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Cloud-assisted Distributed Nonlinear

Optimal Control for Dynamics over Graph
?

Sara Spedicato ⇤ Giuseppe Notarstefano ⇤

⇤ Department of Engineering, Università del Salento, Via per
Monteroni, 73100 Lecce, Italy (e-mail: name.lastname@unisalento.it).

Abstract: Dynamics over graph are large-scale systems in which the dynamic coupling among
subsystems is modeled by a graph. Examples arise in spatially distributed systems (as discretized
PDEs), multi-agent control systems or social dynamics. In this paper, we propose a cloud-
assisted distributed algorithm to solve optimal control problems for nonlinear dynamics over
graph. Inspired by the centralized Hauser’s projection operator approach for optimal control,
our main contribution is the design of a descent method in which at each step agents of a
network compute a local descent direction, and then obtain a new system trajectory through
a distributed feedback controller. Such a controller, iteratively designed by a cloud, allows
agents of the network to use only information from neighboring agents, thus resulting into
a distributed projection operator over graph. The main advantages of our globally convergent
algorithm are dynamic feasibility at each iteration and numerical robustness (thanks to the
closed-loop updates) even for unstable dynamics. In order to show the e↵ectiveness of our
strategy, we present numerical computations on a discretized model of the Burgers’ nonlinear
partial di↵erential equation.

Keywords: distributed optimal control, distributed optimization, distributed MPC, structured
optimal control

1. INTRODUCTION

Several modern optimal control problems involve large-
scale systems in which the state of each subsystem depends
on the states of few other subsystems only. This feature
arises in several, di↵erent contexts as, e.g., in social dy-
namics, e.g., Ravazzi et al. (2017); Gray et al. (2018), in
cooperative control, e.g., Ahmed et al. (2016), or when dis-
cretizing partial di↵erential equations, e.g., Ferrari-Trecate
et al. (2006). Depending on the dynamic coupling among
subsystems, an interaction graph can be associated to
this “multi-agent” dynamics, thus obtaining a dynamics
over graph (Ferrari-Trecate et al. (2006)). Optimal control
problems for dynamics over graph are typically large-
scale problems for which a centralized solution is imprac-
tical. Because of the large scale nature and the particular
structure of the dynamics, which is a system of locally
interconnected dynamical systems (one for each agent),
the design of distributed algorithms is often desirable.
While several distributed algorithms have been developed
for optimal control of linear systems, since they give rise to
convex problems, the design of distributed algorithms for
nonconvex optimal control, involving nonlinear systems, is
particularly challenging.

As for distributed optimal control algorithms, the works
in Doan et al. (2011); Giselsson et al. (2013); Conte et al.
(2016); Groß and Stursberg (2016) consider problems aris-
ing in Model Predictive Control schemes, where the cost

? This result is part of a project that has received funding from
the European Research Council (ERC) under the European Union’s
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is convex and the coupled dynamics linear, and thus deal
with convex problems. The presence of nonlinear dynamics
poses instead several challenges in the design of distributed
algorithms. In Necoara et al. (2009); Dinh et al. (2013),
sequential convex programming and dual decomposition
methods are proposed to deal with (coupled) nonlinear
dynamics over graph. In the proposed algorithms only a
part of the computation is performed locally by each agent
and the dynamic constraint is not satisfied at each itera-
tion. Finally, in our algorithm we need to design a sparse
feedback controller. The works in Massioni and Verhaegen
(2009); Lin et al. (2011); Wu et al. (2016); Mårtensson
and Rantzer (2012) address the design of a static state-
feedback (satisfying prescribed optimality conditions) with
a given sparsity for time-invariant linear systems.

The main contribution of this paper is the design of a
cloud-assisted distributed algorithm for nonlinear optimal
control of dynamics over graph. We design a globally
convergent algorithm, where the descent direction and the
update are executed in a distributed fashion. A central unit
is only used to design a stabilizing feedback and update
the step-size. The key features of our algorithm are: (i)
dynamic feasibility at each iteration, i.e., at each iteration
a state-input trajectory is available, and (ii) numerical ro-
bustness, i.e., trajectory instability for long time horizons
is prevented, thanks to a closed loop update of system tra-
jectories. Note that, typically, constrained optimization al-
gorithms do not enjoy dynamic feasibility at each iteration.
For example, standard Sequential quadratic programming
does not ensure that all iterates satisfy the dynamics. That
is the constraints due to the dynamics are satisfied only
asymptotically. Our cloud-assisted distributed algorithm



takes inspiration from and combines the advantages of
two centralized algorithms with dynamic feasibility at each
iteration: the open loop sequential algorithm in Bertsekas
(1999) and the Projection Operator Newton Method for
Trajectory Optimization (PRONTO) algorithm, Hauser
(2002) (see also the discrete-time version developed in
Bayer et al. (2013)). The open loop sequential algorithm
is suited for distributed computation when applied to
dynamics over graph, but it is not of practical use since
it involves an open loop integration of the dynamics at
each iteration. On the contrary, PRONTO algorithm is
numerically robust but it is not suitable for distributed
computation since both the computation of the descent
direction (based on the solution of a Linear Quadratic
optimal control problem) and the closed loop integration
(nonlinear projection) require a centralized computation.
In our algorithm the descent direction is a generic state-
input curve, rather than an input only as in Bertsekas
(1999), but is not required to satisfy the linearized dy-
namics as in Hauser (2002), so that it can be computed
locally by the agents. Moreover, we design a strategy to
implement the projection (i.e., the closed-loop integration
of the dynamics) in a distributed way. We point out that
the design strategy for the sparse controller extends to
(linear) time-varying systems the one proposed in Lin et al.
(2011) for time-invariant ones, and is thus an additional
contribution. Theoretical guarantees for the controller de-
sign strategy still need further investigation.

The rest of the paper is organized as follows. In Section
2 we describe the problem set-up and provide a brief de-
scription of the open loop sequential method in Bertsekas
(1999). In Section 3 we present our algorithm with the
convergence result. The proof is omitted due to space lim-
itations. In Section 4 we present numerical computations
to show the e↵ectiveness of our strategy.

2. PROBLEM SET-UP AND PRELIMINARIES

2.1 Problem set-up

We consider a nonlinear discrete-time system of N agents
for which the dynamic coupling can be modeled by a fixed,
connected and undirected graph G = {{1, . . . , N}, E}.
That is, (i, j) 2 E if the dynamics of agent i depends on
the state of agent j. Note that the topology of the graph is
not a design parameter, but it is imposed by the dynamics.
Formally, let Ni be the set of neighbors of node i, i.e.,
Ni := {j 2 {1, . . . , N}|(i, j) 2 E}. Also, let aij denote the
element i, j of the adjacency matrix associated to G. We
recall that aij = 1 if (i, j) 2 E and aij = 0 otherwise. Let
us consider the nonlinear dynamics over graph

xi,t+1 = fi(xNi,t, ui,t), t 2 N, i 2 {1, . . . , N} (1)

where xi,t 2 Rn is the state of agent i at time t, xi,0

its (given) initial condition, xNi,t 2 Rn|Ni|, with |Ni| the
cardinality of Ni, is a stack vector of all xj,t, j 2 Ni,
ui,t 2 Rm is the input of agent i at time t, and fi : Rn|Ni|⇥
Rm ! Rn is the local state function of agent i.

Let us define the sets T[0,M ] := {0, . . . ,M},T[0,M�1] :=
{0, . . . ,M � 1},T[1,M ] := {1, . . . ,M}, where M 2 N.
A state-input trajectory of (1) on the horizon M is a
vector ⌘ 2 RnN(M+1)+mNM defined as ⌘ := [x>u>]>,

where x 2 RnN(M+1) and u 2 RmNM are respectively
the stacks of vectors xi,t, i 2 {1, . . . , N}, t 2 T[0,M ], and
ui,t, i 2 {1, . . . , N}, t 2 T[0,M�1], that satisfy equations
(1). We instead denote a generic state-input curve on
the horizon M by ⇠ 2 RnN(M+1)+mNM , ⇠ := [↵>µ>]>,
where ↵ 2 RnN(M+1) is the stack of vectors ↵i,t 2 Rn,
i 2 {1, . . . , N}, t 2 T[0,M ], and µ 2 RmNM is the stack of
vectors µi,t 2 Rm, i 2 {1, . . . , N}, t 2 T[0,M�1].

We deal with the nonlinear optimal control problem

min
xi,0,...,xi,M

ui,0,...,ui,M�1

i2{1,...,N}

NX

i=1

⇣M�1X

t=0

⇣
`i(xi,t, ui,t)

⌘
+mi(xi,M )

⌘
,

subj. to xi,t+1 = fi(xNi,t, ui,t), t 2 T[0,M�1],

i 2 {1, ..., N},

(2)

where `i : Rn ⇥ Rm ! R, mi : Rn ! R and fi :
Rn|Ni|⇥Rm ! Rn, for all i 2 {1, . . . , N}, are continuously
di↵erentiable functions. In our scenario, each agent has
computation and communication capabilities and only a
partial knowledge of the problem. In particular, agent
i only knows its own `i(·, ·),mi(·) and fi(·, ·) and can
communicate only with its neighbors j 2 Ni. When
needed, it can be also supported by a cloud to perform
additional operations. We aim to design a cloud-assisted
distributed algorithm to solve problem (2). Since the
problem is nonconvex we seek for points (x⇤, u⇤, p⇤) that
satisfy the first-order necessary conditions for optimality
of problem (2). In particular, each agent i aims to locally
compute its own x⇤

i,t, t 2 T[0,M ], u
⇤
i,t, t 2 T[0,M�1], p

⇤
i,t,

t 2 T[1,M ], of the vectors x⇤, u⇤, p⇤, respectively, via local
communication with the neighbors and the cloud.

2.2 Open loop sequential method

The open loop sequential approach in Bertsekas (1999),
Section 1.9, consists in re-writing optimal control problem
(2) as an unconstrained problem with u being the (only)
optimization variable. Since equations (1) hold, the states
xi,t, for all i and t, are written as a function of the input
u, i.e., xi,t = 'i,t(u), where 'i,t(·), for all i and t, are
suitably defined functions. By using the latter equations,
the dynamically constrained problem (2) becomes the
unconstrained problem

min
u

NX

i=1

⇣M�1X

t=0

⇣
`i('i,t(u), ui,t)

⌘
+mi('i,M (u))

⌘
. (3)

Defining

F (x, u) :=
NX

i=1

⇣M�1X

t=0

⇣
`i(xi,t, ui,t)

⌘
+mi(xi,M )

⌘
, (4)

problem (3) can be equivalently written as

min
u

F ('(u), u), (5)

where '(u) 2 RnN(M+1) is the stack of vectors 'i,t(u) 2
Rn, i 2 {1, . . . , N}, t 2 T[0,M ].

Numerical solutions to the unconstrained problem (5)
are computed via the steepest descent method in Algo-
rithm 1, where, at each iteration k, a trajectory xk+1

i,t ,

uk+1
i,t , for all i and t, is avaliable. The descent direction



vki,t, for all i and t, is computed via (6), where aki,t 2
Rn, bki,t 2 Rm, Ak

ji,t 2 Rn⇥n, Bk
ii,t 2 Rn⇥m are defined

as aki,t :=rxi,t`i(x
k
i,t, u

k
i,t), b

k
i,t :=rui,t`i(x

k
i,t, u

k
i,t), A

k
ji,t :=

rxi,tfj(x
k
Nj ,t

, uk
j,t)

>, Bk
ii,t := rui,tfi(x

k
Ni,t

, uk
i,t)

>, and, for
a generic scalar function g(·, ·), ryg(y, z) denotes the
gradient with respect to y, while, for a vector func-
tion g(·, ·) with values in Rr, we denote by ryg(y, z) =
[ryg1(y, z) . . .rygr(y, z)] the gradient matrix with respect
to y. We also use rzg(y, z), similarly. The update is
performed in (7) via the the open loop dynamics (1).

Algorithm 1 Open loop sequential algorithm

Require: x0
i,t, u

0
i,t, for all i and t, trajectory of (1)

for k = 0, 1, 2 . . . do
set pki,M = rmi(xk

i,M ), for all i 2 {1, . . . , N}
for t = M � 1, . . . , 0 do

compute, for all i 2 {1, . . . , N},

vki,t = �
⇣
bki,t +Bk>

ii,t p
k
i,t+1

⌘

pki,t =
X

j2Ni

⇣
Ak>

ji,t p
k
j,t+1

⌘
+ aki,t

(6)

compute step-size �k via the Armijo rule
for t = 0, . . . ,M � 1 do

compute, for all i 2 {1, . . . , N},
uk+1
i,t = uk

i,t + �kvki,t,

xk+1
i,t+1 = fi(x

k+1
Ni,t

, uk+1
i,t ).

(7)

Algorithm 1 enjoys dynamic feasibility at each iteration,
(i.e., a trajectory satisfying the dynamics is available at
each iteration). Also, the descent direction computation
and the update can be performed in a distributed fashion.
Nevertheless, the algorithm su↵ers of numerical instability,
because of the open loop update. This is a well-known
drawback in the literature that we aim to overcome with
our algorithm presented in Section 3.

3. CLOUD-ASSISTED DISTRIBUTED OPTIMAL
CONTROL ALGORITHM

In this section we present our cloud-assisted distributed
algorithm to solve the nonlinear optimal control problem
(2). We start by recalling the notion of Hauser’s projection
operator for dynamical systems, Hauser (2002), applied
to our discrete-time set-up, and then introduce our dis-
tributed projection operator over graph.

3.1 Distributed projection operator over graph

Let ⇠ = [↵>µ>]> be a curve lying in a neighborhood of
a trajectory ⌘̃ = [x̃> ũ>]> of the nonlinear system (1).
Hauser’s projection operator P : ⇠ ! ⌘, mapping the curve
⇠ into a trajectory ⌘ = [x> u>]> of (1), is defined as the
feedback system

xi,t+1 = fi(xNi,t, ui,t),

ui,t = µi,t +
NX

j=1

Kij,t

⇣
↵j,t � xj,t

⌘
,

↵i,0 = xi,0,

(8)

for all i 2 {1, ..., N} and t 2 T[0,M�1], where Kij,t 2 Rm⇥n

is the block i, j of a controller matrix Kt 2 RmN⇥nN .
The main idea is that, in order to make the optimiza-
tion algorithm numerically robust, the controller matrix
needs to have some stabilizability-like property, namely
it has to exponentially stabilize the trajectory x̃i,t, t 2
T[0,M ], ũi,t, t 2 T[0,M�1], i 2 {1, . . . , N}, as M ! 1.
While a trajectory of the open loop dynamics (1) can
be computed in a distributed way, such a distributed
computation is not possible, in general, for trajectories of
the closed loop dynamics (8) unless a particular structure
is imposed on Kt, t 2 T[0,M�1].

We thus define a distributed projection operator over graph
as the feedback system (8), for all i 2 {1, ..., N} and
t 2 T[0,M�1], where Kt, t 2 T[0,M�1], satisfies both
a stabilizability-like property and the sparsity condition
Kij,t = 0 if j /2 Ni, for all i 2 {1, . . . , N} and t 2 N. This
will result into an input depending only on neighboring
agents, see equations (13) in our algorithm. The design of a
controllerKt, t 2 T[0,M�1], satisfying the above conditions
is nontrivial. In Section 3.3 we propose a methodology.

3.2 Distributed Hauser-Projection Descent for Trajectory
Optimization

In this subsection, we present our cloud-assisted dis-
tributed algorithm to solve problem (2). The algorithm
can be interpreted as a closed-loop version of the open loop
sequential method presented in Section 2. In the open loop
sequential method, the state trajectories are expressed as
a function of the input u via the open loop dynamics (1)
thus obtaining the unconstrained problem (3). Therefore,
in Algorithm 1 the descent direction consists of variations
vi,t, for all i and t, of the input ui,t, and the trajectory
update is performed on the open loop dynamics. Inspired
by Hauser (2002), we use the distributed projection oper-
ator over graph to express both states and inputs of tra-
jectories as functions of state-input curves. A state-input
trajectory xi,t, ui,t, for all i and t, satisfying equations
(8), can be written, in fact, as a function of the curve
⇠ as xi,t = �i,t(⇠), ui,t = �i,t(⇠), with suitably defined
�i,t(·) and �i,t(·), for all i and t. Thus, we can write the
constrained problem (2) as the unconstrained problem

min
⇠

NX

i=1

⇣M�1X

t=0

⇣
`i(�i,t(⇠), �i,t(⇠))

⌘
+mi(�i,M (⇠))

⌘
, (9)

where the only optimization variable is the state-input
curve ⇠. Problem (9) can be equivalently written as

min
⇠

F (�(⇠), �(⇠)), (10)

where �(⇠) 2 RnN(M+1) and �(⇠) 2 RmNM are, re-
spectively, the stacks of �i,t(⇠) 2 Rn, i 2 {1, . . . , N},
t 2 T[0,M ], �i,t(⇠) 2 Rm, i 2 {1, . . . , N}, t 2 T[0,M�1]

and F (·, ·) is defined in (4). In our algorithm, the descent
direction consists of variations zi,t and vi,t of both states
and inputs of the curve. Moreover, due to the presence of
the feedback, zi,t and vi,t depend on Kji,t, j 2 Ni, and
the trajectory update is performed in closed loop.

We now describe our Distributed Hauser-Projection De-
scent for Trajectory Optimization (Algorithm 2) from the
perspective of agent i. At each iteration k, agent i per-
forms both cloud-assisted and distributed steps in order



to compute its xk+1
i,t , uk+1

i,t , for all t, of a system trajectory.
Send2Cloud(·) and ReceiveFromCloud(·) are used to in-
dicate messages sent to the cloud and received from the
cloud, respectively. Agent i performs the following steps:
(i) communicates with the cloud to get Kk

ij,t,K
k
ji,t, j 2 Ni,

for all t (defining a distributed projection operator in
the neighborhood of the current trajectory iterate), (ii)
computes in a distributed way a descent direction zki,t, v

k
i,t,

for all t, via (11) and (12), where Acl,k
ji,t := Ak

ji,t�Bk
jj,tK

k
ji,t,

(iii) communicates with the cloud to get the step-size
�k (computed via the Armijo rule), (iv) performs a dis-
tributed projection to get xk+1

i,t , uk+1
i,t , for all t.

Remark 1. The cloud could be used intermittently if the
same matrix Kt, t 2 T[0,M�1], stabilizes di↵erent trajecto-
ries and a constant step-size is used. Moreover, di↵erently
from Bertsekas (1999) and Hauser (2002), the descent
direction of our algorithm is a generic state-input curve
that is not required to satisfy any linearized dynamics. ⇤

As a comparison with Algorithm 1, note that, by setting
Kk

ij,t = 0 and Kk
ji,t = 0, for all j and t, equations (11) and

(12) become equations (6), while equations (13), where
µk+1
i,t = uk

i,t + �kvki,t, become equations (7). Finally, note
that dynamic feasibility is guaranteed at each iteration.
Thus, the algorithm can be stopped at any iteration with
a twofold guarantee for the agents, namely they will have:
a trajectory of (1) and a distributed controller to track it.

Algorithm 2 Distributed Hauser-Projection Descent for
Trajectory Optimization

Require: x0
j,t, u

0
j,t, for all t, for j 2 Ni, such that ⌘0 =

[x0>u0>]> is a trajectory of (1)
for k = 0, 1, 2 . . . do

Send2Cloud(xk
i,t, t 2 T[0,M ], u

k
i,t, t 2 T[0,M�1])

ReceiveFromCloud(Kk
ij,t,K

k
ji,t, j2Ni, t 2 T[0,M�1])

set pki,M = rmi(xk
i,M )

for t = M � 1, . . . , 0 do
vki,t = �

⇣
bki,t +Bk>

ii,t p
k
i,t+1

⌘
(11)

receive Acl,k
ji,t , v

k
j,t, b

k
j,t, p

k
j,t+1, j 2 Ni\{i}

zki,t = �
X

j2Ni

⇣
Kk>

ji,tv
k
j,t

⌘

pki,t =
X

j2Ni

⇣
Acl,k >

ji,t pkj,t+1 �Kk>
ji,t b

k
j,t

⌘
+ aki,t

(12)

Send2Cloud(zki,t, t 2 T[0,M ], v
k
i,t, t 2 T[0,M�1])

ReceiveFromCloud(�k)
for t = 0, 1, . . . ,M � 1 do

receive zkj,t and xk+1
j,t , j 2 Ni \ {i}

set ↵k+1
j,t = xk

j,t + �kzkj,t, j 2 Ni

set µk+1
i,t = uk

i,t + �kvki,t

uk+1
i,t = µk+1

i,t +
X

j2Ni

Kk
ij,t

⇣
↵k+1
j,t � xk+1

j,t

⌘

xk+1
i,t+1 = fi(x

k+1
Ni,t

, uk+1
i,t )

(13)

Let us denote by xk, uk, pk the stacks, for all i and t, of
xk
i,t, u

k
i,t, p

k
i,t in Algorithm 2, respectively. We can state the

following theorem.

Theorem 1. Let {xk, uk, pk} be the sequence generated by
Algorithm 2. Every limit point of {xk, uk} is a stationary
point of F (·, ·). If a limit point (x⇤, u⇤) of {xk, uk} exists,
there exists also a limit point p⇤ of {pk} and (x⇤, u⇤, p⇤)
satisfies the first-order necessary conditions of optimality
for problem (2), i.e., rL(x⇤, u⇤, p⇤) = 0, where L(·, ·, ·)
denotes the Lagrangian of problem (2). ⇤
Due to space limitations, we provide only an informal idea
of the proof of Theorem 1. The proof is divided in two
parts. First, we prove that every limit point ⇠⇤ of the
sequence of curves {⇠k}, where ⇠k is the stack of ↵k

i,t, µ
k
i,t,

for all i and t, generated via Algorithm 2, is a stationary
point of J(·) := F (�(·), �(·)). To prove this statement, we
show that the agents are actually implementing a steepest
descent method for problem (10), where, at iteration k, the
descent direction is the stack of vectors zki,t = �r↵i,tJ(⇠

k),

vki,t = �rµi,tJ(⇠
k), for all i and t, and the update is

↵k+1
i,t = ↵k

i,t + �kzki,t, µ
k+1
i,t = µk

i,t + �kvki,t, for all i and

t, where �k is a step-size. Moreover, if a limit point ⇠⇤ of
{⇠k} exists, there exists also (x⇤, u⇤) such that x⇤ = �(⇠⇤)
and u⇤ = �(⇠⇤). Second, we prove the existence of p⇤

and, by using the expression of rJ(⇠) obtained by noting
that J(⇠) = L(�(⇠), �(⇠), p), 8p, we prove that (x⇤, u⇤, p⇤)
satisfies rL(x⇤, u⇤, p⇤) = 0. Note that, since we deal with
a finite horizon problem, the convergence of the algorithm
does not depend on the stability properties of Kt, t 2 N.
The controller matrix needs to have stabilizability-like
properties only to guarantee the numerical robustness of
the algorithm.

3.3 Design of the distributed projection operator over
graph

In this subsection, we present our strategy to design Kt,
t 2 T[0,M�1], suitable for the definition of a distributed
projection operator over graph in a neighborhood of a
trajectory ⌘̃. Specifically, Kt, t 2 T[0,M�1], has to satisfy a
stabilizability-like property on ⌘̃ and the sparsity condition
such that Kij,t = 0 if j /2 Ni, for all i 2 {1, . . . , N} and
t 2 T[0,M�1]. For the sake of space, we are not giving
all the details for a comprehensive understanding of our
strategy, which is an additional contribution of our work.
The proposed strategy is, in fact, an extension to (linear)
time-varying systems of the one in Lin et al. (2011).

In order to find the controller matrices Kt, t 2 T[0,M�1],
we consider an optimal control problem on a linear time-
varying system (the linearization about a trajectory) with
quadratic cost and additional constraints imposing the re-
quired structure on each Kt. These constraints render the
problem quite challenging (while it would be a standard
LQR without them). We then re-formulate the optimal
control problem by using all matrix variables. Let us define
Ac

G := 1�AG , where 1 is the matrix with all entries equal
to one, and AG 2 RmN⇥nN is the matrix with i, j block
Aij,G 2 Rm⇥n such that, Aij,G = 1 if aij = 1 and Aij,G = 0
if aij = 0, for all i and j. The reformulated problem is

min
L0,...,LM

K0,...,KM�1

1

2

M�1X

t=0

trace
⇣⇣

Q+K>
t RKt

⌘
Lt

⌘

subj. to Lt+1 = (At �BtKt)Lt(At �BtKt)
>,

Kt �Ac
G = 0, t 2 T[0,M�1],

(14)



where Q 2 RnN⇥nN , R 2 RmN⇥mN are weight matrices
satisfying Q � 0, R > 0, the matrices Lt 2 RnN⇥nN ,
t 2 T[0,M�1], are optimization variables together with
Kt 2 RmN⇥nN , t 2 T[0,M�1], the matrices At 2 RnN⇥nN ,
Bt 2 RnN⇥mN have, respectively, non zero blocks Aij,t :=
rxj,tfi(x̃Ni,t, ũi,t)>, Bii,t := rui,tfi(x̃Ni,t, ũi,t)>, i 2
{1, . . . , N}, j 2 Ni, and � indicates element-wise multi-
plication. We solve problem (14) by means of the Aug-
mented Lagrangian approach in Algorithm 3, where the
augmented Lagrangian of problem (14) is defined as

Lc(K0, . . . ,KM�1,⇤0, . . . ,⇤M�1) :=
M�1X

t=0

⇣1
2
trace

⇣⇣
Q+K>

t RKt

⌘
Lt

⌘
+ trace(⇤>

t (Kt �Ac
G))

+
c

2
kKt �Ac

GkF
⌘
,

where Lt satisfy, 8t 2 T[0,M�1], Lt+1 = (At�BtKt)Lt(At�
BtKt)>, ⇤t 2 RmN⇥nN , t 2 T[0,M�1], c is a positive
parameter and k · kF denotes the Frobenius norm.

Algorithm 3 Augmented Lagrangian method for (14)

Require: ⇤0
0, . . . ,⇤

0
M�1 = 0, c0 > 0, ✏ > 0, � > 1

for k = 0, 1, 2 . . . do
compute Kt,opt, t 2 T[0,M�1], by solving

min
K0,...,KM�1

Lc(K0, . . . ,KM�1,⇤
k
0 , . . . ,⇤

k
M�1) (15)

if kKt,opt �Ac
GkF < ✏, for all t, then

return
update ⇤k+1

t = ⇤k
t + ck(Kt,opt �Ac

G), t 2 T[0,M�1]

update ck+1 = � ck

Problem (15) in Algorithm 3 is solved, at each iteration k,
via Algorithm 4, where we set ⇤̄t = ⇤k

t , t 2 T[0,M�1], and
c̄ = ck. In Algorithm 4, which iterations are also indexed
by k, the necessary conditions for optimality of problem
(15) are used in order to compute K̄k

t , t 2 T[0,M�1]. The
update is then performed using the step-size �k and the
descent direction K̄k

t �Kk
t , t 2 T[0,M�1].

Algorithm 4 Alternating method to solve problem (15)

Require: K0
t , ⇤̄t, t 2 T[0,M�1], c̄

for k = 0, 1, 2 . . . do
compute Lk

t and P k
t , t 2 T[0,M ], satisfying

Lk
t+1 = (At �BtK

k
t )L

k
t (At �BtK

k
t )

>,

P k
t =(At �BtK

k
t )

>P k
t+1(At �BtK

k
t )+(Q+Kk>

t RKk
t ),

t 2 T[0,M�1],

compute K̄k
t satisfying, for all t 2 T[0,M�1],

2
⇣
RK̄k

t �B>
t P

k
t+1(At �BtK̄

k
t )
⌘
Lk
t +⇤̄t+ c(K̄k

t �Ac
G)=0

compute �k via the Armijo rule
update Kk+1

t = Kk
t + �k(K̄k

t �Kk
t ), t 2 T[0,M�1]

if termination condition satisfied then
Kt,opt = Kk+1

t , t 2 T[0,M�1]
return

4. NUMERICAL COMPUTATIONS

In this section we provide a numerical example showing
the e↵ectiveness of the proposed algorithm. We consider
an optimal control problem (2) where the dynamics is
the finite di↵erence discretization of the Burgers’ equation
(Hashemi and Werner (2011)) with one-dimensional space
variable. We associate an agent to each point of the
discretization. In particular, we consider the dynamics in
(2) where, for all i = 1, . . . , N ,

fi(xNi,t, ui,t) = xi,t �
�t

2�s
xi,t(xi+1,t � xi�1,t)+

⌫�t

�s2
(xi+1,t � 2xi,t + xi�1,t) +�t ui,t,

(16)

xi,t 2 R represents the velocity of the ith point at time
t, ui,t 2 R represents the acceleration of the ith point
at time t, x0,t = xN,t, xN+1,t = x1,t, for all t, ⌫ > 0 is
the viscosity parameter, and �t and �s are discretization
steps in time and space respectively. Moreover, we consider
the cost in (2) with `i(xi,t, ui,t) = Qcost,i(xi,t�xdes,i,t)2+
Rcost,i (ui,t � udes,i,t)2, and mi(xi,M ) = Pcost,i,M (xi,M �
xdes,i,M )2, for all i 2 {1, . . . , N}, where xdes,i,t 2 R,
udes,i,t 2 R are desired states and inputs of agent i at
time t, Qcost,i 2 R, Rcost,i 2 R, Pcost,i,M 2 R.
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Fig. 1. States xk
i,t (left column) and inputs uk

i,t (right
column), for all i, at iterations k = 1 and k = 8
and time instants t = 0 (blue), t = 250 (red) t = 500
(yellow), t = 750 (violet), t = 999 (green). Dotted
lines indicate desired states and inputs. Solid lines
indicate actual states and inputs.

For our numerical tests, we set N = 21, M = 1000,
�t = 0.001 s, �s = 0.05 m, ⌫ = 0.01 m2/s. We consider
the desired input udes,i,t = 0.1 sin((i�1)�s), for all i and t,
and we generate the desired state xdes,i,t, for all i and t, via
an open loop simulation of the dynamics with xi,0 = 0, for
all i. Moreover, for the iteration k = 0, we use x0

i,t = 0 and
u0
i,t = 0, for all i and t, as initial trajectory and we run

our cloud-assisted distributed algorithm. The results are
depicted in Figure 1, where states xk

i,t and inputs uk
i,t are

depicted for all i 2 {1, . . . , N}, at selected time instants
and at iterations 1 and 8. Note that, at iteration 8, the
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Fig. 2. Cost error J(⇠k)� J(⇠⇤) at algorithm iterations.
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Fig. 3. Sparse vs LQR controller. The values of Kk
j5,t, for

j = 1, . . . , 21, at t = 0 and k = 1, generated via our
strategy, are depicted with red circles. The blue ones
are instead obtained by solving an LQR problem.

actual values (solid lines) reach the desired ones (dotted
lines). Moreover, Figure 2 shows that the cost decreases
at each iteration of our algorithm. Finally, the sparse
structure of our controller matrix is depicted in Figure
3, where we compare the values Kk

j5,t for j = 1, . . . , 21, at
t = 0 and k = 1, generated via our strategy, with values
obtained by solving a standard LQR problem. The red
circles are the values of the sparse controller, while the
blue circles are the ones of the LQR controller. While for
the sparse controller we have K1

j5,0 = 0, for all j /2 N5, this
condition is not satisfied when we compute the controller
matrix via the LQR problem.

5. CONCLUSION

In this paper we have proposed a cloud-assisted distributed
algorithm to solve optimal control problems on nonlinear
dynamics over graph. Our globally convergent algorithm
builds on a closed-loop extension of the centralized open
loop sequential method. While the latter su↵ers of numer-
ical instability, our algorithm avoids this drawback via the
design of a closed loop dynamics with an ad-hoc sparse
controller. This feature enables the agents to compute
the descent direction and perform the trajectory update
via local communication with neighbors. Numerical com-
putations finally show the e↵ectiveness of the proposed
strategy.
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