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Damped Harmonic Smoother
for Trajectory Planning and Vibration Suppression

Luigi Biagiotti, Claudio Melchiorri, Lorenzo Moriello

Abstract—In this paper, a novel filter for online trajectory
generation is presented. The filter can be categorized as an
input smoother since it acts on the input signal by increasing
its continuity level. When fed with simple signals, as e.g. a
step input, it behaves like a trajectory generator that produces
harmonic motions. Moreover, it can be combined with other
filters, and in particular with smoothers having a rectangular
impulse response, in order to generate (online) more complex
trajectories compliant with several kinematic constraints. On the
other hand, being a filter, it possesses the capability of shaping
the frequency spectrum of the output signal. This possibility can
be profitably exploited to suppress residual vibration by imposing
that the zeros of the filter cancel the oscillatory dynamics of the
plant. To this purpose, the standard harmonic filter has been
generalized in order to take into account not only the natural
frequency but also the damping coefficient of the plant. In this
manner, the so called ‘damped harmonic filter’ and the related
‘damped harmonic trajectory’ have been defined. By means of
theoretical considerations, supported by experimental tests, the
novel approach has been compared with existing methods and
the advantages of its use have been proved.

Index Terms—Harmonic trajectory, trajectory planning, resid-
ual vibration, smoother, input shaping.

I. I NTRODUCTION

The growing interest for planning trajectories online has
led to the development of a number of filters able to produce
motion profiles with the desired degree of smoothness simply
starting from basic reference signals to set the desired final
position, such as step functions. For this purpose, many strate-
gies have been proposed including filtering and smoothing
techniques by means of various kind of filters, ranging from
Finite Impulse Response (FIR) filters [1], [2], [3] to inverse
dynamics of the plant, or feedback control of a chain of
integrators with bounds on velocity, acceleration, jerk, etc.,
as e.g. in [4], [5], [6], [7]. In these latter works, time-
optimal trajectory planners are proposed based on a closed
loop chain of integrators (whose output represents the desired
trajectory) properly designed to track in the fastest possible
way the reference input while remaining compliant with the
given constraints. In [8], it is shown that time-optimal multi-
segment polynomial trajectories with constraints on the first
n derivatives are equivalent to the outputs of a chain ofn
moving average filters, also known as rectangular smoothers
(see Sec. II for a brief overview). On the other hand, in
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many contributions, mainly focussed on trajectory design via
analytic expression optimization, the adoption of trigonometric
functions is proposed with the purpose of planning motions
with smoother acceleration or jerk profiles that reduce resid-
ual vibrations when applied to resonant systems, see [9].
In particular, in [10] polynomial multi-segment trajectories
(with constant jerk) and multi-segment trajectories with square
sine jerk have been experimentally compared in this respect,
showing that the sine-based trajectories outperform standard
constant jerk trajectories at the price of a noticeable increase
of the motion duration.
The use of trigonometric functions has been also investigated
in the input shaping framework, where filters similar - but not
identical - to the one studied in this paper have been presented
formerly, see [11], [12], [13], [14]. However these works only
focus on the problem of residual vibration suppression, while
a thorough analysis of the motion profiles obtained when used
alone or with other filters has not been performed.
In this article, we start from the results presented in the
conference papers [15], [16], concerning the generation of
trajectories by means of dynamic filters with trigonometric
(and in particular sinusoidal) velocity, acceleration or jerk
profiles. These results are summarized in Sec. II and Sec. III.
Then, in Sec. IV, it has been shown that the main advantages
of sinusoidal filters consists in the reduction of residual
vibrations, since kinematic constraints can be more profitably
satisfied with the use of rectangular smoothers. For this reason
a deep analysis of the performance achievable in vibrations
suppression with this type of filter has been carried out, along
with a comparison with some well-settled techniques available
in the literature that involve the same motion duration. In
this manner, pros and cons of the use of sinusoidal motion
profiles have been definitely proved. And, more importantly,
in order to improve its performance, the harmonic smoother
has been generalized taking into account not only the natural
frequency of the resonant plant but also its damping ratio.
In this way, in Sec. V the‘damped harmonic smoother’and
the novel ‘damped harmonic trajectory’have been defined.
Finally, in Sec. VI the experimental tests performed with the
proposed filter are reported and the achieved results have been
summarized in the conclusive Sec. VII.

II. M ULTI -SEGMENT TRAJECTORIES AND SMOOTHERS

In [8], it has been shown that a multi-segment trajectory
qn(t) of ordern, i.e. a trajectory with the firstn derivatives
bounded (and, in particular, compliant with the symmetric
constraintsq(i)min = −q

(i)
max, i = 1, . . . , n), can be obtained
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Fig. 1. System composed byn filters for the computation of an optimal
trajectory of classCn−1.

by filtering a step input with a cascade ofn dynamic filters,
Fig. 1, each one characterized by the transfer function

Mi(s) =
1

Ti

1− e−sTi

s
i = 1, . . . , n (1)

where the parameterTi (in general different for each filter) is a
time length. As described in [8], the resulting trajectoryqn(t)
is composed by several polynomial segmentsqn,k(t) defined
as linear combination of the basis functionsti, i = 0, . . . , n,
i.e. thek-th segment is defined asqn,k(t) =

∑n
i=0 ai,kt

i.
The smoothness of the trajectory, that is the number of
continuous derivatives, is strictly tied to the number of filters
composing the chain. Ifn filters are considered, the resulting
trajectory will be of classCn−1. For this reason the filters (1)
are also calledsmootherssince they increase the smoothness of
the input signal, while the name‘rectangular’, used to denotes
Mi(s), refers to the shape of their impulse response.

The genericj-th derivative q
(j)
n (t) of the output trajec-

tory is composed by polynomial functions which are linear
combination ofti, i = 0, . . . , n − j and, accordingly, the
n-th derivativeq(n)n (t) is composed by constant tracts. For
instance, the classical constant-jerk trajectory is obtained with
3 smoothersMi(s). Note that by increasing the smoothness
of the trajectory adding extra filters in the chain, its duration
augments as well. As a matter of fact, the total duration of
a trajectory generated in this manner is simply given by the
sum of the lengths of the impulse response of each filter, i.e.
Ttot = T1+T2+. . .+Tn. With the purpose of imposing desired
bounds on velocity, acceleration, jerk, and higher derivatives,
given a desired displacementh the parametersTi are set as

T1 =
|h|
q
(1)
max

andTi =
q
(i−1)
max

q
(i)
max

, i = 2, . . . , n (2)

with the constraints

Tk ≥
n
∑

i=k+1

Ti, k = 1, . . . , n− 1. (3)

Inequalities (3) are necessary and sufficient conditions for
assuring the time-optimality of the output trajectory and the
compliance with the boundsq(i)max, i = 1, . . . , n. For more
details refer to [8].
Alternatively, the parameterTi of each filter of the chain can be
determined with the purpose of properly shaping its frequency
response. As a matter of fact, the magnitude of the frequency
response of a generic filterMi(jω) is

|Mi(jω)| =
∣

∣

∣

∣

∣

sin
(

ωTi

2

)

ωTi

2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

sinc

(

ω

ωi

)
∣

∣

∣

∣

where sinc(·) denotes the normalized sinc function defined as
sinc(x) = sin(πx)

πx andωi =
2π
Ti

. Note that function|Mi(jω)|
has a low-pass characteristics and is equal to zero forω = k ωi.

III. S INUSOIDAL SMOOTHERS FOR THE GENERATION OF

MULTI -SEGMENT TRAJECTORIES

The step response of the trajectory generator obtained by
inserting, in the chain ofn rectangular smoothers of Fig. 1,
m filters characterized by the impulse response

si(t) =











π

2Ti
sin

(

π

Ti
t

)

, if 0 ≤ t ≤ Ti

0 otherwise

(4)

is a multi-segment trajectory, in which each tract is linear
combinations of the basis functionsti, i = 0, . . . , n and
sin

(

π
Tj
t+ ϕj

)

, j = 1, . . . ,m, whereϕj are proper constants
and it is supposed that all the parametersTj are distinct.
The transfer function of the filters can be readily obtained
by Laplace transforming (4):

Si(s) =
1

2

(

π

Ti

)2
1 + e−sTi

s2 +

(

π

Ti

)2 . (5)

Since the impulse response ofSi(s) is described by a sine
function, the filter is calledsinusoidal smoother. Each sinu-
soidal smoother increases of two the continuity level of the
output signal with respect to the input, and therefore a generic
trajectory generator based onn filters Mi(s) and m filters
Si(s) produces trajectories that are at least of classCn+2m−1.
For instance, if a step input of amplitudeh is applied to a
trajectory generator composed by a single sinusoidal smoother,
the standardharmonic trajectoryis obtained:

qh(t) = L−1

{

S1(s)
h

s

}

= q0 +
h

2

(

1− cos

(

π

T1
t

))

where q0 is the initial position, andT1 the duration of the
trajectory. For this reason,Si(s) is also called‘harmonic
filter’ . The harmonic trajectoryqh(t) is of classC1, being the
step is a discontinuous function, i.e. of classC−1.
More in general, it is possible to obtain trajectories charac-
terized by velocity, acceleration, jerk or higher derivatives,
depending on the order of the trajectory, composed only by
sinusoidal functions by adding the sinusoidal filterS1(s) at
the end of a chain ofn filters Mi(s). For instance, the profile
q1,h(t) obtained with one rectangular filter and one sinusoidal
filter is the modified trapezoidal velocityof classC2, while
q2,h(t) generated by means of the cascade of two rectangular
filters and one sinusoidal filter is themodified double-S velocity
of classC3, see Fig. 2. Also in this case, the time-optimality
of the trajectory subject to kinematic constraints is guaranteed
only if the time constantsTi of all the filters, including the
harmonic smoother, satisfy condition (3).

Note that the analytical expressions of composite trajec-
tories qn,h(t) tend to become very complex and may be
intractable even for small values ofn, e.g. forq2,h(t) which
is characterized by 7 different tracts. In these cases the filters,
which are suitable for online computation of the trajectory, are
also preferable for off-line generation.
Considering that the filterS1(s) increases the continuity level
of the trajectoryqn(t) by two, the time constantTn+1 can
be computed by taking into account the constraints on the
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Fig. 2. Position, velocity and acceleration profiles of the modified trapezoidal
velocity trajectoryq1,h (a) and modified double-S velocity trajectoryq2,h (b).

(n + 1)−th and (n + 2)−th derivatives of the trajectory by
assuming

Tn+1 = max







π

2

q
(n)
max

q
(n+1)
max

,

√

√

√

√

π2

2

q
(n)
max

q
(n+2)
max







. (6)

Remark.The additional durationTn+1 caused by the sinu-
soidal filter, computed according to (6), is certainly higher than
the duration of a cascade of two rectangular filters designed
according the same constraints, i.e.

Tn+1 + Tn+2 =
q
(n)
max

q
(n+1)
max

+
q
(n+1)
max

q
(n+2)
max

.

For this reason, when a task imposes only kinematic con-
straints the use of rectangular filtersMi(s) only is preferable,
while sinusoidal smoothers can be helpful to fulfil different
requirements such as the suppression of residual vibrations.

IV. V IBRATIONS SUPPRESSION WITH SINUSOIDAL FILTERS

In order to evaluate the capabilities of the sinusoidal filter
in cancelling residual vibrations, the motion system of Fig. 3,
already considered in [8], has been assumed as benchmark.
It is composed by two inertias with a lightly damped elastic
transmission. An ideal control system is supposed to impose
the desired motion profile to the (rotor) inertiaJm, that
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Fig. 3. Lumped constant model of a motion system with elastictransmission
and transfer functionG(s) =

Ql(s)
Qm(s)

between the motor positionqm and the
load positionql.
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Fig. 4. Percent residual vibration of sinusoidal and rectangular filters as
a function of the normalized frequencyωn/ω̂n (a); position, velocity and
acceleration profiles obtained by applying a unit step inputto a sinusoidal
filter S1(s) with T1 = 3π s and to a chain of rectangular filtersM1(s)M2(s)
with T1 = 2π s andT2 = π s (b).

is qm(t) = qref (t), being qref (t) the reference trajectory
obtained with the proposed filter. In this case, the dynamic
relation between the reference trajectoryqref (t), and the
tracking errorε(t) = ql(t)− qref (t) = ql(t)− qm(t) is

E(s)

Qref (s)
=

−s2

s2 + 2δωns+ ω2
n

= Gε(s) (7)

whereE(s) = L{ε(t)} andQref (s) = L{qref (t)}. Note that
the tracking errorε(t) at the end of the reference trajectory
coincides with the definition of residual vibration [17].
It is possible to prove that when the plant is fully undamped,
i.e. δ = 0, the residual vibration is completely suppressed by
a sinusoidal smootherSi(s), inserted in the chain of filters for
reference generation, if

Ti =
3

2

2π

ω̂n
=

3

2
T̂0. (8)

whereω̂n denotes the nominal value of the natural frequency
of the plant, and̂T0 is the (nominal value of the) period of the
free oscillation. Since the magnitude of frequency response of
the sinusoidal smoother is

|Si(jω)| =

∣

∣

∣
cos

(

π ω
ωi

)
∣

∣

∣

∣

∣

∣

∣

1−
(

ω
ωi/2

)2
∣

∣

∣

∣

with ωi =
2π

Ti
,

the condition (8) assures that|Si(jω̂n)| = 0 and, accordingly,
the oscillating component at the resonant frequencyωr = ω̂n

is completely cancelled. It is worth noting that function
|Si(jωn)| represents the sensitivity of the filter in residual
vibration suppression to the variation ofωn with respect to
its nominal value. Usually, this function is expressed as a
percentage - called for this reasonPercent Residual Vibration
(PRV) - to quantify the robustness of the filter [18]. In
Fig. 4(a), the PRVs of the sinusoidal smootherSi(s) and of
rectangular smootherMi(s) are compared. It is evident that
the sinusoidal filter (black) outperforms the rectangular filter
(red) since the PRV is considerably smaller over the entire
range of frequencies. On the other hand, it is worth noting
that the value ofTi which determines the time length of
the impulse response of the smoothers is rather different in
the two cases, beingT1 = T̂0 for the rectangular filter, and
T1 = 1.5T̂0 for the sinusoidal one (+50%). To perform a fair
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Fig. 5. Percent residual vibration of a sinusoidal smoothercompared with
the combination of a rectangular smoother and a ZV input shaper and with a
ZVDD input shaper (a); position, velocity and accelerationprofiles obtained
by applying a unit step input to the three types of filters withthe same total
duration, i.e.Ttot = 3π s (b).

analysis, the harmonic filterS1(s) is therefore compared with
a chain of two rectangular smoothersM1(s)M2(s) (blue), with
T1 = T̂0 andT2 = 0.5T̂0, in order to match the time durations
of the impulse response. Also in this case, the sinusoidal
filter S1(s) is more robust than the chainM1(s)M2(s) with
respect to resonance frequency variations, since its PRV profile
is smaller over the entire range ofωn, and especially for
high frequencies. Therefore, while for the compliance with
kinematic constraints two rectangular filters are preferable,
for vibrations suppression the harmonic smoother is the best
option in terms of robustness. By observing the trajectory
profiles obtained by applying a simple step input to the two
kinds of filters, shown in Fig. 4(b), it results that both output
trajectories have continuous velocity and limited acceleration,
but their maximum values are slightly higher in case of the
harmonic motion.

Going forward, taking into account input shapers [12], the
sinusoidal smoother is compared with different feedforward
techniques for vibration suppression that are characterized
by the same time duration, namely the combination of a
rectangular filter withT1 = T̂0 and a Zero Vibration input
shaperZV (s) [19] with time-constantTzv = 0.5T̂0, and a
triple order input shaperZV 3(s) with Tzv = 0.5T̂0, also
known as Zero Vibration Double Derivative input shaper (or
ZVDD) [19]. As shown in Fig. 5(b), the PRV profiles of the
filters that include an input shaper are considerably lower than
the PRV obtained with the sinusoidal smoother, at least in the
neighbourhood of̂ωn. However, the filterS1(s) possesses two
features that can make it preferable in many applications:

• The PRV of the sinusoidal smoother has a low-pass
characteristics and, as a consequence, the effects of
additional resonant modes that may affect the plant at
higher frequencies are better mitigated.

• As already mentioned, when fed with a step signal
the trajectory produced byS1(s) is of classC1 (with
limited acceleration), while the output of the combination
M1(s) + ZV (s) is a signal of classC0 and the response
of ZV 3(s) remains of classC−1 and therefore discontin-
uous, see Fig. 5(b).

V. DAMPED SINUSOIDAL FILTER

If the dampingδ of the oscillating plant is not negligible, the
filter Si(s) is unable to suppress the residual vibration even in
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Fig. 6. Response of a resonant system (solid line) withδ = 0 (a) andδ = 0.1
(b) to the reference trajectoryqh(t) (dashed line) obtained with a sinusoidal
filter S1(s) applied to a step input.

nominal conditions. In fact, when a step input filtered byS1(s)
is applied to the system in Fig. 3, the tracking error between
the load position and the motor position can be computed as

E(s) =
−s2

s2 + 2δωns+ ω2
n

· S1(s) ·
1

s
. (9)

By inverse Laplace transformingE(s) and assumingt ≥ T1,
the analytic expression of residual vibrations descends:

ε(t)=Ae
−δωnt

[

(

ω
2
n −

π
2

T 2
1

)(

cos(Ωt) + e
δωnT1 cos(Ω(t− T1))

)

+
δ

√

1− δ2

(

ω
2
n +

π
2

T 2
1

)(

sin(Ωt) + e
δωnT1 sin(Ω(t− T1))

)

]

where A is a constant depending onT1, ωn, δ and Ω =
ωn

√
1− δ2. From the analytical expression ofε(t) it is clear

that, even if it is assumedT1 = 3 π
Ω , because of the presence

of eδωnT1 the two termscos(Ωt) + eδωnT1 cos(Ω(t− T1) and
sin(Ωt) + eδωnT1 sin(Ω(t − T1)) are not null if δ 6= 0, and
therefore the residual vibration is reduced but not suppressed.
In Fig. 6 the residual vibrations produced by resonant systems
with δ = 0 andδ = 0.1 respectively, tracking a properly tuned
harmonic trajectoryqh(t), are compared in order to highlight
this behavior.

The impossibility of cancelling residual vibration with a
sinusoidal filter if applied to a damped system has a straight-
forward explanation by analyzing the functionS1(s)Gε(s) in
the s-plane. As a matter of fact, the filterS1(s) introduces an
infinite number of zeroszk = ±j(2k + 1) π

T1

located along
the imaginary axis. The first pair of zeros are cancelled by the
poles of the filter itselfp = ±j π

T1

, while the remaining ones
can be used to cancel the oscillating poles of the plant in order
to suppress the vibrations. As shown in Fig. 7(a), ifδ = 0 a
perfect cancellation occurs since also the poles of the plant lies
on the imaginary axis. Conversely, ifδ 6= 0 this cancellation
does not take place, see Fig. 7(b), and the zeroing effect,
which is responsible of the vibration reduction, decreasesas
the oscillating mode moves away from the imaginary axis, that
is asδ grows. In order to obtain a perfect cancellation even for
damped plants, a possible solution consists in translatingzeros
(and poles) ofS1(s) along a line parallel to the imaginary axis
whose abscissa is equal to the real part of the poles ofGε(s).
The procedure used in [20] for rectangular filters, based on a
frequency shift of the real quantityσi and on a modification
of the gain in order to assure unitary static gain, has been
followed and the transfer function of the new smoother has
been derived:
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Sσ,i(s) = k Si(s− σi) =

(

π
Ti

)2

+ σ2
i

1 + eσi Ti

1 + e−sTieσi Ti

(s− σi)2 +

(

π

Ti

)2 .

(10)
By defining

σi = −δωn and Ti =
3π

ωn

√
1− δ2

(11)

a perfect cancellation of the damped poles of the plant is
achieved by the zeros ofSσ,i(s), see Fig. 8(a). As a conse-
quence, the application to the system of a trajectory, generated
by feeding the filter with a step input does not cause residual
vibrations, as highlighted in Fig. 8(b). From an analytical
point of view, the expression of residual vibrations considering
a damped sinusoidal smootherSσ,1(s) filtering a step input
becomes

ε(t)=Ae−δωnt
[

B
(

cos(Ωt) + e(σ1+δωn)T1 cos(Ω(t− T1))
)

+C
(

sin(Ωt) + e(σ1+δωn)T1 sin(Ω(t− T1))
)]

(12)

whereΩ = ωn

√
1− δ2, andA, B, C are constant parameters

that depend onσ1, T1, δ andωn. Therefore, the necessary and
sufficient condition that guaranteesε(t) = 0, ∀t ≥ T1 is

σ1 = −δωn and T1 = k
3π

ωn

√
1− δ2

, k = 1, 2, . . . (13)

Note that the condition (11) is a particular case of (13), leading
to the minimum duration of the trajectory.

By inverse Laplace transformingSσ,i(s) its impulse re-
sponse is obtained, i.e.

sσ,i(t)=















(

π
Ti

)2

+ σ2
i

1 + eσi Ti

Ti

π
eσit sin

(

π

Ti
t

)

, 0 ≤ t ≤ Ti

0, otherwise.

(14)
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Fig. 9. Impulse responsesσ,i(t) of the damped harmonic smoother for
different values ofσi.

Sincesσ,i(t) is given by the product of a sine function and
an exponential function withσi < 0 (the plant is supposed to
be asymptotically stable),Sσ,i(s) is calleddamped sinusoidal
filter. When fed with a step input, it provides adamped
harmonic trajectorywhich generalizes the standard harmonic
motion and whose analytical expression is

qh,σ(t) = q0 +
h

1 + eσ1T1

(

1 + eσ1t

(

σ1T1

π
sin

(

π

T1
t

)

−

− cos

(

π

T1
t

)))

whereq0 is the initial position,h the desired displacement,T1

the duration of the trajectory andσ1 the decay rate coefficient.
Note that the impulse response of the filtersσ,i(t) coincides
with the velocity of the damped harmonic trajectory. In Fig.9
the shape ofsσ,i(t) for different values ofσi is shown, and it
is possible to appreciate thatsσ,i(t) becomes more and more
asymmetric as the magnitude ofσi grows and its peak value
tends to increase as well. This means that, for a given value
of Ti, the velocity of the damped harmonic motion, i.e. the
first derivative of the filter step response, grows with|σi|.
A. Parameter identification and sensitivity to errors

The filter parametersσi andTi can be readily determined
by applying (13) once the nominal values of the damping
coefficientδ̂ and of natural frequencŷωn of the resonant plant
are known. Alternatively, as for the other smoothing filtersor
input shapers, it is possible to experimentally estimate their
values. As a matter of fact condition (13), that assures residual
vibration suppression for a second-order system with poles
p1,2 = σ̂ ± jΩ̂ = −δ̂ω̂n ± jω̂n

√

1− δ̂2, can be rewritten as

σi = −δ̂ω̂n = σ̂, Ti = k
3π

Ω̂
= k

3

2
T̂0, k = 1, 2, . . . (15)

As a consequence, the two parameters can be obtained by an-
alyzing the vibrations induced on the plant by a generic input
signal or non-null initial conditions, vibrations characterized
by a periodT̂0 = 2π

Ω̂
and an exponential decay ratêσ. With

reference to the Fig. 10, their numerical values are

Ti = 3
2 T̂0 with T̂0 = t2 − t1

σi =
1

T̂0

ln

(

p2
p1

)

(16)

where the parameterst1, t2, p1, and p2 are defined in the
figure. For more details see [20].
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Fig. 11. Percent residual vibration ofSσ,i(s) as a function ofωn and δ
normalized with respect to their nominal values, forδ̂ = 0.05 (a) andδ̂ = 0.5
(b).

As for the undamped sinusoidal filter, the choice of the
parameters ofSσ,i(s) is critical for the level of residual
vibration, but in this case there are two independent variables.
For this reason the 3-dimensional surface describing the PRV
as a function ofδ andωn has been computed. In particular,
since the PRV ofSσ,i(s) depends on the nominal value of the
plant damping coefficient̂δ, two different values have been
considered in order to analyze the performance of the filter
for small (̂δ = 0.05) and large (̂δ = 0.5) damping values.
Conversely the nominal value of the natural frequency does
not affect the PRV and therefore a generic valueω̂n has been
assumed. In Fig. 11 the two surfaces are shown. For small
values ofδ̂, Fig. 11(a), the PRV of the filter strongly depends
on the correct estimation ofωn while it is practically not
sensitive to errors onδ. On the other hand, for large values
of δ̂, both parameters may be critical and it seems that for
ωn ≪ ω̂n and δ ≫ δ̂, the presence of the filterSσ,i(s)
increases the level of vibrations. However, it is worth noting
that in this case the apparent high level of residual vibrations
is due to the definition of PRV as ratio between the maximum
amplitude of vibrations with and without filter. Since the
vibrations for large values of̂δ are very small, the denominator
of the function for the computation of PRV is small as well
and may lead to large values even if the numerator is limited.
These considerations are very clear if the absolute value ofthe
residual vibration (with a unit step input) is considered inplace
of the percentage, as in Fig. 12. Ifδ̂ is small the contribution
of the filter is very important and accordingly the estimation
of the parameters is a critical issue, while for larger values of
δ̂ the role played bySσ,i(s) is less significant since, in any
case, the level of the vibration is very limited, see Fig. 12(b).
Similarly to the undamped case, the results obtained with the
filter Sσ,i(s), in terms of PRV, are compared to those produced
by a chain of two exponential filtersMσ,1(s)Mσ,2(s) which
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Fig. 12. Maximum magnitude of the residual vibration causedby Sσ,i(s)
fed with a unit step input as a functionωn andδ normalized with respect to
their nominal values, for̂δ = 0.05 (a) andδ̂ = 0.5 (b).
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Fig. 13. Percent residual vibration ofMσ,1(s)Mσ,2(s) (red line surface)
compared toSσ,i(s) (black line surface) as a function ofωn andδ normalized
with respect to their nominal values, for̂δ = 0.05 (a) andδ̂ = 0.5 (b).

represent the generalization of the rectangular smoothers
M1(s)M2(s) to take into account the damping coefficient of
the plant [20], see Fig. 13. The (damped) sinusoidal smoother
continues to outperform the chain of “rectangular” filters,since
the PRV value is smaller.
Finally, since the two characteristic parameters ofSσ,i(s) are

often directly obtained, it is worth considering the sensitivity
of the filter with respect to errors onTi andσi, as in Fig. 14.
In this case, even considering two different values ofδ̂ the
conclusion is quite straightforward: errors onσi have a little
influence on the PRV, while the estimation ofTi is very critical
for an effective vibration reduction.

VI. A COMPARATIVE EXPERIMENTAL EVALUATION OF THE

DAMPED SINUSOIDAL FILTER

In order to experimentally test the proposed method, the
setup shown in Fig. 15 have been arranged. It is composed by a
linear motor, LinMot PS01-37x120, whose slider is connected
to an inertial load by means an elastic transmission obtained
with a coil spring. The setup can be modelled as an ideal
two-mass system with elastic transmission, characterizedby
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Fig. 14. Percent residual vibration ofSσ,i(s) as a function of the impulse
lengthTi and decay rateσi, normalized with respect to their nominal values,
for δ̂ = 0.05 (a) andδ̂ = 0.5 (b).
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Fig. 15. Experimental setup.

a second-order oscillatory dynamics as the one reported in
Fig. 3. The control system is based on the servo controller
LinMot E2010-VF that performs the basic current control,
while the position control (based on a PID controller and
a feedforward action) has been implemented on a standard
PC with a Pentium IV 3 GHz processor equipped with a
Sensoray 626 I/O board, used to both communicate with the
servo controller and acquire the sensors signals. The real-time
operating system RTAI-Linux allows the position controller
to run with a sampling periodTs = 500µs. Obviously a
digital implementation of all the filters tested in the experi-
ments has been used. For the damped harmonic smoother the
expression of the discrete-time transfer function, obtained by
Z-transforming (10) and imposing a unitary static gain, is

Sσ,i(z
−1) = Ki

z−1 + eσiNiTsz−(Ni+1)

1− 2eσiTs cos( π
Ni

)z−1 + e2σiTsz−2
(17)

where

Ki =
1− 2eσiTs cos( π

Ni
) + e2σiTs

1 + eσiNiTs

andNi = round(Ti/Ts).
In order to evaluate the residual vibrationsε, a load cell is
placed between the slider and the elastic transmission. As a
matter of fact, the forcefk exerted by the spring is related to
the error between motor and load position and, if the inherent
damping of the transmission is considered, the forcefk is
simply a scaled low-pass filtered version ofε.
The parameters of the plant have been identified according to
the procedure reported in Sec. V-A, by applying to the motor
a trapezoidal velocity trajectory and analyzing the response of
the system, in terms of forcefk(t) transmitted via the coil
spring. The poles,p1,2 = σ̂ ± jΩ̂, of the second order system
are characterized by

σ̂ = −15.6539 1/s and Ω̂ = 122.7185 rad/s

and, consequently,̂T0 = 2π
Ω̂

= 0.0512 s. The values of̂σ

and T̂0 have been used for designing the damped sinusoidal
smoother and the other filtering methods mentioned in Sec.
IV in order to make a comparative analysis. The reference
trajectories obtained by filtering a step input of amplitude
30 mm and the corresponding profiles of the forcefk(t)
induced on the plant are reported in Fig. 17. By observing
the column on the right, that shows the vibration at the end
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Fig. 16. Response of the two-mass system of Fig. 15 to a trapezoidal velocity
trajectory of durationTtot = 0.0635 s (a) and residual vibrations (b).
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Fig. 17. Response of the two-mass system of Fig. 15 and residual vibration
induced by several motion profiles obtained by filtering a step signal; on the
left the resulting trajectoryq(t), on the right the transmission forcefk(t)
proportional toε.

of motion, the experimental results confirm the theoretical
analysis discussed in the previous sections. First of all, the
comparison of Figures (e) and (d) highlights that the damped
sinusoidal filterSσ,1(s) outperforms the standard sinusoidal
filter S1(s) in terms of residual vibration level and produces a
response that is very similar to the cascade of two exponential
smoothersMσ,1(s)Mσ,2(s) shown in Fig. 17(a). The peak
values of the residual vibration, measured via the transmission
force, are 3.634 N and 4.718 N for Sσ,1(s) and S1(s)
respectively, whilefMAX

k = 3.701 N for Mσ,1(s)Mσ,2(s). The
use of input shapers may enhance the vibration reduction but
only if they are used in conjunction with smoothers filters. In
fact, despite the fact that, according to the sensitivity function
reported in Fig. 5, the ZVDD input shapers is accounted as
the most robust filtering method with respect to errors in
the parameters estimation, it produces a very high level of
oscillations (fMAX

k = 4.092 N) and, in particular, greater than
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Fig. 18. Velocity and acceleration of the motion profiles obtained with
different filters and tracking error̃q(t) of the motor.

the level obtained by sinusoidal filters. This result can be
ascribed to the large tracking error of the linear motor, that is
very fast but cannot follow discontinuous steps, see Fig. 17(c)
on the left. On the contrary, the combinationMσ,1(s)ZV (s)
generates a level of the residual vibration smaller than the
one produced by the other filtering methods involving the
same time delay. Therefore, if the goal of the filter only
consists in the residual vibration suppression, the combina-
tion Mσ,1(s)ZV (s) is the optimal choice. However, if other
features of the resulting motion trajectories, like smoothness
level, velocity/acceleration peak values, tracking error, are
considered different filters should be preferred. In Fig. 18it is
shown that the filterMσ,1(s)ZV (s) fed with a step input pro-
duces a motion profile characterized by discontinuous velocity
and, consequently, infinite acceleration. Correspondingly, the
tracking error q̃(t) = qref (t) − qm(t) between the desired
and actual motion profiles of the motor has the largest value
(q̃MAX = 7.8581 mm) among all the tested trajectory filters (in
this case the ZVDD input shaper is not considered because it is
not a trajectory filter). On the contrary, the trajectory of class
C1 produced by the (undamped) sinusoidal smootherS1(s)
exhibits the smallest velocity and acceleration values andthe
smallest tracking error (̃qMAX = 4.5664 mm). The damped
harmonic smootherSσ,1(s) and the cascade of two exponential
smoothersMσ,1(s)Mσ,2(s) lead to similar performances, with
a slight superiority ofSσ,1(s), which is characterized by a
lower velocity and a smaller tracking error (q̃MAX = 6.0902
mm).

VII. C ONCLUSIONS

The aim of this work is to prove advantages and disadvan-
tages of trajectories based on trigonometric functions, starting
from the initial consideration that this kind of motion profiles
can be obtained by a cascade of smoothers with rectangular
and sinusoidal impulse response. After having remarked that in
those applications that involve only kinematic constraints the

use of harmonic smoothers is useless, since, for given bounds,
a cascade of two rectangular smoothers leads to trajectories
with the same continuity level but lower duration, it has been
shown, with both theoretical considerations and experimental
tests, that harmonic smoothers are preferable for vibration
suppression. In this respect, the generalization of the harmonic
smoother to take into account not only the natural frequency
but also the damping coefficient of the vibrating plant appears
a significant improvement. The damped harmonic smoother
further enhances the capability of the harmonic smoother of
reducing the residual vibration without a significant increase
of the complexity.
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