
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

BPPLIB: a library for bin packing and cutting stock problems / Delorme, Maxence; Iori, Manuel; Martello,
Silvano*. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - STAMPA. - 12:2(2018), pp. 235-250.
[10.1007/s11590-017-1192-z]

Published Version:

BPPLIB: a library for bin packing and cutting stock problems

Published:
DOI: http://doi.org/10.1007/s11590-017-1192-z

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/683159 since: 2019-03-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s11590-017-1192-z
https://hdl.handle.net/11585/683159

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Delorme, M., Iori, M. & Martello, S. BPPLIB: a library for bin packing and cutting stock
problems. Optim Lett 12, 235–250 (2018).

The final published version is available online at:

https://doi-org.ezproxy.unibo.it/10.1007/s11590-017-1192-z

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi-org.ezproxy.unibo.it/10.1007/s11590-017-1192-z

BPPLIB: A Library for Bin Packing and Cutting Stock Problems

Maxence Delorme(1), Manuel Iori(2), Silvano Martello(1)

(1) DEI ”Guglielmo Marconi”, University of Bologna
(2) DISMI, University of Modena and Reggio Emilia

maxence.delorme2@unibo.it, manuel.iori@unimore.it, silvano.martello@unibo.it

Abstract

The bin packing problem (and its variant, the cutting stock problem) is among the
most intensively studied combinatorial optimization problems. We present a library
of computer codes, benchmark instances, and pointers to relevant articles for these
two problems. The library is available at http://or.dei.unibo.it/library/bpplib.
The computer code section includes twelve programs: seven are directly downloadable
from the library page, while for the remaining five we provide addresses where they can
be obtained or downloaded. Some of the codes for which we provide an original C++
implementation need an integer linear programming solver. For such cases, the library
provides two versions: one that uses the commercial solver CPLEX, and one that uses
the freeware solver SCIP. The benchmark section provides over six thousands instances
(partly coming from the literature and partly randomly generated), together with the
corresponding solutions. Instances that are difficult to solve to proven optimality are
included. The library also includes a BibTeX file of more than 150 references on
this topic and an interactive visual tool to manually solve bin packing and cutting
stock instances. We conclude this work by reporting the results of new computational
experiments on a number of computer codes and benchmark instances.

Keywords: Bin packing, Cutting stock, Computer codes, Benchmark instances, Surveys.

1 Introduction

In the bin packing problem (BPP), n items of given integer weight wj (j = 1, . . . , n) have to
be packed into the minimum number of identical containers (bins) of integer capacity c. Let
u be any upper bound on the solution value. Let us introduce two sets of binary variables:
yi (i = 1, . . . , u), taking the value one if and only if bin i is used in the solution, and xij
(i = 1, . . . , u; j = 1, . . . , n), taking the value one if and only if item j is packed into bin
i. A possible simple Integer Linear Programming (ILP) model of the problem is then (see
Martello and Toth [28])

min
u∑

i=1

yi (1)

s.t.
n∑

j=1

wjxij ≤ cyi (i = 1, . . . , u), (2)

u∑
i=1

xij = 1 (j = 1, . . . , n), (3)

yi ∈ {0, 1} (i = 1, . . . , u), (4)

xij ∈ {0, 1} (i = 1, . . . , u; j = 1, . . . , n). (5)

1

Manuscript Click here to download Manuscript BPPLIB_rev.tex

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/optl/download.aspx?id=53496&guid=9253111c-ac09-4a8f-a1d2-ddc8fdb6e109&scheme=1
http://www.editorialmanager.com/optl/download.aspx?id=53496&guid=9253111c-ac09-4a8f-a1d2-ddc8fdb6e109&scheme=1
http://www.editorialmanager.com/optl/viewRCResults.aspx?pdf=1&docID=5168&rev=1&fileID=53496&msid={08C976CE-ABCC-4209-9233-4E1BBF0F821D}

Among the many variants and generalizations of the problem, the most intensively studied
is probably the Cutting Stock Problem (CSP). In this case, instead of single items, we have
m item types of weight wj and an integer demand dj (j = 1, . . . ,m) per item type. The
objective is to pack dj copies of each item type j into the minimum number of bins. By
replacing binary variables xij with a set of integer variables ξij (i = 1, . . . , u; j = 1, . . . ,m)
giving the number of items of type j packed into bin i, the CSP can be modeled by the ILP

min
u∑

i=1

yi (6)

s.t.
m∑
j=1

wjξij ≤ cyi (i = 1, . . . , u), (7)

u∑
i=1

ξij = dj (j = 1, . . . ,m), (8)

yi ∈ {0, 1} (i = 1, . . . , u), (9)

ξij ≥ 0, integer (i = 1, . . . , u; j = 1, . . . ,m). (10)

The BPP is known to be NP-hard in the strong sense (by transformation from the 3-
Partition problem, see Garey and Johnson [20]). As any instance of either problem can easily
be transformed into an equivalent instance of the other, the same holds for the CSP.

These two problems are among the most intensively studied problems in combinatorial
optimization. Two recent surveys on exact methods (Delorme, Iori, and Martello [14]) and
approximation algorithms (Coffman, Csirik, Galambos, Martello, and Vigo [10]) consider in
total over 230 different references. Previous surveys were presented by Garey and Johnson
[21], Coffman, Garey, and Johnson [11, 12], Sweeney and Paternoster [35], Dyckhoff [16],
Martello and Toth [28] (Chapter 8), Dyckhoff and Finke [17], Valério de Carvalho [38],
Wäscher, Haußner, and Schumann [40], among others. Most solution methodologies have
been tried on these problems: different kinds of ILP models, lower bound computations,
branch-and-bound, branch-and-price, constraint programming, approximation algorithms,
heuristics, and metaheuristics.

In the next section we list a number of relevant web-based libraries for optimization
problems. In Section 3 we introduce the computer codes and the visual solver provided by
the BPPLIB. In Section 4 we describe the available benchmarks: some of them were used in
[14] for the computational evaluations of the different exact approaches, using commercial
solver CPLEX when needed. As the library has been enriched by also providing versions
based on the freeware solver SCIP, in Section 5 we provide new experiments aiming at
evaluating the computational difference between the two versions. In addition, we describe
new test instances, that appeared after the publication of [14], and present the corresponding
computational experiments.

2 Web-based libraries for optimization problems

A number of web-based libraries dedicated to different optimization problems can be found
on the Internet. The oldest one is probably the famous

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• OR-Library, a collection of test data sets for a variety of Operations Research prob-
lems (including one- and two-dimensional packing problems), implemented by Beasley
[2], see people.brunel.ac.uk/~mastjjb/jeb/info.html.

More specific relevant libraries are, among others:

• QAPLIB, implemented by Burkard, Karisch, and Rendl [6, 7] for the Quadratic
Assignment Problem, see http://anjos.mgi.polymtl.ca/qaplib/. It provides in-
stances, relevant references, and computer codes;

• Traveling Salesman Problem web page, created by Applegate, Bixby, Chvatal,
and Cook [1], see http://www.math.uwaterloo.ca/tsp/. It contains instances, com-
puter codes, pointers to the literature, and educational tools;

• VRPH, a library of heuristics for the Vehicle Routing Problems (VRP), authored by
Groër, Golden, and Wasil [23], see http://sites.google.com/site/vrphlibrary/;

• MIPLIB, a Mixed Integer Programming library, providing a large set of instances,
created by Koch et al. [25], see http://miplib.zib.de/;

• libcgrpp, a library for Bound-Constrained Global Optimization, implemented by Silva,
Resende, Pardalos, and Hirsch [34], see http://www.swmath.org/software/7205,
containing a number of computer codes;

• CBLIB 2014, a collection of benchmark problems for Conic Mixed-Integer and Con-
tinuous Optimization, constructed by Friberg [19], see http://cblib.zib.de/;

• CVRPLIB, a repository of VRP benchmark instances and solutions, designed by
Uchoa et al. [36], see http://vrp.atd-lab.inf.puc-rio.br/. It also proposes re-
wards for the solution of challenging instances.

We present here the BPPLIB, a library dedicated to Bin Packing and Cutting Stock Prob-
lems, available at http://or.dei.unibo.it/library/bpplib. An earlier, smaller version
of the library was implemented as an auxiliary instrument for the computational experiments
presented in [14]. The current BPPLIB contains pointers to the literature, original computer
codes, links to computer codes from the Internet, benchmark instances, and an open source
visual application to interactively solve BPP instances. Data sets and problem generators
for the BPP and the CSP can also be found at the page of ESICUP (the EURO working
group on cutting and packing), https://paginas.fe.up.pt/~esicup/about.

3 Computer codes

The BPPLIB provides twelve computer codes of different types for the exact solution of
the BPP and the CSP. The choice of such codes was motivated by a number of properties:
historical relevance, efficiency, reliability, and availability of the corresponding computer
codes. The main characteristics of the codes are summarized in Table 1. More detailed
information is provided below.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1: Main characteristics of the computer codes provided by the BPPLIB.

Code Problem BPPLIB Language Type Ref.
Computer code Supported ILP solver

Author Year CPLEX Gurobi Scip

MTP BPP code Fortran B&B [28] Martello and Toth 1990 not required
BISON BPP pointer Pascal B&B [32] Scholl, Klein, and Jürgens 1997 not required
CVRPSEP BPP link C B&B [27] Lysgaard 2004 not required
BELOV CSP link C++ B&C&P [3] Belov 2006 x
SCIP-BP BPP link C B&P [30] Berthold and Heinz c. 2010 x
ONECUT CSP code C++ ILP [15] Delorme 2014 x x
ARCFLOW CSP code C++ ILP [37] Delorme 2014 x x
DPFLOW BPP code C++ ILP [8] Delorme 2014 x x
VPSOLVER CSP link C++ ILP [5] Brandão 2014 x x x

Branch-and-bound

Implicit enumeration has been the first tool for the study of methods for optimally solving
the BPP. The first effective exact algorithms for the BPP were indeed based on a branch-
and-bound approach. The library provides, in chronological order:

• MTP: Fortran code of the BPP algorithm by Martello and Toth [28], originally avail-
able in the diskette accompanying the book. The algorithm adopts a depth-first strat-
egy to explore a branch-decision tree that considers one item per level: descendant
nodes are generated by assigning the current item, in turn, to all already initialized
bins and possibly to a new bin. While the approach is effective for BPP instances,
considering one item at a time is clearly inefficient for CSP instances with high item
multiplicity. The code can be run using the Fortran front end of the GNU Compiler
Collection GCC;

• BISON: Scholl, Klein, and Jürgens [32] obtained a very efficient BPP algorithm by
enriching MTP through new lower bounds and a Tabu search algorithm to help the
search by means of effective heuristic solutions. The code was implemented in Pas-
cal, and can be obtained from the authors, using the address provided in the library.
Worth is mentioning that, in spite of its ‘age’, this program is still working and quite
effective: at the time of writing, it can be run using compiler fpc (version 3.0.0

for x86 64);

• CVRPSEP: we provide a link to the C code implemented by J. Lysgaard as part of a
separation routine within the algorithm by Lysgaard, Letchford, and Eglese [27] for the
capacitated vehicle routing problem. The routine was obtained by using procedures
from MTP. It is generally less efficient than MTP, but we decided to include it in the
library mainly because one may prefer a C code to a Fortran code. The implementation
details can be found in a technical report by Lysgaard [26].

Branch-and-price

Branch-and-price is the modern evolution of branch-and-bound, obtained by combining im-
plicit enumeration and column generation. The resulting approach can produce very effective
algorithms for the problems at hand. We provide links to two computer codes:

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• BELOV: C++ implementation by G. Belov of the branch-and-cut-and-price algorithm
by Belov and Scheithauer [3], using CPLEX for the inner routines. The algorithm is
tailored to the exact solution of CSP instances, and it computationally proved to be
the most powerful approach both in the case of low and high item multiplicity;

• SCIP-BP: freeware SCIP C code for a branch-and-price BPP algorithm based on the
classical Ryan and Foster [30] branching rule and available at the SCIP web page.
This code is only effective for instances with small number of item types and low item
multiplicity.

Pseudo-polynomial formulations solved via ILP

Already in the Seventies, pseudo-polynomial models coming from a graph representation of
the solution space were proposed. For many years, solution approaches based on such models
have been regarded as very theoretical, with no practical interest, due to the huge number
of variables and constraints they imply. Up to few years ago, these methods were mainly
used within branch-and-price algorithms (see, e.g., Valério de Carvalho [37], who proposed
to solve his pseudo-polynomial model through column generation). However, nowadays
computational power of ILP solvers made them competitive with branch-and-price algorithm
also for the case of realistic size instances, provided the number of generated variables (that
depends on capacity, number of items, and item weights) is not too big. The BPPLIB
provides four algorithms based on pseudo-polynomial models:

• ONECUT: C++ implementation of the one-cut CSP model independently defined in
the Seventies by Rao [29], and Dyckhoff [15];

• ARCFLOW: C++ implementation of the arc-flow CSP model by Valério de Carvalho
[37];

• DPFLOW: C++ implementation of the DP-flow BPP model by Cambazard and
O’Sullivan [8];

• VPSOLVER: link to the C++ implementation by Brandão and Pedroso [5] of their
CSP algorithm. This is currently the most effective pseudo-polynomial approach, and
its performance is often competitive with that of BELOV.

For the first three codes we provide both a version that uses CPLEX as an inner routine,
and a version that uses SCIP, together with the corresponding makefiles. Code VPSOLVER
was instead implemented by the authors in a version that invokes Gurobi.

BppGame: An interactive visual solver

The library includes the pointer to an open source visual ScalaFX application to interactively
solve BPP and CSP instances. The application is derived from a more general tool for
the solution of two-dimensional packing problems, see Costa, Delorme, Iori, Malaguti, and
Martello [13]. It allows an easy interaction to obtain a feasible solution of a given problem
instance. The application has a number of features, that are fully described in its own
web page http://gianlucacosta.info/BppGame/. The easiest way to test it consists in
following the hyperlink and executing the sequence of actions: Download zip and extract

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

its contents → BppGame-x.x → bin → BppGame.bat (Windows) or BppGame (Linux) →
Sample problems. Figure 1 shows a BppGame visualization. The user can click on an item
on the right frame, and drag and drop it to a selected position in the left frame.

Figure 1 The interactive visual solver

4 Benchmarks

The BPPLIB provides 6 195 benchmark instances belonging to four categories. Each instance
is provided, using unified formats, both in BPP and CSP version. The main characteristics
of the instances are summarized in Table 2. Detailed information is provided below.

Table 2: Main characteristics of the instances provided by the BPPLIB.

Instances Ref.
Parameters of the instances Specificity

n c Distribution Large c Perf. pack. Non-IRUP

Falkenauer U [18] 80 {120, 250, 500, 1 000} 150 uniform
Falkenauer T [18] 80 {60, 120, 249, 501} 1000 ad-hoc x
Scholl1 [32] 720 {50, 100, 200, 500} {100, 120, 150} uniform
Scholl2 [32] 480 {50, 100, 200, 500} 1000 uniform
Scholl3 [32] 10 200 100 000 uniform x
Wascher [39] 17 [57–239] 10 000 ad-hoc x x x
Schwerin1 [33] 100 100 1000 uniform
Schwerin2 [33] 100 120 1000 uniform
Hard28 [31] 28 {160, 180, 200} 1000 ad-hoc x x
Random [14] 3 840 {50,100,200 ... 500,750,1000} {50, 75, 100, 120 ... 750, 1 000} uniform
AI [14] 250 {202, 403, 601, 802, 1 003} ≤ {2 500, 10K, 20K, 40K, 80K} ad-hoc x x
ANI [14] 250 {201, 402, 600, 801, 1 002} ≤ {2 500, 10K, 20K, 40K, 80K} ad-hoc x x
GI [24] 240 ∼ 10.5×{125,250,500} {500 000, 1 500 000} uniform x

Literature instances

This section contains the 1 615 instances proposed by

• Falkenauer [18]: 80 (easy) instances with uniformly distributed item sizes and 80 (more
difficult) instances obtained through triplets of items that, in any optimal solution,
must be packed into the same bin wihtout leaving unused space (perfect packing).

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Scholl, Klein, and Jürgens [32]: three sets of instances with uniformly distributed item
sizes. The first set is composed by 720 easy instances, the second set by 480 instances
of medium difficulty, and the third set by 10 difficult instances characterized by huge
capacities;

• Wäscher and Gau [39]: 17 very hard instances selected by the authors from a much
larger set of instances belonging to different typologies;

• Schwerin and Wäscher [33]: two sets of 100 relatively easy instances each;

• Schoenfield [31]: 28 hard instances that do not involve huge capacities.

In the library, each set is identified by the name of the (first) author. Additional instances
can be created through the provided link to the instance generators proposed by Schwerin
and Wäscher [33] and Gau and G. Wäscher [22].

Randomly generated instances

The library provides the 3 840 instances that were randomly generated for the computational
experiments reported in [14]. The instances have different values of n (50, 100, 200, 300, 400,
500, 750, 1 000), of c (50, 75, 100, 120, 125, 150, 200, 300, 400, 500, 750, 1 000), and of the
minimum (0.1 c, 0.2 c) and maximum (0.7 c, 0.8 c) item weight. The benchmark contains 10
instances for each of the 384 quadruplets (n, c, minimum weight, maximum weight). These
instances are relatively easy, and the algorithms listed in Section 3 could solve most of them
within reasonable CPU times.

Hard instances

An instance of an optimization problem that possesses the so-called Integer Round-Up Prop-
erty (see Berge and Johnson [4]) is called an IRUP instance and is generally considered
less difficult to solve in practice with respect to instances not possessing such property. In
order to perform experiments on challenging instances, a number of so called augmented
Non-IRUP and augmented IRUP instances were proposed in [14], using as a basis a set of
Non-IRUP instances presented in Caprara, Dell’Amico, Dı́az Dı́az, Iori, and Rizzi [9]. For
the 250 instances of the former class an optimal solution is easy to find, but its optimality
is very difficult to prove. Even the continuous relaxation of the set covering formulation
(the basis of branch-and-price algorithms) and that of the pseudo-polynomial formulations
fail in reaching the optimal value. As a consequence, algorithms based on such relaxations
require either a huge branching process or a heavy cut generation: already for n ≈ 400, no
algorithm is capable of solving all of them to proven optimality. For the 250 instances of the
latter class, it is easy to produce a lower bound whose value is equal to the optimum, but it
is difficult to build an optimal solution.

GI instances

The library includes 240 new instances, recently proposed by Gschwind and Irnich [24]. Such
instances, uniformly randomly generated, are characterized by very large capacities. They
are organized into four sets of 60 instances each. As shown in the next section, two of such
sets are generally difficult to solve.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 Computational experiments

We report the results of some experiments executed on an Intel Xeon 3.10 GHz (equipped
with four cores) with 8 GB RAM, all executed with a single core. In order to test the codes
on non-trivial instances, we preliminarily obtained an upper bound through the classical best
fit decreasing heuristic and computed the lower bound value known as L2 (see [24]): only
instances for which these two values were different were then tested.

Tables 3 and 4 give the number of literature instances that were solved in one CPU minute
(and, in parentheses, the average CPU time), by, respectively, the enumeration algorithms
and the pseudo-polynomial models. (For the non-solved instances, one CPU minute was
considered.) For each instance set, boldface highlights the cases where all instances were
solved to proven optimality.

The results in Table 3 summarize the (much more detailed) tables presented in [14]: they
are provided here in order to give the reader information on the performance of the codes
provided in the BPPLIB. The results in Table 4 include new results obtained using SCIP as
the ILP solver. The tables confirm the clear superiority of BELOV and VPSOLVER over
the other algorithms.

Table 3: Benchmarks from the literature (non-trivial instances only), enumerative algo-
rithms. Number of instances solved in less than one minute (average CPU time in seconds).

Set
Number
of tested
instances

Branch-and-bound Branch-and-price

MTP BISON CVRPSEP BELOV SCIP-BP

Falkenauer U 74 22 (42.8) 44 (24.5) 22 (42.2) 74 (0.0) 18 (50.1)
Falkenauer T 80 6 (55.5) 42 (30.6) 0 (60.0) 57 (24.7) 35 (39.4)
Scholl1 323 242 (15.1) 288 (7.0) 223 (19.4) 323 (0.0) 244 (22.4)
Scholl2 244 130 (28.2) 233 (3.0) 65 (44.2) 244 (0.3) 67 (49.2)
Scholl3 10 0 (60.0) 3 (42.0) 0 (60.0) 10 (14.1) 0 (60.0)
Wäscher 17 0 (60.0) 10 (24.7) 0 (60.0) 17 (0.1) 0 (60.0)
Schwerin1 100 15 (51.1) 100 (0.0) 9 (55.4) 100 (1.0) 0 (60.0)
Schwerin2 100 4 (57.6) 63 (22.2) 0 (60.0) 100 (1.4) 0 (60.0)
Hard28 28 0 (60.0) 0 (60.0) 0 (60.0) 28 (7.3) 7 (51.2)

Total (average) 976 419 (34.4) 783 (12.3) 319 (40.8) 953 (2.7) 371 (42.2)

Table 4: Benchmarks from the literature (non-trivial instances only), pseudo-polynomial
models. Number of instances solved in less than one minute (average CPU time in seconds).

Set
Number
of tested
instances

ONECUT ARCFLOW DPFLOW
VPSOLVER

CPLEX SCIP CPLEX SCIP CPLEX SCIP

Falkenauer U 74 74 (0.2) 67 (23.8) 74 (0.2) 70 (18.7) 37 (38.8) 0 (60.0) 74 (0.1)
Falkenauer T 80 80 (8.7) 21 (44.9) 80 (3.5) 33 (41.4) 40 (41.7) 20 (50.8) 80 (0.4)
Scholl1 323 323 (0.1) 318 (5.0) 323 (0.1) 320 (5.1) 289 (13.0) 178 (34.0) 323 (0.1)
Scholl2 244 118 (38.7) 20 (56.3) 202 (18.9) 39 (53.7) 58 (50.4) 11 (58.5) 208 (14.0)
Scholl3 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 10 (6.3)
Wäscher 17 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 6 (49.4)
Schwerin1 100 100 (13.1) 0 (60.0) 100 (1.5) 0 (60.0) 0 (60.0) 0 (60.0) 100 (0.3)
Schwerin2 100 100 (11.7) 0 (60.0) 100 (1.5) 1 (59.5) 0 (60.0) 0 (60.0) 100 (0.3)
Hard28 28 6 (54.6) 0 (60.0) 16 (40.6) 0 (60.0) 0 (60.0) 0 (60.0) 27 (14.2)

Total (average) 976 801 (16.3) 426 (36.9) 895 (8.2) 463 (35.6) 424 (38.9) 209 (50.3) 928 (5.0)

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 4 shows in addition that the performance of ONECUT and ARCFLOW is not
affected by the ILP solver for most of the easy instances, while their performance for the
difficult instances sharply worsens when SCIP is used instead of CPLEX. This behavior could
be explained by the difference in the number of generated variables and constraints between
different benchmarks. For example, ARCFLOW produces, on average, 1 735 variables and
103 constraints for Scholl 1 instances, while for “Scholl 2” it produces, on average, 39 307
variables and 840 constraints.

Tables 5 and 6 refer to the randomly generated instances and provide the same informa-
tion as in Tables 3 and 4. The previous observations are confirmed: BELOV and VPSOLVER
outperform the other approaches, and the use of SCIP decreases the algorithms’ performance,
especially for large values of n.

Table 5: Randomly generated benchmarks (non-trivial instances only), enumerative algo-
rithms. Number of instances solved in less than one minute (average CPU time in seconds).

n
Number
of tested
instances

Branch-and-bound Branch-and-price

MTP BISON CVRPSEP BELOV SCIP-BP

50 165 163 (0.8) 165 (0.0) 164 (0.4) 165 (0.0) 165 (0.9)
100 271 243 (7.4) 257 (3.8) 239 (8.4) 271 (0.0) 271 (4.6)
200 359 237 (21.6) 290 (12.0) 220 (25.0) 359 (0.0) 293 (22.6)
300 393 166 (35.7) 265 (20.7) 144 (38.7) 393 (0.1) 155 (44.1)
400 425 151 (39.1) 244 (26.1) 138 (41.2) 425 (0.2) 114 (49.8)
500 414 121 (43.0) 208 (30.3) 128 (42.6) 414 (0.2) 69 (55.1)
750 433 93 (47.3) 214 (30.9) 98 (47.3) 433 (0.4) 22 (59.5)
1000 441 78 (49.5) 196 (33.9) 73 (50.8) 441 (0.7) 0 (60.0)

Total (average) 2901 1252 (34.7) 1839 (22.6) 1204 (36.0) 2901 (0.2) 1089 (42.4)

Table 6: Randomly generated benchmarks (non-trivial instances only), pseudo-polynomial
models. Number of instances solved in less than one minute (average CPU time in seconds).

n
Number
of tested
instances

ONECUT ARCFLOW DPFLOW
VPSOLVER

CPLEX SCIP CPLEX SCIP CPLEX SCIP

50 165 165 (0.1) 163 (2.0) 165 (0.1) 165 (1.6) 165 (0.5) 162 (5.1) 165 (0.0)
100 271 271 (0.8) 249 (8.6) 271 (0.3) 262 (10.1) 271 (5.0) 168 (34.5) 271 (0.1)
200 359 358 (2.4) 286 (15.4) 359 (0.8) 278 (20.2) 292 (21.0) 76 (51.8) 359 (0.3)
300 393 385 (4.5) 272 (22.2) 391 (2.0) 262 (24.9) 243 (33.9) 31 (57.3) 393 (0.6)
400 425 408 (5.1) 293 (22.0) 421 (3.0) 276 (25.8) 193 (42.4) 23 (58.1) 425 (0.8)
500 414 394 (6.3) 275 (24.0) 402 (4.0) 258 (26.5) 169 (44.8) 13 (58.8) 413 (1.7)
750 433 401 (7.8) 284 (24.3) 415 (6.0) 279 (25.7) 120 (52.6) 12 (59.1) 431 (2.4)
1000 441 407 (8.1) 280 (25.8) 416 (6.8) 281 (26.1) 67 (56.4) 7 (59.6) 434 (3.4)

Total (average) 2901 2789 (5.0) 2102 (20.0) 2840 (3.3) 2061 (22.3) 1520 (36.7) 492 (52.5) 2891 (1.4)

We report in Table 7 the results of computational experiments for the GI benchmark, a
set of CSP instances recently proposed by Gschwind and Irnich [24] for testing their dual
inequalities aimed at stabilizing column generation processes. They are organized into four
groups (AA, AB, BA, and BB), characterized by different item weight ranges and capacities.
Each group has three sets of 20 instances each, characterized by the number of item types
(125, 250, and 500).

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 7: Number of GI instances solved in less than one hour (average time in seconds).

Set m
Number
of tested
instances

BELOV ARCFLOW VPSOLVER

AA 125 20 20 (0.1) 19 (1 092.6) 20 (0.9)
250 20 20 (0.9) 0 (3 600.0) 20 (14.5)
500 20 20 (7.5) 0 (3 600.0) 16 (1 345.9)

AB 125 20 20 (0.7) 0 (3 600.0) 0 (3 600.0)
250 20 20 (2.1) 0 (3 600.0) 0 (3 600.0)
500 20 20 (29.9) 0 (3 600.0) 0 (3 600.0)

BA 125 20 20 (0.1) 20 (1 120.9) 20 (1.4)
250 20 20 (1.3) 0 (3 600.0) 20 (23.1)
500 20 20 (7.2) 0 (3 600.0) 17 (1 450.2)

BB 125 20 20 (0.2) 0 (3 600.0) 0 (3 600.0)
250 20 20 (2.3) 0 (3 600.0) 0 (3 600.0)
500 20 20 (29.1) 0 (3 600.0) 0 (3 600.0)

Total (average) 240 240 (6.8) 39 (3 234.8) 113 (2 036.3)

We tested the best enumerative algorithm (BELOV) and the best pseudo-polynomial
approaches (ARCFLOW and VPSOLVER) with a time limit of one hour. BELOV could
solve all of these instances very quickly, while they turned out to be extremely difficult for the
pseudo-polynomial models. The behavior of the latter approaches was particularly poor for
the instances that have items with very small weight and huge capacities (AB and BB, with
c ≥ 500 000), which induce a high number of variables and constraints. For example, the ILP
model produced by ARCFLOW has on average 549 441 variables and 131 219 constraints for
instances AA with m = 125, but 5 754 617 variables and 404 283 constraints for instances
AB with m = 125.

6 Conclusions and future research

We presented the BPPLIB, a library dedicated to Bin Packing and Cutting Stock Problems
that provides computer codes, benchmark instances, pointers to relevant research papers, a
bibliography, and an interactive visual solver. The computer code section includes twelve
exact programs that make use of different optimization paradigms. To fit the needs of both
researchers and practitioners, we provide two versions of the programs that need an ILP
solver: one using the commercial solver CPLEX and the other using the freeware solver
SCIP. The benchmark section provides over six thousands instances, among which a few
hundreds remain unsolved to proven optimality despite the application of all available exact
methods.

We believe that the BPPLIB can be a useful tool to foster new research on the chal-
lenging area of Bin Packing and Cutting Stock optimization. In addition, it can be used
for educational purposes as it provides an interactive tool (the “BppGame”, see Figure 1)
that students can use to easily understand the features and the difficulty of optimization
problems.

As future activity, we plan to maintain the library updated with new relevant contribu-
tions that will appear on these problems, as well as to expand it through the most interesting
problem variants.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Acknowledgements

Research supported by Air Force Office of Scientific Research (Grant FA9550-17-1-0067) and
by MIUR-Italy (Grant PRIN 2015). We thank Gianluca Costa for the development of the
BppGame. We thank the reviewers for useful comments.

References

[1] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook. The Traveling Salesman
Problem - A Computational Study. Princeton University Press, Princeton, NJ, 2006.

[2] J. E. Beasley. OR-library: distributing test problems by electronic mail. Journal of the
Operational Research Society, 41:1069–1072, 1990.

[3] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional
stock cutting and two-dimensional two-stage cutting. European Journal of Operational
Research, 171:85–106, 2006.

[4] C. Berge and E.L. Johnson. Coloring the edges of a hypergraph and linear programming
techniques. Annals of Discrete Mathematics, 1:65–78, 1977.

[5] F. Brandão and J.P. Pedroso. Bin packing and related problems: General arc-flow
formulation with graph compression. Computers & Operations Research, 69:56–67, 2016.

[6] R.E. Burkard, S.E Karisch, and F. Rendl. QAPLIB– a quadratic assignment problem
library. European Journal of Operational Research, 55:115 – 119, 1991.

[7] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB– a quadratic assignment problem
library. Journal of Global Optimization, 10:391–403, 1997.

[8] H. Cambazard and B. O’Sullivan. Propagating the bin packing constraint using linear
programming. In Principles and Practice of Constraint Programming – CP 2010, volume
6308 of Lecture Notes in Computer Science, pages 129–136. Springer Berlin Heidelberg,
2010.

[9] A. Caprara, M. Dell’Amico, J.C. Dı́az Dı́az, M. Iori, and R. Rizzi. Friendly bin packing
instances without integer round-up property. Mathematical Programming, 150:5–17,
2014.

[10] E.G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing
approximation algorithms: Survey and classification. In P.M. Pardalos, D.-Z. Du, and
R.L. Graham, editors, Handbook of Combinatorial Optimization. Springer New York,
2013.

[11] E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin-
packing - an updated survey. In G. Ausiello, M. Lucentini, and P. Serafini, editors,
Algorithm Design for Computer System Design, pages 49–106. Springer Vienna, 1984.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[12] E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin
packing: a survey. In D.S. Hochbaum, editor, Approximation algorithms for NP-hard
problems, pages 46–93. PWS Publishing Co., 1996.

[13] G. Costa, M. Delorme, M. Iori, E. Malaguti, and S. Martello. A training software for
orthogonal packing problems. Technical report, DEI “Guglielmo Marconi”, University
of Bologna, Italy, 2017.

[14] M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Mathe-
matical models and exact algorithms. European Journal of Operational Research, 255:1–
20, 2016.

[15] H. Dyckhoff. A new linear programming approach to the cutting stock problem. Oper-
ations Research, 29:1092–1104, 1981.

[16] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Oper-
ational Research, 44:145–159, 1990.

[17] H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distribution. Physica-
Verlag, Heidelberg, 1992.

[18] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of Heuris-
tics, 2:5–30, 1996.

[19] H.A. Friberg. CBLIB 2014: a benchmark library for conic mixed-integer and continuous
optimization. Mathematical Programming Computation, 8:191–214, 2016.

[20] M.G. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. Freeman, New York, 1979.

[21] M.R. Garey and D.S. Johnson. Approximation algorithms for bin-packing problems:
A survey. In G. Ausiello and Lucertini, editors, Analysis and Design of Algorithms in
Combinatorial Optimization, pages 147–172. Springer Vienna, 1981.

[22] T. Gau and G. Wäscher. CUTGEN1: A problem generator for the standard
one-dimensional cutting stock problem. European Journal of Operational Research,
84(3):572–579, 1995.

[23] C. Groër, B. Golden, and E. Wasil. A library of local search heuristics for the vehicle
routing problem. Mathematical Programming Computation, 2:79–101, 2010.

[24] T. Gschwind and S. Irnich. Dual inequalities for stabilized column generation revisited.
INFORMS Journal on Computing, 28:175–194, 2016.

[25] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna,
G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D.E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation,
3:103, 2011.

[26] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle
routing problem. Technical report, Aarhus School of Business, Denmark, 2003.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[27] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical Programming, 100:423–445, 2004.

[28] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, 1990, (available on line at www.or.deis.unibo.
it).

[29] M.R. Rao. On the cutting stock problem. Journal of the Computer Society of India,
7:35–39, 1976.

[30] D.M. Ryan and B.A. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer scheduling of public transport urban passenger vehicle and
crew scheduling, pages 269–280. North-Holland, 1981.

[31] J.E. Schoenfield. Fast, exact solution of open bin packing problems without linear pro-
gramming. Technical report, US Army Space and Missile Defense Command, Huntsville,
Alabama, USA, 2002.

[32] A. Scholl, R. Klein, and C. Jürgens. Bison: a fast hybrid procedure for exactly solving
the one-dimensional bin packing problem. Computers & Operations Research, 24:627–
645, 1997.

[33] P. Schwerin and G. Wäscher. The bin-packing problem: a problem generator and some
numerical experiments with FFD packing and MTP. International Transactions in
Operational Research, 4:377–389, 1997.

[34] R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and M.J. Hirsch. A Python/C library for
bound-constrained global optimization with continuous GRASP. Optimization Letters,
7(5):967–984, 2013.

[35] P.E. Sweeney and E.R. Paternoster. Cutting and packing problems: a categorized,
application-orientated research bibliography. Journal of the Operational Research Soci-
ety, 43:691–706, 1992.

[36] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian. New bench-
mark instances for the capacitated vehicle routing problem. European Journal of Oper-
ational Research, 257:845–858, 2017.

[37] J.M. Valério de Carvalho. Exact solution of bin-packing problems using column gener-
ation and branch-and-bound. Annals of Operations Research, 86:629–659, 1999.

[38] J.M. Valério de Carvalho. LP models for bin packing and cutting stock problems.
European Journal of Operational Research, 141:253–273, 2002.

[39] G. Wäscher and T. Gau. Heuristics for the integer one-dimensional cutting stock prob-
lem: a computational study. Operations-Research-Spektrum, 18:131–144, 1996.

[40] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and
packing problems. European Journal of Operational Research, 183:1109–1130, 2007.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 Change of authorship request form

2

Section 4 Proposed new authorship. Please provide your new authorship list in the order you would like it to appear on the manuscript.

 First name(s) Family name (this name will appear in full on the final publication and will be searchable in various abstract and indexing
databases)

1st author Maxence Delorme

2nd author Manuel Iori

3rd author Silvano Martello

4th author

5th author

6th author

7th author

Please use an additional sheet if there are more than 7 authors.

Section 5 Author contribution, Acknowledgement and Disclosures. Please use this section to provide revised Author Contribution, Acknowledgement and/or Disclosures of your

manuscript, ensuring you state what contribution any new authors made and, if appropriate acknowledge any contributors who have been removed as authors. Please ensure these are

updated in your manuscript.

New Disclosures (potential conflicts of interest, funding, acknowledgements):

New Author Contributions statement:

New Acknowledgement Section:

