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Systems that exhibit complex behaviours often contain inherent dynamical structures which evolve over time in a coordinated way.
In this paper, we present a methodology based on the Relevance Index method aimed at revealing the dynamical structures hidden
in complex systems. The method iterates two basic steps: detection of relevant variable sets based on the computation of the
Relevance Index, and application of a sieving algorithm, which refines the results. This approach is able to highlight the
organization of a complex system into sets of variables, which interact with one another at different hierarchical levels, detected,
in turn, in the different iterations of the sieve. The method can be applied directly to systems composed of a small number of
variables, whereas it requires the help of a custom metaheuristic in case of systems with larger dimensions. We have evaluated
the potential of the method by applying it to three case studies: synthetic data generated by a nonlinear stochastic dynamical
system, a small-sized and well-known system modelling a catalytic reaction, and a larger one, which describes the interactions
within a social community, that requires the use of the metaheuristic. The experiments we made to validate the method

produced interesting results, effectively uncovering hidden details of the systems to which it was applied.

1. Introduction

Systems that exhibit complex behaviours are generally made
up of elementary constituents interacting in a nonlinear
way. These constituents could be organized in a hierarchi-
cal structure [1, 2] as, for example, in biological systems
(composed of cells that form tissues, which compose organs
that compose organisms). However, very often complex sys-
tems are characterised by relations among components at
different levels, so that the structure of their interactions
cannot be represented by a clear tree-like topology but rather
by entangled hierarchies [3].

The identification of such structures involves the detec-
tion of the parts composing the system and their subcom-
ponents (up to a predefined level of granularity) and,

possibly, the interactions among these components. Fre-
quently, these structures need to be inferred by observing a
system’s dynamics, either in its unperturbed condition or
after perturbations.

In previous works [4, 5], we have introduced the Rele-
vance Index (RI), a measure based on information theory
that seems suitable for exploring the organization of complex
systems. The RI makes it possible to identify, as components
of a system, relevant sets of variables that show an integrated
behaviour and interact more weakly with the rest of the sys-
tem. The RI method has been applied with interesting results
to several systems: some of them had been artificially
designed in order to test the effectiveness of the technique,
while others referred to interesting physical, chemical,
biological, or socio-economic systems [6, 7]. In addition,
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the efficiency of the method has also been improved by using
a parallel implementation of the RI computation [8] and
some metaheuristics to deal with the “curse of dimensional-
ity” when analysing high-dimensional systems [9, 10]. In
general, the method can be applied every time a collection
of observations of the values of the system variables at differ-
ent instants or conditions is available. This may be the case in
off-line system analysis, but also in on-line analysis, when
observations come from a data stream. In general, we sup-
pose that information on the relations among the system’s
variables is not available; however, this method can be
successfully combined with community detection algorithms
in complex networks [11, 12].

In many cases, the components identified by means of the
RI have an intricate nested structure, which makes it hard to
understand which groups of variables are really important.
To overcome this problem, a filtering or sieving algorithm
has been introduced [13], whose aim is to filter out any
proper subset or superset of a reference variable set which
has a larger RI value. By iteratively considering variable sets
in descending order of index values and running the sieve,
one can obtain an ensemble of disjoint or only partially
overlapping variable sets, which can be considered the most
relevant building blocks of the system. Since this algorithm
is based on a well-defined criterion, user interpretation is
not required for detecting the most relevant groups of
variables after computing the RI for each possible subset.
Nevertheless, at this stage, only the lowest-level components
of a possible hierarchy can be uncovered. An iterative
application of the method is able to construct a hierarchical
view of the system without any prior information about its
structure, just by analysing data that describe its dynamics.

Somehow, we could say that our method represents a way
of giving a purely “objective” description of the structure of a
complex system, based only on the observation of its states.
In fact, our analysis anticipates any possible interpretation
of its results that can be given a posteriori, as it is able to
detect intrinsic dependencies among system variables or
variable sets. Moreover, whenever the system can be
observed in different operational conditions (or from differ-
ent initial conditions), the bias depending on specific samples
may be drastically reduced. However, one should not forget
that any data collection implies that data are already biased
(i) by the measuring technique/device or (ii) by the goals/
aims with which the data have been collected.

This paper, besides summarising our previous work on
the Relevance Index from the point of view of both the
development of the method and its implementation, reports
the first results we obtained by applying the iterative sieve
algorithm to synthetic data and to two real-world systems,
which we used as a validation test for the full method. Syn-
thetic data have been generated by considering the steady
states of a stochastic nonlinear dynamical system composed
of networks with Boolean or random update functions. These
data are a typical example of nonlinear multiple-variable
interactions and, although generated by an abstract system,
are representative of a wide class of real systems. Conversely,
the first real-world system represents the results of a catalytic
reaction, whose dynamics are well known. The last “system”

Complexity

we have analysed shows how our method can be applied to
social sciences: its status over time is represented by the log
of a series of meetings, held within a rather large project, in
which each potential participant has been marked as absent
or present.

The paper is structured as follows: Section 2 introduces
the theory based on which the Relevance Index is derived
and computed, along with the method for the analysis of
complex systems, in which it is employed, whose main fea-
ture is a sieving algorithm used to let the actually relevant
variable sets emerge among the many sets that may have very
similar RI values. Subsequently, in Section 3, we describe the
metaheuristic we used to deal with systems whose size makes
it impossible to assign a RI to all variable subsets, which relies
on a GPU-based implementation of the RI computation. The
results of the experimental validation of the method are
shown in Section 4. Finally, we outline conclusions and
future works in Section 5.

2. Methods

In this section, we succinctly introduce the Relevance Index
and outline the method we developed to compute it. We first
define the index and then present some improvements that
make it applicable to a wide class of complex systems. This
metric can be computed just by analysing data recordings
of the system state at different instants or in different
conditions, without requiring any a priori information on
the system structure.

2.1. The Relevance Index. The roots of the RI can be traced
back to the work by Tononi et al. [14], who introduced
the Functional Cluster Index to detect functional clusters
in brain regions. The method that relies on the RI extends
the Functional Cluster Index, since it can be applied to
dynamical systems, while the Functional Cluster Index
had been defined for fluctuations around a steady state.
The index was first called dynamical cluster index and
subsequently dynamical relevance index to emphasise the
possibility of applying it to actual dynamical systems.
However, we preferred to drop the “dynamical” character-
isation since the index can be applied to more general sce-
narios, making it possible to discover multiple relations
among system variables even when data do not belong
to a time series; in fact, they may even represent the state
of different systems.

The RI was originally introduced to understand the
actual organization of dynamical systems; to this aim, one
needs to (i) properly identify meaningful organizational levels
emerging from the interactions of lower-level entities (and
possibly also of higher-level entities, such as groups of inter-
acting chemical species in protocells [15]) and (ii) describe
the interactions between these meso-levels. In some cases, it
is possible to describe such a structure by means of a simple
tree-like hierarchy, as happens in several physical systems
where the levels can be identified with the space-time scales
of the phenomena (microscopic and macroscopic or micro-
meso-macro), in inclusion hierarchies (e.g., like an organ
made of tissues, which comprise cells, etc.), in social
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organizations, and so on. However, one frequently encoun-
ters cases where the interactions among the high levels are
graph-like, and their organization cannot be satisfactorily
described by a simpler hierarchical structure.

The purpose of the RI method is to identify subsets of
variables that behave in a coordinated way in a dynamical
system. This means that the variables that are members of
the subset are integrated with the other variables of the subset
much more tightly than with the external ones. These subsets
are possible candidates as higher-level entities for describing
the organization of a system; they will be called relevant
subsets (RSs, omitting the specification that they are initially
just candidates). A quantitative measure, well suited for
identifying them, is defined as follows (the presentation
below follows the one given in [5]).

Let U be the set of discrete variables describing a system
whose status changes in time, and let us suppose the time
series of their values is available. According to information
theory [16, 17], Shannon’s entropy of an element x; is
defined as

== p(v)log p(v) (1)

vevV;

where V; is the set of possible values of x; and p(v) the
probability of occurrence of symbol v. Since, in this work,
we deal with observational data, probabilities will be
estimated through relative frequencies.

The entropy of a pair of elements x; and x; is defined by

means of their joint probabilities:

H(x;x Zva,

veV,; weV

) log p(v, w). (2)

Equation (2) can be obviously extended to sets composed
of more than two elements.

Let us now consider a subset S of U composed of k
elements. Its integration I(S), also known as intrinsic infor-
mation or multi-information, is defined as

S)= Y H(x) - H(S). (3)

x€S

I(S) represents the deviation from statistical indepen-
dence of the k elements in S. The integration alone could be
used to try and identify the relevant subsets. However, find-
ing relevant sets can be seen as a two-objective optimization
problem: on the one hand, we want to find sets whose vari-
ables are strongly correlated with one another while, on the
other hand, we also want such sets to be as independent as
possible from the rest of the system, a property that can be
measured by the mutual information between the set under
consideration and the rest of the system (the lower the
mutual information, the less dependent the sets of variables).

The two objectives can be unified by trying to find the
N ax subsets Sj, with j=1,..., N, of U that exhibit the

max
highest values of the Relevance Index, defined as the ratio

between the integration I(S;) and the mutual information
M(S;; U\S;) between S; and the rest of the system U\S;.

The mutual information between a variable set §; and
U\Sj is defined as

M55 0\S) =H(S,) +

H(Sj) +

H(S;|U\S))

H(O\S) ~H( a

8, U\S)),

where H(A|B) is the conditional entropy, and H(A, B)
denotes the joint entropy.
Finally, the Relevance Index of a set S; is defined as

_ 1)
RI(S;) = M(S;5 U\S;) ®)

Note that, being a ratio, the RI is undefined in all those
cases where M(S;; U\S;) vanishes.

In these cases, however, the subset ; is statistically inde-
pendent from the rest of the system and, therefore, should
be analysed separately. These situations must obviously be
screened out in advance.

It is also worth noting that the RI increases with subset
size k. In [4], we have introduced a possible way to normalize
it; however, a better approach consists in assessing the
statistical significance of the RI of S;, where k, in this case,
is the subset size, by means of a statistical significance index.
In this paper, we will consider the z-score T(S,) defined as

vr(Sk) = v(r) _ 1(Sk) = () (6)

vo(ry) o(rp)

Tc(sk) =

where (r;,) and o(r;,) are, respectively, the average and the
standard deviation of the RI of a sample of subsets of size k
extracted from a reference system U, randomly generated,
which preserves the priors of each single variable in U, and
v=(MI,)/(I,) is a normalization constant. It is worth noting
that the aim of the reference system is to quantify the finite-
size effects affecting the information-theoretic measures of a
random instance of a system with finite dimensions.

The search for the RSs of a dynamical system by means of
this method requires a collection of observations of the
variables at different instants. Since the RI (and its statistical
significance) depends only on symbol frequencies, in princi-
ple, a time series is not strictly required; a collection of
snapshots of the system variables is enough to compute it.

Of course, the comparison with the reference system will
be more significant, the less noisy and the more such snap-
shots are. In [5], however, we have verified that the analysis
of complex systems based on the RI works correctly also in
the presence of noisy data.

A list of relevant sets can be obtained, in principle, by
enumerating all possible subsets of U and ranking them
according to their RI values (or any other associated statisti-
cal significance index, such as the T index used in this work).
The highest T, subsets are most likely to play a relevant role
in determining the system dynamics.
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Output: RS, a subset of C
RS — &
n— [C|

fori=1ton—-1do
forj=i+1tondo
if Del[i] #1 A Del[j] # 1 then

Del[j] 1
end if
end if
end for
end for
fori=1tondo
if Del[i] =0 then
RS «— RS U {Cl[i]}
end if
end for

Input: The array C of all the CRSs, ranked by their T value in descending order.

Initialize auxiliary array Del[k] <0 for kin 1... n

if C[i] ¢ C[j] v C[j] ¢ Cli] then

ArLGoriTHM I: Sieving algorithm.

For large-sized systems, an exhaustive enumeration is
obviously impractical because the number of possible subsets
of set U is 2!Y!, where |U| denotes the cardinality of U. When
the computation load needed for an exhaustive enumeration
exceeds the available computing resources, one needs to
resort either to random sampling or to metaheuristic tech-
niques, like the genetic algorithms hybridized with a local
search we use in this work [9]. The main general idea of this
approach consists in performing a sampling that is biased
towards sets of variables characterised by high T. values.
Indeed, a genetic algorithm performs a sampling [18] where
parameters are iteratively modified so that subsequent sam-
plings are much denser in those regions where the objective
function (the T, in this case) is likely to be higher.

Whatever the method used to compute the index, the
collection of RSs returned is likely to contain RSs included
in others or partially overlapping, which requires further
analyses to assess their actual relevance. Indeed, having a
high T, value is not sufficient to characterise a RS because
such a value might result from the inclusion of a smaller set
characterised by a higher T, (i.e., the set under consideration
is a superset of a more relevant one), in which case the only
relevant set would be the latter. Conversely, a set having a
high T, value might reach an even higher value, if some other
relevant variables are added to it (i.e., the set under consider-
ation is a subset of a more relevant one), in which case we
would consider only the larger set as relevant.

To tackle this problem, in [13], we have proposed a post-
processing sieving algorithm to reduce the overall number of
subsets. The main assumption of the procedure is that if set A
is a proper subset of B, that is, A C B, then only the higher T,
subset is taken into consideration.

Therefore, only disjoint or partially overlapping subsets
are kept. After this postprocessing procedure, the remaining
subsets cannot be decomposed any further, and thus, they
represent the building blocks of the dynamical organization

of the system. The pseudocode of the sieve is presented in
Algorithm 1.

2.2. The Iterative Sieving Method. The method previously
described allows one to identify a plausible organization of
the system in terms of its lowest-level, possibly overlapping,
subsets of variables. Nevertheless, since complex systems
have often a hierarchical structure, one may want to be able
to make hypotheses on aggregated relations among the RSs
thus identified, so as to derive a hierarchy of RSs. To this
aim, we devised an iterative version of the sieving method,
which acts on the data by iteratively grouping one or more
RSs into a single entity. In fact, there are several ways to
do so; the simplest one, yet quite effective, consists in itera-
tively running the sieving algorithm on the same data, each
time using a new representation, in which the top-ranked
RS of the previous iteration, in terms of T, values, is con-
sidered as atomic and substituted by a single variable
(henceforth called a group variable). In this way, each
run produces a new atomic group of variables composed
of both single variables and group variables introduced
in previous iterations.

Suppose we have four variables denoted as A, B, C, and D
in the system and that the group (A B) is the most relevant set
detected by the first iteration of the algorithm. Then, the
second iteration will analyse the dynamics of a system com-
prising the three variables (A B), C, and D, and so on until
the T, value of the most relevant set detected falls below a
preset threshold, which we usually set equal to 3.0.

As will be shown in Section 4, this version of the iterative
sieve is quite effective. However, other variants may be imple-
mented, which may produce more than one group variable
per iteration. In this latter case, instead of considering just
the top-ranked RS as a new group variable, one may possibly
transform the first g sets into group variables, with q chosen
according to some empirical criterion.
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The iterations of the sieving algorithm come to an end
when the T, of the top-ranked RS falls below a preset
threshold (usually equal to 3.0), which means it is no longer
possible to find new RSs that deviate significantly from the
behaviour of the reference system.

3. Implementation

The problem of finding the RSs of a complex system is a
combinatorial optimization problem, whose size increases
exponentially with the system dimension, soon making it
infeasible to follow an exhaustive approach, in which T.
is computed for each possible subset of system variables.
The computation of T, itself is a rather lengthy procedure.
Therefore, we tried to limit the computation time needed
to run our method, on the one hand, by implementing
the T. computation algorithm as massively parallel GPU
code [8], while on the other hand, by designing a meta-
heuristic, in which a genetic algorithm is hybridized with
a local search. The latter is described in detail in the
following subsections.

3.1. Metaheuristic-Based Search of the Relevant Sets. In the
metaheuristic we developed, named HyReSS (Hybrid Rele-
vant Set Search) [9], a genetic algorithm is first executed to
address the search towards the basins of attraction of the
main local maxima. Then, the results are refined through a
series of local searches, driven by the statistics, computed at
runtime, on the results that the algorithm is providing.
These local searches explore the aforementioned basins
of attraction more finely and extensively.

The overall metaheuristic can be partitioned into five
main steps, which are performed according to the fol-
lowing sequence:

(1) Genetic algorithm

(2) Relevance-based local search
(3) Frequency-based local search
(4) Cardinality-based local search
(5) Merging

3.1.1. Genetic Algorithm. The first phase of the overall
metaheuristic is a genetic algorithm, similar to Deterministic
Crowding [19], aimed at boosting the niching characteristics
of the overall method. As a matter of fact, HyReSS does
not look for a single RS, but for the N, RSs with the
highest T..

Each individual corresponds to one RS and is represented
by a binary string of size N, where each bit set to 1 denotes
the inclusion in the RS of the corresponding variable
out of the N variables that describe the system. A list
(“best-RS memory,” of size Ny, in the following) stores
the best individuals and their corresponding fitness values.
At the end of the run, it contains the Ny, RSs which have
been found.

The initial population has a dimension equal to p and
is obtained by generating random individuals according to

a certain preset distribution of cardinality (pairs, triplets,
etc.). This type of generation aims at creating a sample
as diversified as possible, which avoids repetitions and is
a good representative of the whole search space.

The fitness function that has to be maximized is repre-
sented by the T itself and is implemented through a CUDA
(https://developer.nvidia.com) kernel that can compute in
parallel the fitness values of large blocks of individuals.

Evolution proceeds as follows:

(1) Selection of p/2 random pairs of individuals

(2) Creation of p children through a single-point
crossover

(3) Replacement of the most similar parent having lower
fitness with a child, as long as the child is not already
a member of the population

Mutation is implemented as bit flips after each mating
and is applied with a low probability denoted as P, ,,.

As regards the third step of the above list, the algorithm is
elitist, that is, a child is inserted in the new population only if
its fitness is better than the fitness of the replaced parent. This
implies that the overall fitness of the population increases
monotonically over the generations.

The steps described above are iterated until the popula-
tion cannot evolve anymore. If, after completing an iteration,
the new generation is exactly the same as the previous one,
new parents are randomly generated.

The evolutionary phase has two possible stopping
conditions:

(i) The number of evaluations of the fitness function is
above a certain threshold o

(ii) New parents have been generated at least a,, times.

At the end of the evolutionary algorithm, the Ny
fittest individuals are selected as input for the follow-
ing phases.

3.1.2. Search Based on the Relevance of Variables. During the
execution of the genetic algorithm, a presence coeflicient
(PC;) and an absence coefficient (AC,) are calculated for each
variable i of the system to be analysed. The more frequently
variable i is included in high-fitness RSs, the higher PC,.
The more frequently variable i is not included in high-
fitness RSs, the higher AC.,.

To compute PC; and AC;, whenever iteration t of the
genetic algorithm has terminated, a fitness threshold (7),
which separates high-fitness RSs from low-fitness ones, is
set, corresponding to a certain percentile S of the whole
fitness range. The value of the threshold is given by

7(t) = minFitness + (maxFitness — minFitness) = 8. (7)

PC; and AC; correspond to the sum of the fitness
values of the RSs, having fitness greater than 7, in which
the variable was present or absent, respectively. These
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sums are cumulated over the generations and normalized
with respect to the number of generations in which the
corresponding RSs belonged to the population.

Considering these two coeflicients, a further ratio,
defined as R,,; = AC,/PC,, is calculated.

Finally, the variable is labelled as relevant if

(i) PC, is greater than a threshold y (i.e., it belongs to the
yth percentile of the full range of PC; values);

(ii) R,,; is lower than a certain threshold 8.

The most relevant variables are recombined, during
the local search procedure, with other, randomly chosen,
variables. This recombination takes place according to
the following steps:

(1) All possible subsets (made of simple combinations)
of the most relevant variables having cardinality
greater than 1 are calculated.

(2) For each cardinality of the subsets, the individual
with the highest fitness is selected. These individ-
uals are used to create new RSs by forcing the
presence (absence) of relevant (irrelevant) variables
and by randomly adding other variables into the
RSs themselves.

(3) Each newly generated individual is evaluated and, if
its fitness is higher than the fitness of the lowest-
fitness individual in the best-RS memory, it substi-
tutes the latter.

At the end of this search phase, a local search is per-
formed again, this time within the neighbourhood of the best
individual of the best-RS memory. The latter is updated if
new higher-fitness individuals have been found.

3.1.3. Search Based on the Frequency of Variables. In this
third phase, we replicate once more the same procedure used
to generate new individuals and to explore the neighbour-
hood of the best one. However, in this case, we follow a
different criterion, which considers the frequency with which
each variable has been included in the RSs evaluated in the
previous phases.

Such a frequency value is used to identify two classes of
variables and to assign to each variable belonging to them a
higher probability of being included in the newly generated
RSs. These two classes are the following:

(1) Variables having a frequency much lower than
the average

(2) Variables having a frequency much higher than
the average

On the one hand, variables of the first type could have
been previously “neglected”; thus, it is worth checking
whether they are able to generate good individuals. On the
other hand, variables of the second kind are very likely to
actually have high relevance.
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3.1.4. Search Based on the Group Cardinality. This is the last
search phase of the metaheuristic, which exploits some
indices computed during all previous phases. In particular,
such indices are the N — 2 frequencies of occurrence in the
previous steps of groups of each possible cardinality from 2
to N — 1. These indices are normalized with respect to the a
priori probability of occurrence of groups of corresponding
size, given by the corresponding binomial coefficient

N
R

where N is the total number of variables and ¢ the cardinality
of the group. Thus, new RSs are randomly created, with
probability inversely proportional to the normalized index
corresponding to their size, and are possibly stored into the
best-RS memory if their fitness is high enough.

3.1.5. Merging. This is the final phase of the metaheuristic.
In this phase, a limited pool of variables is selected by
considering all variables that are included in the highest-
fitness RSs in the best-RS memory. This is done according
to the following steps:

(1) A size 0 for the pool is chosen.

(2) The best individuals are progressively OR-ed bitwise
in decreasing order of fitness. The procedure starts
from the best two RSs until the result of the bitwise
OR contains 6 bits set to 1, or all the RSs have
been processed.

(3) An exhaustive search over all the possible RSs
containing the selected variables is performed, and
the best-RS memory is updated accordingly.

4. Results and Discussion

In this section, we present three case studies analysed by
means of the proposed iterative RI method. In all the analyses
performed on our test cases, we retain the highest-ranked RS
of each sieve iteration, merge its variables into a new entity,
treated from then on as a single variable replacing its compo-
nent variables, and iterate the procedure until the algorithm
reaches a stopping condition based on the T of the group
detected in the last iteration.

The first two case studies have been chosen to validate the
intrinsic properties of the method on systems for which a
“ground truth” is available. In fact, the relationships between
the variables of the first system have been hand-coded, and
the dynamical behaviour of the second system is also very
well known.

The first test case consists of two sets of data generated
synthetically to assess the effectiveness of our method on
a system which has clear and well-established dynamics
and compare its performance with classical pair correla-
tion techniques.

The second example is a deterministic simulation of
a chemical system (a Catalytic Reaction Network, CRN)
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described by 22 variables. Given its limited dimension,
this system has been analysed using an exhaustive search
over all possible variable subsets.

The third case study, denoted as Green Community
(GC), features 136 variables, which represent the participa-
tion (presence or absence) of 136 people in a series of
meetings, held during a project (the so-called Green Com-
munity project [20]). Given the size of the system, for which
an exhaustive search is obviously infeasible independently of
the available computational power, this case study has been
analysed using the metaheuristic described in Section 3.1.
For each iteration of the sieving algorithm, ten independent
runs of the metaheuristic were performed to take its stochas-
tic nature properly into account and assess the repeatability
of its results. For each iteration, the results provided by
this algorithm were almost identical in all ten runs (only
occasionally, in one of the runs, one of the 50 highest-T,
RSs was different from the ones detected in the other nine
runs). For the smaller-size systems for which the comparison
was possible (iterations of the sieving algorithm on systems
described by fewer than 30 variables), the results were the
same provided by an exhaustive search based on the same
parallel code.

The parameters regulating the behaviour of the meta-
heuristic were set as reported in Table 1.

For all case studies taken into consideration, tests have
been performed on a Linux server equipped with two Intel
Xeon E5-2620v4 (2 x 8 cores, 2.1 GHz) CPUs, 64 GB RAM,
two NVIDIA GeForce GTX 1070 GPUs.

Moreover, given the stochastic nature of the generation
of the reference system, 100 independent runs with different
random seeds were executed to assess the performance of
the algorithm.

Execution times are summarised in Table 2, and results
are discussed in the following subsections. The execution
time on the Green Community case study has been com-
puted considering only one run of the metaheuristic for each
iteration of the sieving algorithm. For the synthetic case, we
only report the execution times of the tests with p = 0.5, since
different settings produce only slightly different results.

In the following sections, we describe the three systems
and provide an interpretation of the results we obtained in
our experiments.

4.1. Synthetic Data. We designed two synthetic datasets
generated by simple systems, whose dynamics are known,
with the aim of assessing the effectiveness of the method,
similarly to machine learning contexts in which the
ground truth is known. The systems we consider are com-
posed of networks whose nodes are updated in terms of
nonlinear, possibly probabilistic, functions at discrete time
steps. These systems can be considered as archetypal
examples of more complex systems because their interac-
tions are examples of typical interactions occurring in real
systems. At the same time, as we will see in the following,
the more-than-binary nature of the relationships makes it
impossible to detect the dynamically relevant parts of the
systems by using classical pair correlation techniques: on
the contrary, given also its ability to directly deal with

TaBLE 1: Settings of the parameters of the metaheuristic. The
parameters are defined in Section 3.1.

Pmut p ‘xf ap ﬁ Y q 0
0.1 50,176 501,760 3 0.75 0.75 0.3 15

large-size groups, our methodology is able to correctly
identify the hidden structures.

4.1.1. Synthetic Data 1: Test Case. The first system has been
designed as a test case and is composed of three subsystems:
§=S§,US, US;. Each of the first two subsystems is composed
of a clique of three nodes, in which the state of each node at
time ¢ + 1 depends on the state of the other two nodes at time
t. The update function is an exclusive OR (XOR) of the two
input nodes. This function is a prototypical example of a
function that depends on both inputs. The third system, S,
is composed of six independent nodes, each assuming value
0 or 1 according to a Bernoulli distribution with probability
0.5. In summary, the system is composed of two Boolean
networks (BNs) immersed in a noisy environment. The
dynamics of these BNs is synchronous and deterministic;
therefore, after a short transient, the BNs settle into an
attractor. In this case, each clique has four fixed points
({(000),(011),(101),(110)}), each with a basin of attraction
of size two. As previously done in the case of BNs, we con-
sider the attractors as representative of the dynamics of the
whole system; the frequency of occurrence of each attractor
in the data to be analysed is proportional to its basin of
attraction [5]. If §; and S, are independent, then we expect
the method to be able to identify the two cliques, distinguish-
ing them from the random nodes. Conversely, if a depen-
dence between S, and S, exists, then the system should still
detect the two cliques, but it should also identify, in a further
step, a superset including both BNs. This happens because
their state space is strongly constrained with respect to the
possible states assumed by the six random nodes, which, as
such, are expected to have a negligible T.. To perform our
test, we produced data representing a collection of state
values of S according to the following procedure:

(1) The first three values (S; = {x;,x,,x;}) are set by
choosing at random one among the fixed points of
the BN.

(2) The fourth to the sixth values (S, ={x,, x5, x¢})
are either an ordered copy of the previous values
({x;,x,,x3}) with probability p, or they are set
independently by choosing at random one fixed
point with probability 1 - p.

(3) The remaining nodes (S;={x,,xg, ...,x,}) are
independently set to 0/1 with probability 0.5.

Note that if p=0, then S, and S, are indepen-
dent, otherwise, S, depends on §;. The system is depicted
in Figure 1.

A selection of representative results of the analysis of
this first system is summarised in Table 3 for the case of



TaBLE 2: Summary of the parameters of the analysed systems and
execution times of the sieving algorithm.

System Variables Samples  Time (s)
Artificial data 1 (p=0.5) 12 1000 7.81+1.39
Artificial data 2 (p=0.5) 18 1000 18.37+£0.14
Catalytic reactions network 22 312 321404
Green Community 136 101 3904 + 463

independent cliques and Table 4 for the case with probabi-
listic dependence between S, and S, with p=0.75. We can
observe that in the case with p =0, the method first detects
S, and then S,; in the third iteration, it groups S; and S,
and adds an extra node, but the T, value of this subset is
very low. Indeed, in this case, after the second iteration,
we cannot expect any further meaningful clustering of rele-
vant variables. It is worth observing that, since S, and S,
are independent, in the first iterations, the two sets of
variables have a very similar T, value. The case where S,
and S, are dependent is quite trivial: the method already
groups the variables composing the two systems in the very
first iteration. We also generated data with p=0.25, p=0.5,
and p=1. In the cases with p>0.25, results were quali-
tatively the same as in the case with p=0.75, while for
p=0.25 which represents a mild dependence, results were
comparable to independence.

4.1.2. Synthetic Data 2: System with Chain of Dependencies.
We also produced a more elaborated variant of the previous
system by introducing a further BN of the same kind as
the previous ones. However, in this case, we imposed a
gradual dependence among these three BNs according to
the following procedure:

(1) The first three values (S; ={x,x,,x;}) are set by
choosing at random one among the fixed points of
the BN.

(2) The fourth to the sixth values (S, = {x,, x5, x4 }) are
set by choosing at random one among the fixed
points of the BN with probability 1 - p, while they
are computed by XOR-ing two randomly chosen
nodes in §; with probability p.

(3) The same as for point 2 holds for S; = {x,, xg, X},
except that it depends upon the nodes in §,.

(4) The remaining nodes (S, = {x;9,%;,...,%3}) are
independently set to 0/1 with probability 0.5.

The results of the application of the sieving algorithm to
these artificially generated data deserve a detailed discussion.
Table 5 summarises the results of the case where variables are
independent (p=0). We can observe that the method first
detects S;, but the T, of S, and S; is comparable. In the
second iteration, it identifies S, and, subsequently, S;. The
algorithm is then able to identify the three subsystems and
to distinguish them from the noisy environment because in
the fourth iteration it groups all three systems together.
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When a mild dependence is introduced (p =0.25), we
should observe a consequent dependence of S, upon S,
and of S; upon S,. This is indeed what the sieving algo-
rithm returns, as shown in Table 6. It is important to
remark that, with this low level of dependence, systems S,
and S, are still detected as single entities but are then
grouped according to the chain of dependencies. This ten-
dency starts to dilute for higher values of p up to p=1,
where there is a complete dependence of nodes in S; from
nodes in §;_; (with i =2, 3). Results for p = 1 are summarised
in Table 7, where we can observe that S, is identified first;
then, single nodes in S, are iteratively added until they form
the set S; + S,. Subsequently, the nodes in S; are added so as
to group all nine varijables in the BNs. We emphasise that the
sieving algorithm correctly identifies and combines these
groups according to the chained dependence among BNs
we have introduced.

Finally, to assess the effectiveness of the method, we also
analysed these two sets of data by performing a hierarchical
clustering based on paired Pearson correlations between
variables, as typically done when networks are analysed. As
expected, this approach did not discover any relevant set
because the main relations involve more than two variables.
We are not claiming that our method outperforms any other
method based on correlations, but just that, by its nature, it is
able to capture relations involving multiple variables.

The successful outcome of the application of the sieving
algorithm to these artificially built datasets provides evidence
to the effectiveness of the method. Nevertheless, its potential
should be expressed on more complex cases, which are the
subject of the following two sections in which data from a
Catalytic Reaction Network and the Green Community data
are analysed.

4.2. Catalytic Reaction Network. The formation of groups of
molecules able to collectively self-replicate is thought to be
fundamental for the origin of life [21-27] and is likely to play
an important role also in future bio-technological systems
[28]. Indeed, currently living beings are based on self-
replicating chemical structures, where the presence of
enzymes (biological catalysers) plays an essential role.

Many attempts have been made to determine the chemi-
cal arrangements that allow sustainable self-maintaining
behaviours, one of the currently most sophisticated being
probably Reflexive Autocatalytic Food-generated (RAF)
sets [29, 30], recently utilized also in biochemical contexts
[29, 31-33] or in protocell architectures [34].

On the other hand, efforts have been made to identify
the relevant chemical species involved in real or artificial
complex chemical reaction schemes [35, 36].

Typically, the systems we have analysed are immersed
in Continuous-flow Stirred-Tank Reactors (CSTRs) [37],
featuring a constant influx of feed molecules (constantly
present in CSTRs and therefore playing the role of the
“food” species constituting the base of RAF arrangements)
and a continuous outgoing flux of all the molecular species
proportional to their concentration. In this case, as the
typical attractors are fixed points, which do not provide
any useful information for computing the RI, a different
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FIGURE 1: A system composed of three subsystems: S; and S, are two cliques with XOR functional dependencies. The nodes of S, depend on
the nodes of S; with probability p. The third subsystem S; is composed of independent random Boolean nodes.

TABLE 3: Test case: RSs found in the main iterations of the sieving
algorithm and corresponding T, values with p=0. At the end of
each iteration, the RS with the highest T, is grouped into a single
variable for the next iteration. In iteration 1, we show also the
second RS ranked. Note that, in iteration 3, the T, of group
(S; S, x;,) (lower than the chosen threshold of 3.0) makes it
not relevant.

Synthetic data 1: independent cliques (p = 0)

Iteration Relevant set(s) T,
X, %, x5 — (8)) 1517.01
! Xy X5 Xg 1454.52
2 Xy X5 x5 — (S;) 684.923
3 S, S, xy, 1.644

TABLE 4: Test case: RSs found in the main iterations of the sieving
algorithm and corresponding T, values with p =0.75. At the end
of each iteration, the RS with the highest T. is grouped into a
single variable for the next iteration. Note that, in iteration 2, the
T. of the group (S, +S, xo) (lower than the chosen threshold of
3.0) makes it not relevant.

Synthetic data 1: dependent cliques (p = 0.75)

Iteration Relevant set T,
1 Xy Xy X3 Xy X5 Xg — (S, +S;) 1524.96
2 S, +S, x 2.769

approach has been followed, which consists in perturbing
the fixed points and recording the transient.

By taking advantage of the aforementioned perturbative
approach, we apply the iterative sieving to the data series
coming from the perturbations imposed on the simulation
of chemical arrangements. This allows us to investigate the
effectiveness of the RI method in identifying RSs in systems
where several reactions take place simultaneously, using only
the concentrations of the various chemical species as input

TaBLE 5: Chain of dependencies case: RSs found in the main
iterations of the sieving algorithm and corresponding T, values
with p=0. In iteration 1, we also show the RSs ranked second and
third. At the end of each iteration, the RS with the highest T is
grouped into a single variable for the next iteration.

Synthetic data 2: independent cliques (p = 0)

Iteration Relevant set(s) T,
X Xy X3 — (S)) 838.024
1 X, Xs Xg 836.677
X7 Xg Xg 831.635
X4 X5 X5 — (S,) 664.485
X, Xg X9 — (S3) 576.078
S18, 85 7.013

TaBLE 6: Chain of dependencies case: RSs found in the main
iterations of the sieving algorithm and corresponding T, values
with p=0.25. At the end of each iteration, the RS with the highest
T, is grouped into a single variable for the next iteration. Note
that, in iteration 6, the T, of the group detected (lower than the
chosen threshold of 3.0) makes it not relevant.

Synthetic data 2: p =0.25

Iteration Relevant set T.

1 X% x5 — () 815.723
2 Xy X5 X5 — (S,) 325.067
3 X, Xg X9 — (S3) 152.263
4 S8, —> (S,+5,) 17.209
5 S48, 8 — (5,+5,+S5) 9.330

6 Si+8,+8;5 X6 2.786

and without any prior knowledge about the reaction graph.
The simulations are based on a relatively simple system
inspired by a model used in [38-40] and originally proposed
by Kauffman [26, 41].
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TaBLE 7: Chain of dependencies case: RSs found in the main
iterations of the sieving algorithm and corresponding T, values
with p= 1. At the end of each iteration, the RS with the highest T,
is grouped into a single variable for the next iteration.

Synthetic data 2: p=1

Iteration Relevant set T,

1 X, %, x5 — (§)) 900.645
2 S, x4 Xg 267.988
3 S +x,+x5 x5 — (5, +S,) 122.419
4 S, +S, xg 50.414
5 S +S, + x5 x; 23.408
6 Si+S+xg+x, Xxg — (5, +S5,+S;3) 12.222

The analysed scheme involves enzymatic condensations,
whose process is considered as being composed of three
steps: the first two creates (reversibly) a temporary complex
(composed by one of the two substrates and the catalyst)
that can be used by a third reaction, which combines the
complex and a second substrate to finally release the catalyst
and the final product. The aforementioned three steps are
summarised as follows:

(1) Complex formation: A + C mA : C.

diss

(2) Complex dissociation: A : C G, A+C.
(3) Final condensation: A : C+B Coma AB + C.

Ceomp Caiss and C,,q are respectively the reaction kinetic
constants of complex formation, complex dissociation, and
final condensation. The dynamic of the systems is described
adopting a deterministic approach, whereby the reaction
scheme is translated into a set of Ordinary Differential
Equations ruled by the mass action law (see [34] for further
details) and integrated by means of a custom Euler method
with step-size control.

The main entities of the model are molecular species
(“polymers”), represented by linear strings of letters (A, B,
C, and D). In the example of Figure 2, they form a catalytic
reaction system composed of seven distinct condensation
reactions divided into two distinct RAF pathways: a chain
of linear reactions (RAF1), the presence of whose root is
guaranteed from the outside, and a RAF where two recip-
rocally catalysing reactions are the roots of another linear
reaction chain (RAF2).

As mentioned before, the asymptotic behaviour of this
kind of systems is a single fixed point [35] due to the system
feedback structure. In order to apply our analysis, we need to
observe the feedbacks in action. Therefore, we perturbed the
concentration of some molecules in order to trigger a
response in the concentration of (some) other species. There-
fore, we temporarily lowered, one by one, by two orders of
magnitude, the input concentrations of the food species
(coloured ellipses in the example of Figure 2) after the system
reached its stationary state. Note that we could also simulate
the temporarily disappearance of the chemical species inside
the CSTR vessel: in this case (i) the grouping process would

Complexity

be different (a consideration that highlights the fact that
the perturbation itself is a dynamical process with a sig-
nificant influence on the final observations) and (ii) the
identification of the chemical structures would clearly be
easier. However, this procedure is not feasible in real
experiments. In order to analyse the system response to
perturbations, we used a three-level coding where, for
each species, the digits 0-1-2 stand for “concentration
decreasing,” “no change,” and “concentration increasing,”
respectively. In this experiment, we consider the concentra-
tion of a chemical species as being constant if it has not
changed by more than 1% in a time period of 10 seconds.
In practice, the time series is obtained by computing (and
then properly coding) the sign of the difference between
two consecutive samples of the original data. Note that, in
order to better observe the dependencies of the system, we
set an observation frequency high enough to allow several
observations during the transient situations. In other words,
the transients are “smooth.”

In Figure 2, we report the most salient steps of the
analysis, while the T, values computed for the main groups
are reported in Table 8.

The entire linear reaction chain (RAF1) is immediately
detected whereas, within the more complex RAF2 organi-
zation, the other groups highlight the strict relations
among the reagents and the catalyser of the same reaction
(Figures 2(b) and 2(c)). The time series is too short to permit
a complete detection of the whole RAF2 group (Figure 2(c))
with sufficiently high significance; however, in the subse-
quent iterations of the method, although groups with signif-
icance below the chosen threshold (corresponding to a
critical value of T, equal to 3.0) are found, we can actually
detect the correct configurations. Indeed, we noticed that, if
the time series length is artificially duplicated, an increased
T, value can also be computed for these groups, which con-
firms the correctness of their detection. All data are repre-
sented in Table 8, which displays the T. values of the RS
detected in each iteration of the sieving algorithm.

Note that the relatively long chain in RAF2 (composed
by reactions R2, R3, R4, and R5) is “discovered” by our
approach starting from the final part of the tail and subse-
quently “going upward” towards its head (Figures 2(c) and
2(d)). This effect is due to the perturbations on the “last”
food species of the chain (e.g., CA, CB, or AC), which
heavily affect the final part of this chain. However, their
effects cannot propagate towards the species (e.g., BAB or
AAB) that are located “upward” along the chain. On the
contrary, perturbations on BA, B, or AA heavily affect the
initial part of this chain, as well as its final part—the higher
the distance from its initial source, the weaker the effect.
This attenuation process (observed also in [36]) induces
a dynamical hierarchy on the chain system, which permits
the fine subdivision highlighted in Figure 2. The same
phenomenon is not observable in RAF1, on the one hand,
because of the small size of the chain and, on the other
hand, because the perturbations hit the root of the chain
directly, causing strong and evident effects along the whole
(short) structure. We remind that the “root” of RAF2 is
composed of two reciprocally catalysing reactions: indeed,
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BC+CC+D+DA+DB+DADB+BCCC

CBAC

(c)

AA+BAB + BB +
C+ AABB+ CA +
CB+AC+ CCA +
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RAF1

1st iteration

BC+CC+D+DA+DB+DADB+BCCC

3rd iteration

2nd iteration 4th iteration

(b)

RAF1
BC+CC+D+DA+DB+DADB+BCCC

10th iteration

RAF2
13th iteration

AB+A+B+BA+AAB+
AA+ BAB + BB +
C+AABB+CA +CB+AC+ CCA +
CBAC

(d)

FIGURE 2: (a) The chemical system under analysis in the CRN case study. Elliptic nodes represent chemical species: the ones filled in blue stand
for those injected into the CSTR (food species), while the empty white ones are the more complex species built by specific condensation of the
food species. Rectangular shapes represent reactions, where incoming arrows are oriented from substrates to reactions and outgoing arrows
from reactions to products. Dashed lines indicate the catalytic role of a particular molecular species within the specific reaction context. The
=5000mol " s7; Cy, = 2505 and C 500 mol ' s71); the
incoming concentration of each food species is 0.01 mol, whereas, every second, 5% of the CSTR volume is renewed. (b) The five RSs found
after the first five iterations of the iterated sieving algorithm. (c) The situation at the end of the iterated sieving algorithm. Note, however, that,
if the method is further iterated (d), despite finding groups with significance below the chosen threshold (corresponding to a critical value of
T. close to 3.0), the iterative sieve detects the correct configuration anyway. For the sake of completeness, the results of all sieving steps are

kinetic constants of all reactions which take place have the same value (C

comp cond —

reported in the attached Supplementary Materials (available here).

this strong dynamical union permits interesting resilience
effects [30, 33, 34].

4.3. Green Community. In this subsection, we examine a set
of data extracted from a very large and complex corpus
collected during the monitoring of the Green Communities
(GC) project. The project started in Italy in 2012, within a call
supported by the EU Interregional Operational Program; it
initially involved only four mountain communities, dealing
with a core topic about energy efliciency and renewable
energy production-related issues. Later, it was extended
to other social and organizational themes, gradually
involving many heterogeneous stakeholders, including spe-
cialists, engineers, researchers, local administrations, and
representatives. In order to manage this increasing complex-
ity, the project decided to take advantage of an evaluation
approach, the Dynamic Evaluation, developed within the
“Emergence by Design” European project (http://cordis.
europa.eu/project/rcn/102441_en.html), aimed at support-
ing the monitoring, management, and development of
projects and programs [20].

The data are extensive and rather complex; on the one
hand, the overall data structure was not designed with the
RI application in mind; on the other hand, the data do
contain information that social scientists are not used to
analyse and that could be analysed successfully through
our techniques.

Therefore, in order to observe the presence of (formal or
informal) coalitions within the four mountain communities,
we decided to extract from this database only the data about
the involved stakeholders’ attendance (or absence) at some
significant points-of-control of the GC project that are
very heterogeneous and include official meetings, global
conferences, other relevant panels, and e-mail discussions.
Moreover, they are distributed over time without a prede-
fined frequency. Following an indication presented also in
[9], our idea was that the simple presence or absence at
important meetings (or even the mere permission to par-
ticipate in them) could carry significant information about
the real project profiles. Therefore, we obtained a very
sparse matrix composed of 136 variables and 101 points-
of-control (observations) (see Figure 3(a)).


http://cordis.europa.eu/project/rcn/102441_en.html
http://cordis.europa.eu/project/rcn/102441_en.html
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TaBLE 8: RSs found in each iteration of the sieving algorithm and
corresponding T values for the CRN case study. The last three
iterations are separated from the others because the T, values of
the detected RSs are lower than the threshold of 3.0.

Iteration Detected relevant set T,

1 [BC][CC][D][DA][DB][DADB][BCCC] 305.711

2 [AA][BAB] 33.682

3 [CB][AC][CCA] 28.616

4 [C][AABB] 26.048

5 [B][BA][AAB] 24.293

6 [C + AABB][CA] 14.236

7 [CB + AC + CCA][CBAC] 10.762

8 [C+ AABB + CA][CB + AC + CCA + CBAC] 11.535

9 [AA + BAB][BB] 5213

10 [AA + BAB + BB] 4484

[C+ AABB + CA + CB + AC + CCA + CBAC]

1 [B+ BA + AAB][AA + BAB + BB + C+ 2953
AABB + CA + CB + AC + CCA + CBAC]

12 [A][B + BA + AAB + AA + BAB + BB + C+ 0.957
AABB + CA + CB + AC + CCA + CBAC]

13 [AB][A + B+ BA + AAB + AA + BAB + BB+ 0261

C+ AABB+ CA + CB+ AC + CCA + CBAC]

Analysing this matrix, we were able to infer some insight-
ful indications about the formation of coalitions during the
GC project.

However, considering the subject of the present paper, we
simply report the following observations:

(i) The iterated sieving procedure automatically
stopped after 26 iterations when a T, lower than
the threshold of 3.0 characterised the last detected
RS, resulting in the final organization shown in
Figure 3(b).

(ii) The groups exhibiting the simplest behaviours are
composed of stakeholders (the system “variables”
or “agents” in the following) present at only one
event of the GC project. In fact, some events may
have a restricted list of stakeholders that are allowed
to participate in it: this piece of information is
indeed a significant part of the process itself and
forces particular forms of coordination among
agents (it excludes the agents that wish to participate
in a particular event but do not have the correct
permission and could also force the presence of
agents that would not participate). On the other
hand, the detection of these simple groups is a
confirmation of the correctness of the RI procedure
when dealing with real-world data.

(iii) Groups D and B, despite their illusory simplicity, are
not so obvious: in particular, the explicit recognition
of group D (and group B) indicates the existence of a
distance between the variables belonging to these
groups and other variables that, in spite of exhibiting
similar behaviours, belong to other groups.

Complexity

(iv) The large group named G is composed of several
large subgroups which, in turn, may be composed
of other smaller RSs. Some of these groups include
very active variables (in particular group G7, which
includes the head of the GC project and the two
social researchers involved in the observation of
the whole project), whereas other groups, despite
the relatively low activity of their members, are
dynamically very heterogeneous (e.g., group G2).

Therefore, the detection of the most obvious groups,
whose correctness was confirmed by the social researchers
that collected the data, shows that the iterative RI procedure
correctly works in analysing the GC case. Moreover, the less
obvious groups have been considered very “interesting” and
sometimes “enlightening” by these specialists.

In any case, the final comment of the social specialists
involved in the project was that “the RI methodology
could constitute a very interesting dashboard potentially
able to effectively support the fieldwork of the observers”
(personal communication).

As a final observation, we can notice how even a mea-
surement as simple as the recording of the presence/absence
in (formal or informal) project meetings can result in the
detection of very sophisticated groupings or hierarchies.

5. Conclusions

In this paper, we have formally introduced, for the first time,
a methodology able to support a wide application of the RI
method. The technique we propose realizes a sieving action
that is performed iteratively until a certain threshold in the
T, value is reached and permits to group together variables
(or sets of variables) of a complex system, which are detected
as the most relevant by the RI method.

The iterated sieving algorithm introduced into the
method aims to reduce the overall number of subsets found
by such a method. This is done by keeping only disjoint or
partially overlapping subsets of variables, which means that
only the subsets having the highest RI are taken into consid-
eration in defining the architecture of the whole complex
system. In the end, this appears to be built upon variable
subsets that cannot be decomposed any further and represent
the actual building blocks of the system.

The proposed approach, based on information-theoretic
measures, has proven to be able to extract hidden informa-
tion about the organization of the three complex systems
we have analysed.

Regarding future work, we plan to apply the RI method,
enriched with the sieving capability, to several other complex
systems: social networks, biological networks, or sociotech-
nological systems. This can be done quite easily because it
can be applied to systems characterised by both continuous
and discrete (Boolean or multivalued) variables. The ultimate
objective is twofold and encompasses both finding new
insights about those systems and further refining the method.

In particular, from a methodological point of view,
considering that the RI is a ratio and that the same RI values
can be obtained by different pairs of values of Integration and
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white). (b) The same variables resorted in order to highlight the RSs found by the RI algorithm. The two coloured bars highlight (i) the
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expression of group G1. The other variables (termed as the “remaining part”) could not be assigned to any group with a sufficiently high

degree of significance.

Mutual Information, we will investigate how the statistical
distribution of the values of the two terms of the ratio affects
the actual relevance of the index computed from such pairs.

From the point of view of the applications of the method,
we are interested in studying more systems with a large
number of variables, whose RSs cannot be computed exhaus-
tively. For such systems, the use of the metaheuristic
described in this paper, as well as its further development
to fit different types of input data, will be necessary to find
the relevant sets in a reasonable time.
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