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Abstract

Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer

and play a critical role in disease progression and development of resistance to drugs. Sin-

gle-cell genome analysis has gained interest in latest years as a source of biomarkers for

targeted-therapy selection and drug resistance, and several methods have been developed

to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequenc-

ing (WGS). However, most protocols require several enzymatic and cleanup steps, thus

increasing the complexity and length of protocols, while robustness and speed are key fac-

tors for clinical applications. To tackle this issue, we developed a single-tube, single-step,

streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplifi-

cation (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and

copy number alterations (CNAs) calling from single cells. The method was evaluated on sin-

gle cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate

the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells

(CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate

cancer or lung adenocarcinoma. The results obtained show that the developed workflow

generates data accurately representing whole genome absolute copy number profiles of sin-

gle cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000

reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-

pass workflow for detection of CNAs in single tumor cells which would be of particular inter-

est for genome-driven targeted therapy selection and for monitoring of disease progression.
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Introduction

Chromosomal instability (CIN) and associated chromosomal alterations at focal, arm or entire

chromosome level are hallmarks of cancer and play a critical role in solid tumor formation

and progression [1–5]. At molecular level, chromosomal alterations modify the genome struc-

ture and functions by altering gene transcription, i.e. creating gene fusions between different

genes and promoters [6–10], or by altering gene dosage, i.e. through amplifications [11]. Con-

versely, deletions are important for the inactivation of tumor suppressor genes, such as PTEN

and CDKN2A [12,13], and for the elimination of the remaining normal alleles in carriers of

inherited or somatic mutations involving RB1, BRCA1, BRCA2, PTPRJ and TP53 [14–17].

A variety of analytical techniques has been developed to analyze chromosomal alterations,

such as fluorescence in situ hybridization (FISH), metaphase comparative genome hybridiza-

tion (mCGH) and array-CGH (aCGH). In particular, genome-wide analysis of copy number

alterations by aCGH has been widely used to define the copy number landscapes of tumors

and has emerged as a powerful tool to identify oncogenes and tumor suppressors, target of

recurrent CNAs in tumors, and to study functional relationships in altered genes [18–21].

Analysis of copy number profiles in single tumor cells, supported by the advancements of Next

Generation Sequencing (NGS) and WGA technologies in recent years [22–27], has provided

insight into different biological aspects of tumor evolution and development. Single tumor cell

genome-wide copy number profiling has been used to dissect cancer heterogeneity [28,29],

which arises from the reiterative process of clonal expansion, genomic diversification and

clonal selection through which cancer evolves [30], and to get a better understanding of tumor

evolution [28]. Moreover, molecular characterization of single CTCs released from primary

tumors or metastatic sites into the systemic blood circulation has also recently got interest as a

biomarker and prognostic factor of response to therapies [31].

However, current methods to generate whole genome libraries from single cells involve sev-

eral steps from sonication of amplified DNA to fragments polishing and enzymatic adapters

ligation [29,32], and are thus not well suited for clinical applications where reproducibility,

robustness and rapidity are required. Recently, an optimized library preparation protocol

based on a variation of degenerate oligonucleotide primed PCR (DOP-PCR) for highly multi-

plexed sequencing has been proposed by Baslan et al. However this protocol still requires sev-

eral enzymatic steps, including WGA adapters digestion, ligation of Illumina1-compatible

adapters and PCR amplification [33].

In this study, we describe a streamlined workflow for detecting CNAs by low-pass WGS

which exploits the characteristics of Ampli1™ WGA, based on LM-PCR WGA of fragments

obtained by digestion on specific restriction sites, to produce, in a single amplification step,

barcoded DNA libraries suitable for NGS sequencing. We show that the developed method

allows one to obtain an unbiased representation of the original DNA template providing a

powerful alternative to widely used aCGH to detect CNAs with high accuracy. Finally, we

demonstrate the feasibility of the method proposed for the characterization of CTCs heteroge-

neity in clinical samples from patients suffering from lung adenocarcinoma or prostate cancer.

Materials and methods

Ethic statement

Written informed consent for CTC isolation and genomic characterization was obtained for

all patients included. All experiments conformed to the principles set out in the WMA Decla-

ration of Helsinki and were approved by the Ethical Committee Boards responsible for the cor-

responding studies (Azienda Ospedaliero Universitaria di Bologna, Policlinico S. Orsola
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Malpighi, Caratterizzazione Molecolare per la Medicina Personalizzata nel Paziente Oncolo-

gico, CAMMPPO, 82/2015/O/Tess; Royal Marsden Research Ethics Committee approved pro-

tocol CCR2472).

Cell culture

Cell lines (NCI-H1650, ATCC1 CRL-5883™; NCI-H1563, ATCC1 CRL-5875™; NCI-H2228,

ATCC1 CRL-5935™; NCI-H23, ATCC1 CRL-5800™; NCI-H441, ATCC1 HTB-174™; NCI-

H661, ATCC1 HTB-183™) were cultured in RPMI 1640 (ATCC modification) supplemented

with 10% fetal calf serum (FCS, both Gibco1 /Life Technologies™) and Penicilline/Streptomi-

cine (Pen/Strep 100x, Euroclone). Cells were maintained at 37˚C and 5% CO2.

Cell lines single-cell isolation by micromanipulation

For single cell isolation of mononuclear cells, the bottom of a petri dish was coated with FCS,

cell suspensions (cell lines NCI-H1650, NCI-H1563, NCI-H2228, NCI-H23, NCI-H441,

NCI-H661) were diluted with 1X PBS to achieve a density of one cell per visual field under an

inverse microscope with 10X magnification. Single cells were picked under visual control

using a 1 μl pipette and transferred (with 1μl PBS) into a 0.2 ml PCR tube for subsequent

whole genome amplification.

Isolation of patients’ pure CTCs and WBCs by DEPArray

Blood was collected from 1 prostate cancer and 2 lung adenocarcinoma patients. CTCs were

enriched (CellSearch CTC Kit, CellTrack1 Autoprep, Menarini Silicon Biosystems Inc) and

counted (CellTrack1 Analyzer II, Menarini Silicon Biosystems Inc) prior to being extracted

from CellSearch cassettes and loaded on DEPArray™ cartridge (Menarini Silicon Biosystems,

SpA, Italy) [34]. With the DEPArray™ system, CTCs and White Blood Cells (WBCs) were iden-

tified and isolated as pure cells according to the manufacturer’s protocol.

Ampli1™ whole genome amplification, DNA library construction and whole

genome sequencing

DNA of isolated cells was amplified using the Ampli1™ WGA kit (Menarini Silicon Biosystems)

according to manufacturer instructions. Quality of Ampli1™ WGA products was checked using

Ampli1™ QC kit (Menarini Silicon Biosystems) and only products with at least 2 amplified

bands were retained. 5 μl of Ampli1™ WGA product were transferred into a new tube and

cleaned up with 1.8X SPRIselect Beads (Beckman Coulter) according to manufacturer instruc-

tions and eluted in 12.5 μl TE. We designed a streamlined method (which we implemented as

a kit called Ampli1™ LowPass, commercially available from Menarini Silicon Biosystems) for

preparing libraries for low-pass WGS by specifically exploiting the deterministic nature of

Ampli1™ WGA. In brief, starting from a 10–50 ng of purified primary Ampli1™ WGA product,

we perform a re-amplification using hybrid PCR primers, including barcoded adaptors com-

patible with the Ion Torrent™ Systems on the 5’ end, and primary WGA universal adaptor on

the 3’ end. Barcoded libraries were quantified using Qubit dsDNA HS Assay kit and Qubit 2.0

Fluorometer (Thermo Fisher Scientific) and pooled in equimolar concentrations to obtain

1500 ng in 44 μl of total volume. Pooled libraries were size selected (300–450 bp) using E-Gel

SizeSelect™ Agarose Gels, 2% on a E-Gel Agarose Gel Electrophoresis System (Thermo Fisher

Scientific) according to manufacturer instructions. Size selected library pool was cleaned up

with 1.2X SPRIselect Beads (Beckman Coulter) according to manufacturer instructions and

quantified using Agilent High Sensitivity DNA Kit using the Agilent Bioanalyzer 2100
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instrument (Agilent). Then, library pool was used for emulsion PCR amplification (400bp)

and template-positive Ion Sphere Particles (ISPs) were enriched using the Ion Chef™ System

(Thermo Fisher Scientific). Sequencing was performed using 318 BC chips on the Ion PGM™
and Ion 530™ chip on Ion S5™ System (525 flows).

Libraries from gDNAs (100ng) were prepared using Ion Xpress™ Plus gDNA Fragment

Library preparation kit (Thermo Fisher Scientific). Briefly, samples were fragmented for

200-base-read libraries, end repaired, ligated with adaptors, nick repaired and bead purified

prior to amplification of size selected (E-Gel SizeSelect™, Thermo Fisher Scientific) fragments

around 250 bp long. Fragment sizes were assessed using the Bioanalyzer system and quantified

using the Ion Library TaqMan1 Quantitation Kit (Thermo Fisher Scientific). Pooled libraries

were used for emulsion PCR amplification (200bp) using the Ion Chef™ System (Thermo

Fisher Scientific). Sequencing reactions were run on the Ion Proton™ System using Ion PI™ ver-

sion 3 chips (Thermo Fisher Scientific).

Sequence alignment, read counting and normalization

Signal processing, base calling and alignment to Homo sapiens hg19 reference sequence was

performed with the Torrent Suite™ v4.6 with—g 0 parameter for the alignment step with tmap.

Genome binning was performed using WindowMaker tool from BEDTOOLS suite [35]. Read

counting and assignment to genomic bins were performed using the HTSeq library [36].

Reads spanning more than one bin were assigned to the one with the longest overlap. Read

counting and assignment to MseI fragments were performed by BEDTOOLS IntersectBed

tool, filtering out reads with more than one fragment match. GC-based normalization was per-

formed by LOWESS fitting of per-bin GC content versus read count on each bin. Calculation

of bin mappability value was performed using bigWigAverageOverBed (http://hgdownload.

cse.ucsc.edu/admin/exe/) using mappability track for 100mers produced by Encode/CRG

(wgEncodeCrgMapabilityAlign100mer; downloaded from https://genome.ucsc.edu/).

Identification of problematic genome regions

For determination of problematic genome regions, read counts from 21 control WBCs over

500 Kbp bins were GC-normalized and mappability-normalized and divided by median nor-

malized read count. For each bin, the median of normalized read counts across the 21 control

WBCs was calculated and bins with median values > 1.4 or < 0.6 were flagged as problematic

regions, potentially leading to false positive calls.

CNA calling

Control-FREEC (Control-Free Copy number caller) software was used to obtain copy-number

calls, using the mode without control sample [37]. Read counts were corrected by GC content

and mappability (uniqMatch option). Bin size was manually set in order to match the desired

resolution. To determine significant CNA calls, Wilcoxon test and Kolmogorov-Smirnov test

(p value < 0.01) were performed using the script assess_significance.R provided with Control-

FREEC software.

ROC curves

To assess the sensitivity and specificity of single cell low-pass experiments, the altered copy

number status on each single cell was compared, in windows of 500Kbp, to the CNA calls of

their corresponding reference WGS of non-amplified gDNA of the respective cell line by

means of a receiver operating characteristic (ROC) curve. The comparison refers only to the
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presence of a CNA in the single cell data versus the reference. Type (gain or loss) and actual

copy number were not considered in the comparison. Computation of true and false positive

rates for various Wilcoxon non-parametric p-value thresholds and the area under the curve

(AUC) were performed using scikit-learn python library. Analogous analyses were performed

also to assess sensitivity and specificity at variable read depths, using a 3.5 million reads dataset

as reference, and to assess sensitivity and specificity of Ampli1™ LowPass protocol respect to

aCGH.

Ploidy determination

To determine the ploidy of single cells, raw BAM data were processed as follows:

1. GC-normalized, mappability-normalized and median centered read counts over 500 Kbp

bins were multiplied by the ploidy to be tested and were smoothed using the method imple-

mented in smoothseg R package [38] to reduce random noise of NGS data obtained at shal-

low coverage, which may affect the later determination of ploidy levels [39].

2. A probability density function was estimated from the smoothed data using kernel density

estimation (KDE); KDE bandwidth is estimated by Silverman’s ‘rule of thumb’ [40] and, if

necessary, manually tweaked after visual inspection of the density plot to best reflect under-

lying data distribution.

3. Estimates of the copy numbers are obtained by finding peaks on the KDE fitted data as

described by Du et al. [41]; peaks with a relative probability contribution lower than 2% are

excluded as potential false positives.

4. Copy number estimates were rounded to the nearest integer and resulting values are

assumed to be the putative underlying copy numbers. Given the discreet nature of read

counts, which are expected to be directly proportional to DNA content, the copy number

estimates should increase linearly with the underlying copy number. The estimates were

thus fitted to a linear regression y = aP� where a is the slope for P, which is a vector of the

putative copy numbers.

5. Process was repeated for each ploidy to be tested (from 2 to 8)

Only main ploidies for which R2 > 0.98 were considered further and best fitting main

ploidy was selected based on sum of squared residuals (SSR). Since ploidies multiple of the real

main ploidy would produce similar fittings and SSR values, results are manually reviewed and

the lowest possible plausible ploidy with similar SSR and R2 values was selected.

Comparative genomic hybridization with oligonucleotide microarrays

(aCGH)

aCGH analyses on oligonucleotide arrays were performed according to the manufacturer’s

instructions (Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis, Version

6.4, August 2011, G4410-90010) with slight modifications as described in [42]. All CGH arrays

were processed using the Microarray Scanner G2565CA by Agilent Technologies with 3 μm

resolution and 16 bit color depth. The output image files were imported, normalized and fluo-

rescent ratios for each probe were determined using Feature Extraction software (Agilent

Technologies, Version 10.7.3.1, Protocol CGH_107_Sep09). Feature Extraction output files

were imported into the Genomic Workbench 5.0.14 software. aCGH data were examined

using the aberration detection method 2 (ADM-2) algorithm with a threshold of 6.0. No cen-

tralization was applied. An aberration filter was defined for identifying copy number
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alterations, where changes only were considered as true positive events with a minimum log2-

ratio of 0.3 and a minimum of 50 consecutive probes with the same polarity per region.

Results

Development of an Ampli1™-based protocol for low coverage whole genome

sequencing (Ampli1™ LowPass)

Ampli1™ WGA, based on LM-PCR, was employed for DNA amplification because it showed

accurate and more even representation of the original single-cell genomic DNA compared to

available methods, as shown by previous reports [27,43,44]. Ampli1™ WGA has already been

used for low-pass WGS by Hodgkinson C. L. et al. [31]. However, according to the workflow

used in that paper, the creation of Illumina1-compatible libraries requires several steps includ-

ing i) digestion of WGA adaptors, ii) DNA fragmentation, iii) EndRepair iv) A-Tailing v) bar-

coded adaptor ligation, vi) sample pooling of barcoded NGS libraries and vii) sequencing. To

avoid complex processing steps and streamline the protocol we devised a method, named

Ampli1™ LowPass, which exploits the universal sequences at the end of Ampli1™ WGA DNA to

incorporate Ion Torrent™ compatible adapters (Fig 1). A single PCR amplification step is

employed to produce barcoded libraries which are ready to be pooled for sequencing, thus

skipping laborious and costly processing steps. The same amplification also introduces bar-

codes incorporated into one of the primer sequences as shown in Fig 1. Finally only a size

selection step is needed to make the libraries compatible with the sequencing platform (Ion

Torrent™ PGM or IonS5).

Fig 1. Schematic overview of Ampli1™ LowPass approach. DNA is amplified through primers complementary to

Ampli1™ WGA universal adapters through a single PCR reaction. Primers incorporate Ion Torrent™-compatible

adapter sequences and barcodes. Libraries are then pooled and subjected to standard processing for sequencing on

PGM or Ion S5 platforms.

https://doi.org/10.1371/journal.pone.0193689.g001
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Ampli1™ LowPass produces a comprehensive representation of the human

genome

To assess the presence of biases and determine the uniformity of genome representation by

Ampli1™ WGA size-selected fragments, genomic DNA from 21 WBCs from 8 individuals was

amplified and sequenced on Ion Torrent™ PGM platform. On average, 528,836 reads were gen-

erated per sample (S1 Table). Genome was divided into 500kb fixed-size, non-overlapping

bins. Read counts per bin showed a strong dependency on GC content (Fig 2a). This is how-

ever expected as it is well known that read counts are affected by polymerase biases in presence

of high or low GC content [45–47]. Another potential source of read count bias is the non-

homogeneous distribution of MseI sites (TTAA) along the genome, also dependent on GC

content (Fig 2b), which leads to different numbers of fragments generated from different geno-

mic regions (Fig 2c). Moreover, fragments generated by MseI restriction employed in Ampli1™
WGA kit are size selected prior to PCR amplification, potentially leading to further bias in

read counts. To evaluate this source of bias and effect of GC-based normalization, we calcu-

lated the number of fragments per bin, weighted on the fragment length probability (S1 Fig)

and evaluated the correlation with read counts before and after GC normalization. As

expected, plot of raw read counts against the weighted number of fragments per bin showed a

strong bias (Fig 2d). However, biases in read counts were effectively corrected by GC-based

normalization (Fig 2e), currently implemented in available software for CNA detection from

WGS data [37,39,48], improving the distribution of read counts and producing an even and

Fig 2. Effect of normalization on read counts distribution. a) Scatter plot of read counts, normalized on 1 million of reads,

versus GC content in 500 Kbp bins obtained by sequencing of a single WBC; number of MseI fragments per bin is plotted b)

respect to GC content and c) along the 22 autosomes; scatter plots of read counts in a single WBC versus number of MseI
fragments per bin, weighted on per-fragment probabilities, before d) and after e) GC normalization, three standard deviations

are used to discriminate outliers (red dots); f) GC-normalized read counts plotted along the 22 autosomes.

https://doi.org/10.1371/journal.pone.0193689.g002
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tight normalized read count distribution along the genome (Fig 2f). Corrected data showed

also a high consistency of read count distribution across different control WBCs (S2 Fig).

After normalization, a minor number of bins corresponding to about 1.5–2% of the genome

still showed a high deviation (> 3�standard deviation) from the median of normalized counts,

likely due to poor mapping in correspondence of repeated and low complexity regions (Fig 2e,

red dots). Indeed, the analysis of the distribution of mappability values for highly deviating

bins confirmed that they mainly correspond to regions with low mappability values (S3 Fig).

Mappability-based normalization is also currently implemented in available software for CNA

detection from WGS data [37,48].

To evaluate the homogeneity of genome representation, we calculated a uniformity value

defined as the fraction of bins whose normalized read count is at least 20% of the normalized

read count averaged across all the bins. On average, uniformity greater than 99% was obtained

for each sample (S4 Fig) and, furthermore, more than 90% of bin bases were covered at higher

than 60% of the mean coverage in all the control samples, implying a very tight distribution of

normalized read counts around the mean.

Finally to identify problematic regions we analyzed the median of the normalized fold

change across 21 WBC normal controls. Bins, with normalized read depths highly deviating

(FC� 1.4 or FC� 0.6) from the genome median value, were mostly located near pericentro-

meric and telomeric regions, which are typically rich of repeated and low-complexity regions

(S5 Fig). A list of 50 problematic regions with size up to 2 Mbp, and globally accounting for 28

Mbp, was built and was used in following analyses to filter false positive CNA calls.

Ampli1™ LowPass produces distortion-free accurate copy number profiles

To verify absence of distortions and residual biases in copy number profiles due to Ampli1™
WGA of single-cell DNA, we compared the profiles generated by Ampli1™ LowPass of 2 single

cells from each of 4 aberrant cell lines (NCI-H1650, NCI-H1563, NCI-H23, NCI-H441) with

those generated by WGS sequencing of the corresponding bulk genomic DNA. WGS of geno-

mic DNA from the 4 cell lines generated between 20,4 to 31.9 million reads, while from

633,049 to 1,284,763 reads were generated from sequencing of the amplified DNA from the

single cells (S1 Table). Copy number profiles were generated from GC-normalized and mapp-

ability-normalized read counts in 500 Kbp bins. Visual inspection of the profiles showed a

strong agreement between copy number profiles generated from single cells and bulk genomic

DNA (S6–S9 Figs). To analyze more in depth the agreement between CNA calls in single cells

and corresponding bulk DNA we performed a ROC analysis, using Wilcoxon non-parametric

test as classifier, to call for copy gains and losses. For all the 4 cell lines analyzed, AUCs� 0.91

were obtained indicating a strong agreement between CNA calls from Ampli1™ LowPass of sin-

gle cells and corresponding bulk DNA (Fig 3). Above data confirms WGA does not introduce

any significant bias in whole genome copy number profiles and produces accurate CNA calls.

Optimization of coverage and resolution

To determine the number of reads necessary to reach high specificity and low number of false

positives we merged the alignments from the 21 WBCs and randomly subsampled the dataset

in subsets ranging from 100,000 mapped reads to 8 million mapped reads. Data analysis was

performed at different bin sizes, corresponding to different resolutions, ranging from 100 Kbp

to 2 Mbp. Resulting copy number profiles are expected to be free from CNAs. Any call was

treated as a false positive call and specificity was calculated. Interestingly, at 200 Kbp resolu-

tion, 400,000 reads are sufficient to get specificity = 0.994 (S10 Fig), which shows a dependency

on both read number and bin size.
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To estimate sensitivity, specificity and accuracy of CNA calling depending on read number

and resolution, DNA from two single cells from the aberrant cell line NCI-H1650, deriving

from metastatic site in state 3B adenocarcinoma, was processed with Ampli1™ LowPass proto-

col (S1 Table). Following mapping to hg19 reference genome, subsets ranging from 100,000 to

3.5 million mapped reads were extracted by random sampling of alignments and CNAs were

called at different resolutions ranging from 100 Kb to 2 Mbp (S11–S18 Figs). It is to note that,

while longer bins may miss smaller CNAs, on average 93.88% and 92.74% of the total length of

CNAs detected at a resolution of 100 Kb were also detected at resolutions of 500 Kbp and 1

Mbp respectively, using a dataset of 3.500.000 mapped reads. This is expected as most CNAs in

tumors are in the order of megabases [18]. A ROC curve analysis was performed using the

dataset at 3.5 million mapped reads as a reference. For both cells, 200,000 mapped reads were

sufficient to get an excellent accuracy at all the resolutions tested with AUCs ranging from 0.94

to 0.99 (Fig 4) as confirmed also by visual analysis of copy number profiles (S11–S18 Figs). For

subsamples of 100.000 reads, we observed a decrease of the AUC by 25% at 100 Kbp bin size,

thus indicating that lower bound for accurate CNAs detection at 100.000 reads is approxi-

mately 200 Kbp. From a quantitative point of view, copy number changes at a resolution of

500 Kbp were also maintained consistently across the different subsets, showing a mean R2 of

0.94 and 0.89 between copy number profiles obtained from 3.5 million mapped reads with

those obtained from 1 million and 0.5 million mapped reads respectively (S19 Fig). Correla-

tion, however, decreased rapidly at lower resolutions and read counts likely due to stochastic

noise in read counting.

To conclude, at a resolution of 500 Kb, sufficient to resolve the majority of CNAs in tumors,

500,000 mapped reads are enough to get an accurate CNA calling both from a qualitative and

quantitative point of view. At lower bin sizes it is still possible to get an accurate detection of

aberrations even if profiles start to get noisier from a quantitative point of view for low read

coverages.

Comparison with aCGH

aCGH is a widely used and accepted method for screening CNVs and CNAs in clinical diag-

nostics [49]. Moreover a previous report has shown that, in conjunction with Ampli1™ single-

cell WGA technology, aCGH provides precise and high resolution assessment of copy number

changes in single cells [42]. To compare CNA calling by Ampli1™ LowPass with aCGH, DNA

from 6 aberrant cell lines (NCI-H1650, NCI-H23, NCI-H2228, NCI-H1563, NCI-H441,

NCI-H661) was amplified with Ampli1™ WGA kit and processed with both aCGH (G3 4x180k

Fig 3. Performance of CNA calling in amplified vs. non-amplified DNA in 4 aberrant cell lines. Data obtained by low-pass WGS (0.5-1M reads) of

DNA from single cells amplified with Ampli1™ WGA kit were processed for CNA calling. CNAs detected in non-amplified bulk gDNA (20-30M reads)

were used as reference. For all the 4 cell lines considered ROC analysis showed an excellent agreement (0.91�AUC�0.97) between CNA calls from

single cells and bulk gDNA.

https://doi.org/10.1371/journal.pone.0193689.g003
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Agilent aCGH microarrays) and low-pass protocols. Based on the above results we aimed at

producing about 500.000 reads per cell and we analyzed copy number profiles with a bin size

of 500 Kb. Visual analysis of Ampli1™ LowPass profiles confirmed the high concordance to

aCGH profiles (Fig 5a and 5b; S20–S25 Figs). Moreover, Ampli1™ LowPass showed high accu-

racy in calling of aCGH-detected CNAs with AUCs ranging between 0.81 and 0.91 for cell

lines NCI-H1650, NCI-H23, NCI-H2228 and NCI-H1563 (Fig 5c and 5l). A lower agreement

between Ampli1™ LowPass and aCGH was observed for lines NCI-H441 and hyperhexaploid

NCI-H661. However, visual analysis of the former line shows noisy and flatter profiles for

aCGH, which may contribute for problems in CNA callings (S24 Fig); the latter mainly shows

differences in segmentation and CNA calling despite the similar profiles and a pretty good cor-

relation of copy number profiles (0.84�R2�0.87; S25 and S26 Figs). This is likely due to a

compression of copy number alterations due the multiploid nature of cell line NCI-H661,

which might hinders an accurate calling of CNAs.

Finally, low-pass shows a high concordance with aCGH also from a quantitative point of

view as indicated by the high correlation between copy number values of low-pass CNA calls

compared with corresponding aCGH fold changes (R2 = 0.89; S27 Fig).

Determination of single cell ploidy

Different bioinformatic methods are already available to determine cancer ploidy and purity

such as ABSOLUTE [50], ASCAT [51], THetA [52] and PyLOH [53]. The first two are how-

ever designed for SNP array data and do not formally model DNA sequencing data, THetA is

designed to identify subclonal CNAs in mixed samples data obtained by high throughput

Fig 4. CNA detection by low-pass experiments at different read depths and resolution. Two cells (a-d & e-h) from cell line NCI1650 were

analyzed at different window size/resolutions (a,e = 100Kb; b,f = 200Kb; c,g = 500Kb; d,h = 2,000Kb). A dataset at 3,500,000 reads served as

reference for ROC analysis.

https://doi.org/10.1371/journal.pone.0193689.g004
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sequencing (40X coverage) and is thus not suitable to low-pass sequencing data, PyLOH uses

allelic information which is not available for low-pass sequencing data.

The method we present exploits the linear relationship between read counts and underlying

copy numbers [39]. Indeed, it is expected that, for a given cell ploidy, normalized ratios of

gains and losses will scale linearly with read counts. We illustrate this in Fig 6 where copy

number profiles were generated from the analysis of a single cell from aberrant cell line

NCI-H23 by using 2 different main ploidies (Fig 6a). Frequency distribution of smoothed

Fig 5. Comparison of LowPass copy number profiles and CNA calling with aCGH. Example profiles from one single cell of aberrant cell line

NCI-H23 generated by Ampli1™ LowPass (a) and aCGH of Ampli1™ amplified DNA (b). In c-p): ROC curves comparing Ampli1™ LowPass CNA calls

with aCGH calls from single cell of 6 cell lines of the NCI-H series.

https://doi.org/10.1371/journal.pone.0193689.g005
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copy number data, obtained by multiplying normalized ratio by the main ploidy, show a multi-

modal distribution where different modes ideally correspond to different copy number levels

in the genome of the cell analyzed and highest peak correspond to the main ploidy (Fig 6b).

Kernel density estimation and determination of modes by a peak detection method based on

wavelet transform [41] clearly shows that a main ploidy of 2 produces a better fit to hypothetic

underlying copy numbers, compared to 3. Indeed peaks for a main ploidy of 2 are = (1.0, 1.97,

2.94, 3.82, 4.67) and are reasonably centered around the putative underlying ploidies (1, 2, 3, 4,

5). On the contrary peaks detected with a main ploidy = 3 are = (1.58, 2.98, 4.49, 5.79, 6.52,

7.12). As expected, regression analysis of peak positions vs putative underlying copy numbers

shows a ploidy of 2 produces a better fit with higher R2 (1.0) and SSR (0.008) compared to a

main ploidy of 3 (R2 = 0.97; SSR = 0.668). We tested the method on Ampli1™ LowPass data

from 2 single cell of the hyperesaploid cell line NCI-H661 (S28 Fig) using 7 different main

ploidies (2, 3, 4, 5, 6, 7, 8). Best fits were obtained with main ploidies set to 6, in agreement to

what suggested from cytogenetic data available for the cell line. Absolute copy number plots

obtained from one single cell from cell line NCI-H661 by setting alternatively a main ploidy of

2 and 6 clearly show that segments better represent the underlying copy number profiles with

a main ploidy of 6 (Fig 7, S29 Fig). Moreover, setting a ploidy of 6 improves CNA calling by

doubling (108% increase) regions called as gains or losses which were missed because of com-

pression effects as can be clearly seen from visual analysis of profiles.

Copy-number profiling of CTCs

To test the assay on real clinical samples, we analyzed single CTCs and corresponding control

white blood cells (WBC) from 1 patient with prostate cancer and 2 patients with lung cancer

for a total of 15 CTCs and 7 WBCs. Cells were sorted with DEPArray™ system and genomic

DNA was processed with Ampli1™ LowPass workflow. In average 854,484 reads were

sequenced for each sample and data were analyzed according to the bioinformatics protocol

outlined (S1 Table).

Prostate cancer CTCs and WBCs were collected from a patient with late stage metastatic

castration- resistant disease with increasing CTC counts despite therapy prostate cancer. For

all the CTCs a main ploidy of 2 was predicted and CNA analysis showed, on average, 660 Mbp

of the genome impacted by copy gains and losses (S30 Fig). Conversely, WBCs showed a flat

Fig 6. Determination of single cell ploidy. Analysis of one single cell from the near-diploid cell line NCI-H23 analyzed using a main ploidy

of 2 (red) and 3 (blue): a) copy number profiles along 22 chromosomes; b) copy number levels distribution; c) density estimated by KDE;

peaks detected are indicated as dashed vertical lines; d) linear regression of peak values over putative underlying copy numbers: clearly peaks

obtained with a main ploidy of 2 better approximate the regression line compared to those obtained at a main ploidy of 3.

https://doi.org/10.1371/journal.pone.0193689.g006
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profile. Notably, total amount of copy number alterations ranged from 536 Mbp to over 1.2

Gbp. Cluster analysis of copy number profiles highlighted a main group of 6 CTCs with small

or no differences among different cells (Fig 8a; cluster A), a cluster (B) corresponding to the 2

WBCs and a single CTC (CTC 6) showing a divergent profile compared to the main group of

CTCs. Systematic analysis of CNAs revealed 15 losses common to all the cells of cluster. Most

of these ‘core’ alterations were also present in CTC 6 (74% of length) indicating a common

aberrant genetic background for all the cells analyzed. At the same time the analysis shows also

alterations specific to single CTCs: single cell CTC 3, while belonging to the cluster of the 6

most similar CTCs and sharing all the losses with them, have a large copy gain accounting for

more than 120 Mbp on chromosome 8 and CTC 6 has 534 Mbp of copy gains not present on

the other cells (Fig 8a).

The second patient studied suffered from lung adenocarcinoma. All the 4 CTCs were

assigned ploidies > 2 with alterations covering from 1.18 Gbp to 1.64 Gbp of genome (S31 Fig,

Fig 8b). Profiles clearly showed a common genomic background with 42% of losses with

respect to the main ploidy and 23% of gains with respect to the main ploidy shared among all

the cells.

The third dataset was also obtained from a patient affected by lung adenocarcinoma; in this

case all the 4 CTCs were assigned a ploidy > 2. Despite the limited number of cells analyzed

the method highlights a huge cell-to-cell variation (S32 Fig; Fig 8c). Globally 2.06 Gbp of

genome have a variation respect to the main ploidy in at least 1 of the 4 CTCs. However only

127 Mbp ‘core’ gains are shared among all the CTCs and CTC-specific CNAs range in size

Fig 7. Absolute copy number CNA calling in a single cell of hyperhexaploid cell line NCI-H661. Plots of copy number profiles along the 22

autosomes expressed as absolute copy numbers. In a) and b) profiles obtained from the same sequencing data with main ploidy parameter set to 2 and

6 respectively. Significant copy number gains and losses are highlighted in red and blue respectively. Clearly a main cell ploidy = 6 provides a better fit

of profiles with segmented data (black lines) and improves CNA calling. CNA calls only detected with main ploidy = 6 are shaded in green.

https://doi.org/10.1371/journal.pone.0193689.g007
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Fig 8. Cluster analysis of copy number profiles for CTCs and WBCs from 3 patients. a) single cells (CTCs and WBCs) from a patient

affected by prostate cancer; cluster A represents 6 CTCs with small or no differences in copy number profiles; cluster B is formed by WBCs

clustering, as expected, on a distinct branch of the tree. b,c) single cells (CTCs and WBCs) from 2 patients affected by lung adenocarcinoma.

Values are expressed as fold changes respect to the main ploidy.

https://doi.org/10.1371/journal.pone.0193689.g008
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from 617 Mbp to 1668 Mbp. Again this demonstrates that Ampli1™ LowPass is able to capture

the huge heterogeneity and cell-to-cell variation between different CTCs of the same patient.

Discussion

Application of single-cell molecular profiling to tumor diagnostics and genome-informed

therapeutics, requires high-throughput, highly-reproducible, straightforward methods. Our

approach offers a streamlined, robust method for copy number profiling of single cancer cells.

By exploiting the universal sequences present at Ampli1™ WGA products end, a simple PCR

reaction, with appropriate hybrid primers encompassing the WGA-primer at the 3’ end,

enables the introduction of barcoded NGS-adaptors, conveniently substituting several enzy-

matic reactions present in standard library preparation protocols, such as WGA adaptors

removal, fragmentation, A-tailing and ligation [31,32]. This allowed us to reduce the efforts

needed to more rapidly produce sequencing-ready libraries substantially decreasing workflow

time to allow higher throughput, while reducing costs from expensive enzymatic reactions.

Another important parameter affecting the efficacy/cost ratio of NGS-based assays is the

number of reads employed. Higher number of reads theoretically can produce higher resolu-

tions and accuracy of copy number profiles, while sensibly affecting the cost of the assay. By

performing a saturation analysis on data obtained from single cells from an aberrant cell line,

we found that 200,000 reads are sufficient to detect CNAs with an accuracy comparable to 3.5

million of reads at a resolution of 100 Kbp. Thus, our approach allowed us to decrease cost of

analysis from about $300/sample for aCGH (using widely available SurePrint G3 Human

CGH Microarray, 4x180K) to about $30, including the generation of about 200.000 sequencing

reads per sample on the Ion S5 platform and Ion 530 Chip, or to about $50, including sequenc-

ing of 500.000 reads, while providing performances comparable or superior to aCGH. Indeed,

comparison with aCGH showed high concordance between Ampli1™ LowPass profiles and

aCGH, which is a widely utilized platform for CNA analysis in tumor biopsies, with advantages

regarding the ability of Ampli1™ LowPass to determine absolute copy numbers [54]. This has

important implications for the biological interpretation of cancer samples, where it is impor-

tant not only to determine relative copy number changes from the main ploidy but it is even

more important to determine absolute copy numbers [50]. Finally, as sequencing cost per base

will likely decrease in the future with advancements in sequencing technologies, the cost of

copy number analysis will further diminish in the future.

Our approach, which is based on LM-PCR WGA, is superior, in principle, to other NGS-

based solutions for high-throughput copy number profiling, such as the one recently proposed

by Baslan et al., based on DOP-PCR [33]. Indeed, previous reports have shown that LM-PCR

WGA approach achieves an accurate and more even representation of the original single-cell

genomic DNA compared to available methods [27,43,44] and that it enables the detection of

CNAs from single cells by aCGH with lower derivative log ratio spread (DLRS) value and a

better call rates [55,56]. Moreover, the method has been shown to be superior to DOP-PCR for

the analysis of copy-number profiles from minute amounts of microdissected FFPE material,

when using aCGH, mCGH, as well as for other genetic analysis assays such as Loss Of Hetero-

zygosity [44]. In our study we demonstrated that Ampli1™ LowPass approach provides an

unbiased and uniform view of the copy number status in whole genome. While one possible

issue of ligation mediated amplification method is the non-uniform distribution of MseI rec-

ognition sites (TTAA) along the genome, we demonstrated that the highly deterministic nature

of the method allows to accurately predict and correct read count biases by employing stan-

dard GC-based normalization method, already implemented in available CNA detection soft-

ware. This allows Ampli1™ LowPass to seamlessly integrate in standard bioinformatics
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workflows and pipelines. In addition, the comparison of profiles and CNA calls from Ampli1™
LowPass analysis of single cell with those obtained by WGS of bulk gDNA from aberrant cell

lines conclusively proved that the method provides an accurate representation of copy number

profiles in single cells without any distortion introduced by WGA.

To test the workflow in a real world case, we applied Ampli1™ LowPass analysis to 3 sets of

CTCs and WBCs from 3 patients suffering from advanced prostate or lung adenocarcinoma.

Data showed a low level of noise, measured as DLRS at a resolution of 500 Kbp, with values

close to those obtained from single cells from cell lines. Different CTCs from the same patient

showed highly consistent results indicating a high reproducibility of the method. Partially

divergent profiles were also present which may be ascribed to tumor heterogeneity and possi-

bly represent different subpopulations that, subjected to selection, may acquire resistance to

drugs. Several cancer related genes were found in “core” alterations shared across different

CTCs of the same patient. Interestingly, in the prostate patient, whose core alterations included

mostly subchromosomal losses, a pattern reminiscent of Homology Recombination Deficiency

(HRD), a copy-number loss was detected in BRCA2 locus (on Chr 13) which, on a diploid

genome, implies loss of heterozygosity. In turn, BRCA2 Loss of Heterozygosity (LOH) has

been linked to sensitivity to PARP inhibitors and platinum based chemotherapy [57], thus sug-

gesting a potential link to therapy selection. In the second patient studied, suffering from lung

adenocarcinoma, all the cells had a large amplification (100 Mbp) on chromosome 8 (up to

over 10 copies) harboring, among others, the c-MYC gene. c-MYC is an important member

of the MYC proto-oncogene family containing N-MYC, c-MYC, and L-MYC [58]. Gene

amplification or copy number gain of c-MYC have been documented in several solid tumors

from different tissues [59–63]. In lung cancer, some early studies revealed frequent c-MYC

amplification in small cell lung cancer cell lines [64,65]. Notably, c-MYC gain is a poor-prog-

nostic factor for disease-free survival (DFS) and overall survival (OS) in lung adenocarcinoma

[58]. Interestingly, while prostate CTCs had a base ploidy = 2, all the CTCs from patients suf-

fering from lung adenocarcinoma were detected as polyploid. This is in agreement with previ-

ous observations as cells with supernumerary centrosomes have been observed in many tumor

types, including breast cancer [66], pancreatic cancer [67], prostate cancer [68], and lung and

colon carcinoma [69]. Notably, for lung adenocarcinoma, 36% of tumors have been reported

to have more than 68 chromosomes [70].

In conclusion, the Ampli1™ LowPass workflow presented allows accurate copy number pro-

filing of genome and CNA detection with a low sequencing depth. The low number of reads

required makes the method ideal for multiplexed sequencing on high throughput sequencers,

thus leading to a cost effective solution which, while being cheaper than aCGH, provides at

least a similar level of accuracy in CNA calling. Moreover, contrary to aCGH, where the lim-

ited dynamic range and linearity do not allow direct gene copy number estimates, low-pass

sequencing combined to Ampli1™ technology allows the direct estimation of ploidy of single

cells and absolute copy number, greatly improving CNA detection. We envision that our

approach will not only be useful for studying cancer heterogeneity and tumor evolution but,

given the association of copy number levels and aneuploidy status with tumor biology, it will

be a powerful tool to enable the personalized therapeutics of cancer. Indeed, recent work by

Carter et al. highlighted the importance of profiling single CTCs and has shown that the

molecular analysis of CTCs identifies distinct copy number profiles in patients with chemosen-

sitive and chemorefractory small-cell lung cancer, demonstrating the clinical utility of molecu-

lar profiling of single CTCs to accurately delineate responders from non-nonresponders [32].

Moreover, independent work has shown that high amounts of somatic CNAs correlate with a

reduction of immune-mediated cytotoxic and pro-inflammatory activities in the tumor micro-

environment (TME), while low somatic CNA levels correlated with long term survival [71],
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and markers identified by genome-wide analysis of CNAs have been shown to correlate with

response and resistance to immunotherapies [72]. Genome wide analysis of CNAs has, thus,

the promise to discriminate responders from non-responders to allow the employment of

more effective therapies.
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S20 Fig. Comparison of copy number profiles in NCI-H1650 single cells generated by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S21 Fig. Comparison of copy number profiles in NCI-H23 single cells generated by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S22 Fig. Comparison of copy number profiles generated in NCI-H2228 single cells by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S23 Fig. Comparison of copy number profiles in NCI-H1563 single cells generated by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S24 Fig. Comparison of copy number profiles in NCI-H441 single cells generated by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S25 Fig. Comparison of copy number profiles in NCI-H661 single cells generated by low-

pass sequencing and aCGH. Low-pass sequencing and aCGH were performed starting from

DNA from 2 single cells processed with Ampli1™ WGA kit. Copy number gains and losses are

highlighted in red and blue respectively.

(PDF)

S26 Fig. Correlation between aCGH and LowPass logFC values in cell line NCI-H661. For

both single cells NCI-H661-1 and NCI-H661-2 the LowPass copy number data (expressed as

logged fold change on base 2) show an high correlation with aCGH.

(PDF)

S27 Fig. Correlation of LP vs aCGH logFC for common CNAs. Only CNAs of length�

500Kb were considered.

(PDF)

S28 Fig. Determination of single cell ploidy in a hyperhesaploid cell line. Analysis of one

single cell from the hyperesaploid cell line NCI-H661 analyzed using a main ploidy of 2 (red)

and 6 (blue): a) copy number profiles along 22 chromosomes; b) copy number levels distribu-

tion; c) results of density estimation by KDE; peaks detected are indicated with a dashed verti-

cal line; d) linear regression of peak values over putative underlying copy numbers.

(PDF)
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S29 Fig. Absolute copy number CNA calling in a single cell of hyperhexaploid cell line

NCI-H661 (cell #2). Plots of copy number profiles along the 22 autosomes expressed as abso-

lute copy numbers. In a) and b) profiles obtained from the same sequencing data with main

ploidy parameter set to 2 and 6 respectively. Significant copy number gains and losses are

highlighted in red and blue respectively. Clearly a main cell ploidy = 6 provides a better fit of

profiles with segmented data (black lines) and improves CNA calling. CNA calls only detected

with main ploidy = 6 are shaded in green.

(PDF)

S30 Fig. Copy number profiles in CTCs and WBCs of a patient affected by prostate cancer.

On X axis is the position on the 22 autosomes, while on Y axis is the absolute copy number.

Each dot represents a window (500 Kbp). Significant gains are highlighted in red, while losses

are highlighted in blue.

(PDF)

S31 Fig. Copy number profiles from CTCs and WBCs of a patient affected by lung adeno-

carcinoma. On X axis is the position on the 22 autosomes, while on Y axis is the absolute copy

number. Each dot represents a window (500 Kbp). Significant gains are highlighted in red,

while losses are highlighted in blue.

(PDF)

S32 Fig. Copy number profiles from CTCs and WBCs of a patient affected by lung adeno-

carcinoma. On X axis is the position on the 22 autosomes, while on Y axis is the absolute copy

number. Each dot represents a window (500 Kbp). Significant gains are highlighted in red,

while losses are highlighted in blue.

(PDF)
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23. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BAJ, Tunnacliffe A. Degenerate oligonucleo-

tide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics. 1992;

13: 718–725. https://doi.org/10.1016/0888-7543(92)90147-K PMID: 1639399

24. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, et al. Genome coverage and sequence fidel-

ity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids

Res. 2004; 32: e71. https://doi.org/10.1093/nar/gnh069 PMID: 15150323

25. Cheung VG, Nelson SF. Whole genome amplification using a degenerate oligonucleotide primer allows

hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad

Sci. 1996; 93: 14676–14679. https://doi.org/10.1073/pnas.93.25.14676 PMID: 8962113

26. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, et al. Whole-genome

multiple displacement amplification from single cells. Nat Protoc. 2006; 1: 1965–1970. https://doi.org/

10.1038/nprot.2006.326 PMID: 17487184

27. Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, Riethmüller G. Comparative genomic

hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U

S A. 1999; 96: 4494–9. https://doi.org/10.1073/pnas.96.8.4494 PMID: 10200290

28. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by sin-

gle-cell sequencing. Nature. Nature Publishing Group; 2011; 472: 90–94. https://doi.org/10.1038/

nature09807 PMID: 21399628

29. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, et al. Genome-wide copy number analy-

sis of single cells. Nat Protoc. Nature Publishing Group; 2012; 7: 1024–1041. https://doi.org/10.1038/

nprot.2012.039 PMID: 22555242

30. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012; 481: 306–313. https://doi.org/10.1038/

nature10762 PMID: 22258609

31. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic

profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014; 20: 897–903. https://doi.org/

10.1038/nm.3600 PMID: 24880617

32. Carter L, Rothwell DG, Mesquita B, Smowton C, Leong HS, Fernandez-Gutierrez F, et al. Molecular

analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive

and chemorefractory small-cell lung cancer. Nat Med. Nature Publishing Group; 2016; https://doi.org/

10.1038/nm.4239 PMID: 27869802

33. Baslan T, Kendall J, Ward B, Cox H, Leotta A, Rodgers L, et al. Optimizing sparse sequencing of single

cells for highly multiplex copy number profiling. Genome Res. 2015; 25: 714–724. https://doi.org/10.

1101/gr.188060.114 PMID: 25858951

34. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, et al. Molecular profiling of single circu-

lating tumor cells with diagnostic intention. EMBO Mol Med. 2014; 6: 1371–86. https://doi.org/10.15252/

emmm.201404033 PMID: 25358515

35. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformat-

ics. 2010; 26: 841–2. https://doi.org/10.1093/bioinformatics/btq033 PMID: 20110278

36. Anders S, Pyl PT, Huber W. HTSeq—A Python framework to work with high-throughput sequencing

data. Bioinformatics. 2014; 1–4. https://doi.org/10.1093/bioinformatics/btu638 PMID: 25260700

37. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: A tool for

assessing copy number and allelic content using next-generation sequencing data. Bioinformatics.

2012; 28: 423–425. https://doi.org/10.1093/bioinformatics/btr670 PMID: 22155870

38. Huang J, Gusnanto A, O’Sullivan K, Staaf J, Borg Å, Pawitan Y. Robust smooth segmentation approach

for array CGH data analysis. Bioinformatics. 2007; 23: 2463–2469. https://doi.org/10.1093/

bioinformatics/btm359 PMID: 17660206

39. Gusnanto A, Wood HM, Pawitan Y, Rabbitts P, Berri S. Correcting for cancer genome size and tumour

cell content enables better estimation of copy number alterations from next-generation sequence data.

Bioinformatics. 2012; 28: 40–47. https://doi.org/10.1093/bioinformatics/btr593 PMID: 22039209

A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0193689 March 1, 2018 22 / 24

https://doi.org/10.1126/scitranslmed.3000611
http://www.ncbi.nlm.nih.gov/pubmed/20592421
https://doi.org/10.1038/ng.2760
https://doi.org/10.1038/ng.2760
http://www.ncbi.nlm.nih.gov/pubmed/24071852
https://doi.org/10.1126/science.1229164
https://doi.org/10.1126/science.1229164
http://www.ncbi.nlm.nih.gov/pubmed/23258894
https://doi.org/10.1016/0888-7543(92)90147-K
http://www.ncbi.nlm.nih.gov/pubmed/1639399
https://doi.org/10.1093/nar/gnh069
http://www.ncbi.nlm.nih.gov/pubmed/15150323
https://doi.org/10.1073/pnas.93.25.14676
http://www.ncbi.nlm.nih.gov/pubmed/8962113
https://doi.org/10.1038/nprot.2006.326
https://doi.org/10.1038/nprot.2006.326
http://www.ncbi.nlm.nih.gov/pubmed/17487184
https://doi.org/10.1073/pnas.96.8.4494
http://www.ncbi.nlm.nih.gov/pubmed/10200290
https://doi.org/10.1038/nature09807
https://doi.org/10.1038/nature09807
http://www.ncbi.nlm.nih.gov/pubmed/21399628
https://doi.org/10.1038/nprot.2012.039
https://doi.org/10.1038/nprot.2012.039
http://www.ncbi.nlm.nih.gov/pubmed/22555242
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609
https://doi.org/10.1038/nm.3600
https://doi.org/10.1038/nm.3600
http://www.ncbi.nlm.nih.gov/pubmed/24880617
https://doi.org/10.1038/nm.4239
https://doi.org/10.1038/nm.4239
http://www.ncbi.nlm.nih.gov/pubmed/27869802
https://doi.org/10.1101/gr.188060.114
https://doi.org/10.1101/gr.188060.114
http://www.ncbi.nlm.nih.gov/pubmed/25858951
https://doi.org/10.15252/emmm.201404033
https://doi.org/10.15252/emmm.201404033
http://www.ncbi.nlm.nih.gov/pubmed/25358515
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1093/bioinformatics/btr670
http://www.ncbi.nlm.nih.gov/pubmed/22155870
https://doi.org/10.1093/bioinformatics/btm359
https://doi.org/10.1093/bioinformatics/btm359
http://www.ncbi.nlm.nih.gov/pubmed/17660206
https://doi.org/10.1093/bioinformatics/btr593
http://www.ncbi.nlm.nih.gov/pubmed/22039209
https://doi.org/10.1371/journal.pone.0193689


40. Green PJ, Seheult AH, Silverman BW. Density Estimation for Statistics and Data Analysis. Appl Stat.

1988; 37: 120. https://doi.org/10.2307/2347507

41. Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wave-

let transform-based pattern matching. Bioinformatics. 2006; 22: 2059–2065. https://doi.org/10.1093/

bioinformatics/btl355 PMID: 16820428
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