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THE PERSISTENT HOMOTOPY TYPE DISTANCE

PATRIZIO FROSINI, CLAUDIA LANDI and FACUNDO MÉMOLI

Abstract
We introduce the persistent homotopy type distance dHT to

compare two real valued functions defined on possibly different
homotopy equivalent topological spaces. The underlying idea
in the definition of dHT is to measure the minimal shift that
is necessary to apply to one of the two functions in order
that the sublevel sets of the two functions become homotopy
equivalent. This distance is interesting in connection with
persistent homology. Indeed, our main result states that dHT

still provides an upper bound for the bottleneck distance
between the persistence diagrams of the intervening functions.
Moreover, because homotopy equivalences are weaker than
homeomorphisms, this implies a lifting of the standard stability
results provided by the L∞ distance and the natural pseudo-
distance dNP. From a different standpoint, we prove that dHT

extends the L∞ distance and dNP in two ways. First, we show
that, appropriately restricting the category of objects to which
dHT applies, it can be made to coincide with the other two
distances. Finally, we show that dHT has an interpretation in
terms of interleavings that naturally places it in the family of
distances used in persistence theory.

Keywords: bottleneck distance between persistence dia-
grams, natural pseudo-distance, interleaving distance, stability,
merge trees.

AMS Subject Classification: 55P10, 68U05, 18A23.

1. Introduction

Persistent homology has been developed as a theory to study topological properties
of noisy or incomplete data, establishing itself as a fundamental tool for topological
data analysis [15, 19, 7]. Persistent homology is characterized by an invariant called
the persistence diagram (also known as the barcode) which summarizes both topolog-
ical features of a dataset and their prominence. One of the reasons for the success of
persistent homology is that persistence diagrams change continuously provided that
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the input dataset also changes continuously. This is known as the Stability Theorem
of Persistence [11]. Usually, (a) changes in persistence homology are measured via
the bottleneck distance between persistence diagrams, (b) datasets are modeled as
real valued functions defined on the same space, and (c) one uses the L∞ distance
between functions to quantify their changes:

Theorem 1 (Stability Theorem of Persistence [11]). Let X be a compact polyhedron.
Then, for all continuous tame functions ϕ1, ϕ2 : X → R, and all integers k > 0,

dB(Dk(ϕ1), Dk(ϕ2)) 6 ‖ϕ1 − ϕ2‖∞. (1.1)

Above, dB stands for the bottleneck distance between persistence diagrams, and
Dk(ϕ) is the persistence diagram corresponding to the k-th homology of the sub-level
set filtration of the function ϕ.

In order to lift the Stability Theorem of Persistence to the case when functions
are defined on different, albeit homeomorphic spaces, one can resort to the natural
pseudo-distance. If two continuous functions ϕX : X → R, ϕY : Y → R are given on
homeomorphic spaces X and Y , then the natural pseudo-distance dNP [14] between
them is defined by

dNP ((X,ϕX), (Y, ϕY )) := inf
h
‖ϕ1 − ϕ2 ◦ h‖∞ (1.2)

where h : X → Y varies among the morphisms of the category H0 whose objects
are all topological spaces endowed with real-valued continuous functions, and mor-
phisms are all homeomorphisms between topological spaces. If two continuous func-
tions ϕX : X → R, ϕY : Y → R are given on non-homeomorphic spacesX and Y , then
we set dNP ((X,ϕX), (Y, ϕY )) :=∞. Then, since persistence diagrams of sub-level set
filtrations are invariant under reparameterization, one obtains an improvement of
inequality (1.1) stated in Theorem 1:

dB(Dk(ϕX), Dk(ϕY )) 6 dNP

(
(X,ϕX), (Y, ϕY )

)
. (1.3)

However, the natural pseudo-distance is not suitable when we are interested in
analyzing functions defined on non-homeomorphic topological spaces.

In this paper we construct a new extended pseudo-metric, called the persistent
homotopy type distance, denoted dHT, to quantify the distance between real-valued
functions defined on different spaces which is meaningful when the spaces are at
least homotopy equivalent. In plain words, the persistent homotopy type distance is
a generalization of the natural pseudo-distance in that it uses homotopy equivalences
instead of homeomorphisms, and these homotopy equivalences are required to satisfy
a certain coherence property in terms of the sublevel sets of the given real valued
functions. This allows us to use the persistent homotopy type distance to obtain
a new and stronger stability theorem for persistent homology, which is the main
contribution of our paper:

Theorem 2. Let X and Y be compact polyhedra, and k be any non-negative integer.
Let ϕX : X → R and ϕY : Y → R be continuous functions. Then,

dB

(
Dk(ϕX), Dk(ϕY )

)
6 dHT

(
(X,ϕX), (Y, ϕY )

)
.

We note that in the statement above dHT becomes infinity when the underlying
spaces above are not homotopy equivalent.
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While lifting the stability theorem is the main motivation for introducing dHT, this
paper contains two further contributions as presented below. The first one concerns
possible extensions of the basic definition of dHT in Theorem 2 to more general settings
in order to enhance its applicability, while the second one concerns the connections
of dHT to other well-known distances such as the interleaving distance.

Variations on the basic definition of dHT

To prove Theorem 2, it is sufficient to take a basic definition of dHT where functions
ϕX and ϕY are real-valued, and no restrictions are required on the possible homotopy
equivalences apart from being sublevel set preserving up to a shift. This mirrors the
early stage research about the natural pseudo-distance dNP as defined in (1.2), where
functions are real-valued as well, and homeomorphisms are generically morphisms of
H0. On the other hand, more recently the natural-pseudo distance dNP has undergone
mainly two variations in order to extend its range of applications. We now illustrate
such variations for dNP, with the goal in the following sections to achieve similar
possibilities for dHT.

The first variation we can consider in the basic definition of dNP given in (1.2),
is to extend the class of considered objects to compare from real-valued functions
ϕX : X → R to vector-valued functionsϕX = (ϕi) : X → Rn. In this case, we consider
‖ϕX‖∞ := supx∈X max16i6n |ϕi(x)|. This generalization of dNP to vector-valued func-
tions is much valuable since it allows to lift the stability of the interleaving distance
of multidimensional persistence modules [22] in much the same way as we lift the
stability of the bottleneck distance in one-dimensional persistence.

The second variation we can consider in (1.2), is the restriction of the considered
morphisms to use for the comparison from the category H0 (whose objects now we can
take to be all topological spaces endowed with Rn-valued continuous functions, and
morphisms are all homeomorphisms between topological spaces) to any subcategory
H of H0 provided that H is closed under inverse [2]: for any ϕX : X → Rn and
ϕY : X → Rn,

dHNP ((X,ϕX), (Y,ϕY )) := inf
h∈homH(X,Y )

‖ϕ1 −ϕ2 ◦ h‖∞ (1.4)

if there is a homeomorphism from X to Y in H, dHNP ((X,ϕX), (Y,ϕY )) =∞ other-
wise. This variation is useful in applications of the natural pseudo-distance to cases
when the desired invariance is not the one expressed by any homeomorphism [17, 18].
For example, two monotonic functions ϕ,ψ : [0, 1]→ R with the same set of extrema
are equivalent under dNP (and therefore equivalent for standard persistent homol-
ogy) when every homeomorphism from [0, 1] to [0, 1] is accepted, whereas restricting
the set of acceptable homeomorphisms permits distinguishing them. From a different
perspective, since the group of all self-homeomorphisms of a topological space, even
a compact one, is not itself compact, the possibility of restricting the set of home-
omorphisms is also motivated by the desire of working with compact groups. This
would be useful for obtaining interesting theorems e.g. good finite approximations of
the considered groups.

Motivated by these earlier generalizations of the basic definition of the natural
pseudo-distance, our purpose in the next sections will be to propose a definition for
a persistent homotopy type distance that not only lifts the stability result, but also
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behaves similarly to dNP with respect to such generalizations.

The homotopy type distance as an interleaving distance
Starting with [9, 21], and more recently with [22, 4, 10], a unifying look at all the

metrics usually used to state the stability theorems of persistence has been proposed
in terms of interleaving distances. Interleavings apply between pairs of functors from
the category of ordered reals to any other category. Interleavings are given by pairs
of natural transformations between each one of the functors and a shifted version of
the other functor.

The interleaving distance measures the smallest shift that allows the existence of
an interleaving. Since many distances considered in topological data analysis can be
formulated in terms of interleavings, it is natural to ask whether the same holds true
for the persistent homotopy type distance. A further contribution of this paper is a
positive answer to this question. Recent related work in this direction is that of Blum-
berg and Lesnick [3] where the authors construct the so called homotopy interleaving
distance between R-spaces and study its universality. Whereas the relationship (if
any) between our homotopy type distance and that of [3] is currently unclear, in this
paper we prove that, when restricted to merge trees, our homotopy type distance
agrees with the interleaving distance between merge trees of Morozov et al. [23].

Organization of the paper
After introducing the persistent homotopy type distance in Section 2, we discuss

its properties and give some examples. In Section 3, we prove that the bottleneck
distance between persistence diagrams is upper-bounded by the persistent homotopy
type distance (Theorem 2). In other words, we lift the Stability Theorem of Persistence
(Theorem 1) to functions defined on different spaces provided that they are homotopy
equivalent. In Section 4, we show that the interleaving distance between merge trees
can be obtained as a special case of the persistence homotopy type distance. Then,
Section 5 offers an interpretation of the persistent homotopy type distance as an in-
terleaving distance more in general. Finally, a discussion section offers some thoughts
on possible extensions.

2. Mathematical setting

For any integer n > 1, let us endow Rn with the partial order � defined by setting,
for any α,β ∈ Rn, α = (αi) � β = (βi) whenever αi 6 βi for i = 1, . . . , k. When α �
β we also write β � α. For α = (αi) ∈ Rn, we set ‖α‖∞ = max16i6k |αi|. Recall
that for a function ϕX : X → Rn, we set ‖ϕX‖∞ = supx∈X ‖ϕX(x)‖∞. For α ∈ R,
we denote by ~α the diagonal element (α, α, . . . , α) ∈ Rn.

Let us consider the category S such that: the objects of S are all the pairs (X,ϕX)
where X is a topological space and ϕX : X → Rn is a vector-valued continuous func-
tion; the morphisms of S from an object (X,ϕX) to another object (Y,ϕY ) are all the
continuous maps f : X → Y such that ϕY ◦ f � ϕX . The composition of morphisms
is the usual composition of maps and identity morphisms are identity maps.

Definition 2.1. For every α ∈ Rn, with α � 0, the α-shift functor (·)α : S→ S is
defined as follows: for every (X,ϕX) in ob(S), (X,ϕX)α = (X,ϕ′X), where ϕ′X(x) =
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ϕX(x)−α for every x ∈ X; for every f : (X,ϕX)→ (Y,ϕY ) in hom(S), (f)α = f
regarded as a morphism between (X,ϕX)α and (Y,ϕY )α.

Instead of S, we can restrict ourselves to any sub-category C of S provided that C
is closed with respect to the α-shift functor for any α ∈ Rn. From now on we assume
one such C is fixed.

Definition 2.2. Let (X,ϕX), (Y,ϕY ) be objects in C. Given α � 0 in Rn, an α-map
f with respect to (ϕX ,ϕY ) is a morphism in C from (X,ϕX) to (Y,ϕY )α, that is
a continuous map f : X → Y such that ϕY ◦ f � ϕX +α. Furthermore, given two
α-maps f1 : X → Y and f2 : X → Y , an α-homotopy in C between f1 and f2 with
respect to the pair (ϕX ,ϕY ) is a continuous map H : X × [0, 1]→ Y such that

1. f1 ≡ H(·, 0);

2. f2 ≡ H(·, 1);

3. H(·, t) is an α-map in C with respect to the pair (ϕX ,ϕY ) for every t ∈ [0, 1].

If an α-homotopy between the α-maps f1 and f2 with respect to the pair (ϕX ,ϕY )
exists, we say that f1, f2 are α-homotopic with respect to (ϕX ,ϕY ).

In plain words, an α-homotopy between α-maps is a homotopy that is a α-map
at every instant.

Remark 2.1. Any map f : X → Y that induces a morphism f : (X,ϕX)→ (Y,ϕY )α
with respect to (ϕX ,ϕY ), also induces a morphism f : (X,ϕX)→ (Y,ϕY )β, still with
respect to (ϕX ,ϕY ), for every β � α. Therefore, an α-map can also be regarded as
a β-map, for every β � α.

Remark 2.2. For any fixed α � 0, the α-homotopy with respect to (ϕX ,ϕY ) is an
equivalence relation on α-maps from (X,ϕX) to (Y,ϕY )α.

We now introduce the relation of α-homotopy equivalence between objects of C.
In spite of its name, in general it is not going to be an equivalence relation.

Definition 2.3. For every α � 0 in Rn and any two objects (X,ϕX) and (Y,ϕY ) in
C, we say that (X,ϕX) and (Y,ϕY ) are α-homotopy equivalent in C if there exist
α-maps f : X → Y and g : Y → X in C, with respect to (ϕX ,ϕY ) and (ϕY ,ϕX)
respectively, such that the following properties hold:

• the map g ◦ f : X → X is 2α-homotopic to idX with respect to (ϕX ,ϕX);

• the map f ◦ g : Y → Y is 2α-homotopic to idY with respect to (ϕY ,ϕY ).

If the two previous conditions hold, we say that g (resp. f) is an α-homotopy inverse
of f (resp. g) with respect to (ϕX ,ϕY ) (resp. (ϕY ,ϕX)), and that (f, g) constitutes
a pair of α-homotopy equivalences in C with respect to the pair (ϕX ,ϕY ).

We observe that in general the α-homotopy inverse of f with respect to the pair
(ϕX ,ϕY ) is not unique.

We are now ready to define the persistent homotopy type distance.
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Definition 2.4. For any α ∈ R, set ~α = (α, α, . . . , α) ∈ Rn. For any
(
(X,ϕX), (Y,ϕY )

)
in ob(C)× ob(C), we define the set

ΛC
(
(X,ϕX), (Y,ϕY )

)
:={

α > 0 : (X,ϕX) and (Y,ϕY ) are ~α-homotopy equivalent in C
}
,

and the value

dCHT((X,ϕX), (Y,ϕY )) := inf ΛC
(
(X,ϕX), (Y,ϕY )

)
,

where we use the convention that the infimum over the empty set is +∞.
dCHT will be called the persistent homotopy type (pseudo-)distance on the category

C. When C is taken to be the whole S, sometimes we simply denote dCHT by dHT.

Proposition 2.1. Let (X,ϕX) and (Y,ϕY ) be two objects in S such that ϕX and
ϕY are bounded, that is ‖ϕX‖∞, ‖ϕY ‖∞ < +∞. Then, dHT((X,ϕX), (Y,ϕY )) <∞
if and only if X and Y are homotopy equivalent.

Proof. Let us assume that X and Y are homotopy equivalent. Then, there exist
maps f : X → Y and g : Y → X and homotopies H : X × [0, 1]→ X and G : Y ×
[0, 1]→ Y between g ◦ f and idX and between f ◦ g and idY , respectively. Since ϕX
and ϕY are bounded functions, the numbers αX := ‖ϕX −ϕY ◦ f‖∞, αY := ‖ϕX ◦
g −ϕY ‖∞, α̂X := 1

2 maxt∈[0,1] ‖ϕX −ϕX ◦H(·, t)‖∞, and α̂Y := 1
2 maxt∈[0,1] ‖ϕY ◦

G(·, t)−ϕY ‖∞ are all finite. Thus, α := sup{αX , αY , α̂X , α̂Y } <∞, and α belongs
to ΛS

(
(X,ϕX), (Y,ϕY )

)
so that dHT 6 α. Conversely, if dHT((X,ϕX), (Y,ϕY )) <∞,

there is some α ∈ R such that (X,ϕX) and (Y,ϕY ) are ~α-homotopy equivalent in S
with ~α = (α, α, . . . , α). Hence, X and Y are homotopy equivalent.

In this paper we will follow the convention that α+∞ =∞+ α =∞ for every
α ∈ R := R ∪ {∞}.

We now prove that dCHT is an extended pseudo-metric. To this aim we use the
following lemma.

Lemma 2.1. Let (X,ϕX), (Y,ϕY ), (Z,ϕZ) be three objects in C. If (f1, g1) is a pair
of α1-homotopy equivalences with respect to (ϕX ,ϕY ) in C and (f2, g2) is a pair of
α2-homotopy equivalences with respect to (ϕY ,ϕZ) also in C, then (f2 ◦ f1, g1 ◦ g2)
is a pair of (α1 +α2)-homotopy equivalences with respect to the pair (ϕX ,ϕZ) in C.

Proof. By definition, f2 ◦ f1 (resp. g1 ◦ g2) is an (α1 +α2)-map with respect to
(ϕX ,ϕZ) (resp. (ϕZ ,ϕX)). Again by definition, a 2α1-homotopy H1 : X × [0, 1]→ X
with respect to (ϕX ,ϕX) from g1 ◦ f1 to idX and a 2α2-homotopy H2 : Y × [0, 1]→
Y with respect to (ϕY ,ϕY ) from g2 ◦ f2 to idY exist. Thus, we can define a map

H̄ : X × [0, 1]→ X by setting H̄(x, t) :=

{
g1 ◦H2(f1(x), 2t), if t ∈ [0, 1/2)

H1(x, 2t− 1), if t ∈ [1/2, 1]
. H̄ is a

(2α1 + 2α2)-homotopy with respect to (ϕX ,ϕX) from g1 ◦ g2 ◦ f2 ◦ f1 to idX . Simi-
larly, we can define a (2α1 + 2α2)-homotopy (ϕZ ,ϕZ) from f2 ◦ f1 ◦ g1 ◦ g2 to idZ .
This proves the claim.

Remark 2.3. The term extended pseudo-metric means that the function dCHT is a
function defined on ob(C)× ob(C) such that, for every (X,ϕX), (Y,ϕY ) ∈ ob(C), it
holds that
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(i) dCHT((X,ϕX), (Y,ϕY )) ∈ [0,∞],

(ii) if (X,ϕX) = (Y,ϕY ) then dCHT((X,ϕX), (Y,ϕY )) = 0,

(iii) dCHT satisfies the symmetry property,

(iv) dCHT satisfies the triangle inequality.

Proposition 2.2. The function dCHT : ob(C)× ob(C)→ R is an extended pseudo-metric.

Proof. We check that dCHT satisfies the properties of an extended pseudo-metric.

1. By definition, dCHT cannot take negative values.

2. dCHT((X,ϕX), (X,ϕX)) = 0 because the identity map of X, idX , belongs to
hom(C) and (idX , idX) is a pair of 0-homotopy equivalences with respect to
(ϕX ,ϕX).

3. The equality dCHT((X,ϕX), (Y,ϕY )) = dCHT((Y,ϕY ), (X,ϕX)) immediately fol-
lows from the symmetry of the definition of pairs of α-homotopy equivalences.

4. Let ϕX : X → Rn, ϕY : Y → Rn, ϕZ : Z → Rn be three objects in our category
C. Let ~α = (α, α, . . . , α) ∈ Rn with α > 0. If either (X,ϕX) is not ~α-homotopy
equivalent to (Y,ϕY ), or (Y,ϕY ) is not ~α-homotopy equivalent to (Z,ϕZ) for
any α ∈ R, then the definition of dCHT implies that dCHT((X,ϕX), (Y,ϕY )) +
dCHT((Y,ϕY ), (Z,ϕZ)) =∞. In this case the inequality dCHT((X,ϕX), (Y,ϕY )) +
dCHT((Y,ϕY ), (Z,ϕZ)) > dCHT((X,ϕX), (Z,ϕZ)) is trivially satisfied.
Let us assume that (f1, g1) is a pair of ~α1-homotopy equivalences with respect
to (ϕX ,ϕY ) for some α1 > 0, and (f2, g2) is a pair of ~α2-homotopy equivalences
with respect to (ϕY ,ϕZ) for some α2 > 0. By definition of dCHT, we can assume
that α1 6 dCHT((X,ϕX), (Y,ϕY )) + ε and α2 6 dCHT((Y,ϕY ), (Z,ϕZ)) + ε for an
arbitrarily small ε > 0. We know from Lemma 2.1 that (f2 ◦ f1, g1 ◦ g2) is a pair
of (~α1 + ~α2)-homotopy equivalences with respect to (ϕX ,ϕZ). It follows that

dCHT((X,ϕX), (Z,ϕZ)) 6 α1 + α2

6 dCHT((X,ϕX), (Y,ϕY )) + dCHT((Y,ϕY ), (Z,ϕZ)) + 2ε.

By taking the limit for ε tending to 0, we obtain the triangle inequality

dCHT((X,ϕX), (Z,ϕZ)) 6 dCHT((X,ϕX), (Y,ϕY )) + dCHT((Y,ϕY ), (Z,ϕZ)).

As we mentioned in the introduction, our definition of the persistent homotopy
type distance is meant to be a generalization of the natural pseudo-distance. The
next proposition gives a relationship between these two distances when we compare
functions on two homeomorphic spaces, whereas Example 2.9 proves that we can
read the natural pseudo-distance dNP into the persistent homotopy type distance
dCHT when we suitably restrict the underlying category.

Proposition 2.3. Let (X,ϕX) and (Y,ϕY ) be objects in S where X and Y are home-
omorphic. Then,

dHT((X,ϕX), (Y,ϕY )) 6 dNP ((X,ϕX), (Y,ϕY )) .

In particular, if X = Y , and (X,ϕ1), (X,ϕ2) are objects in S, then

dHT

(
(X,ϕ1), (X,ϕ2)

)
6 ‖ϕ1 −ϕ2‖∞.
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Proof. If dNP ((X,ϕX), (Y,ϕY )) =∞ then there is nothing to prove. If not, then
there exist α > 0 and a homeomorphism f : X → Y such that ‖ϕX −ϕY ◦ f‖∞ 6
α. Thus, f and f−1 are ~α-maps, and f−1 ◦ f and f ◦ f−1 are 0-homotopic, and
hence 2~α-homotopic, with ~α = (α, α, . . . , α) to idX and idY , respectively, by constant
homotopies. Therefore, (f, f−1) is a pair of ~α-homotopy equivalences for (ϕX ,ϕY ),
implying that (X,ϕX) and (Y,ϕY ) are ~α-homotopy equivalent. Thus, dHT 6 dNP.

In the next few sections we will compare the persistent homotopy type distance
with other metrics widely used in the topological data analysis literature to measure
the perturbations in the input functions. In particular, in Section 5 we will show
that the persistent homotopy type distance can be represented as an interleaving
type distance. For the moment, however, we proceed with the study of the persistent
homotopy type distance using the current definition.

2.1. Examples
We now show how to compute the persistent homotopy type distance in some

simple cases. We take C = S and denote dSHT simply by dHT. For the sake of simplicity,
we take n = 1.

The first example pertains to the case when one can retract a given space X to a
subset A in such a way that the function values do not increase.

Proposition 2.4. Let (X,ϕX) be an object in S and let A be a subspace of X such
that there exists a deformation retract F : X × [0, 1]→ X of X onto A with the prop-
erty that ϕX(F (x, t)) 6 ϕX(x) for all x ∈ X and t ∈ [0, 1]. Then,

dHT

(
(X,ϕX), (A,ϕX |A)

)
= 0.

Proof. The proof follows directly from the definition of the homotopy type distance.

As an immediate corollary, we obtain:

Example 2.1. Let X be a contractible space and let z ∈ X. For any fixed c ∈ R, let
ϕc : X → R denote the constant function ϕc(x) = c on X. Simply denote again by c
the constant function equal to c on {z}. It holds that dHT((X,ϕc), ({z}, c)) = 0.

In the next two examples, we show that dHT may be different from dNP even when
the spaces are homeomorphic.

Example 2.2. Let X be the band obtained by gluing without any twist two opposite
sides of a rectangle R, and Y the band obtained by gluing the same sides of R after
applying a complete twist (i.e. a torsion of 2π radians). Assume that the glued sides
have length equal to 2 and that X and Y are embedded into R3 as follows (see
Figure 1):

X :

 x(u, v) = 2 cosu
y(u, v) = 2 sinu
z(u, v) = v

Y :

 x(u, v) = (2 + v sinu) cosu
y(u, v) = (2 + v sinu) sinu
z(u, v) = v cosu

with 0 6 u < 2π and −1 6 v 6 1. Moreover, define ϕX : X → R by ϕX(x, y, z) = z,
and similarly ϕY : Y → R by ϕY (x, y, z) = z. This way the centerlines of both X
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Figure 1: The twisted band Y used in Example 2.2. Colors are as follows: the red
region corresponds to points with non-negative z-coordinate whereas the green region
is the complement, that is, it corresponds to those points with negative z-coordinate.

and Y coincide with the curve C = {(x, y, z) ∈ R3 : x2 + y2 = 4, z = 0} and ϕX takes
values in {−1, 1} at every boundary point of X, while ϕY continuously varies in
[−1, 1] for every boundary point of Y . We claim that

dHT((X,ϕX), (Y, ϕY )) = 1, (2.1)

and

dNP((X,ϕX), (Y, ϕY )) = 2. (2.2)

In order to establish (2.2) note that for any homeomorphism f : X → Y one has
that ‖ϕX − ϕX ◦ f‖∞ = 2 simply because f must take boundary points to bound-
ary points. In order to establish (2.1), defining the retractions onto C given by
rX : X → C by rX(x, y, z) = (x, y, 0) and rY : Y → C by rY ((2 + v sinu) cosu, (2 +
v sinu) sinu, v cosu) = (2 cosu, 2 sinu, 0), and the inclusions iC,X and iC,Y of C into
X and Y respectively, one immediately checks that (iC,Y ◦ rX , iC,X ◦ rY ) is a pair
of 1-homotopy equivalences with respect to (ϕX , ϕY ). Thus, dHT((X,ϕX), (Y, ϕY ))
is at most 1. On the other hand, we claim that by Theorem 2 for k = 1 we have
that dHT((X,ϕX), (Y, ϕY )) > 1. Indeed, notice that D1(ϕX) = {(−1,∞)} whereas
D1(ϕY ) = {(0,∞)}, see Figure 1. It then follows that the bottleneck distance (see
Section 3.1) between these diagrams satisfies dB(D1(ϕX), D1(ϕY )) = 1, which via
Theorem 2 implies our claim.

Example 2.3 (Lens spaces). Let X = Y be the disjoint union of the lens spaces L(7, 1)
and L(7, 2). Define ϕX : X → R by setting ϕX|L(7,1) ≡ 0 and ϕX|L(7,2) ≡ 1, and define
ϕY : Y → R by setting ϕY |L(7,1) ≡ 1 and ϕY |L(7,2) ≡ 0. Then, dHT((X,ϕX), (Y, ϕY ))
is zero because L(7, 1) and L(7, 2) are homotopy equivalent but not homeomorphic
[25], whereas

dNP((X,ϕX), (Y, ϕY )) = 1.

Finally, we consider another example which shows that dNP and dHT can in fact
be the same.
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Example 2.4. Let M be any closed connected oriented manifold. Take X = Y = M
and ϕY = ϕc, the constant function equal to c. In this case dNP(ϕX , ϕc) = ‖ϕX −
c‖∞. We claim that in this case dHT(ϕX , ϕc) = dNP(ϕX , ϕc). Assume that α > 0 is
such that there exists a pair (f, g) a pair of α-homotopy equivalences with respect to
the pair (ϕX , ϕc). We will prove that α > ‖ϕX − c‖∞. Note that from c = ϕc(f(x)) 6
α+ ϕX(x) for x ∈M we have that α > c−minϕX . Now, since g ◦ f and idM are
homotopic, their degrees are the same, therefore |deg(f)| = |deg(g)| = 1. Hence, both
f and g are surjective. From the condition ϕX(g(x)) 6 α+ ϕc(x) = α+ c for all
x ∈M we obtain that α > maxϕX − c. Hence, α > max

(
c−minϕX ,maxϕX − c

)
=

‖ϕX − c‖∞. The fact that dHT 6 dNP (Proposition 2.3) yields the claim.

2.2. Comments on Definition 2.4
We now consider three questions that may naturally arise:

• What if we simplify the definition of α-homotopies given in Definition 2.2 by
removing the condition about H being an α-map at each instant, requiring only
it to be an α-map for t = 0 and t = 1? And, analogously, what if we remove the
condition about an α-homotopy in a subcategory C of S to be a morphism in
C at each instant?

• Would it be possible to define dCHT via a minimum instead of an infimum?

• Is dCHT actually only an extended pseudo-metric or rather an extended metric?

We will answer this questions by means of examples, taking n = 1, i.e. real valued
functions, for the sake of simplicity. Moreover, when possible, we take C = S, and in
such cases we simply write dHT instead of dSHT.

As for the first issue, the definition of α-homotopy we have given may seem more
complex than necessary. One could think of removing the condition about being an
α-map at each instant, maintaining only the condition that it be an α-map for t = 0
and t = 1. Unfortunately, the new metric d∗ that we would obtain from this simpli-
fied definition of α-homotopies would not give an upper bound for the bottleneck
distance in persistent homology. In particular, the vanishing of d∗ would not imply
that the considered sublevel-set persistent homologies are the same. This is shown
in the following example, proving that the analogue of Theorem 2 for d∗ would not
hold.

Figure 2: The functions considered in Example 2.5. In this case d∗(ϕ,ψ) = 0 but
dHT(([−1, 1], ϕ), ([−1, 1], ψ)) > 0.
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Example 2.5. Define ϕ,ψ : [−1, 1]→ R by ϕ(x) = 1− |x| and ψ(x) = (1 + x)/2 (see
Figure 2). We also define f, g : [−1, 1]→ [−1, 1] by setting f(x) = 1− 2|x| and g(x) =

(x− 1)/2. We have that ψ ◦ f(x) = 1+(1−2|x|)
2 = 1− |x| = ϕ(x) and ϕ ◦ g(x) = 1−∣∣x−1

2

∣∣ = 1− 1−x
2 = 1+x

2 = ψ(x), so that the maps f and g are 0-maps with respect

to (ϕ,ψ) and (ψ,ϕ), respectively. Furthermore, g ◦ f(x) = (1−2|x|)−1
2 = −|x| and f ◦

g(x) = 1− 2
∣∣x−1

2

∣∣ = 1− 2
(

1−x
2

)
= x. It follows that f ◦ g equals the identity, whereas

g ◦ f is homotopic to the identity via the homotopy H(x, t) := (t− 1)|x|+ tx). Note
thatH(·, 0) andH(·, 1) are 0-maps with respect to (ϕ,ϕ). As a consequence, d∗(ϕ,ψ) =
0. Now we can observe that the sublevelset persistent homologies of ϕ and ψ are clearly
different from each other, and hence the corresponding bottleneck distance is positive.
This can be easily seen by checking that 1 is a homological critical value for ϕ, but
not for ψ. Therefore, d∗ is not an upper bound for the bottleneck distance. On the
contrary, we shall prove in Section 3.1 that that property holds for dHT (Theorem 2).
This fact leads us to prefer the definition of α-homotopy, and consequently of dHT,
that we have presented.

Analogously, the following Example 2.6 shows the difference between asking an
α-homotopy to be a morphism in C rather than in S at each instant.

Example 2.6. Denoting by 2Z the even integers and by 2Z + 1 the odd integers, let
X = {0} × R ∪ [0, 1]× 2Z and Y = {0} × R ∪ [0, 1]× (2Z + 1) be two subsets of R2.
Let ϕX(s, t) = t and ϕY (s, t) = t. Taking C the subcategory of S whose morphisms
are homeomorphisms, it holds that dCHT((X,ϕX), (Y, ϕY )) = 1 whereas it holds that
dHT((X,ϕX), (Y, ϕY )) = 0 . Notice that removing the request for an α-homotopy in C
to be a homeomorphism at each instant, we would obtain dCHT((X,ϕX), (Y, ϕY )) = 0
by using the 0-maps f : X → Y f(s, t) = (s, t− 1) and g : Y → X, g(s, t) = (s, t− 1)
shown in Figure 3.

Figure 3: The objects and maps considered in Example 2.6.

As for the second issue, the use of an infimum instead of a minimum is necessary,
as the following example shows. The same example shows that dHT is not an extended
metric, but only an extended pseudo-metric, thus clarifying the third issue.

Example 2.7. Define ϕ,ψ : [−2, 2]→ R by setting ϕ(x) = −|x|, ψ(x) = 0 for |x| 6 1
and ψ(x) = 2− 2|x| for |x| > 1 (see Figure 4). We claim that, for every small enough
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Figure 4: The functions considered in Example 2.7. In this case the infimum of the
values α > 0 such that a pair of α-homotopy equivalences with respect to (ϕ,ψ) exists
is 0. However, no pair of 0-homotopy equivalences with respect to (ϕ,ψ) exists.

α > 0 in R, we can find a pair of α-homotopy equivalences (fα, f
−1
α ) with respect

to (ϕ,ψ). As a consequence, dHT(([−2, 2], ϕ), ([−2, 2], ψ)) = 0. In order to show our
claim, let us take 0 < α < 2 and consider the homeomorphism fα : [−2, 2]→ [−2, 2]
defined by setting

fα(x) :=


1

2−αx+ 2α−2
2−α , if − 2 6 x < −α

1
αx, if − α 6 x < α

1
2−αx−

2α−2
2−α , if if α 6 x 6 2.

Observe that fα([−2,−α]) = [−2,−1], fα([−α, α]) = [−1, 1] and fα([α, 2]) = [1, 2]. It
follows that

ψ ◦ fα(x) :=


2− 2

∣∣∣ x
2−α + 2α−2

2−α

∣∣∣ = 2 + 2
(

x
2−α + 2α−2

2−α

)
= 2x+α

2−α , if − 2 6 x < −α
0, if − α 6 x < α

2− 2
∣∣∣ x

2−α −
2α−2
2−α

∣∣∣ = 2− 2
(

x
2−α −

2α−2
2−α

)
= −2x−α2−α , if α 6 x 6 2.

As a consequence

ϕ(x)− ψ ◦ fα(x) :=


−|x| − 2x+α

2−α = x− 2x+α
2−α = −α 2+x

2−α , if − 2 6 x < −α
−|x|, if − α 6 x < α

−|x|+ 2x−α2−α = −x+ 2x−α2−α = −α 2−x
2−α , if α 6 x 6 2.

We can easily check that −α 6 ϕ(x)− ψ ◦ fα(x) 6 0 for every x ∈ [−2, 2]. It follows
that ‖ϕ− ψ ◦ fα‖∞ 6 α. Hence, (fα, f

−1
α ) is a pair of α-homotopy equivalences with

respect to (ϕ,ψ). Given that α can be chosen arbitrarily close to 0, this implies that

dHT(([−2, 2], ϕ), ([−2, 2], ψ)) = dNP(([−2, 2], ϕ), ([−2, 2], ψ)) = 0.

We claim that no pair of 0-homotopy equivalences with respect to (ϕ,ψ) exists. We
prove this by contradiction. Assume that a pair of 0-homotopy equivalences (f0, g0)
with respect to (ϕ,ψ) exists. Then a homotopy H0 : [−2, 2]× [0, 1]→ [−2, 2] exists,
such that H0(x, 0) = g0 ◦ f0(x), H0(x, 1) = x and ϕ(H0(x, t)) 6 ϕ(x) for every x ∈
[−2, 2] and every t ∈ [0, 1]. It is easy to prove that H0(−2, t) = −2 for every t ∈ [0, 1]:
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H0(−2, 1) = −2, ϕ(H0(−2, t)) 6 ϕ(−2) for every t ∈ [0, 1], and −2 is a strict local
minimum point for ϕ. Analogously, H0(2, t) = 2 for every t ∈ [0, 1]. It follows that
g0 ◦ f0(−2) = −2 and g0 ◦ f0(2) = 2.

Now, we observe that f0({−2, 2}) ⊆ {−2, 2}, because f0 is a 0-map and −2, 2 are
the only points where ψ takes a value that is not strictly greater than ϕ(−2) = ϕ(2) =
−2. Analogously, g0({−2, 2}) ⊆ {−2, 2}. By possibly composing f0 with the reflection
x 7→ −x, we can assume that f0(−2) = −2. From the equality g0 ◦ f0(−2) = −2, it
follows that g(−2) = −2. We can now prove that f0([−2, 2]) ⊆ [−2,−1]. Indeed, since
f0(−2) = −2, if f0([−2, 2]) contained a point x̄ > −1, it should also contain an infinite
number of points x where ψ takes the value 0. This contradicts the assumption that
f0 is a 0-map, because ϕ takes its maximum 0 only at the point 0. Furthermore,
g0([−2,−1]) ⊆ [−2, 0]. Indeed, since g0(−2) = −2, if g0([−2,−1]) contained a point
x̄ > 0, there should exist a point x̄ ∈ [−2,−1) such that g(x̄) = 0, so that ϕ((x̄)) = 0.
This contadicts the assumption that g0 is a 0-map. In conclusion, we should have
that g0 ◦ f0([−2, 2]) ⊆ [−2, 0], thus contradicting the fact that g0 ◦ f0(2) = 2.

2.3. The importance of choosing a subcategory C of S
The main motivation for considering a subcategory C of S instead of only the

category S is to generalize the natural pseudo-distance, whose definition depends on
the selection of a set of objects and a set of morphisms that may be respectively
smaller than the set of all real-valued continuous functions and the set of all home-
omorphisms (cf., e.g., Section 7.1 in [2], [6] and [18]). The following examples show
that this choice is fruitful.

The first two examples show that the use of an appropriate subcategory C of
S allows us to represent the L∞ distance and the natural pseudo-distance dNP as
particular cases of dCHT.

Example 2.8. For a fixed compact X, consider the category C whose objects are given
by the pairs (X,ϕ) where ϕ : X → Rn is continuous, and such that between any two
objects (X,ϕ), (X,ϕ′) ∈ ob(C) there is at most one morphism, idX : X → X, from
(X,ϕ) to (X,ϕ′), and this happens provided that ϕ′ � ϕ. If ϕ′ is not everywhere less
than ϕ, then no morphism exists from (X,ϕ) to (X,ϕ′). By choosing this subcategory
C of S we obtain that dCHT((X,ϕ), (X,ϕ′)) = ‖ϕ−ϕ′‖∞.

Example 2.9. Let us set n = 2m in the definition of the category S. Take the category
C whose objects are the objects (X,ϕX) of S and the morphisms from an object
(X,ϕX) to another object (Y,ϕY ) are the homeomorphisms f : X → Y such that
ϕY ◦ f � ϕX . If ψX : X → Rm is a continuous function, then

dNP((X,ψX), (Y,ψY )) = dCHT ((X, (ψX ,−ψX)) , (Y, (ψY ,−ψY ))) .

Here the symbol (ψX ,−ψX) denotes the function ϕX : X → Rn whose first m com-
ponents define the function ψX , while the last m components define the function
−ψX . Analogously for the symbol (ψY ,−ψY ).

Let us prove the previous equality. In the case that X and Y are not homeomorphic,
we have that dNP ((X,ψX), (Y,ψY )) = dCHT ((X, (ψX ,−ψX)) , (Y, (ψY ,−ψY ))) =∞.
Therefore we can confine ourselves to assuming that X and Y are homeomorphic.

If there exist an α > 0 and a homeomorphism f : X → Y such that ‖ψX −ψY ◦
f‖∞ 6 α, then ψY ◦ f � ψX + ~α and ψY ◦ f � ψX − ~α (i.e. −ψY ◦ f � −ψX + ~α),
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and hence f is an ~α-map in C from (X, (ψX ,−ψX)) to (Y, (ψY ,−ψY )), with ~α =
(α, α, . . . , α) ∈ Rm. Analogously, since ‖ψY −ψX ◦ f−1‖∞ = ‖ψX −ψY ◦ f‖∞ 6 α,
f−1 is an ~α-map in C from (Y, (ψY ,−ψY )) to (X, (ψX ,−ψX)). Furthermore, f−1 ◦ f
and f ◦ f−1 are 0-homotopic, and hence 2~α-homotopic to idX and idY , respectively,
by constant homotopies. Therefore, (f, f−1) is a pair of ~α-homotopy equivalences for
((ψX ,−ψX), (ψY ,−ψY )), implying that (X, (ψX ,−ψX)) and (Y, (ψY ,−ψY )) are
(~α, ~α)-homotopy equivalent. Thus,

dNP ((X,ψX), (Y,ψY )) > dCHT ((X, (ψX ,−ψX)) , (Y, (ψY ,−ψY ))) .

If (X, (ψX ,−ψX)) and (Y, (ψY ,−ψY )) are (~α, ~α)-homotopy equivalent with α > 0,
then there is a pair (f, g) of (~α, ~α)-homotopy equivalences for ((ψX ,−ψX), (ψY ,−ψY )).
The definition of C implies that f and g are two homeomorphisms. Moreover, ψY ◦
f � ψX + ~α and −ψY ◦ f � −ψX + ~α (i.e. ψY ◦ f � ψX − ~α), and hence ‖ψX −
ψY ◦ f‖∞ 6 α.

Thus, dNP ((X,ψX), (Y,ψY )) 6 dCHT ((X, (ψX ,−ψX)) , (Y, (ψY ,−ψY ))).
Therefore, dNP ((X,ψX), (Y,ψY )) = dCHT ((X, (ψX ,−ψX)) , (Y, (ψY ,−ψY ))).
In other words, by taking a suitable subcategory C of S we can read the natural

pseudo-distance dNP into the persistent homotopy type distance dCHT.

The following examples provide more insights into the different outcomes that can
be obtained varying the category C. In particular, Example 2.10 shows the effect of
a restriction of both ob(S) and hom(S), while Example 2.11 illustrates the effect of a
restriction of hom(S).

Example 2.10. Let us imagine to be interested in comparing gray-level colorings of
narrow strips (possibly segments), represented by pairs (Rε, ϕ) where Rε is the rect-
angle [−1, 1]× [0, ε] for some ε ∈ [0, 1] and ϕ : Rε → R takes values that depend only
on the first coordinate (i.e. ϕ(x, y1) = ϕ(x, y2) for every (x, y1), (x, y2) ∈ Rε). We will
call each of these pairs a strip coloring. Let us also assume that we wish (i) to dis-
tinguish the generic strip coloring (Rε, ϕ) from its horizontal reflection (Rε, ϕ̂) with
ϕ̂ defined by setting ϕ̂(x, y) = ϕ(−x, y), and (ii) not distinguish the strip colorings
(Rε, ϕ) and (R0, ϕ|R0

) on the ground that the height of the strips is not important.
Then, these requirements can be satisfied by considering the subcategory C of S
whose objects are given by the previously defined strip colorings for all ε ∈ [0, 1],
and whose morphisms between two strip colorings (Rε, ϕ), (Rε′ , ϕ

′) ∈ ob(C) are the
continuous maps f = (f1, f2) : Rε → Rε′ such that

1. f1 depends only on the first coordinate;

2. f1(·, 0) is a strictly increasing homeomorphism;

3. The inequality ϕ′ ◦ f(x, y) 6 ϕ(x, y) holds for every (x, y) ∈ Rε.
Now, let us set ϕ(x, y) = x. If f = (f1, f2) : Rε → Rε is an α-map with respect to
(ϕ, ϕ̂), then ϕ̂(f(x, y)) 6 ϕ(x, y) + α for every (x, y) ∈ Rε. The definition of ϕ and ϕ̂
implies that −f1(x, y) 6 x+ α for every (x, y) ∈ Rε. By setting x = −1, y = 0 and
observing that f1(−1, 0) = −1, we get 1 = −f1(−1, 0) 6 −1 + α, i.e. α > 2. It is im-
mediate to check that (idRε , idRε) is a pair of 2-homotopy equivalences with respect to
(ϕ, ϕ̂). Therefore dCHT((Rε, ϕ), (Rε, ϕ̂)) = 2. Moreover, dCHT((Rε, ϕ), (R0, ϕ|R0

)) = 0,
so that dCHT satisfies the two required properties (i) and (ii). It is also interesting to
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observe that dNP((Rε, ϕ), (R0, ϕ|R0
)) =∞ (because Rε and R0 are not homeomor-

phic) and dSHT((Rε, ϕ), (Rε, ϕ̂)) = 0 (because the homeomorphism f(x, y) = (−x, y)
is a 0-homotopy equivalence with respect to the pair (ϕ, ϕ̂)), so that neither dNP nor
dSHT satisfy the two required properties (i) and (ii).

Example 2.11. Let C be the category whose objects are pairs (X,ϕ) with X = [−1, 1]
and ϕ : X → R a continuous function, and whose morphisms between two objects
(X,ϕ), (X,ϕ′) are the non-decreasing continuous maps f : X → X. Let us take the
two functions ϕ, ϕ̂ : X → R defined by setting ϕ(x) = x and ϕ̂(x) = −x. In the cat-
egory C, the map f(x) ≡ 1 is a 0-map with respect to the pair (ϕ, ϕ̂), and the map
g(x) ≡ −1 is a 0-map with respect to the pair (ϕ̂, ϕ). The function H : [−1, 1]×
[0, 1]→ R, H(x, t) = t(x+ 1)− 1 is a 0-homotopy between g ◦ f and idX with respect
to the pair (ϕ,ϕ), and the function H ′ : [−1, 1]× [0, 1]→ R, H ′(x, t) = t(x− 1) + 1
is a 0-homotopy between f ◦ g and idX with respect to the pair (ϕ̂, ϕ̂). As a conse-
quence, dCHT((X,ϕ), (X, ϕ̂)) = 0. In other words, dCHT cannot distinguish ϕ from ϕ̂.
However, if we maintain the same objects and restrict the set of morphisms to the set
of all increasing homeomorphisms from X to X, we obtain another subcategory C′ of
S such that dC

′

HT((X,ϕ), (X, ϕ̂)) > 0. Therefore, different choices of the subcategory
C of S can produce different pseudo-metrics in our model.

2.4. dHT is the same in the topological, PL, and smooth categories
In this section we prove that dHT is the same in the topological, PL, and smooth

categories.

Proposition 2.5. Let C be the subcategory of S such that: the objects of C are all
the pairs (X,ϕX) where X is a compact polyhedron, and ϕX : X → R is a piece-
wise linear function; the morphisms of C from an object (X,ϕX) to another ob-
ject (Y, ϕY ) are all the piecewise linear maps f : X → Y such that ϕY ◦ f 6 ϕX . If
(X,ϕX) and (Y, ϕY ) are two objects in C, and so in S, then dCHT((X,ϕX), (Y, ϕY )) =
dSHT((X,ϕX), (Y, ϕY )).

Proof. The inequality dCHT((X,ϕX), (Y, ϕY )) > dSHT((X,ϕX), (Y, ϕY )) holds because
each morphism in C is also a morphism in S. To see that the converse inequality holds,
let ωX and ωY be the moduli of continuity of ϕX and ϕY , respectively. Let (f, g) be a
pair of α-homotopy equivalences in S with respect to (ϕX , ϕY ). Let K,L be simplicial
complexes such that X = |K| and Y = |L|. By the simplicial approximation theorem
(cf., e.g., [16]), there exists ε > 0 and Kε and Lε subdivisions of K and L with
mesh(Kε),mesh(Lε) < ε, respectively, and a PL map fε : X → Y such that, for any
x ∈ X, each simplex of Lε containing f(x) contains also fε(x). Since fε is homotopic
to f via F (x, t) = (1− t)fε(x) + tf(x), and mesh(Lε) < ε, it holds that fε is ωY (ε)-
homotopic to f . Analogously, there exists a simplicial approximation gε of g that is
ωX(ε)-homotopic to g via G(x, t) = (1− t)gε(x) + tg(x). Notice that fε is an (α+
ωY (ε))-map with respect to (ϕX , ϕY ) and that gε is an (α+ ωX(ε))-map with respect
to (ϕY , ϕX). Thus, S : X × I → X defined by S(x, t) = G(F (x, t), t)) is a (ωX(ε) +
ωY (ε))-homotopy between gε ◦ fε and g ◦ f . Because (f, g) is a pair of α-homotopy
equivalences with respect to (ϕX , ϕY ), g ◦ f is 2α-homotopic to idX with respect to
(ϕX , ϕX). Thus, there is a (ωX(ε) + ωY (ε) + 2α)-homotopy between gε ◦ fε and idX
with respect to (ϕX , ϕX). Because any homotopy between continuous mappings can
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likewise be approximated by a combinatorial version, possibly further subdividing
K and L, we can approximate the (ωX(ε) + ωY (ε) + 2α)-homotopy between gε ◦ fε
and idX by a (2ωX(ε) + ωY (ε) + 2α)-homotopy between gε ◦ fε and idX that is PL
at each instant. Analogously, there is a (ωX(ε) + 2ωY (ε) + 2α)-homotopy between
fε ◦ gε and idY with respect to (ϕY , ϕY ) that is PL at each instant. Hence, (fε, gε)
is a pair of (ωX(ε) + ωY (ε) + α))-homotopy equivalences with respect to (ϕX , ϕY ).
As ε tends to 0, ωX(ε) and ωY (ε) tend to 0. Hence, the claim.

Proposition 2.6. Let D be the subcategory of S such that: the objects of D are all the
pairs (M,ϕM ) where M is a smooth connected compact manifold, and ϕM : M → R
is a smooth function; the morphisms of D from an object (M,ϕM ) to another object
(N,ϕN ) are all the smooth maps f : M → N such that ϕN ◦ f 6 ϕM . If (M,ϕM )
and (N,ϕN ) are two objects in D, and hence in S, then dDHT((M,ϕM ), (N,ϕN )) =
dSHT((M,ϕM ), (N,ϕN )).

Proof. It may be proved in much the same way as Proposition 2.5, using the fact
that any continuous map f : M → N with M and N manifolds can be approximated
by C∞-maps homotopic to f (cf. [20, Ch. 5, Lemma 1.5]).

3. Stability of persistent homology with respect to dHT

In this section we establish some connections between the distance dHT and per-
sistent homology, in particular we lift the Stability Theorem of Persistence 1 via
dHT.

3.1. Preliminaries
3.1.1. Overview of persistence diagrams and the bottleneck distance
In persistent homology, for each k = 0, 1, 2, . . . one seeks to summarize the topological
information contained in the sequence of sublevel sets ϕ−1

X ((−∞, t]) into a multiset
Dk(ϕX) of points of the extended plane called a persistence diagram: a birth–death
pair (b, d) corresponding to a homological feature in degree k gives rise to a point
p = (b, d) in Dk(ϕX); points are taken with multiplicity in order to take into account
the presence of multiple features appearing and disappearing at the same sublevels.

There is a natural notion of distance, called the bottleneck distance dB, that makes
the set of all persistence diagrams into a metric space. The bottleneck distance be-
tween two persistence diagrams D1, D2 is

dB(D1, D2) = inf
M

max

 sup
(p,q)∈M

‖p− q‖∞, sup
s∈D1

∐
D2

s/∈M(D1)
∐
M−1(D2)

∣∣∣∣sx − sy2

∣∣∣∣
 ,

where M varies among all the binary relations between D1 and D2 that are both
right- and left-unique, i.e. partial matchings between D1 and D2.

The following result, which for fixed X expresses the continuity of the assignment
ϕ 7→ Dk(ϕ), is standard:



THE PERSISTENT HOMOTOPY TYPE DISTANCE 17

Theorem 1 (Stability Theorem of Persistence [11]). Let X be a compact polyhedron.
Then, for all continuous tame functions ϕ1, ϕ2 : X → R, and all integers k > 0,

dB(Dk(ϕ1), Dk(ϕ2)) 6 ‖ϕ1 − ϕ2‖∞. (1.1)

In the above statement, tameness refers to a certain regularity condition singling
out functions ϕ for which the homology groups Hk(ϕ−1((−∞, a])) are finite dimen-
sional for all a ∈ R, and in addition, the maps induced at homology level by the
inclusions ϕ−1((−∞, a− ε]) ↪→ ϕ−1((−∞, a+ ε]) fail to be isomorphisms for ε > 0
small only at finitely many points.

One of the salient features of the above result is that it assumes the underlying
space X to be fixed. Using our construction of the homotopy type distance we lift this
result into a statement that applies to any pair (X,ϕX) and (Y, ϕY ) in the category
C satisfying minimal tameness conditions.

3.1.2. Persistence modules and interleavings

More recently, persistent homology has been revisited in terms of persistence modules
and interleavings. The main references here are [9] and [10].

A persistent module (over R) is by definition a directed sequence of vector spaces

connected by linear maps {Vδ
vδ,δ′−→ Vδ′}δ6δ′ such that vδ,δ = id for all δ ∈ R and vδ′,δ′′ ◦

vδ,δ′ = vδ,δ′′ for all δ 6 δ′ 6 δ′′. It is said to be q-tame if the linear maps vδ,δ′ with
δ < δ′ have finite rank.

We now recall the notion of interleaving of persistence modules [9, §3.2]. Given two

persistent modules {Vδ
vδ,δ′−→ Vδ′}δ6δ′ and {Wδ

wδ,δ′−→ Wδ′}δ6δ′ , one says that they are
α > 0 interleaved if for each δ > 0 there are maps φδ : Vδ →Wδ+α and γδ : Wδ → Vδ+α
such that the following four diagrams (3.1), (3.2), (3.3), and (3.4) commute for all
δ, δ′ ∈ R with δ 6 δ′:

Vδ

φδ ""

vδ,δ+2α // Vδ+2α

Wδ+α

γδ+α

:: (3.1)

Vδ+α
φδ+α

$$
Wδ

γδ
<<

wδ,δ+2α // Wδ+2α

(3.2)

Vδ

φδ ''

vδ,δ′ // Vδ′
φδ′

((
Wδ+α

wδ+α,δ′+α // Wδ′+α

(3.3)
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Vδ+α
vδ+α,δ′+α // Vδ′+α

Wδ

γδ

77

wδ,δ′ // Wδ′

γδ′

66 (3.4)

In what follows, for each non-negative integer k, Hk(·) will denote the homology
functor (with field coefficients). Given a pair (X,ϕX) and a non-negative integer k,
we define the associated sublevelset persistence module

PX
k := {Vδ

vδ,δ′−→ Vδ′}δ6δ′

where:

• for each δ ∈ R, Vδ := Hk(Xδ), where Xδ := ϕ−1
X ((−∞, δ]).

• for each δ, δ′ ∈ R with δ 6 δ′ the linear map vδ,δ′ := Hk(ιXδ,δ′ : Xδ ↪→ Xδ′) in-

duced by the natural inclusion ιXδ,δ′ of Xδ into Xδ′ .

3.2. Lifting stability results via dHT

In this section we obtain a lower bound for the homotopy type distance based on
comparing persistence diagrams.

The context of the following theorem is that of the full subcategory C of S whose
objects are compact polyhedra endowed with continuous real valued functions. Thus,
the associated sublevelset persistence modules turn out to be q-tame [10], and one can
still obtain persistence diagrams for sublevelset persistence without adding any extra
tameness condition on the functions [8]. Moreover, because C is a full subcategory of
S, dCHT coincides with dSHT restricted to objects of C. Thus we can simply write dHT

for dCHT.
We start proving that the persistence modules of α-homotopic pairs are α-interleaved.

Lemma 3.1. Let (X,ϕX) and (Y, ϕY ) be two α-homotopy equivalent pairs in C.
Then, for every non-negative integer k, the persistence modules PX

k and PY
k are α-

interleaved.

Proof. Fix a non-negative integer k, and write

PX
k = {Vδ

vδ,δ′−→ Vδ′}δ6δ′ and PY
k = {Wδ

wδ,δ′−→ Wδ′}δ6δ′

where:

• for each δ ∈ R Vδ := Hk(Xδ) and Wδ := Hk(Y δ);

• for each δ, δ′ ∈ R with δ 6 δ′ the maps vδ,δ′ := Hk(ιXδ,δ′) and wδ,δ′ := Hk(ιYδ,δ′).

Let (f, g) be a pair of α-homotopy equivalences with respect to (ϕX , ϕY ). For each
δ ∈ R, let fδ := f |Xδ and gδ := g|Y δ denote the restrictions of f and g to Xδ and
Y δ, respectively. Notice that from the fact that f and g are α-maps it follows that
im(fδ) ⊂ Y δ+α and im(gδ) ⊂ Xδ+α for each δ ∈ R.

In order to prove that PX
k and PY

k are α-interleaved, for each δ ∈ R we need to
provide maps φδ : Vδ →Wδ+α and γδ : Wδ → Vδ+α such that the four diagrams (3.1),
(3.2), (3.3), and (3.4) commute for all δ, δ′ ∈ R with δ 6 δ′.
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In order to establish the commutativity of (3.1) consider the following diagram of
topological spaces:

Xδ

fδ ""

ιXδ,δ+2α // Xδ+2α

Y δ+α
gδ+α

:: (3.5)

Notice that gδ+α ◦ fδ : Xδ → Xδ+2α and the inclusion ιXδ,δ+2α : Xδ ↪→ Xδ+2α are
homotopic by hypothesis. Indeed, since a 2α-homotopy H : X × [0, 1]→ X between
g ◦ f and idX exists, the restriction of H to Xδ × [0, 1] has its image contained in
Xδ+2α, and is therefore a proper homotopy between the maps gδ+α ◦ fδ and ιXδ,δ+2α.

Thus Hk(gδ+α ◦ fδ) = Hk(ιXδ,δ+2α). Applying the homology functor to diagram (3.5)
therefore yields the commutative diagram (3.1). The commutativity of diagram (3.2)
can be established in a similar way.

In order to establish the commutativity of (3.3) consider the following diagram of
topological spaces:

Xδ

fδ ''

ιX
δ,δ′ // Xδ′

fδ′

((
Y δ+α

ιY
δ+α,δ′+α // Y δ

′+α

(3.6)

We now verify that this diagram commutes so that the commutativity of (3.3)
follows by applying the homology functor to (3.6). Indeed, pick any x ∈ Xδ. Then

fδ′
(
ιXδ,δ′(x)

)
= fδ′(x) (Since ιXδ,δ′ is the inclusion map)

= f |Xδ′ (x) (By definition of fδ′)

= f |Xδ(x) (Since x ∈ Xδ ⊆ Xδ′)

= fδ(x) (Definition of fδ)

= ιYδ+α,δ′+α
(
fδ(x)

)
. (Since fδ(x) ∈ Y δ+α ⊆ Y δ′+α)

Since x ∈ Xδ was arbitrary it follows that fδ′+α ◦ ιXδ,δ′ = ιδ+α,δ′+α ◦ fδ+α.
One can verify that (3.4) commutes using a similar argument.

Using Lemma 3.1, we now obtain the stability of persistence diagrams with respect
to the persistent homotopy type distance.

Theorem 2. Let X and Y be compact polyhedra, and k be any non-negative integer.
Let ϕX : X → R and ϕY : Y → R be continuous functions. Then,

dB

(
Dk(ϕX), Dk(ϕY )

)
6 dHT

(
(X,ϕX), (Y, ϕY )

)
.

Proof. Under the assumption that X and Y are compact polyhedra, and ϕX : X → R
and ϕY : Y → R are continuous functions, the persistence modules PX

k and PY
k are
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q-tame by [8, Thm. 2.3]. By Lemma 3.1, if (X,ϕX) and (Y, ϕY ) are α-homotopy
equivalent with respect to (ϕX , ϕY ), then, the persistence modules PX

k and PY
k are α-

interleaved. Thus, the claim follows from the stability theorem for q-tame persistence
modules over R [10].

4. The homotopy type distance for comparing merge trees

A merge tree is a structural descriptor used in shape analysis. For a continuous
function ϕ : X → R defined on a connected domain, the merge tree of ϕ encodes how
the sublevel sets ϕ−1((−∞, t]) are connected for increasing values of t ∈ R.

Following [23], it can be defined as follows. Consider the epigraph epi(ϕ) of ϕ, that
is the space

epi(ϕ) := {(x, t) ∈ X × R : ϕ(x) 6 t},

and the function ϕ̄ : epi(ϕ)→ R defined by ϕ̄(x, t) = t. Consider the equivalence re-
lation ∼ on epi(ϕ) defined by setting (x, t) ∼ (x′, t′) if and only if t = t′ and (x, t)
and (x′, t′) belong to the same connected component of ϕ̄−1(t). The merge tree of
ϕ, denoted Mϕ, is the quotient space epi(ϕ)/ ∼. In other words, Mϕ is the Reeb
graph [24] of epi(ϕ) with respect to ϕ̄. Mϕ is naturally endowed with the continuous
function ϕ̂ : Mϕ → R defined by setting ϕ̂(p) := ϕ̄(x) for any point x belonging to
the equivalence class p.

Because Mϕ is the Reeb graph of epi(ϕ) with respect to ϕ̄, the assumption that X
is a compact polyhedron and ϕ is piecewise linear ensures that epi(ϕ)/ ∼ is a (non-
compact) polyhedron of dimension 1 [13]. In particular, Mϕ turns out to be a tree
with finitely many leaves. As such, merge trees can be compared using the persistent
homotopy type distance. It is then interesting to study the persistent homotopy type
distance on merge trees in relation to other distances that have been proposed for
the same goal.

The manuscript [23] presents an interleaving distance between merge trees that is
interesting because it satisfies a stability property with respect to perturbation of the
function that defines the merge tree. The interleaving distance between merge trees
is defined as follows. For ε > 0, define the ε-shift map iεϕ : Mϕ →Mϕ that sends,
for every t ∈ R, a connected component of ϕ̄−1(t) to the connected component of
ϕ̄−1(t+ ε) that contains it. In other words, iεϕ is the map induced by the inclusion
of the sublevel sets of ϕ. Given two continuous functions ϕ,ψ : X → R, and ε > 0,
consider the two ε-shift maps iεϕ : Mϕ →Mϕ and iεψ : Mψ →Mψ. Two continuous
maps fε : Mϕ →Mψ and gε : Mψ →Mϕ are said to be ε-compatible if the following
diagrams commute

Mϕ

fε !!

i2εϕ // Mϕ

Mψ

gε

==
Mϕ

fε

!!
Mψ

gε
==

i2εψ

// Mψ

(4.1)

and, moreover, ψ̂ ◦ fε = ϕ̂+ ε and ϕ̂ ◦ gε = ψ̂ + ε. In this setting, the interleaving
distance, dI(Mϕ,Mψ) between two merge trees is the greatest lower bound on ε for
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which there are ε-compatible maps [23]:

dI(Mϕ,Mψ) = inf{ε > 0 : ∃ ε-compatible maps fε : Mϕ →Mψ, gε : Mψ →Mϕ }.

We prove that the persistent homotopy distance on merge trees coincides with such
interleaving distance.

Proposition 4.1. For every pair of piecewise linear functions ϕ,ψ : X → R defined
on a compact connected polyhedron X, it holds that

dI(Mϕ,Mψ) = dHT((Mϕ, ϕ̂), (Mψ, ψ̂)).

Figure 5: Elements of the proof of Proposition 4.1.

Proof. In order to see that dHT 6 dI, we will prove that, given ε > 0, every pair of
ε-compatible maps between Mϕ and Mψ constitutes a pair of ε-homotopy equiva-
lences. Pick ε > 0 and let iεϕ : Mϕ →Mϕ and iεψ : Mψ →Mψ be ε-shifts on Mϕ and
Mψ, respectively. Assume that fε : Mϕ →Mψ and gε : Mψ →Mϕ are ε-compatible.

Because ψ̂ ◦ fε = ϕ̂+ ε and ϕ̂ ◦ gε = ψ̂ + ε, it follows that fε and gε are ε-maps. Let
us see that (fε, gε) is a pair of ε-homotopy equivalences with respect to (ϕ̂, ψ̂). To

this end, we need to construct a 2ε-homotopy with respect to (ϕ̂, ϕ̂) (resp. (ψ̂, ψ̂))
between the identity of Mϕ (resp. Mψ) and gε ◦ fε (resp. fε ◦ gε). However, from the
assumption that fε and gε are ε-compatible, we get i2εϕ = gε ◦ fε and i2εψ = fε ◦ gε.
Thus, equivalently, we need to construct a 2ε-homotopy H (resp. K) with respect to

(ϕ̂, ϕ̂) (resp. (ψ̂, ψ̂)) between the identity on Mϕ (resp. Mψ) and the 2ε-shift i2εϕ (resp.
i2εψ ). We show how to construct H. Recall that Mϕ is a tree, and that for every p ∈Mϕ

there are finitely many leaves `1, . . . `np ∈Mϕ which can be connected to p by a sim-
ple path increasing under ϕ̂. For i = 1, . . . , np, set δpi := (ϕ̂(p)− ϕ̂(`i))/2ε ∈ R, and
let γpi : [−δpi ,+∞)→Mϕ be the path increasing under ϕ̂ with starting point `i (i.e.
ϕ̂(−δpi ) = `i)), passing through p, and parametrized by ϕ̂ ◦ γpi (t) = ϕ̂(p) + 2εt with
t ∈ [−δpi ,+∞). Note that, as parameter t increases, the paths γpi , with i = 1, . . . , np,
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can only merge and not branch, and that γpi (0) = p for every i. See Figure 5 for
notation and an illustration of intervening elements.

Setting H : Mϕ × [0, 1]→Mϕ, (p, s) 7→ γpi (s) gives a well-defined set map because
it does not depend on the choice of the leaf `i. Notice that H(p, 0) = p, H(p, 1) =
i2εϕ (p), and ϕ̂(H(p, s)) = ϕ̂(p) + 2εs for all p ∈Mϕ and s ∈ [0, 1].

It remains to show that H is continuous. In the case when ε = 0, H(p, s) = p
for every (p, s) ∈Mϕ × [0, 1], and so H is the identity map of Mϕ for every s ∈ [0, 1],
implying the continuity of H in that case. Now we pick ε > 0. Let q0 belong to the im-
age of H, that is q0 = H(p0, s0) for some (p0, s0) ∈Mϕ × [0, 1], and let V be an open
set in Mϕ containing q0. For every η > 0 and q ∈Mϕ, let U(q, η) be the connected
component of ϕ̂−1((ϕ̂(q)− η, ϕ̂(q) + η)) containing q. Let η > 0 be small enough
such that U(q0, η) is contained in V . Set J(s0) = (s0 − η

4ε , s0 + η
4ε ) ∩ [0, 1]. Note

that U(p0, η/2)× J(s0) is an open neighborhood of (p0, s0) in Mϕ × [0, 1]. By con-
struction, for every (p, s) ∈ U(p0, η/2)× J(s0), it holds that ϕ̂(H(p, s)) = ϕ̂(γpi (s)) =
ϕ̂(p) + 2εs. Moreover, (p, s) ∈ U(p0, η/2)× J(s0) implies that ϕ̂(p0)− η/2 < ϕ̂(p) <
ϕ̂(p0) + η/2 and s0 − η

4ε < s < s0 + η
4ε , so that

ϕ̂(p0)− η

2
+ 2ε

(
s0 −

η

4ε

)
< ϕ̂(H(p, s)) < ϕ̂(p0) +

η

2
+ 2ε

(
s0 +

η

4ε

)
.

Because q0 = H(p0, s0) implies that ϕ̂(q0) = ϕ̂(p0) + 2εs0, we deduce that

ϕ̂(q0)− η < ϕ̂(H(p, s)) < ϕ̂(q0) + η,

yielding H(U(p0, η/2)× J(s0)) ⊆ U(q0, η) ⊆ V . Indeed, we observe that H(p, s) be-
longs to the connected component of ϕ̂−1((ϕ̂(q0)− η, ϕ̂(q0) + η)) containing q0. In
other words, H is continuous.

So, H is a 2ε-homotopy between the identity on Mϕ and i2εϕ . In a similar way, we
can build a 2ε-homotopy K between the identity on Mψ and i2εψ . So, we have finally

proved that (fε, gε) is a pair of ε-homotopy equivalences with respect to (ϕ̂, ψ̂).

Conversely, in order to see that dI 6 dHT, let f : Mϕ →Mψ and g : Mψ →Mϕ be

such that (f, g) is a pair of ε-homotopy equivalences with respect to (ϕ̂, ψ̂) for some
ε > 0. For every p ∈Mϕ, let

fε(p) := i
ϕ̂(p)+ε−ψ̂(f(p))
ψ ◦ f(p).

Analogously, for every q ∈Mψ, let

gε(q) := iψ̂(q)+ε−ϕ̂(g(q))
ϕ ◦ g(q).

In plain words, fε shifts the point f(p) of Mψ in the direction of increasing function
values until it reaches the level ϕ̂(p) + ε, and similarly gε shifts the point g(q) of Mϕ

in the direction of increasing function values until it reaches the level ψ̂(q) + ε. By

construction, ψ̂ ◦ fε = ϕ̂+ ε, ϕ̂ ◦ gε = ψ̂ + ε, fε ◦ gε = i2εψ and gε ◦ fε = i2εϕ . To prove
that fε and gε are ε-compatible maps, it remains to check that they are continuous,
which is implied by the structure of the tree Mϕ.
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5. dHT can be seen as an interleaving distance using categories

The goal of this section is to re-interpret some of the material contained in the
previous sections in terms of interleavings. The advantage is that we obtain a unifying
look at the distances we have encountered so far.

The theory of interleavings was initiated by Chazal et al. in [9], further developed
by Lesnick in [22] to comprise also functional categories, and by Bubenik and Scott
in [4] for functors from the category of ordered reals, and extended by Bubenik et al.
in [5] to the case of functors from any preordered set.

5.1. Functorial definition of interleaving distance
For a given integer n > 1 we denote by Rn the poset category with object set Rn

with a morphism between u and v in Rn iff u � v.
Let O be an arbitrary category. We start with the general definition of interleaving

distance between functors from Rn to O following [5].

Definition 5.1. Let T : Rn → O be a functor between Rn and O and ε � 0. The
ε-shift of T is the functor Tε : Rn → O such that:

1. Tε(u) = T (u+ ε);

2. Tε(u � v) = T (u+ ε � v + ε).

Given two functors T, T ′ : Rn → O, a natural transformation ξ : T ⇒ T ′ between
these functors consists of a morphism ξu : T (u)→ T ′(u) in O for every u ∈ Rn, such
that, for every u � v ∈ Rn, the following diagram commutes:

T (u)
ξu //

T (u�v)

��

T ′(u)

T ′(u�v)

��
T (v)

ξv

// T ′(v)

(5.1)

Given ε ∈ R by ~ε ∈ Rn we denote the vector with all components equal to ε.

Definition 5.2. Given two functors T, T ′ : Rn → O, and a real number ε > 0, T and
T ′ are said to be ε-interleaved if there exist natural transformations ξ : T ⇒ T ′~ε and
η : T ′ ⇒ T~ε such that, for every u ∈ Rn, ηu+~ε ◦ ξu = T (u � u+ 2~ε) and ξu+~ε ◦ ηu =
T ′(u � u+ 2~ε). Moreover, in that case, the pair (ξ, η) is called an ε-interleaving
between T and T ′.

Definition 5.3. Given two functors T, T ′ : Rn → O, the interleaving distance be-
tween T and T ′ is defined as

dOI (T, T ′) := inf{ε > 0 : T and T ′ are ε-interleaved}

whenever T and T ′ are ε-interleaved for some real number ε > 0, while dOI (T, T ′) =∞,
otherwise.

Proposition 5.1 ([5]). Let O be an arbitrary category, and let OR be the category
of functors from R to O. It holds that dOI is an extended pseudo-metric on the objects
of OR.
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Next, we consider specific choices of the target category O. When there is no risk
of confusion, in order to avoid an overload of notation, we will avoid specifying the
O symbol in the notation dOI .

5.1.1. The interleaving distance between Rn-valued functions
Let O = Top/Rn

� be the category of continuous functions ϕX : X → Rn as objects,
and 0-maps as morphisms: a morphism fromϕX toϕY is a continuous map f : X → Y
such that ϕY ◦ f � ϕX .

Proposition 5.2. Every continuous function ϕX : X → Rn defines a functor TϕX :
Rn → Top/Rn

� by setting

• for every u ∈ Rn, TϕX (u) := ϕX − u;

• for every u,v ∈ Rn with u � v, TϕX (u � v) := idX .

Proof. For u � v, idX : X → X is a morphism between ϕX − u and ϕX − v because
(ϕX − v) ◦ idX � ϕX − u. Moreover, TϕX preserves identity and composition.

Let us now see what ε-shifts look like in this setting.

Proposition 5.3. For every ε � 0, and for every ϕX , the ε-shift of TϕX , T
ϕX
ε :

Rn → Top/Rn
�, is equal to the functor TϕX−ε : Rn → Top/Rn

�.

Proof. By Definition 5.1 and the definition of TϕX in Proposition 5.2, the ε-shift of
TϕX is the functor T

ϕX
ε : Rn → Top/Rn

� such that

1. for every u ∈ Rn, T
ϕX
ε (u) = TϕX (u+ ε) = ϕX − u− ε = TϕX−ε(u);

2. for every u,v ∈ Rn with u � v, T
ϕX
ε (u � v) = TϕX (u+ ε � v + ε) = idX =

TϕX−ε(u � v).

The next lemma characterizes all the natural transformations between pairs of
functors TϕX and TϕY .

Lemma 5.1. Let X, Y be topological spaces, and let ϕX : X → Rn, ϕY : Y → Rn
be any two continuous functions. Then, every continuous map f : X → Y such that
ϕY ◦ f � ϕX induces a natural transformation ξf : TϕX ⇒ TϕY such that, for every
u ∈ Rn, ξf (u) is equal to f . Reciprocally, to every natural transformation ξ : TϕX ⇒
TϕY corresponds a continuous map f : X → Y such that ϕY ◦ f � ϕX defined by
f = ξ(u) for any u ∈ Rn.

Proof. Any continuous map f : X → Y such that ϕY ◦ f � ϕX induces a natural
transformation ξf : TϕX ⇒ TϕY defined as follows: for every u ∈ Rn, ξf (u) := f . In-
deed, for every u ∈ Rn, f is a morphism between ϕX − u and ϕY − u because ϕY ◦
f � ϕX implies (ϕY − u) ◦ f � ϕX − u, proving that ξf (u) : TϕX (u)→ TϕY (u).
Moreover, f ◦ idX = idY ◦ f , proving that ξf (u) ◦ TϕX (u � v) = TϕY (u � v) ◦ ξf (v).

Reciprocally, assume that there is a family ξ = {ξ(u) : TϕX (u)→ TϕY (u)}u∈Rn
of continuous maps such that diagram (5.1) commutes for every u � v ∈ Rn:

ξ(u) ◦ TϕX (u � v) = TϕY (u � v) ◦ ξ(v).

Equivalently, for u � v, ξ(v) ◦ idX = idY ◦ ξ(u). Hence, ξ(u) = ξ(v) for every u � v.
Hence, it is sufficient to define f := ξ(u) for one and hence all u ∈ Rn.
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We can now show that the interleaving distance between functors TϕX and TϕY

in Top/Rn
� coincides with the natural pseudo-distance.

Proposition 5.4. Let X and Y be topological spaces. Denoting by dNP the natural
pseudo-distance, for any pair of continuous functions ϕX : X → Rn and ϕY : Y → Rn,
it holds that

dI(T
ϕX , TϕY ) = dNP((X,ϕX), (Y,ϕY )).

Proof. If X and Y are not homeomorphic, dNP =∞ trivially implying that dI 6 dNP.
Let f : X → Y be a homeomorphism such that ‖ϕX −ϕY ◦ f‖∞ 6 ε for some ε > 0.
It then holds that (ϕY − ~ε) ◦ f � ϕX and (ϕX − ~ε) ◦ f−1 � ϕY . By Lemma 5.1,
f induces a natural transformation ξf from TϕX to T (ϕY −~ε), as well as a nat-
ural transformation ξf

−1

from TϕY to T (ϕX−~ε). By Proposition 5.3, T (ϕY −~ε) =
T
ϕY
~ε and T (ϕX−~ε) = T

ϕX
~ε . Moreover, for every u ∈ Rn, ξf (u) = f , and analogously

ξf
−1

(u+ ~ε) = f−1. Thus, we get ξf
−1

(u+ ~ε) ◦ ξf (u) = f−1 ◦ f = idX = TϕX (u �
u+ 2~ε). Similarly, ξf (u+ ~ε) ◦ ξf−1

(u) = f ◦ f−1 = idY = TϕY (u � u+ 2~ε). Hence,

the pair (ξf , ξf
−1

) is an ε-interleaving between TϕX and TϕY , proving that dI 6 dNP

also in this case.
Let us now show that dNP 6 dI. The claim is obvious if dI =∞, so let us assume

that TϕX and TϕY are ε-interleaved for some ε > 0 by an ε-interleaving (ξ, η) with
ξ : TϕX ⇒ T

ϕY
~ε and η : TϕY ⇒ T

ϕX
~ε . By Definition 5.2, for every u ∈ Rn, η(u+ ~ε) ◦

ξ(u) = TϕX (u � u+ 2~ε), and ξ(u+ ~ε) ◦ η(u) = TϕY (u � u+ 2~ε). By Lemma 5.1
and Proposition 5.3, there are two continuous maps f : X → Y and g : Y → X such
that, for each u ∈ Rn, ξ(u) = f , η(u) = g, (ϕY − ~ε) ◦ f � ϕX and (ϕX − ~ε) ◦ g �
ϕY . From η(u+ ~ε) ◦ ξ(u) = TϕX (u � u+ 2~ε) and ξ(u+ ~ε) ◦ η(u) = TϕY (u � u+
2~ε), it follows that g ◦ f = idX and f ◦ g = idY . Hence, g = f−1 and ‖ϕX −ϕY ◦
f‖∞ 6 ε.

5.1.2. The interleaving distance between functions up to homotopy
We now consider O = hTop/Rn

�, the category with continuous functionsϕX : X → Rn
as objects, and 0-homotopy classes of 0-maps between X and Y as morphisms: for
two objects ϕX , ϕY in hTop/Rn

�, a morphism from ϕX to ϕY is the 0-homotopy
class with respect to (ϕX ,ϕY ) of a 0-map f : X → Y , that is, a continuous map be-
tween X and Y such that ϕY ◦ f � ϕX , and is denoted by [f ](ϕX ,ϕY ). In hTop/Rn

�,
the composition of morphisms is defined as the 0-homotopy class of the composition
of 0-maps: for ϕX , ϕY , ϕZ in hTop/Rn

�, and f : X → Y , g : Y → Z being 0-maps
with respect to (ϕX ,ϕY ) and (ϕY ,ϕZ), respectively, we set

[g](ϕY ,ϕZ) ◦ [f ](ϕX ,ϕY ) = [g ◦ f ](ϕX ,ϕZ).

This is well defined because the composition does not depend on the representatives,
and ϕZ ◦ g 6 ϕY , ϕY ◦ f � ϕX imply ϕZ ◦ g ◦ f � ϕX . Composition is associative
and, for any object (X,ϕX), the 0-homotopy class of the identity idX with respect
to (ϕX ,ϕX) is a morphism from (X,ϕX) to (X,ϕX) in hTop/Rn

�.

Proposition 5.5. Every continuous function ϕX : X → Rn defines a functor hTϕX :
R→ hTop/Rn

� by setting

• for every u ∈ Rn, hTϕX (u) := ϕX − u;
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• for every u,v ∈ Rn with u � v, hTϕX (u � v) := [idX ](ϕX−u,ϕX−v).

Proof. For u � v, [idX ](ϕX−u,ϕX−v) is a morphism between ϕX − u and ϕX − v
because (ϕX − v) ◦ idX � ϕX − u. Moreover, hTϕX preserves the identity and the
composition.

Let us now consider ε-shifts of functors hTϕX .

Proposition 5.6. For every ε � 0, and for every ϕX , the ε-shift of hTϕX , hT
ϕX
ε :

Rn → hTop/Rn
�, is equal to the functor hTϕX−ε : Rn → hTop/Rn

�.

Proof. By Definition 5.1 and the definition of hTϕX (Proposition 5.5), the ε-shift of
hTϕX is the functor hT

ϕX
ε : Rn → hTop/Rn

� such that, for every u,v ∈ Rn with u �
v, (i) hT

ϕX
ε (u) = hTϕX (u+ ε) = ϕX − u− ε = hTϕX−ε(u); (ii) hT

ϕX
ε (u � v) =

hTϕX (u+ ε � v + ε) = [idX ](ϕX−u−ε,ϕX−v−ε) = hTϕX−ε(u � v).

The next lemma describes the natural transformations between pairs of functors
hTϕX and hTϕY .

Lemma 5.2. Let X, Y be topological spaces, and let ϕX : X → Rn, ϕY : Y → Rn
be any two continuous functions. Then, every continuous map f : X → Y such that
ϕY ◦ f � ϕX induces a natural transformation hξf : hTϕX ⇒ hTϕY such that, for
every u ∈ Rn, hξf (u) is equal to [f ](ϕX−u,ϕY −u). Reciprocally, for every natural
transformation hξ : hTϕX ⇒ hTϕY , with hξ(u) = [fu](ϕX−u,ϕY −u), and for every
α � 0 in Rn, fu and fu+α are α-homotopic with respect to (ϕX ,ϕY ) for every
u ∈ Rn.

Proof. Any continuous map f : X → Y such that ϕY ◦ f � ϕX induces a natural
transformation hξf : hTϕX ⇒ hTϕY defined as follows: for every u ∈ Rn, hξf (u) :=
[f ](ϕX−u,ϕY −u). Indeed, for every u ∈ Rn, f is a morphism between ϕX − u and

ϕY − u because ϕY ◦ f � ϕX implies (ϕY − u) ◦ f � ϕX − u, proving that hξf (u) :
hTϕX (u)→ hTϕY (u). Moreover, we get that [f ](ϕX−u,ϕY −u) ◦ [idX ](ϕX−u,ϕX−u) =

[idY ](ϕY −u,ϕY −u) ◦ [f ](ϕX−u,ϕY −u), giving hξf (u) ◦ hTϕX (u � v) = hTϕY (u � v) ◦
hξf (v).

Reciprocally, assume there is a family hξ = {hξ(u) : hTϕX (u)→ hTϕY (u)}u∈Rn
of 0-homotopy classes of maps fu with respect to (ϕX − u,ϕY − u) such that dia-
gram (5.1) commutes for every u 6 v ∈ Rn: hξ(v) ◦ hTϕX (u � v) = hTϕY (u � v) ◦
hξ(u). Take α = v − u. From

hξ(u+α) ◦ hTϕX (u � u+α) = hTϕY (u � u+α) ◦ hξ(u)

we deduce [fu+α](ϕX−u−α,ϕY −u−α) ◦ [idX ](ϕX−u,ϕX−u−α) = [idY ](ϕY −u,ϕY −u−α) ◦
[fu](ϕX−u,ϕY −u).

Equivalently, [fu+α](ϕX−u,ϕY −u−α) = [fu](ϕX−u,ϕY −u−α). In other words, there
exists a homotopy H : X × I → Y such that H(·, 0) = fu, H(·, 1) = fu+α, and ϕY ◦
H(·, t)− u−α � ϕX − u for every t ∈ I. Hence ϕY ◦H(·, t) � ϕX +α for every
t ∈ I, yielding that fu and fu+α are α-homotopic with respect to (ϕX ,ϕY ).

We can now show that the interleaving distance between functors hTϕX and hTϕY

in hTop/Rn
� coincides with the persistent homotopy type pseudo-distance.
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Proposition 5.7. Let X and Y be topological spaces. Denoting by dHT the persistent
homotopy type pseudo-distance, for every pair of continuous functions ϕX : X → Rn
and ϕY : Y → Rn, it holds that

dI(hT
ϕX , hTϕY ) = dHT((X,ϕX), (Y,ϕY )).

Proof. If X and Y are not homotopy equivalent, dHT =∞ trivially implying that
dI 6 dHT. Let f : X → Y , g : Y → X form a pair (f, g) of ε-homotopy equivalences
with respect to (ϕX ,ϕY ) for some ε � 0. It holds that (ϕY − ε) ◦ f � ϕX and (ϕX −
ε) ◦ g � ϕY . By Lemma 5.2, f induces the natural transformation hξf : hTϕX ⇒
hT (ϕY −ε) with hξf (u) = [f ](ϕX−u,ϕY −ε−u), and g induces the natural transforma-

tion hξg : hTϕY ⇒ hT (ϕX−ε) with hξg(u) = [g](ϕY −u,ϕX−ε−u). By Proposition 5.6,

hT (ϕY −ε) = hT
ϕY
ε and hT (ϕX−ε) = hT

ϕX
ε . Thus, we get

hξg(u+ ε) ◦ hξf (u) = [g](ϕY −ε−u,ϕX−2ε−u) ◦ [f ](ϕX−u,ϕY −ε−u)

= [g ◦ f ](ϕX−u,ϕX−2ε−u) = [g ◦ f ](ϕX ,ϕX−2ε)

= [idX ](ϕX ,ϕX−2ε) = hTϕX (u � u+ 2ε).

Similarly, hξf (u+ ε) ◦ hξg(u) = hTϕY (u � u+ 2ε). Hence, the pair (hξf , hξg) is an
‖ε‖∞-interleaving between hTϕX and hTϕY , proving that dI 6 dHT also in this case.

Let us now show that dHT 6 dI. The claim is obvious if dI =∞, so let us assume
that hTϕX and hTϕY are ε-interleaved for some ε > 0 by an ε-interleaving (hξ, hζ).
By Proposition 5.6, for any fixed u arbitrarily chosen, there is a continuous 0-map fu :
X → Y with respect to (ϕX − u,ϕY − u− ~ε) such that [fu](ϕX−u,ϕY −u−~ε) = hξ(u),
and a continuous 0-map gu+~ε : Y → X with respect to (ϕY − u− ~ε,ϕX − u− 2~ε)
such that [gu+~ε](ϕY −u−~ε,ϕX−u−2~ε) = hζ(u+ 2~ε). Note that fu and gu+~ε are also ~ε-
maps with respect to (ϕX ,ϕY ) and (ϕY ,ϕX), respectively. By Definition 5.2, for ev-
ery u ∈ Rn, hζ(u+ ~ε) ◦ hξ(u) = hTϕX (u 6 u+ 2~ε), and hξ(u+ 2~ε) ◦ hζ(u+ ~ε) =
hTϕY (u+ ~ε � u+ 3~ε). Hence, from hζ(u+ ~ε) ◦ hξ(u) = hTϕX (u � u+ 2~ε) we de-
duce that gu+~ε ◦ fu is 0-homotopic to idX with respect to (ϕX − u,ϕX − u− 2~ε),
that is gu+~ε ◦ fu is 2~ε-homotopic to idX with respect to (ϕX ,ϕX). Analogously, from
hξ(u+ ~ε) ◦ hζ(u) = hTϕY (u � u+ 2~ε) we deduce that fu+~ε ◦ gu is 0-homotopic to
idY with respect to (ϕY − u,ϕY − u− 2~ε), that is fu+~ε ◦ gu is 2~ε-homotopic to idY
with respect to (ϕY ,ϕY ). On the other hand, by Lemma 5.2, gu is ~ε-homotopic
to gu+~ε with respect to (ϕY ,ϕX), and fu+~ε is ~ε-homotopic to fu with respect to
(ϕX ,ϕY ). Thus, fu+~ε ◦ gu is 2~ε-homotopic to fu ◦ gu+ε with respect to (ϕY ,ϕY ),
implying that fu ◦ gu+ε is 2~ε-homotopic to idY with respect to (ϕY ,ϕY ). In conclu-
sion, for an arbitrarily chosen u ∈ Rn, (fu, gu+~ε) is a pair of ~ε-homotopy equivalences
with respect to (ϕX ,ϕY ), thus proving that dHT((X,ϕX), (Y,ϕY )) 6 ε.

5.1.3. The interleaving distance between persistence modules
Let VectF be the category of vector spaces over a fixed field F. An n-dimensional
persistence module can be viewed as a functor P : Rn → VectF. Replacing O with
VectF in Definition 5.2, we obtain the interleaving distance on the category VectF
as usual.

A standard way in which one obtains n-dimensional persistence modules from
topological spaces endowed with Rn valued functions, is by composing the sublevelset
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filtration functor with the homology functor: for k a non-negative integer, and for
(X,ϕX) an object in Top/Rn�, PX

k = Hk ◦ TϕX is an object in VectR
n

F .

An immediate remark is that given k ∈ N and any ε-interleaving (ζ, η) between
objects (X,ϕX) and (Y,ϕY ) in Top/Rn�, the pair (Hk(ζ), Hk(η)) is an ε-interleaving

between the n-dimensional persistence modules PX
k and PY

k .

As a corollary of Propositions 5.7 and 5.4 we then obtain the following result linking
the interleaving distances on the categories VectR

n

F , Top/Rn�, and hTop/Rn�.

Corollary 5.1. For every (X,ϕX), (Y,ϕY ) with X,Y topological spaces, every ϕX :
X → Rn, ϕY : Y → Rn continuous functions, and every non-negative integer k, it
holds that

dI(P
X
k ,P

Y
k ) 6 dI(hT

ϕX , hTϕY ) 6 dI(T
ϕX , TϕY ).

Remark 5.1. Compare the leftmost inequality above (for n = 1) with Lemma 3.1.

6. Discussion

We have introduced the persistent homotopy type distance dHT to quantify pertur-
bations of functions defined on homotopy equivalent spaces. As a key consequence, we
were able to lift the standard stability result of persistence diagrams of sublevel set
filtrations of Cohen-Steiner, Edelsbrunner, and Harer [11] from the setting of func-
tions defined on the same domain to the more general setting of functions defined on
possibly different but homotopy equivalent domains.

Focusing, as we did, on sublevelsets filtrations implies a certain asymmetry in the
definition of persistent homotopy type distance in that only up-shifts of maps impact
it, but not down-shifts, see Proposition 2.4 and Example 2.6.

This lack of symmetry is shared neither by the L∞ distance nor the natural pseudo-
distance. One interesting line of research is whether a certain modification of our
definition of the persistent homotopy type distance would correct this asymmetry.
Further, it would be interesting to investigate whether such modification implies a lift
of the standard L∞ stability results for extended persistence [12] and/or interlevel set
persistence [1] to settings when functions are defined on possibly different homotopy
equivalent domains.

Another interesting open line of research is uncovering the relationship, if any,
between our homotopy type distance and the distances that appear in the recent
work of Blumberg and Lesnick [3].
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Emilia Reggio Emilia, Italy

Facundo Mémoli memoli@math.osu.edu

Department of Mathematics, The Ohio State University, Columbus, Ohio, U.S.A.


