlation was found between the volume of the
parahippocampal gyrus and two measures of memory, specifically
verbal short-term memory (r = 0.35, P = 0.035) and verbal long-term
memory (r = 0.34, P = 0.039). The scores obtained for the short-term
memory task also correlated with the fusiform gyrus volume (r = 0.34,
P = 0.039). No significant correlations were found between metabolite
ratios and cognitive functioning.

4. Discussion

The present study highlights that alterations of metabolite levels of
PCC, specifically NAA/ml, showed high accuracy not only in the dis-
crimination between healthy controls, MCI and AD, but also in pre-
dicting the possible progression to AD in a group of MCI patients. These
findings are in line with previous cross-sectional studies that showed
increased level of mI as an early marker of neurodegenerative changes
in patients with MCI and decreased level of NAA and further elevated
mI in AD patients (Oz et al., 2014; Miller et al., 1993).

Interestingly, volume reduction of parahippocampal gyrus and fu-
siform gyrus were also able to discriminate at baseline stable MCI from
those MCI that subsequently converted to AD and these volumes are
associated with memory deficits in the whole sample. Echavarri and
colleagues suggested that parahippocampal volume discriminates
better than hippocampus between cases of healthy aging, MCI, and AD,
in particular, in the early phase of the disease (Echávarri et al., 2011).
Furthermore, these results also confirm Li and colleagues study that
demonstrated the role and the involvement of parahippocampal cortex
in memory encoding and retrieval (Li et al., 2010). Previous studies
showed that the hippocampal subregions uniquely contribute to cog-
nitive processes (Kesner et al., 2004), and are differentially affected by
AD pathology over time (Hara et al., 2013). The hippocampus is

Table 2
Neuropsychological data of MCI converter vs MCI stable at baseline (group
comparison: Mann Whitney U test).

Cognitive tests MCI converter M
(SD)

MCI non-converter M
(SD)

P value

MMSE 25.9 (2.7) 26.8 (2.4) 0.341
RAVLT - immediate 25.2 (7.3) 31.4 (10.3) 0.067
RAVLT - delayed 2.29 (2.9) 5.5 (3.5) 0.014
Visual memory 16.9 (3.7) 17.2 (3.4) 0.773
Analogies 13.7 (4.1) 15.0 (2.7) 0.336
Phonemic fluency 24 (10.6) 27.0 (9.7) 0.420
Semantic fluency 21.6 (7.3) 23.7 (6.1) 0.173
Stroop (time) 41.8 (20.9) 34.0 (10.9) 0.471
Barrage (time) 80.3 (39.9) 77.6 (26.7) 0.920
Barrage (error) 4.2 (5.9) 1.4 (1.2) 0.481
Copy drawing 9.5 (2.3) 9.4 (2.8) 0.959
BDI 12.9 (12.0) 12.0 (9.0) 0.967
STAI X1 (trait) 45.8 (9.6) 41.1 (9.1) 0.482
STAI X2 (state) 41.8 (11.3) 38.8 (9.9) 0.687

P < 0.003 (correction per multiple comparisons).
MMSE = Mini Mental State Examination; RAVLT = Rey Auditory Verbal
Learning Test; BDI = Beck Depression Inventory; STAI = State-Trait Anxiety
Inventory.
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comprised of several subfields including the dentate gyrus, subiculum,
and cornu ammonis subfields 1–4 (CA1, CA2, CA3, and CA4)
(Duvernoy, 2005). Some studies have reported subregion-specific hip-
pocampal atrophy related to the presence and spread of neurofibrillary
tangles in the hippocampal structures (Greene and Killiany, 2012; Hara
et al., 2013). Recently, Blanken and colleagues demonstrated that
hippocampal atrophy was strongly associated with AD diagnosis and
neuronal loss (Blanken et al., 2017). Specifically, the most pronounced
associations spanned the locations corresponding to the CA1 and sub-
iculum subfields, which are thought to be the earliest and most severely

affected subfields in AD (Schönheit et al., 2004). Authors conclude that
atrophy in these two subfields is most predictive of future conversion
from healthy controls to MCI and from MCI to dementia (Apostolova
et al., 2006; Apostolova et al., 2010).

The present study shows that parahippocampal gyrus, a structure
adjacent to the subiculum, can be a valuable marker of early neuro-
degeneration. Logistic regression models using the volume of para-
hippocampal gyrus, estimated in a group of MCI patients the prob-
ability of conversion to AD with a PPV of 91.7%. These data indicate
that once AD-related parahippocampal atrophy is prominent enough in

Fig. 2. Boxplots showing the distribution of NAA/mI, parahippocampal volume and fusiform gyrus volume in healthy controls, MCI stable, MCI converter and AD
patients.
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MCI patients, further cognitive decline and loss of functional in-
dependence is imminent. In addition, alterations of NAA/mI in the PCC
are also likely to be an important finding in this study, estimating the
probability of conversion to AD with a PPV of 87%. The PCC forms a
central node in the default mode network (DMN) of the brain, and
previous studies demonstrated that the connections between the PCC
and the hippocampus areas are altered at a very early stage of AD (Zhou
et al., 2008). Recently, Ward and colleagues showed that resting-state
connectivity between the hippocampus and PCC is indirect and medi-
ated by the parahippocampal gyrus (Ward et al., 2014). Authors high-
light that parahippocampus, rather than the hippocampus, is the pri-
mary hub of the DMN in the medial temporal lobe (MTL), therefore, it
may prove to be a particularly promising biomarker of early Alzhei-
mer's disease-related network dysfunction. Based on current models of
biomarkers of AD pathophysiology (Jack Jr et al., 2013) our results
confirm that 1H-MRS and MRI-derived marker of neurodegeneration
are useful in short-term prognosis of MCI patients. Moreover, we de-
monstrates that the combined use of both NAA/mI and volume of
parahippocampal gyrus, increases the accuracy in predicting the con-
version to AD. These results further corroborate those from emerging
post-mortem studies that explore this temporal dissociation between
the neuropathological and clinical changes (Suemoto et al., 2017).

However, our study is limited by its small sample size, therefore,
additional longitudinal studies with a larger representative sample of
MCI patients and longer follow-ups might be helpful to confirm these
results and to elucidate the role of each parameter in predicting the
possible progression to AD, but also to all the other non-AD dementia
subtypes. Future evidence is needed to better determine whether these
findings are generalizable to clinical practice.

5. Conclusion

Predicting the possible evolution from the prodromal MCI stage to
dementia is a big challenge for both research and clinical practice.
Conversion to dementia is a primary outcome measure in interventional
clinical trials and predictors of time to conversion may serve as ‘sur-
rogate endpoints’. Furthermore, predictors of AD are also of pivotal

importance in clinical practice by assisting clinicians during patient
work-up.
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