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Abstract
Background: Statistical approaches to genetic sequences have revealed helpful to gain deeper insight into biological
and structural functionalities, using ideas coming from information theory and stochastic modelling of symbolic
sequences. In particular, previous analyses on CG dinucleotide position along the genome allowed to highlight its
epigenetic role in DNA methylation, showing a different distribution tail as compared to other dinucleotides.
In this paper we extend the analysis to the whole CG distance distribution over a selected set of higher-order
organisms. Then we apply the best fitting probability density function to a large range of organisms (> 4400) of
different complexity (from bacteria to mammals) and we characterize some emerging global features.

Results: We find that the Gamma distribution is optimal for the selected subset as compared to a group of several
distributions, chosen for their physical meaning or because recently used in literature for similar studies. The
parameters of this distribution, when applied to our larger set of organisms, allows to highlight some biologically
relavant features for the considered organism classes, that can be useful also for classification purposes.

Conclusions: The quantification of statistical properties of CG dinucleotide positioning along the genome is
confirmed as a useful tool to characterize broad classes of organisms, spanning the whole range of biological
complexity.
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Background
Recent studies revealed that dinucleotide interdistances
can be a powerful tool for detecting DNA properties
[1, 2], such as the identification of CpG islands [3] and
the characterization of epigenomic regulation through
methylation [4, 5]. In a previous paper [4], we higlighted
a peculiar feature of mammals CG dinucleotides: the tail
of CG interdistance distributions showed an exponential
decay, at difference with non CG’s which had a heavier
tail more similar to a power law. This might be due to
the specific role that CGs play inside mammals genomes,
since they are the preferential sites of methylation, a
fundamental epigenetic mechanism involved in gene reg-
ulation [6–10] and structural conformation of chromatine
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[11, 12]. In light of these preliminary observations, we
believe that a characterization of the complete CG distri-
bution would provide a better comprehension of their role
inside genomes of all organisms, with the idea that similar
functionalities should share similar statistical properties.
Moreover, the identified distribution can be the basis for
hypothesizing specific physical models to describe the
observed DNA sequence characteristics.
We previously noticed that the distinction between

CG and non-CG interdistance distributions is less sharp
in non-mammal organisms, by considering a set of 21
genomes, belonging to 10 mammal and 11 non-mammal
organisms [4]. We have now extended the study to CG
interdistance distributions from 4425 genomes, belonging
to a wide range of organism categories (bacteria, protozoa,
plants, fungi, invertebrates, mammal and non-mammal
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vertebrates) in order to better understand the heteroge-
nous scenario found among non-mammals and to obtain
a global picture associated to this particular feature.

Methods
Data
The organism DNA sequences were downloaded from
GenBank NCBI database [13]. We defined a subset of
organisms, namely the DNA sequences of 9 mammal
model organisms: Bos taurus, Canis familiaris, Equus
caballus, Homo sapiens, Macaca mulatta, Mus muscu-
lus,Ornithorhynchus anatinus, Pan troglodytes and Rattus
norvegicus, to test the goodness of fit of the chosen prob-
ability density functions, since in a previous work [4] they
showed very homogeneous characteristics in terms of CG
distribution.
An extended analysis was then performed on a dataset

composed of 4425 genomes (see Additional file 1 for
a detailed list on organisms and measured parameters),
selected among 7 of the 11 categories represented on
the NCBI database: bacteria, fungi, invertebrates, plants,
protozoa, mammal vertebrates and non-mammal verte-
brates (see Table 1). In order to ensure minimal qual-
ity criteria on the reconstructed genome sequences,
we chose to study only fasta files at chromosome and
scaffold levels, discarding those for which only contigs
were available.

Computation of CG interdistance distributions
The first step of our analysis consisted in the estimation
of CG interdistance relative frequency distributions p̂(τ )
in the selected organism set. We pre-processed the data
by extracting the longest sequence from each genome,
except sex chromosomes [4], and removing the unknown
bases, identified with the “N” symbol in the fasta files.
This operation did not affect the computation of p̂(τ ),
because the ratio of N inside the sequences was in gen-
eral low (see Table 2 and Additional file 1) and they were
mainly located contiguously at the centromere and telom-
ere regions, thus producing only a very small number of

Table 1 Number and size of genome assemblies downloaded
from GenBank database, divided into categories

Category Number of genomes Size

Vertebrates non-mammals 200 210 Gb

Vertebrates mammals 219 525 Gb

Plants 297 288 Gb

Protozoa 348 17 Gb

Invertebrates 507 168 Gb

Bacteria 1251 5 Gb

Fungi 1603 44 Gb

Table 2 Percentage of unkown bases N inside each analyzed
sequence of the first set of organisms

Organism Sequence N (%)

Bos taurus chromosome 1 0.7

Canis familiaris chromosome 1 0.5

Equus caballus chromosome 1 1.2

Homo sapiens chromosome 1 7.4

Macaca mulatta chromosome 1 6.5

Mus musculus chromosome 1 7.9

Ornithorhynchus anatinus chromosome 3 6.4

Pan troglodytes chromosome 1 2.1

Rattus norvegicus chromosome 1 5.2

large distances (that could eventually be easily removed
from the analysis). Subsequently we found the positions
xj of each CG dinucleotide inside the sequence, and we
calculated the distance between two consecutive CG as
τj = xj+1−xj; finally, for each distance value τ , we counted
its abundance along the sequence and estimated its rela-
tive frequency p̂(τ ), as described in Eq. 1. In this way we
obtained a relative frequency distribution that we called
CG interdistance distribution.

p̂(τ ) = #{j|τj = τ }
#{τj}

(1)

Choice of best distribution
In order to find a complete characterization of mam-
mal CG distribution, we firstly represented p̂(τ ) for the
9 mammal model organisms in semilogarithmic scale.
In this way, we immediately recognized an exponentially
decaying trend in the tails (not shown, see Supplementary
Materials in [4]), which led us to consider the follow-
ing functions: exponential and double exponential distri-
butions, which can be associated to physical processes
respectively governed by a single and a double char-
acteristic scale (that would correspond to characteristic
CG distances along the genome); stretched exponential
and gamma distributions, which are related to physi-
cal processes involving both a characteristic scale and a
power-law trend [14–23]. We also took into account the
q-exponential distribution, as suggested by a recent work
[5] that studied CG interdistance distributions on a small
interval of about 0 − 300 dinucleotide distance values for
human genome. In our study we consider the whole dis-
tance distribution up to about 2000 nucleotides for the
same organism, and of the same order of magnitude for
the other higher-order organisms of the considered sub-
set. The proposed distributions were fitted to the data
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by using a non-linear least square method (fit function,
Mathworks Matlab software).

p(τ ) = ae−τ/b (2)

p(τ ) = ae−τ/b + ce−τ/d (3)

p(τ ) = ce−τa/b (4)

p(τ ) =[ 1+ (1 − a)τ ]
−1

(1−a) (5)

p(τ ) = cτa−1e−τ/b (6)
We noticed that the extreme region of the right tail

of our CG distributions adversely affected fit results,
due to poor sampling (see Additional file 1 for details),
therefore we decided to exclude from the fit proce-
dure all distances beyond the 90th percentile (leaving an
interval of distances from 0 up to about 1000 − 2000
bases in all 9 higher-order organisms). The goodness
of fit was initially estimated by r2 parameter (Eq. 7),
defined as:

r2 = 1 − SSR
SST (7)

where SSR represents the sum of squares of the regres-
sion and SST the sum of squares about the mean, also
called total sum of squares. Due to the large number of
distances fitted for these organisms, any correction for
sample size to the goodness of fit estimation was not rel-
evant. A comparison of r2 values allowed to discard some
distributions with a clear low fitting performance. In order
to find the best fitting distribution among the remain-
ing, we considered additionally the mean value of residual
distribution (reported in Table 3), that allowed a fur-
ther discrimination, also supported by visual inspection
(see Additional file 1).

Multiple genome analysis
Once obtained the best fitting probability density func-
tion for the mammal organism set, we applied it to
all organisms chosen for our analysis. The fit parame-
ters associated to the best distribution, together with the
goodness-of-fit parameters, were used to describe the
analyzed organisms, individually or grouped by category,
allowing to obtain a global picture from a point of view
of organism complexity. We expected that genomes with
similar CG interdistance distributions would show similar
fit parameter values, reflecting similarities in the func-
tional roles of CG dinucleotides in these organisms. Even
if for some organism categories the chosen distribution
is not optimal as for the initial subset, we hypothesize
that organisms with similar distributions (even if not
corresponding to the chosen one) should present sim-
ilar parameters anyway, allowing a global classification
with a unified approach. Anyway, to filter out possible
fit errors due to bad genome sequence reconstruction,
we only considered for our analyses the organisms which
goodness-of-fit exceeded a value r2 = 0.9. With this filter
we discarded on average about 15% of our genomes (from
2% in bacteria to 25% in non-mammal vertebrates), homo-
geneously distributed along the considered categories,
resulting in 3857 genomes left for our analysis.

Results
Goodness-of-fit parameters showed that gamma distri-
bution (Eq. 6) is the function that best describes CG
interdistance distribution for the 9 mammal subset (see
Fig. 1 for the case of human genome). In particular, if
we look at r2 values in Table 4, we can see that the
worst fit results are given by q-exponential distribution,
since the corresponding r2 values are the lowest ones, fol-
lowed by single exponential distribution. The choice of
best fit distribution among the remaining was more diffi-
cult, because r2 values were very similar or even identical.
Therefore, we also considered the mean values of residual

Table 3 Residual mean values of gamma, stretched exponential (S. Exp), double exponential (D. Exp), exponenital (Exp) and
q-exponential (Q-exp) fit of mammal CG interdistance distributions

Mammal Gamma S. Exp D. Exp Exp Q-exp

Bos taurus -1.96E-11 -5.19E-6 1.05E-7 -7.65E-12 1.17E-1

Canis familiaris -8.88E-11 -4.05E-6 3.26E-7 2.47E-8 1.18E-1

Equus caballus 6.53E-10 -5.86E-9 -3.67E-4 6.64E-12 1.51E-1

Homo sapiens 7.69E-10 -1.05E-6 1.21E-7 2.41E-9 1.40E-1

Macaca mulatta 3.13E-11 -2.93E-8 1.26E-7 1.02E-8 1.39E-1

Mus musculus -2.04E-11 -2.93E-8 2.70E-7 4.00E-8 1.23E-1

Ornithorhynchus anatinus 8.37E-11 -1.25E-7 2.56E-7 3.63E-8 1.10E-1

Pan troglodytes 7.77E-10 -1.79E-6 1.90E-7 2.83E-9 1.39E-1

Rattus norvegicus 7.31E-10 -3.14E-9 1.35E-7 -3.09E-12 1.49E-1
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Fig. 1 Log-linear plot of gamma fit result for Homo sapiens CG interdistance distribution in chromosome 1 (left-hand side), together with residual
plot in linear scale (right-hand side)

distribution, that provided a clear distinction among the
considered distributions (see Table 3), with values around
10−11 for gamma fit, 10−8 for stretched exponential fit,
10−7 for double exponential fit, 10−8 for exponential fit
and 10−1 for q-exponential fit. These values confirmed
that q-exponential was the worst fitting distribution, and
showed that gamma is the best fit function for mammal
CG interdistance distributions (see Table 5 for fit results).
Looking at Fig. 2, we notice that b is the parameter that

mainly discriminates between the organism categories
while the value a of the power term in gamma distribu-
tion is equally spread across all organisms of all categories
(see also Fig. 3). Furthermore, b values seem to increase
with the “biological complexity” of the considered cat-
egories, being minimum for bacteria and protozoa, and
maximum for vertebrates (higher in mammals than in
non-mammals) and with an intermediate value for inver-
tebrates. Vertebrate categories have a median value of

b in the range 200 − 300, while it is an order of mag-
nitude lower for bacteria (about 30). We remark that
this value is very close to the typical length of DNA
enveloped around a histone (146 bp envelope around his-
tone octamer plus a linker region summing up to about
200-220 bp), thus there might be a relation between DNA
enveloping around histones and our observation in term
of CG distances, even if we cannot provide an explanation
for this.
Since we are considering a large class of organisms, with

DNA sequence size differing by several orders of magni-
tude (from 108 for mammals to 104 − 105 for bacteria and
protozoa), we checked if b parameter could be associated
with the length of the analyzed genomic sequence. This
does not seem the case, since the Pearson’s correlation
coefficient r between the logarithm of b and the logarithm
of the length of the analyzed genome sequences is very
close to zero: r = −0.12.

Table 4 R-squared values of gamma, stretched exponential (S. Exp), double exponential (D. Exp), exponenital (Exp) and q-exponential
(Q-exp) fit of mammal CG interdistance distributions

Mammal Gamma S. Exp D. Exp Exp Q-exp

Bos taurus 0.982 0.982 0.981 0.961 0.805

Canis familiaris 0.981 0.981 0.977 0.947 0.832

Equus caballus 0.986 0.987 0.775 0.964 0.797

Homo sapiens 0.985 0.985 0.983 0.962 0.799

Macaca mulatta 0.987 0.987 0.986 0.965 0.804

Mus musculus 0.983 0.985 0.983 0.960 0.803

Ornithorhynchus anatinus 0.978 0.981 0.978 0.949 0.831

Pan troglodytes 0.986 0.985 0.984 0.963 0.800

Rattus norvegicus 0.984 0.987 0.985 0.958 0.800
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Table 5 Gamma fit parameter values for the first set of 9 mammals. Errors on parameters are estimated at 95% confindence level and
rounded to the first significant digit

Mammal Sequence a b c r2

Bos taurus chromosome 1 0.25± 0.03 316± 5 0.10± 0.02 0.982

Canis familiaris chromosome 1 0.03± 0.03 324± 7 0.23± 0.04 0.981

Equus caballus chromosome 1 0.17± 0.03 226± 4 0.16± 0.03 0.986

Homo sapiens chromosome 1 0.16± 0.03 280± 5 0.14± 0.02 0.985

Macaca mulatta chromosome 1 0.17± 0.03 267± 4 0.15± 0.02 0.987

Mus musculus chromosome 1 0.22± 0.03 330± 6 0.12± 0.02 0.983

Ornithorhynchus anatinus chromosome 3 0.15± 0.04 250± 6 0.16± 0.03 0.978

Pan troglodytes chromosome 1 0.16± 0.03 281± 5 0.14± 0.02 0.986

Rattus norvegicus chromosome 1 0.09± 0.03 281± 5 0.21± 0.04 0.984

In light of these observations, we also tested whether
the gamma scale parameter (i.e., b) could depend on CG
density inside the sequence (number of CG dinucleotides
with respect to sequence length), representing b as a func-
tion of %CG in double logarithmic scale (see Fig. 4). In
a simple null model, the average distance between dinu-
cleotides should decrease proportionally to the inverse of
dinucleotide density inside the sequence, thus with a slope
equal to −1 in double logarithmic plot. Therefore, we fit-
ted the b vs %CG double logarithmic plot to a straight
line using linear least square method, obtaining the results
shown in Table 6. We observe that the relation between b
and %CG is in general very close to the fitted lines for each
organism category, with average value of Pearson’s coeffi-
cient ⟨r⟩ = −0.65 (minimum correlation rMIN = −0.54
for invertebrates, maximum correlation rMAX = −0.75 for
protozoa). From this analysis we can identify two groups

of organisms, according to values of the coefficientm, cor-
responding to the slope of the line in log-log plot and thus
to the exponent of the polynomial relation b ∝ %CGm:
bacteria, plants, fungi, protozoa and invertebrates have
an exponent approximately equal to −1, while mammal
vertebrates and non-mammal vertebrates have a smaller
exponent in absolute value closer to 0.5, significantly dif-
ferent from the others in terms of 95% confidence interval.
Some organism categories thus seem to verify the null
model hypothesis, while for vertebrates the significant
deviation from the null model suggests a different mech-
anism for CG dinucleotide placement along the genome
rather than a “maximum entropy” process.

Discussion
A possible biological interpretation of this grouping could
be a different role of CG methylation in these two classes

Fig. 2 Boxplot of gamma shape parameter a (left-hand side) and gamma scale parameter b (right-hand side) for the seven considered categories:
bacteria (BT), protozoa (PZ), fungi (FG), invertebrates (IN), plants (PL), non-mammal vertebrates (NMV) and mammal vertebrates (MV)
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Fig. 3 Semilogarithmic plot of gamma scale parameter b as function of gamma shape parameter a for the 4425 analyzed genomes, divided into
seven categories: bacteria (BT), fungi (FG), invertebrates (IN), plants (PL), protozoa (PZ), mammal vertebrates (MV) and non-mammal vertebrates (NMV)

of organisms. CG methylation is known to be an impor-
tant mechanism in higher-order organisms (like verte-
brates, that in our analysis show a slope significantly
smaller than −1), with an active role on gene transcrip-
tion regulation [24]. For most of the biological categories
that showed an exponent close to−1 it is not clear how (or
even if ) the CG methylation mechanism is used [25–27],
since in some cases different nucleotide sequences are
involved in methyl group binding (like the GATC motif
in E. Coli, or other motifs in plants [28]) and in gen-
eral is not used for gene regulation, if not only during

embryonic development [29]. We speculate that a char-
acterization of CG distribution parameters for a specific
organism could be an index to hypothesize a role of CG
methylation at a single organism level, even if we did not
go further in the analysis in this direction. In order to
extend the range of applications, we think that the method
developed in this work can be applied to further repeated
genomic sequences (e.g. transcription-factor-binding-site
motifs mapped in ENCODE project [30] and repeated
sequences associated to transposable elements [31]) in
order to gain a deeper insight into DNA properties of

Fig. 4 Double logarithmic plot of gamma scale parameter b as a function of CG percentage for each of the 4425 genomes belonging to the seven
considered categories: bacteria (BT), protozoa (PZ), fungi (FG), invertebrates (IN), plants (PL), non-mammal vertebrates (NMV) and mammal
vertebrates (MV), (left-hand side). Plot of the angular coefficient m obtained from linear regression of CG-b relationship, for each considered
category (right-hand side)
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Table 6 Linear regression parameters of CG-b relationship,
together with r-squared values

Category m q r2

Bacteria -1.06± 0.02 2.23± 0.02 0.858

Protozoa -1.11± 0.05 2.3± 0.04 0.875

Fungi -0.87± 0.03 2.07± 0.02 0.726

Invertebrates -0.9± 0.1 2.3± 0.06 0.460

Plants -1.11± 0.09 2.5± 0.04 0.707

Vertebrates non-mammals -0.76± 0.08 2.34± 0.02 0.704

Vertebrates mammals -0.51± 0.07 2.43± 0.01 0.523

single organisms or for comparison between oganism cat-
egories. Moreover, considering our approach as providing
a null model for CG (or other dinucleotide) distribution,
we can look for deviations from such null model and study
their possible biological meaning (e.g. in relation to CpG
islands).

Conclusions
We considered several probability density functions to fit
the CG interdistance distribution of a selected set of mam-
mal organisms, and we observed that it is best described
by a Gamma distribution. Applying this function on a
wide set of organisms, taken from different taxonomic
categories, we noticed that the scale parameter b of the
Gamma distribution could be associated to the biologi-
cal complexity of the organism category, increasing from
bacteria to vertebrates. Moreover, we tested for possi-
ble factors affecting this parameter, like genome sequence
length and CG density. While the first was not related to
our observations, the second revealed stronger correla-
tions; in particular, for a group of organisms, comprising
those of minor biological complexity (bacteria, protozoa,
fungi, invertebrates and plants), the relation between b
and CG density could be explained by a minimal null
model, while for higher order organisms (vertebrates) this
null model did not explain the observations.We argue that
this difference could be related to the different role that
CG methylation plays in these classes of organisms.

Additional file

Additional file 1: The additional file contains: a section where we show
our fitting method performance on different synthetic data sets; a section
where we show the plot of gamma and stretched exponential fit results for
CG interdistance distribution of Homo sapiens; a section where we show
how we calculated errors on r-squared, based on Olkin and Finn’s
approximation; a final section where we collected into two tables all the
informations about the analysis perfomed on the 4425 organisms. The first
table contains informations about organism type and identification on
NCBI website; the second contains gamma fit parameters, ratio of unkown
nucleotides (%N), ratio of CG dinucleotides (%CG) and r-squared values.
(PDF 1960 kb)
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